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1. Introduction

The study of nonlinear differential-difference equations (NDDEs) has attracted a wide interest since the original work of
Fermi et al. in the 1950s [1]. NDDEs, treated as models of some physical phenomena, have become the focus of common con-
cern and played a crucial role in various branches of applied sciences such as biophysics, condensed matter physics and
mechanical engineering, and in different physical problems such as atomic chains, currents in electrical networks and molec-
ular crystals [2-5]. We can also encounter NDDEs in numerical simulation of soliton dynamics in high energy physics. Paying
more attention to such equations, many integrable NDDEs have been proposed by the researchers, such as the Toda lattice
equation [6], the Volterra lattice equation [7], the discrete KdV equation [8] and the Ablowitz-Ladik lattice equation [9].
Contrary to difference equations being fully discrete, NDDEs are semi-discrete with some (or all) of their space variables dis-
crete while time is usually continuous.

The investigation of discrete exact analytic solutions of NDDEs plays an important role in the study of their corresponding
nonlinear physical phenomena. Many effective analytic methods for solving nonlinear evolution equations (NEEs) are avail-
able in the literature [10-23]. How to extend newly developed methods for NEEs to solve NDDEs is an interesting and impor-
tant issue. To mention some of the research made on this direction, Hu and Ma [24] used Hirota’s bilinear method to
construct special soliton-like solutions of the Toeplitz lattice. With the development of computer algebra systems, Baldwin
and his co-workers [25] devised an algorithm for discrete nonlinear models in terms of a tanh function. Their work can be
thought as a breakthrough for solving NDDEs symbolically. By applying the Jacobi elliptic function expansion method, ex-
plicit and exact traveling wave solutions to three NDDEs are found by Liu et al. [26]. An extended Jacobian elliptic function
algorithm is presented by Dai et al. [27]. Xie et al. [28] studied the discrete sine-Gordon equation implementing a method
based on the Riccati equation expansion. Zhu [29,30] extended the Exp-function method to NDDEs to obtain physically
important solutions. Yang et al. [31] considered two nonlinear lattice equations using the so-called ADM-Padé technique.
The homotopy perturbation method is applied by Zhu et al. [32] to a nonlinear differential-difference equation arising in
nanotechnology. Zhen [33] developed a discrete tanh method. Lately, Aslan [34] presented a generalization of the extended
simplest equation method to NDDEs, and so on.
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Whilst there has been considerable work done on finding exact solutions to NEEs, little work is being done to symbolically
compute exact discrete solutions of NDDEs as far as we could verify. Not long ago, Wang et al. [35] proposed the (G'/G)-
expansion method to obtain exact solutions of NEEs arising in mathematical physics. Based on Wang et al.’s pioneer work
and his followers, the (G’/G)-expansion method has become popular in the research community, and there has been a num-
ber of studies refining the initial idea [36-50]. The method is efficient, reliable and faster by means of a symbolic computa-
tion system. It is also powerful for taking full advantage of linear theory of ordinary differential equations.

It is hard to extend an analytic method for NDDEs because of the difficulty which usually arises when we search for iter-
ative relations from indices n to n + i. Fortunately, Zhang et al. [51] have successfully extended the (G'/G)-expansion method
to the (2 + 1)-dimensional TLE and the discrete Wadati equation. Our objective in this study is to further extend the (G'/G)-
expansion method to two physically important NDDEs for the first time. We slightly adjust the proposed algorithm in [51] by
considering a third case for the inclusion of rational solutions as well.

The rest of this paper is organized as follows: in Section 2, we describe the (G'/G)-expansion method for finding exact
discrete traveling wave solutions of NDDEs, and state the main steps. In Section 3, we illustrate our procedure in detail with
the discrete nonlinear Schrodinger equation (DNSE) and the Toda lattice equation (TLE). Finally, some conclusions are given
in Section 4.

