
A Distributed Backbone Formation Algorithm

for Mobile Ad Hoc Networks

Orhan Dagdeviren and Kayhan Erciyes

Izmir Institute of Technology
Computer Eng. Dept., Urla, Izmir 35340, Turkey

{orhandagdeviren, kayhanerciyes}@iyte.edu.tr

Abstract. Construction of a backbone architecture is an important is-
sue in mobile ad hoc networks(MANET)s to ease routing and resource
management. We propose a new fully distributed algorithm for backbone
formation in MANETs that constructs a directed ring architecture. We
show the operation of the algorithm, analyze its message complexity and
provide results in the simulation environment of ns2. Our results conform
that the algorithm is scalable in terms of its running time and round-
trip delay against mobility, surface area, number of nodes and number
of clusterheads.

1 Introduction

MANETs do not have any fixed infrastructure and consist of wireless mobile
nodes that perform various data communication tasks. MANETs have potential
applications in rescue operations, mobile conferences, battlefield communica-
tions etc. Clustering has become an important approach to manage MANETs.
In large, dynamic ad hoc networks, it is very hard to construct an efficient net-
work topology. By clustering the entire network, one can decrease the size of
the problem into small sized clusters. Clustering schemes can be classified as
Dominating Set(DS)-based, low-maintanence, mobility-aware, energy-efficient,
load-balancing and combined-metrics-based clustering [1]. DS-based clustering
algorithms [2,3,4,5,6] like Wu’s CDS(Connected Dominating Set) algorithm [2],
Chen’s WCDS(Weakly Connected Dominating Set) algorithm [3], Dominating
Set Based Clustering Algorithm [4] try to find a DS for a MANET so that
the number of mobile nodes that participate in route search can be reduced.
Low-maintenance clustering [7,8,9,10] schemes aim at providing stable cluster
architectures for upper-layer protocols with little cluster maintenance costs.
Mobility-aware clustering [11,12,13] takes the mobility behavior of mobile nodes
into consideration. Energy-efficient clustering [14,15,16] manages to use the bat-
tery energy of mobile nodes wisely in a MANET. Load-balancing clustering
schemes [14,17,18] attempt to limit the number of mobile nodes in each cluster
to a specified range so that clusters are of similar size. Combined-metrics-based
clustering [19] usually considers multiple metrics, such as node degree, cluster
size, mobility speed and battery energy in cluster configuration, especially in
clusterhead decision [1].

M. Guo et al. (Eds.): ISPA 2006, LNCS 4330, pp. 219–230, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

220 O. Dagdeviren and K. Erciyes

Load-balancing clustering schemes like Merging Clustering Algorithm(MCA)
[17], Adaptive Multi-hop Clustering [18] (AMC) and Degree-Load-Balancing
Clustering (DBLC) [14] distribute the workload of a network more evenly into
clusters by limiting the number of mobile nodes in each cluster in a defined range.
But the weakness of these algorithms is the lack of virtual backbone formation to
serve the lower layer protocols like routing, or the upper layer operating system
services like distributed mutual exclusion protocol [20]. In this study, we propose
a backbone formation algorithm for load-balancing clustering algorithms where
backbone is constructed as a ring architecture by directing clusterheads in a
minimum spanning tree to each other. Related work in this area is reviewed in
Section 2, we define, illustrate and analyze our algorithm in Section 3, provide
implementation results in Section 4 and the final section provides the conclusions
drawn.

2 Background

MCA finds clusters in a MANET by merging the clusters to form higher level
clusters as mentioned in Gallagher, Humblet, Spira’s algorithm [21]. The cluster-
ing operation we apply, however, operates by discarding the minimum spanning
tree. This reduces the message complexity from O(nlogn) to O(n). Upper and
lower bound heuristics for clustering operation are used which result in a bal-
anced number of nodes in the cluster formed. AMC maintains multihop cluster
structure as similar to MCA. For cluster maintenance, each mobile node periodi-
cally broadcasts its information, its id, cluster id and status to others within the
same cluster. Clusters are obtained by merging, and upper and lower bounds
are used for controlling the cluster size. DLBC periodically runs the cluster-
ing scheme in order to keep the number of nodes in each cluster approximately
equal to a system parameter, ED, which indicates the optimum number of mo-
bile nodes that a clusterhead can handle. A clusterhead degrades to an ordinary
member node if the difference between ED and the number of mobile nodes
that if currently serves exceeds some value, Max Delta [1]. As mentioned, load-
balancing algorithms partition the network into a balanced number of clusters
but a backbone is not constructed.

