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Abstract. We investigate a model of anisotropic diffuse interfaces in ordered FCC crystals
introduced recently by Braun et al and Tanoglu et al [BCMcFW, T, TBCMcF], focusing
on parametric conditions which give extreme anisotropy. For a reduced model, we prove
existence and stability of plane wave solutions connecting the disordered FCC state with
the ordered Cu3Au state described by solutions to a system of three equations. These plane
wave solutions correspond to planar interfaces. Different orientations of the planes in re-
lation to the crystal axes give rise to different surface energies. Guided by previous work
based on numerics and formal asymptotics, we reduce this problem in the six dimensional
phase space of the system to a two dimensional phase space by taking advantage of the
symmetries of the crystal and restricting attention to solutions with corresponding symme-
tries. For this reduced problem a standing wave solution is constructed that corresponds to
a transition that, in the extreme anisotropy limit, is continuous but not differentiable. We
also investigate the stability of the constructed solution by studying the eigenvalue problem
for the linearized equation. We find that although the transition is stable, there is a growing
number 0(1

ǫ ), of critical eigenvalues, where 1

ǫ ≫ 1 is a measure of the anisotropy. Specif-

ically we obtain a discrete spectrum with eigenvalues λn = ǫ2/3µn with µn ∼ Cn2/3, as
n → +∞. The scaling characteristics of the critical spectrum suggest a previously unknown
microstructural instability.

Key words: Singular perturbations, connecting orbits, anisotropy, diffuse interfaces, face-
centered cubic crystals, microstructures.

1. Introduction

The motivation for this paper is the study of properties of phase interfaces in alloys. These
interfaces are realized as grain boundaries. Increasingly popular approaches to modeling the
complex physics of such interfaces are found in phase field theories, in which order parameters
of various kinds are used as pointwise descriptors of salient material properties, on both the
microscale and mesoscale levels. The order parameters have specific values in pure phases,
but are not restricted to discrete values; rather they vary continuously from one phase to
another in thin interphase regions. Although most modeling in the past has utilized a
single rather vaguely defined order parameter in this description, it has been shown (e.g.
[NC, BCMcFW] that multiple order parameter formulations can be used to reflect the basic
crystallography of the material in a more natural manner. In particular, given a specific
lattice, explicit definitions of these parameters can be given in terms of local averages of the
populations of atomic species at the sites on sublattices.

In this vein, our starting point is the multiple-order-parameter description of some FCC
crystals given by Braun et al [BCMcFW]. Their phase-field model leads to a system of

NDA supported by grants from the University of North Texas and the University of Athens. PWB
supported by NSF DMS 9970894 and NSF DMS 0200961.

1



2 N.D. ALIKAKOS, P.W. BATES, J.W. CAHN, P.C. FIFE, G. FUSCO, AND G.B. TANOGLU

second order ordinary differential equations for the variation of the order parameters, hence
of various other properties, across a stationary planar interface. The independent variable is
a spatial coordinate normal to the interface. Extracting information analytically from such
systems is far more difficult than it is for the much more prevalent single-order-parameter
models found in the literature.

Nevertheless, important qualitative information can be obtained in special cases. In par-
ticular, the size of the system of equations can be reduced if certain symmetries are assumed
and the orientation of the interface relative to that of the crystal axes is compatible with
those symmetries. We make these assumptions in the present paper, and in addition consider
formal reductions related to the anisotropy of the alloy being high.

These conditions reduce the interface problem to a singularly perturbed pair of second
order ODE’s with limiting conditions at ±∞. There is a base (singular limit) solution,
easily found, forming a formal approximation to the exact solution in most of its domain.
The unusual feature of this base solution is the fact that it has a singularity in the interior of
its domain. At the singularity, which is pitchfork type, the base solution is continuous but
not differentiable. The presence of this singularity is what makes this a singular perturbation
problem; not the presence of boundary layers, which often (but not in this case) accompany
solutions when a small parameter multiplies a higher derivative.

This singularity is a source of mathematical interest as well as of difficulty. In a small
neighborhood of it, the variables may be rescaled to create a “corner layer” representation of
the solution in the form of a boundary value problem on an infinite interval. Our focus is on
the existence and stability (in a spectral sense) of a solution to this BVP. The existence and
spectral results are stated in Sec. 3, and their proofs are in Sec. 4. Preliminary considerations
are developed in Sec. 2. The rest of Sec. 1 is devoted to constructing the model from the
materials scientific setting.