2. The (G'/G)-expansion method for NDDEs

Let us consider a system of M polynomial NDDEs in the form

Pu"ﬂ’] (X), ce 7u"+pk(x)7 s 7u;1+p1 (X)7 ce 7u;1+pk(x)7 ce 7u£1r4)rpl (X), te 7u§1’;)rl7k(x) = 07 (1)

where the dependent variable u, have M components u;, and so do its shifts, the continuous variable x has N components x;,
the discrete variable n has Q components n;, the k shift vectors p; € 7%, and u®(x) denotes the collection of mixed derivative
terms of order r. We summarize our five step-algorithm as follows:

Step 1: For finding traveling wave solutions to Eq. (1), we introduce the wave transformation

Upp, (X) = Unip (Cn), S = ZCJXJ+C (s=1,2,...,k), (2)
where the coefficients ¢y, c;,...,cn,d1,da,...,dq and the phase { are all constants. Then, Eq. (1) takes the form
PUD+P1(§H)7"'7UH+Pk(§n) U;le( ) 7Ull+l>k(én)7' . 7U51r+p1(§n)7"' 7Un+pk(én) = 0 (3)

Step 2: We assume that the solution of Eq. (3) can be expressed in the finite series expansion

m /
Zu <G 5“) a,#0, 4)
[
where m (a positive integer) and a’s are constants to be determined later, G(¢,) is the general solution of the auxiliary
equation
G"(&n) + G (&) + HG(E) =0 (5)

in which 2 and p are constants to be specified later and prime denotes derivative with respect to &,. The general solution of
Eq. (5) is well-known for us, and hence we get the following cases:

(e /7 ap (Creosh (V5 ) 4 casinh (Ve )
%<§n>: A i L Roaso (6a)
(.n) C sinh (V /'274 I8 ) +Cy cosh ( G M‘in)

. 2 [—C,sin (V42 .,) +C cos< a4s c“,,>

(&) _VAH-2 (T < s )t G i 2iauco (6b)
G(En) 2 C; cos | Y- s >+C sm( a2 ﬁn> 2
(&) C p 0

G(én

S = S 6c
) T Cat G 2 # (69

where C; and C, are arbitrary constants.
Step 3: A simple calculation leads to the identity

én+pS = én + @5, Q5= psld1 +ps2d2 4 +pstQ7 (7)
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where py; is the jth component of the shift vector p,. Thus, using the trigonometric/hyperbolic function identities and con-
sidering the functions (6a—-c) as well as (7), we derive uniform formulas

I

o (e (V)
Unip, (&) = D0 e 2| e 72— 4> 0, (8a)
=0 V14 ( +$ )tanh VE A g
\//2—4,u G
1
w 2 P
w [ 345G V“’z‘ an (Vo) 2
Un+ps(fn) = Za, \/_ 35| am#=0, 2°—4u<0, (8b)
=0 {1+ 44 Gln)) gan (VA
/ 2 G

i §((6 0 ). o

Step 4: From Eq. (3), we can easily determine the degree m of Egs. (4) and (8a-c) by balancing the highest order nonlinear
term(s) and the highest-order derivative term in U, (&,) as in the continuous case. The leading terms of Uy, (p;#0)
will not effect the balance since Uy,p, can be interpreted as being of degree zero in (G'(&,)/G(én)).

Step 5: Substituting the ansatze (4) and (8a-c) along with (5) into Eq. (3), then setting the coefficients of
(G'(&)/G(En))'(1=0,1,2,...) to zero, we obtain a system of nonlinear algebraic equations from which the undeter-
mined constants aj, d;, ¢;, A and u can be explicitly found. Finally, we substitute these values into expression (4) and
find traveling wave solutions to Eq. (1).

3. Applications
We illustrate the effectiveness and the advantages of our method by giving two examples.
3.1. The discrete nonlinear Schrédinger equation

An important model for discrete solitons is the integrable DNSE [9,52]

9 (e (6 2006+t 1 0)) ~ (O 1 6) + 110, ©

where u,(t) = u(n,t) is the displacement of the nth particle from the equilibrium position. Eq. (9) was established by using

the inverse scattering method [53], and has many interesting rich mathematical properties and physical applications includ-

ing dynamics of an harmonic lattice [54], self-trapping on a dimer [4], and pulse dynamics in nonlinear optics [55]. The

authors [56-59] successfully studied Eq. (9) by using the Exp-function and the Jacobian elliptic function expansion methods.
For solving the DNSE (9), we first make the traveling wave transformation

un:em"d)n(én)v 911:d1n+clt+€17 én:d2n+C2t+C2 (10)

and

Uit = €"€ 1 (&), Uy = €Me NG (&), (11)

where d; and c; are the wave number of the carrier wave and the frequency, ¢, and d, are related to the group velocity and the
pulse width, {; and ¢, denote the initial phases. Now, using the Euler formula e*t = cosd; + isind,, Eq.(9)turns into the system