Wu et al.’s CDS Algorithm is a step wise operational distributed algorithm,
in which every node has to wait for others in a lock state. In this algorithm,
nodes exchange neighbor list messages to decide marking process. Algorithm
has two phases of marking operation to find a connected dominating set. A CDS
with small size reduces the number of nodes involved in routing-related tasks.
Further heuristics and degree checking functionalities are added in Dominating
Set based Clustering Algorithm to find the minimal CDS. The number of clusters
produced by the CDS clustering is rather large and the cluster structure is highly
overlapping [1]. Chen proposed a WCDS scheme by relaxing the requirement of
direct connection between neighboring dominating nodes. Backbone formation
is supported by the construction of CDS or WCDS in these algorithms, but
adjusting the cluster size is not mentioned.

A Distributed Backbone Formation Algorithm for MANETs 221

3 Our Algorithm

3.1 General Idea of the Algorithm

The algorithm we propose constructs a backbone architecture on a clustered
MANET. Different than other algorithms, the backbone is constructed as a di-
rected ring architecture to gain the advantage of this topology and to give better
services to other middleware protocols such as distributed mutual exclusion [20]
and total order multicast. The second contribution is to connect the clusterheads
of a balanced clustering scheme which completes two essential needs of cluster-
ing by having balanced clusters and minimized routing delay. Besides these, the
backbone formation algorithm is fault tolerant as the third contribution.

3.2 Description of the Algorithm

We assume that the MANET is partitioned by a load-balanced clustering algo-
rithm like MCA, AMC or DLBC. Each node has distinct node id, knows its clus-
terhead id are the basic assumptions of our algorithm as well as these clustering
algorithms.

Our main idea is to maintain a directed ring architecture by constructing a
minimum spanning tree between clusterheads and classifying clusterheads into
BACKBONE or LEAF nodes, periodically. To maintain these structures, each
clusterhead broadcasts a Leader Info message by flooding. In this phase, cluster-
member nodes act as routers to transmit Leader Info messages. Algorithm has
two modes of operation; hop-based backbone formation scheme and position-
based backbone formation scheme. In hop-based backbone formation scheme,
minimum number of hops between clusterheads are taken into consideration in
a minimum spanning tree construction. Minimum hop counts can be obtained
during flooding scheme. For highly mobile scenarios, an agreement between clus-
terheads must be maintained to guarantee the consistent hop information. In
position-based backbone formation scheme, positions of clusterheads are used to
construct the minimum spanning tree. If each node knows its velocity and the
direction of the velocity, these information can be appended with a timestamp
to the Leader Info message to construct a better minimum spanning tree. But in
this mode, nodes must be equipped with a position tracker like a GPS receiver.

Every node in the network performs the same local algorithm. The finite state
machine of the algorithm is shown in Fig. 1. Each node can be either in IDLE,
BACKBONE or LEAF states described below.

– IDLE: Initially all clusterheads are in IDLE state. If Period TOUT occurs,
each clusterhead broadcasts a Leader Info message to the destination node
and will make a state transition to WT INFO state. If Leader Info message
is received, the clusterhead makes a state transition to LEAF state and
reconstructs the ring by reorganizing the minimum spanning tree.

– WT INFO: A clusterhead in WT INFO state waits for Leader Info mes-
sage. If a Leader Info message is received, the clusterhead makes a state

222 O. Dagdeviren and K. Erciyes

LEAFIDLE

Leader_Info / Ring reconstructed

Leader_Info
/ Ring reconstructed

message to all cluster members

Detect Next Leader Crash
/ Multicast Leader_Crashed

, update the next leader
on the ring

Leader_Info
/ Ring reconstructed

Detect Next Leader Crash
/ Multicast Leader_Crashed

message to all cluster members
, update the next leader

on the ring

Period_TOUT

/ Broadcast Leader_Info

BACKBONE

WT_INFO

Leader_Info / Ring constructed

Period_TOUT /
Broadcast
Leader_Info

Leader_Info

TOUT

Period_TOUT/ Broadcast Leader_Info

Fig. 1. Finite State Machine

transition to LEAF state and reconstructs the ring. If TOUT occurs, clus-
terhead makes a transition to LEAF state which indicates that the network
has only two active partitions.