1.1. The Model. We will be dealing with 3D lattices, and with a type of crystal known as
FCC (face-centered cubic). Quite analogous problems and methods hold for other structures;
for example in the case of crystals of the hexagon-closely-packed type the analogy is almost
complete. The FCC is a periodic arrangement of atoms whose unit cell is a cube with atoms
occupying its corners and the centers of its faces. We can identify 3 distinguished planar cuts
intersecting at least four lattice points in a unit cell, corresponding to the normal directions
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Figure 1. The distinguished planar cuts. The ξi are spatial coordinates
aligned with the crystal.
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Each unit cell in the FCC contains the equivalent of 4 whole atoms and a tetrahedron
can be associated with it, as shown in Fig. 2. Each numbered point of such a tetrahedron
can serve as the origin of a primitive cubic Bravais sublattice. The FCC lattice then is
decomposed into 4 numbered sublattices.

Au

Cu
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3

Figure 2. A unit cell of the FCC lattice, and the tetrahedron whose corners
serve to number the four primitive cubic sublattices.

Following [BCMcFW], in our work we will consider, as a specific illustrative prototype,
the alloy Cu3Au, so that each lattice site is occupied by either a Cu or Au atom, and we will
focus in this paper on order-disorder transitions and the associated interphase boundaries. In
the ordered form of the alloy, the copper atoms occupy the centers of the faces and the gold
atoms lie on the vertices. Four numbers ρ1, ρ2, ρ3, ρ4 are defined (when ordering is allowed
to be imperfect) to be the fraction of atoms on each primitive cubic sublattice which are Cu.
When ordering is perfect, copper represents 3

4
of the total. Hence for the ordered Cu3Au

state,
ρ1(ord) = 0, ρ2(ord) = ρ3(ord) = ρ4(ord) = 1,

while for the disordered state the locations of the Cu atoms are random, given the total
density, so that

ρ1(dis) = ρ2(dis) = ρ3(dis) = ρ4(dis) =
3

4
.

In our treatment, the order parameters ρi are taken to vary continuously within the order-
disorder transition region. The equations we will be dealing with are written in terms of the
alternative variables X, Y, Z, W , defined as linear combinations of the ρ’s:

(1)

X = −ρ1 − ρ2 + ρ3 + ρ4,

Y = −ρ1 + ρ2 − ρ3 + ρ4,

Z = −ρ1 + ρ2 + ρ3 − ρ4,

W = 1
4
(ρ1 + ρ2 + ρ3 + ρ4).

The intuition behind this transformation is that the new order parameters are more amenable
to continuizing [NC]. The first three are nonconserved order parameters and the fourth, W ,
is conserved, since it represents the total density of copper in the crystal. It will be taken
as fixed (in a more complete model, W would be taken as fixed not pointwise, but only on
the average [T]). The disordered and ordered states correspond to

X = Y = Z = 0 and X = Y = Z = 1, respectively.
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Since W is held fixed, the free energy function used in [BCMcFW] depends only on X, Y, Z
and their gradients:

(2) J(X, Y, Z) =

∫

V

[Q(∇X,∇Y,∇Z) + F (X, Y, Z)] dξ1dξ2dξ3,

where the space coordinates are (ξ1, ξ2, ξ3) and V is the volume occupied by the sample.
Here Q is a positive definite quadratic form; its presence in the free energy expression

reflects a proclivity of material phases to be uniform. It also accounts for interfacial surface
tension, and the anisotropy of this tension, reflected through the different coefficients of Q,
will play a considerable role in the model.

The bulk free energy function F is a fourth degree polynomial which is positive except
at its several global minima, including (0, 0, 0) and (1, 1, 1). A specific polynomial, given
below, will be used in our model as representative of any function with that property. It will
be specified that F (0, 0, 0) = F (1, 1, 1). To represent real alloys, the coefficients of F would
depend on temperature; this constraint is then a statement that the temperature will be at
the transition value for order-disorder transitions.

The gradient terms Q are taken to be of the form Q = AQ1 + BQ2, where Qi are simple
sums of squares of derivatives. Since Q1 is isotropic, the ratio B/A measures the degree of
anisotropy of the free energy. We use the explicit expressions

(3) F (X, Y, Z) = 2(X2 + Y 2 + Z2)− 12XY Z + (X4 + Y 4 + Z4) + (X2Y 2 + X2Z2 + Y 2Z2),

(4)
Q1 = 1

2

[

(

∂X
∂ξ1

)2

+
(

∂Y
∂ξ2

)2

+
(

∂Z
∂ξ3

)2
]

,

Q2 = 1
2

[

(

∂X
∂ξ2

)2

+
(

∂X
∂ξ3

)2

+
(

∂Y
∂ξ1

)2

+
(

∂Y
∂ξ3

)2

+
(

∂Z
∂ξ1

)2

+
(

∂Z
∂ξ2

)2
]

.