{cld)n +cos(dr) (1= ¢2) (bn1 + bn 1) — 2¢ =0,
2y —sin(dy) (1 = ¢2) (pny1 — dn1) =0

We expand the solution of (12) in the form of (4). Balancing the linear term of the highest order with the highest nonlinear
term in (12) leads to m = 1. Thus, we consider the ansatz

] (13

for the traveling wave solutions of (12). Now, a case analysis follows:

(12)

Case 1: When 4?> —4u > 0, from (8a), we have
2+G iV” tanh(“’ d2> P
Pne1(En) = Ao + -z (14)

iy Clin) V72 2|
1iwf__4u(7+c(gn))tanh <Td2>
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where the signs (+) or (F) are ordered vertically from now on. Substituting (13) and (14) along with (5) into (12), clearing
the denominator and setting the coefficients of all powers like (G'(&,)/G(&)) (0 < i < 4) to zero, we derive a system of non-
linear algebraic equations for ao, a;, ¢, ¢2,d1,dz, 4, and . Solving the set of algebraic equations (we omit to display them for
brevity) simultaneously, we get the solution set

¢ =2 —2cos(d;) sec h® <—V’122"“ld2>, C = :‘/5;‘—1% tanh (—“22’4"@)

_ A V-4 _ 24
ao_imtanh< 5 d2>7 0 _¢\/i_4utanh< 5 d2>

where d; and d, are arbitrary constants. Hence, from (6a), (10), (13), (14) and (15), we obtain discrete hyperbolic function
traveling wave solutions to Eq. (9) as

ﬂ C; cosh (@ 5n> + G, sinh <\//_2;4; 5n>
up, () = Ftanh [ d,

2 C; sinh <7V’22’4” é,,) + C,cosh <7V”22’4" in>

[2
X exp (i <d1n+ (2 — 2cos(d;) sec h® (#dz))t—&-(l)), (16)

where &, = don + :‘/S‘_g‘“_;) tanh <V "22’4“ d2> t +¢,,C; and C, are arbitrary constants.
J2—ap

; (15)

Remark 1. As a particular example, if we take C,7#0, Cf < C% in (16) then we get discrete solitary wave solutions to Eq. (9) as

P-4 VA2 —4 i \/22 -4
uj,(t) = Ftanh (%dz) tanh % dyn + M tanh (%’u dz) t+4 | + tanh™ (%)

2_4'u 2

. 2 (VA2 —4u )
xexp|i|din+ |2—2cos(d;)sech fdz t+ ¢ .

)

(17)
Besides, if we set d, = 2k/\/2* —4u,d; =p,¢ =6, and & = 2(¢{ — tanh’l(Cl/Cz))/\/i2 — 4y in (17), then we obtain
uy,(t) = ¥ tanh(k) tanh(kn + 2 sin(p) tanh(k)t + {) x exp(i(pn + (2 — 2 cos(p) sec h? (k))t + 6)), (18)

which are the known dark solitary wave solutions found by Dai and Zhang [57] and Dai et al. [58] in which they are ex-
pressed as (20) and (34), respectively. However, in our case, we note that (18) is derived from a more general solution
(16) in the sense that it contains more arbitrary parameters. Similarly, our solution (16) can be reduced to the solution
(45) presented in Huang and Liu [59] by a suitable modification.

Case 2: When 4*> — 4u < 0, from (8b), we have
4 e o VAR <—v 7 d2>

G(¢n) v

o ) 19

net1(En) = Qo + @ 1a—2 (1. G an (Yo2g ) 2 "
Va7 2 TG T

Substituting (13) and (19) along with (5) into (12), clearing the denominator and setting the coefficients of all powers like
(G'(&4)/G(&n))'(0 < i < 4) to zero, we derive a system of nonlinear algebraic equations for ap, a;, ¢, ¢z, d1, d>, 4, and p. Solving
the set of algebraic equations simultaneously, we get the solution set