– LEAF : A clusterhead in LEAF state has a degree of 1 in its local minimum
spanning tree. If a Leader Info message is received, the clusterhead recon-
structs the ring and makes a state transition to BACKBONE state if the
degree exceeds 1. If Period TOUT occurs, clusterhead makes a transition to
IDLE state to restart the backbone formation.

– BACKBONE: A clusterhead in BACKBONE state has a degree greater
than 1. For each Leader Info message received, the ring is reconstructed. If
Period TOUT occurs, the backbone formation is restarted.

Cluster 1

Cluster 2

Cluster 5

Cluster 4

Cluster 3 Cluster 9

Cluster 8

Cluster 6
Cluster 7

Fig. 2. MANET with its minimum spanning tree

A Distributed Backbone Formation Algorithm for MANETs 223

1.Procedure ring_construct

2.begin

3. construct minimum spanning tree by total received leader information

4. if my degree is equal to 1

execute ordinary_leaf

9. else

10. set my state to BACKBONE

if I am a BACKBONE leader or a LEAF leader which can’t find next leader

execute backbone_proc

15.end

Fig. 3. Procedure executed by all leaders to construct a Ring Architecture

A balanced clustered MANET with its clusterheads and minimum spanning
tree is shown in Fig. 2. BACKBONE clusterheads are shown as black and LEAF
clusterheads are shown as white nodes. The main part of the algorithm is the
construction of a ring architecture by orienting clusterheads in the minimum
spanning tree. General idea is to divide the ring into two parts. A directed path
of BACKBONE clusterheads and a directed path of LEAF nodes. Finally, these
two directed paths are connected to each other to maintain the ring architecture.
Each clusterhead aims to find the next clusterhead(leader) to construct the ring
architecture by the procedure in Fig. 3.

Our first aim is to form the vital part of the backbone. The BACKBONE
clusterheads are directed to each other from starting BACKBONE clusterhead
to the end. Starting BACKBONE clusterhead is the one with the smallest con-
nectivity to other BACKBONE nodes. This selection policy of BACKBONE
clusterhead results in smaller hops and reduced routing delay. Ending BACK-
BONE clusterhead is directed to its LEAF with the smallest node id.

LEAF leaders firstly execute the procedure in Fig. 5 to find the next leader
on the ring. The aim of directing LEAF leaders with the same BACKBONE
leaders to each other is to make the routing process over the same BACKBONE
leader to reduce delay. LEAF leaders which can’t find the next leader execute
the procedure in Fig. 4 and search for a LEAF leader from the previous BACK-
BONE leaders of their parent to find a LEAF leader. Our last aim is to connect
the LEAF leaders of different BACKBONE parents to maintain the routing
operation by using the BACKBONE leaders.

Third contribution of our algorithm is the fault tolerance of clusterheads. Each
clusterhead can maintain the list of cluster member nodes in load-balancing al-
gorithms like MCA, AMC or DLBC. In our backbone formation algorithm, this
list can be appended to Leader Info message by each clusterhead. After the
formation of the ring is completed, if a clusterhead detects the crash of the
next clusterhead, it can multicast a Leader dead message to all cluster mem-
bers which initiates clustering operation. To support this functionality, clus-
tering layer must be updated. If this crash occurs during a real time operation,

224 O. Dagdeviren and K. Erciyes

1.Procedure backbone_proc

2.begin

3. find the starting BACKBONE leader such that its connectivity to

other BACKBONE nodes is smallest between all other BACKBONE

leaders.

4. find the next leader of starting BACKBONE.

5. If next leader found

6. set the temporary BACKBONE leader to next leader of starting

BACKBONE.

7. If not found

8. find LEAF leader with smallest node_id of starting BACKBONE leader.

9. mark the starting BACKBONE leader.