The truncation to fourth degree is discussed in [BCMcFW] and the extension to sixth
degree in [T]. The inclusion of cubic terms is sufficient for the existence of first-order tran-
sitions.

The governing evolution PDE’s in a phase-field theory are given by the L2 gradient flow
of the functional J :

(5) τ
∂

∂t





X
Y
Z



 = L





X
Y
Z



 −∇F (X, Y, Z),

where L is a diagonal matrix of second degree elliptic operators in the space variables, and
∇ denotes the gradient with respect to the variables (X, Y, Z), and τ is a dimensionless
relaxation time.

Although we have described the model in terms of the ordering of a binary alloy, important
features carry over in some cases to analogous models for the solidification of a pure material.

The fundamental paper [BCMcFW] contains, in addition to the derivation of the model, a
bifurcation analysis of the uniform steady states, numerical and formal asymptotic analyses
of plane wave solutions for large anisotropy ratios B/A ≡ ǫ−2, and numerical calculation of
the Wulff shapes. This paper together with [T] are our basic references. Other related work
is cited in these references. We remark that the parameter ǫ should not be confused with the
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usual epsilon appearing before the gradient in the Allen-Cahn and Cahn-Hilliard equations,
where it has an entirely different meaning.

Plane waves in the direction n and velocity V are solutions of (5) of the form

(6) X = x(n·(ξ1, ξ2, ξ3) − V t) = x(ζ), Y = y(ζ), Z = z(ζ).

With boundary conditions x(−∞) = y(−∞) = z(−∞) = 0, x(∞) = y(∞) = z(∞) = 1,
they represent planar interfaces with normal n separating an ordered state from a disordered
state. The functions x = (x, y, z) satisfy (derivatives are with respect to ζ)

(7) −V x′ = Λx′′ −∇F (x, y, z),

where Λ is a diagonal matrix whose elements are linear functions of A and B, and quadratic
functions of n.

Recall that the temperature has been chosen so that F (0, 0, 0) = F (1, 1, 1). This a priori
implies that V = 0.

1.2. Reductions. Simplifications to the system (7) can be made by seeking only those
profiles which satisfy certain symmetry constraints. Of course the direction n must be
chosen so that the resulting profile satisfies those constraints, and the function F and the
matrix Λ have to be compatible with them as well.

One such possible constraint is the restriction of the order parameters to the plane Y = Z
(hence y = z). In the crystal, this is tied to the symmetry between two sites on the elementary
tetrahedron. Note from (1) that Y = Z ⇒ ρ3 = ρ4 and that the two symmetric sites share
the same ξ1 coordinate. Therefore if we take n so that n2 = n3, the symmetry Y = Z should
be preserved through the transition. This is indeed true. To exhibit the resulting system,
we define our anisotropy parameter

(8) ǫ =
√

A/B,

the reduced free energy G(X, Y ) = F (X, 1√
2
Y, 1√

2
Y ) (this effectively changes the physical

meaning of Y ) and an angle α. This angle is given by n = (cos α, 1√
2
sin α, 1√

2
sin α), 0 ≤

α ≤ π, Then (7) is reduced to

(9)
(cos2 α + ǫ2 sin2 α)x′′ − Gx(x, y) = 0, x(−∞) = y(−∞) = 0,

(ǫ2 cos2 α + 1+ǫ2

2
sin2 α)y′′ − Gy(x, y) = 0, x(∞) = 1, y(∞) =

√
2.

The special cases α = 0 and α = π/2 correspond to the distinguished cuts (1, 0, 0) and
(0, 1√

2
, 1√

2
) already mentioned above. When ǫ ≪ 1, the problem for the profile at α = 0

or α = π/2 can be considered to be a difficult perturbation problem from a limit profile
at ǫ = 0. In the case α = 0, the problem is particularly difficult because of a degeneracy
(irregularity) in the limit profile which does not allow for the application of the Fenichel
theory with its variants and extensions [J].