1 =2 — 2 cos(d;) sec? <7v4’2";'2d2>, ¢, = 2@ tan <7v4’2‘";'2d2>

| — AP 20)
aoiq:mtaH( l; Vd2>, a1:¢\/‘ﬁtan<+d2)

where d; and d, are arbitrary constants. Hence, from (6b), (10), (13), (19) and (20), we obtain discrete trigonometric function
traveling wave solutions to Eq. (9) as
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Jan- 7 ) ocos (V7 5,) - cosin (V)
dy

uy, = Ftan ( 5 = =
C, cos <V s §n> + Gy sin (—V“’Z‘” é,.)

a4 — 2
X exp (i<d1n+ (2 — 2 cos(d;) sec? ('uzlttb))ﬂrél)), (21)

where &, = dyn +:‘/5:17(L_l tan (L’z"z d2>t+ ¢,Cy and C, are arbitrary constants.
L

Remark 2. In particular, if we take C, #O,C% < C% in (21) then we get discrete periodic wave solutions to Eq. (9) as

44— ) \JAu — 2 i A — 22
(\/—MZ——'dz> cot s dan + 4sin(d:) tan ( s dz>t+éz +tan™! (Q)

2 2 G

Uy, =Ftan
4 — )2
n— 4

[4y — )?
X exp (i (dln + (2 — 2 cos(d;) sec? (Al'uzd2> )t+ C1) ) . (22)

Moreover, if we set d, = 2k/\/4pt — 2%,dy =p,{; = 3,and { = 2(¢ — tan1(C1/C2))/+/4u — /2 in (22), then we obtain
u7 (t) = Ftan(k) cot(kn + 2 sin(p) tan(k)t + ¢) x exp(i(pn + (2 — 2 cos(p) sec?(k))t + 9)), (23)
which turns out to be the singular solitonic solutions (45) derived in Dai et al. [58]. Likewise, assigning special values to the

parameters in our solution (21), we can get many known solutions, for example, in Dai et al. [57] as well as Huang and Liu
[59]. We omit to display them for making the discussion short.

Case 3: When 4* — 4u = 0, from (8c), we have

b (&n) = G0 + @y (<<§+ gfﬁ;)/@ - <§+GG<(§))>d2>> _5> n

Substituting (13) and (24) along with (5) into (12), clearing the denominator and setting the coefficients of all powers like
(G'(é)/G(&)) (0 < i < 4) to zero, we derive a system of nonlinear algebraic equations for ag,a;, c1, ¢z, d1,d>, 4, and p. Solving
the set of algebraic equations simultaneously, we get the solution set

{q =2(1 —cos(dy)), ¢; =2d,sin(d;), ap = i%dz, a = :Fdz}7 (25)

where d; and d, are arbitrary constants. Hence, from (6c), (10), (13), (24) and (25), we obtain discrete rational wave solutions
to Eq. (9) as

C] d2
dzn + 2d2 Sin(d1)t + CZ) +G

ui,(t) = e x exp(i(din + 2(1 — cos(d))t + 1)), (26)

where C; and C, are arbitrary constants.

Remark 3. We observe that the rational solutions (26) are presented here for the first time and they do not appear in [57-
59].

3.2. The Toda lattice equation

Next, we consider the so-called Toda lattice equation [6,10,60] which reads

2
d”un(t) = (2~ Fun) _ g=hna (O _ =it (0)), (27)
dt’
Since it is difficult to apply the method directly to Eq. (27), we introduce the transformation
Un(t)

e Pun® — 1 4 , (28)
o



I. Aslan/ Applied Mathematics and Computation 215 (2009) 3140-3147 3145

which immediately reduces Eq. (27) into

d? Ua(t)
F1n<1 += ) = B(Vnsr (t) = 204 () + V1 (t)). (29)

Assuming v, (t) = V,(&,), & = din+ ¢t + { in Eq. (29), we get

d2
c d—éim (1 +

Via(n)
o

) BV (&) = 2Va(n) + Vit (). (30)

Since the procedure is the same as in the previous section, we will omit most of the details here. Now, by the homogeneous
balance principle, we can assume the ansatz

/s /e 2
Vi(En) = o + <g((§))> ta (‘é((gé))) 070 (31)

for the traveling wave solutions of Eq. (30). After a careful analysis, we end up with the following cases:

Case 1: 7% —4u > 0.