10. if I am starting BACKBONE leader set my next leader to found

value

11. else

12. while all BACKBONE nodes are not marked

13. find the next BACKBONE leader of temporary BACKBONE leader

with smallest distance which is not marked.

14. if found

15. set the next leader of temporary BACKBONE leader to found

value

16. mark the temporary BACKBONE leader

17. set the temporary BACKBONE leader to next leader

18. else

19. set the next leader of temporary BACKBONE leader

to LEAF with smallest node_id.

20. mark this LEAF leader

21. if I am a LEAF leader which can’t find next leader

21. find a child with smallest node_id from a previous BACKBONE

leaders of my parent BACKBONE leader.

23. if found set the next leader

24. else set the next leader to starting BACKBONE leader

25.end

Fig. 4. Procedure executed by BACKBONE leaders and LEAF leaders which can’t
find next leader

1.Procedure ordinary_leaf_proc

2.begin

3. set my state to LEAF

4. Find a LEAF leader with same parent and nearest greater node_id.

5. If found

6. set my next leader to this LEAF leader’s node_id and mark

this LEAF.

7.end

Fig. 5. Procedure executed by LEAF leaders

clusterhead updates its next leader to next-next leader and continues its opera-
tion since it knows the global information of all clusterheads.

A Distributed Backbone Formation Algorithm for MANETs 225

3.3 An Example Operation

Assume the MANET with clusterheads(leaders) in Fig. 6.a. Clusters are ob-
tained using MCA. Nodes 65, 15, 98, 30, 40, 13, 28, 80, 74, 19, 51 and 99 are the
leaders of clusters 1 to 12, respectively. Each clusterhead floods the Leader Info
message to the network. After each clusterhead receives the Leader Info message
of the others, minimum spaning tree in Fig. 6.a is constructed by all clusterheads.
Nodes 65, 98, 40, 13, 80, 19 and 99 identify themselves as LEAF leaders since
their degrees are all 1. Nodes 15, 30, 28, 74 and 51 identify themselves as BACK-
BONE leaders since their degrees are greater than 1. BACKBONE leaders are
filled with black and LEAF leaders are filled with white as shown in Fig. 6.a.

To connect the BACKBONE nodes, a starting BACKBONE leader must be
chosen. The criteria is to select the BACKBONE node which has the smallest
connection to other BACKBONE leaders. Node 15 is connected to 30, 30 is
connected to 15 and 28, 28 is connected to node 30 and node 74, node 74 is
connected to node 28 and 51, 51 is connected to 74. Node 15 and 51 can be
the choice for starting BACKBONE leader. 15 is selected because its node id is
smaller than 51. 15 selects the next leader as 30, 30 selects the next leader 28,
operation continues in this way. The ending BACKBONE leader directs to its
LEAF with the smallest node id. These directions can be seen in Fig. 6.b with
bold directed lines.

LEAF leaders of a BACKBONE leader are directed to each other from small-
est to greatest. Node 19 is directed to 99, 13 is directed to 80, 65 is directed 98
as seen in Fig. 6.c with dotted directed lines.

Cluster 1

Cluster 4

Cluster 5

Cluster 2

Cluster 3

Cluster 6 Cluster 8

Cluster 7

Cluster 9

Cluster 10

Cluster 11

Cluster 12

65

15

98

30

40

13
80

28

74

51

19

99

65

15

98

30

40

13
80

28

74

51

19

99

(a) (b)

30

13
80

28

74

51

19

99

65

30

40

13
80

28

74

51

19

99

65

15

98 40

15

98

(c) (d)

starting BACKBONE

Fig. 6. An Example Operation

226 O. Dagdeviren and K. Erciyes

Lastly, LEAF leaders of different BACKBONE leaders are connected as in
Fig. 6.d. Each LEAF leader which can not find the next leader, searches for a
LEAF leader from the children of the previous BACKBONE leader of its parent
BACKBONE leader. 99 is connected to 13, 80 is connected to 40, 40 is connected
65, 98 is connected to 15 shown with dashed lines in Fig. 6.d.

3.4 Analysis

Theorem 1. Message complexity of the backbone formation algorithm is O(Kn).