The (1, 0, 0) direction is especially significant because evidence suggests it may be the
direction that globally minimizes interfacial energy. In this case the system (9) (with V = 0)
takes the form
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(10)

{

x′′ = Gx(x, y)
ǫ2y′′ = Gy(x, y)

⇐⇒















u′
1 = u2

u′
2 = Gx(u1, u3)

ǫu′
3 = u4

ǫu′
4 = Gy(u1, u3)

via the change of variables u1 = x, u2 = x′, u3 = y, u4 = ǫy′. The resulting first order system
is Hamiltonian. The limiting system at ǫ = 0 is

(11)















u′
1 = u2

u′
2 = Gx(u1, u3)

0 = u4

0 = Gy(u1, u3).

Figure 3. The projection of the set M0 = {(u1, u2, u3, u4) |u4 = 0,
Gy(u1, u3) = 0} on the u1 − u3 plane. The horizontal part together with
the upper branch constitute the graph of h (see (15)). The choice of the lower
branch leads to analogous results.

The main point of mathematical interest is a difficulty which stems from the fact that the
limit manifold of critical points M0 = {u4 = 0, Gy(u1, u3) = 0} is not smooth at a value
x = Xc (see Fig. 3). We stress that this is not just a technicality. The singularity encodes
the physics of the transition. It turns out that the mathematical structure is completely
different from that in the (0, 1√

2
, 1√

2
) direction which fits more or less in the framework of

[Fe, J]. For this case we refer the reader to [S, AFFS].
We note that the results in this paper have only suggestive value for the system (9), α = 0,

since the reductions to follow, though well motivated, are very formal.

2. Geometric and algebraic characteristics of G

We begin with (10):

(12)



















d2x

dζ2
− GX(x, y) = 0, x(−∞) = 0, x(+∞) = 1,

ε2 d2y

dζ2
− GY (x, y) = 0, y(−∞) = 0, y(+∞) =

√
2,

where

(13) G(X, Y ) = 2(X2 + Y 2) − 6XY 2 + X2Y 2 + X4 +
3

4
Y 4.
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We determine the critical points of G:

(i) GX(X, Y ) = 0 ⇔ 4X − 6Y 2 + 4X3 + 2XY 2 = 0

(ii) GY (X, Y ) = 0 ⇔ 2Y (2 − 6X + X2 + 3
2
Y 2) = 0.

From (ii) we obtain

(14) Y = 0 or Y = ±
√

2 h(X),

(15) h(X) =















0, X < Xc = 3 −
√

7 ∼= 0.35, where 2 − 6Xc + X2
c = 0

h0(X) =

(

−X2 − 6X + 2

3

)
1

2

, Xc ≤ X ≤ 1.

Substituting in (i) we obtain

(16) 4X − 12h2(X) + 4X3 + 4Xh2(X) = 0.

Further calculations finally yield the critical points

(17)















(0, 0), (1,±
√

2), global minimizers of G,

(

1

2
,±

√
2 h

(

1

2

))

saddle points.

Notice that 0 < Xc < 1
2
.

There is a useful mechanical analog to (12). We think of ζ as time and system (12)
as the Newton equations describing a ball rolling in a “potential well” -G of very small
inertia in the Y direction and unit inertia in the X direction. The specific connection we
are constructing corresponds to a motion which for ζ → ±∞ is asymptotic to the two equal
maxima (0, 0), (1,

√
2) of the potential energy −G (Fig. 4B). The path that the ball follows

(see discussion that follows), to the first approximation when projected on the (x, y) plane,
consists of (0, 0), the part of the x-axis up to Xc, and the upper branch up to (1,

√
2).

We note that
(

GXX GXY

GY X GY Y

)

∣

∣

∣

(Xc,0)
=

(

4 + 12X2
c 0

0 0

)

from which we conclude that the G-surface is very flat near (Xc, 0). In fact the principal
curvature in the Y -direction vanishes. This together with the small inertia of the ball in the
Y -direction suggests the possibility of an oscillatory behavior near (Xc, 0). This intuition
motivates our eigenvalue analysis in Theorem 2 below.

The expansion of G near (Xc, 0) is:
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x

y
+

- 2  h(x)

2  h(x)

xc

-h(1) +h(1)-h(x) +h(x)

x > xc

x < xc

A B

C D

Figure 4. Aspects of the G-surface. (A) G as a function of X and Y . (B)
The graph of −G. (C) Part of the level set GY (X, Y ) = 0. (D) G as a function
of Y for various X.