Substituting (31) along with V,,,1(¢&,) and V,_1(¢&,) derived from (8a) into Eq. (30), clearing the denominator and equating
the coefficients of (G'(¢,)/G(&a))' (0 < i < 10) to zero, and solving the resulting algebraic system for ay, a1, a,, c1,ds, 4, and g,
we get a solution set (denoted in curly brackets from now on) and the corresponding discrete hyperbolic function traveling
wave solution to Eq. (27) as follows:

_ 2 20,2 _ 24 2 2
{ao_ (@f+crp) | Gl 4'u)csch2<vA2 ﬂdl) __a 61}7 (32)

, = , Oy =——
p a5 R
1+csch? <—V"22’4"d1>
1. | (2 —4p)c 2
Un.1 (t) - B In Txﬁ C; cosh ( 1274“:,,>+C2 sinh < 12—4;45’1) ’ (33)

/2 A/ i2-
Cq sinh( “ 4“cfn>+C2 cosh( Lz win)

2

where &, = din + c1t + {,C; and C, are arbitrary constants.

Remark 4. For instance, if we take C, #O,Cf < Cﬁ in (33) then we get a discrete solitary wave solution to Eq. (27) as

2 _ 2 \E—4 \E—4
Uno(t) = L ((A‘l'u)cl (1 + csch? (2'ud1> — tanh? (2'u(d]n+c1t+g“) +tanh™ (Cl)))>

4ap G
(34)

It is clear that our result (34) includes Liu et al.’s [26] result (41) as a special case.

Case 2: J* —4u <0.
Substituting (31) along with V,,1(&,) and V,,_1(&,) derived from (8b) into Eq. (30), clearing the denominator and equating
the coefficients of (G’(in)/G(fn))i(O < i< 10) to zero, and solving the resulting algebraic system for ao,a;, az,cy,dq, 7, and 4,
we get a solution set and the corresponding discrete trigonometric function traveling wave solution to Eq. (27) as follows:

_ 2 2052 _ 4 — )2 12 2
{ao: @+ G0 4u>cscz<VM d1)7 A B c} 35)

B 4p 2

1 — csc? <7v4‘2"’2 d1>

AT — 2
Un‘g(t) = 7E1n T‘(/j n —Cy sin (@én) +C; cos (@in) ’ (36)

\ap-i2 . (A a2
G cos( 5 - §">+C25m< ;’ ‘ g“,.)

where &, = din+ ¢t + ¢, C; and C, are arbitrary constants.
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Remark 5. In particular, if we take C,7#0, C% < C% in (36) then we obtain a discrete periodic wave solution to Eq. (27) as

22— 4uc VA -2 a7
un_4(t):—1ln (G D 1 — csc? ,u—d + cot? Hf(dln+c1t+o+tan4 <%> . (37)
2

B 4o 2 !

We also note that many solutions obtained in Liu et al.’s [26] work can be easily recovered from our solutions (36) and (37)
with appropriate choices of the parameters.

Case 3: )2 —4u=0.
Substituting (31) along with V1 (&,) and V,,_1(&,) derived from (8c) into Eq. (30), clearing the denominator and equating
the coefficients of (G'(&,)/G(&,))'(0 < i < 10) to zero, and solving the resulting algebraic system for ao, a;, a,, ¢1,d;, and 1, we
get the solution sets and the corresponding discrete rational function traveling wave solutions to Eq. (27) as follows:

1 4 .
{ao =0+ 40 (),2 —;), a1 =, €= :Fh//iaz}, (38)

1

() = — (%2 a 1
" B\ \(CidinFivBat+0)+C) di))

where C; and C, are arbitrary constants.

Remark 6. We also observe that the rational solutions (39) are presented here for the first time and they do not appear in Liu
et al. [26].

4. Conclusion

Using the (G'/G)-expansion method, we have successfully derived various families of discrete exact solutions to the DNSE
and the TLE. Some of these solutions are found for the first time. The obtained results with more free parameters include
most of the solutions in the open literature as special cases. As a result, the power of the employed method is confirmed.
We assured the correctness of the obtained solutions by putting them back into the original equation with the aid of MATH-
EMATICA, it provides an extra measure of confidence in the results. We predict that the (G’/G)-expansion method will be a
promising method for investigating exact analytic solutions to NDDEs.
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