Proof. Assume that we have n nodes in our network. K leaders flood the message
to the network. Total number of messages in this case is Kn which means that
message complexity has an upper bound of O(n).

Theorem 2. Time complexity of the backbone formation algorithm is O(Kn).

Proof. Assume that we have n nodes in our network. Flooding of K messages
to the network takes Kn time.

4 Results

We implemented the distributed backbone formation algorithm with the ns2
simulator. Clustering is obtained using the MCA algorithm. Cluster size can
be adjusted by the K heuristic of MCA. Position-based backbone formation
algorithm is implemented.

Fig. 7. Runtime Performance

Different size of flat surfaces are chosen for each simulation to create medium,
small and very small distances between nodes. Medium, small and very small sur-
faces vary between 310m * 310m to 400m* 400m, 410m * 410m to 500m* 500m,
515m * 515m to 650m * 650m respectively. Random movements are generated
for each simulation. Low, medium and high mobility scenarios are generated and
node speeds are limited between 1.0m/s to 5.0m/s, 5.0m/s to 10.0m/s, 10.0m/s

A Distributed Backbone Formation Algorithm for MANETs 227

to 20.0m/s respectively. K heuristic of merging clustering algorithm is changed
to obtain different number of clusterheads. Round-trip delay as measured against
the number of clusterheads, total number of nodes, mobility and surface area
are recorded. As depicted in Fig. 7, the time complexity increases linearly and at
worst, the backbone formation scheme is completed in 1.5s for a MANET with
100 nodes.

For a MANET with 50 nodes, number of clusterheads are selected from 3 to 8
to measure the round-trip delay in Fig. 8. A linear increase can be seen in Fig. 8
which starts from 35ms and ends in 65ms approximately.

Fig. 8. Round-trip delay against number of clusterheads

Fig. 9. Round-trip delay against number of nodes

Round-trip delay against total number of nodes is measured with constant 4
clusters and the total number of nodes are varied between 10 to 100 in Fig. 9.
Round-trip delay times increase linearly from 20ms to 60ms approximately as
shown in Fig. 9.

In small surface scenarios, the connectivity between nodes is higher because
of small distances between the nodes and the connectivity between nodes causes
a decrease in the routing delay. Fig. 10 shows the effects of distance between
nodes to round-trip delay of the ring.

228 O. Dagdeviren and K. Erciyes

Fig. 10. Round-trip delay against surface area

Lastly, mobility parameter is changed to obtain the behavior of the algorithm
with respect to mobility. Our algorithm results in approximate round-trip delay
values for high mobile scenarios as shown in Fig. 11.

Fig. 11. Round-trip delay against Mobility

5 Conclusions

We proposed a new fully algorithm for backbone formation in MANETs and
illustrated its operation. Our original idea is the construction of backbone archi-
tecture as a directed ring. The second contribution is to connect the clusterheads
of a balanced clustering scheme which completes two essential needs of cluster-
ing by having balanced clusters and minimized routing delay. Besides these, the
backbone formation algorithm is fault tolerant as the third contribution. The
implementation results show that the algorithm is scalable in terms of its run-
ning time and round-trip delay against mobility, surface area, number of nodes
and number of clusterheads. We are planning to experiment various total order
multicast and mutual exclusion algorithms in such an environment where mes-
sage ordering and mutual exclusion are provided by the clusterheads on behalf
of the ordinary nodes of the MANET.

A Distributed Backbone Formation Algorithm for MANETs 229

References

1. Yu, J.Y., Chong, P.H.J., ”A survey of clustering schemes for mobile ad hoc net-
works”, in Proc. IEEE Communications Surveys and Tutorials, 15531877, (2005).

2. Wu J., Li, H., L., ”On Calculating Connected Dominating Set for Efficient Routing
in Ad Hoc Wireless Networks”, Proc. 3rd Intl. Wksp. Discrete Algorithms and
Methods for Mobile Comp. and Commun., 714, (1999).

3. Chen Y.-Z. P., Liestman, A. L., ”Approximating Minimum Size Weakly-Connected
Dominating Sets for Clustering Mobile Ad Hoc Networks” , in Proc. 3rd ACM Intl.
Symp. Mobile Ad Hoc Net. and Comp., 165-172, (2002).

4. Cokuslu, D., Erciyes, K. and Dagdeviren, O., ”A Dominating Set Based Cluster-
ing Algorithm for Mobile Ad hoc Networks”, ICCS 2006, Springer Verlag, LNCS,
(2006).

5. Das, B., Bharghavan, V., ”Routing in Ad Hoc Networks Using Minimum Connected
Dominating Sets”, in Proc. IEEE ICC97, 37680, 33(2), (1997).

6. Das B., Sivakumar, R. and Bharghavan, V., ”Routing in Ad Hoc Networks Using
a Spine”, in Proc. IEEE Intl. Comp. and Commun. Net. 97, 120, (1997).

7. Lin, C. R. and Gerla, M. ”Adaptive Clustering for Mobile Wireless Networks”,
IEEE JSAC, 1265-1275, 15, (1997).

8. Chiang, C.-C. et al., ”Routing in Clustered Multihop, Mobile Wireless Networks
with Fading Channel, in Proc. IEEE SICON97, (1997).

9. Yu, J. Y., Chong, P. H. J., ”3hBAC (3-hop between Adjacent Clusterheads): a
Novel Non-overlapping Clustering Algorithm for Mobile Ad Hoc Networks”, in
Proc. IEEE Pacrim03, 31821, 1, (2003).

10. Kwon, T. J. et al.,”Efficient Flooding with Passive Clustering an Overhead-
Free Selective Forward Mechanism for Ad Hoc/Sensor Networks”, in Proc. IEEE,
12101220, 91(8), Aug. 2003.

11. MaDonald, A. B., Znati, T. F., ”A Mobility-based Frame Work for Adaptive Clus-
tering in Wireless Ad Hoc Networks” , IEEE JSAC, 14661487, 17, Aug. (1999).

12. Basu, P., Khan, N. and Little, T. D. C., ”A Mobility Based Metric for Clustering
in Mobile Ad Hoc Networks”, in Proc. IEEE ICDCSW 01, 41318, Apr. (2001).

13. McDonald, A. B., Znati, T. F., ”Design and Performance of a Distributed Dynamic
Clustering Algorithm for Ad-Hoc Networks”, in Proc. 34th Annual Simulation
Symp., 2735, (2001).

14. Amis, A. D., Prakash, R., ”Load-Balancing Clusters in Wireless Ad Hoc Networks”,
in Proc. 3rd IEEE ASSET00, 2532, (2000).

15. Wu, J. et al., ”On Calculating Power-Aware Connected Dominating Sets for Ef-
ficient Routing in Ad Hoc Wireless Networks”, J. Commun. and Networks, 5970,
4(1), (2002).

16. Ryu, J.-H., Song, S., Cho, D.-H., ”New Clustering Schemes for Energy Conserva-
tion in Two-Tiered Mobile Ad-Hoc Networks”, in Proc. IEEE ICC01, 862866, 3,
(2001).

17. Dagdeviren, O., Erciyes, K., Cokuslu, D., ”A Merging Clustering Algorithm for
Mobile Ad hoc Networks”, ICCSA 2006, Springer Verlag LNCS, (2006).

18. Ohta, T., Inoue, S. and Kakuda, Y., ”An Adaptive Multihop Clustering Scheme
for Highly Mobile Ad Hoc Networks”, in Proc. 6th ISADS03, (2003).

19. Chatterjee, M., Das, S. K. and Turgut, D., ”An On-Demand Weighted Clustering
Algorithm (WCA) for Ad hoc Networks”, in Proc. IEEE Globecom00, 16971701,
(2000).

230 O. Dagdeviren and K. Erciyes

20. Erciyes, K., ”Cluster-based Distributed Mutual Exclusion Algorithms for Mobile
Networks”, EUROPAR 2004, Springer-Verlag, LNCS 3149, 933-940, (2004).

21. Gallagher, R. G., Humblet, P. A., AND Spira, P. M, ”A Distributed Algorithm
for Minimum-Weight Spanning Trees”, ACM Transactions on Programming Lan-
guages and Systems 5, 66-77, (1983).

	Introduction
	Background
	Our Algorithm
	General Idea of the Algorithm
	Description of the Algorithm
	An Example Operation
	Analysis

	Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