GY (X, Y ) = 2Y

[

3

2
Y 2 + X2 − 6X + 2

]

(18)

= 2Y

[

3

2
Y 2 + (2Xc − 6)(X − Xc) + O((X − Xc)

2)

]

= 2Y

{[

aY 2 − b(X − Xc)

]

+ O((X − Xc)
2)

}

,

where a = 3
2
and b = 6 − 2Xc > 0.

Now (12)(ii) near Xc is approximated1 by

(19) ǫ2 d2y

dζ2
− 2y[ay2 − b(x − Xc)] = 0.

Note that (12) is translation invariant. We can therefore require that

(20) x(0) = Xc.

1We refer the reader to [BCMcFW] for a treatment of formal asymptotics that has motivated much of
our work.
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By (12)(i), the function x(ζ) has second derivative bounded independently of ǫ, so that near
ζ = 0 it may be approximated by

(21) x(ζ) ∼ Xc + mζ, m = x′(0).

Consequently in the transition layer equation (19) can be approximated by

(22) ǫ2 d2y

dζ2
− 2y[ay2 − bmζ ] = 0.

x

xc
y

Figure 5. The variation of x(ζ) and y(ζ) in the layer (see [BCMcFW]). This
provided the motivation for using x as the independent variable in the layer
and thus reducing (12) to a single equation.

Next, following [BCMcFW], we introduce the change of variables

(23) s =
ζ

ǫ2/3
, y(ζ) = ǫ1/3R

(

ζ

ǫ2/3

)

.

A computation shows that

(24) R′′ − 2R[aR2 − bms] = 0,

where ′′ stands for d2

ds2 , s ∈ R.
Finally we need to motivate the boundary conditions. Recall that to first approximation

the graph of the solution of (10) coincides with the x-axis from (0, 0) to (Xc, 0) and with
y =

√
2h(x) for Xc ≤ x ≤ 1. Therefore near X = Xc, R2 = bm

a
s, and so it is natural to

append to (24) the conditions

(25)

{

R(s)→0 as s→−∞,

R(s) =
√

bm
a

s (1 + o(1)) as s→∞.

In fact, it will be shown that there is a solution satisfying stronger asymptotic conditions
than these.

Eq. (24), with conditions (25), describes the interior layer of the order-disorder transition,
in blown-up variables (Fig. 6).

The eigenvalue problem associated with the linearization of (24) is

(26) V ′′ − 2[3aR2(s) − bms]V = −µV on L2(R).
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3. Statement of the main results

Theorem 1. (Existence) There is a strictly increasing solution R(s) of (24) satisfying

(27)

{

R(s) = O (es) as s→−∞,
R(s)√

bm
a

s
= 1 + O

(

1
s

)

as s→∞.

Theorem 2. (The spectrum) The spectrum of (26) is discrete, simple, and positive, and

(28) 0 < µ1 < µ2 < . . . < µn < . . . ,

with µn satisfying

(29) µn =

[

2bm

(

n +
1

2

)

π

]2/3

as n→∞.

The corresponding eigenfunctions have nodal structure and satisfy the estimates as n→∞

(30)

{

Vn(s) ∼ cnAi
(

(4bm)1/2
(

s − µn

4bm

))

, s ≥ K > 0,
Vn(s) ∼ dnAi

(

(2bm)1/2
(

−s − µn

2bm

))

, s ≤ −K < 0,

where Ai(s) is the Airy function, and K > 0 is fixed, uniform in n. Under the normalization
∫

R
|Vn(s)|2ds = 1, we have the uniform estimate

(31) |Vn(s)| < Const. n−1/6.

O(    )2/3

O(    )1/3

Figure 6. The solution y(ζ) in the corner layer.

Remarks

(1) Utilizing the estimate (27), we obtain that

2[3aR2 − bms]→
{

4bm|s|, s→∞,
2bm|s|, s→−∞.

In Fig. 7, we draw a typical eigenfunction of the related eigenvalue problem

(32) Ψ′′
n − |s|Ψn = νnΨn,

which if rescaled appropriately, resembles Vn(s) outside some fixed set {|s| ≤ K}
with K independent of n.

(2) The eigenvalue problem in the original variables is

(33) ǫ2 d2v

dζ2
− 2v[3ay2 − bmζ ] = −λv on L2(R).
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Rescaling according to (23) and setting v(ζ) = V
(

ζ
ǫ2/3

)

= V (s), we obtain

V ′′ − 2[3aR2 − bms]V = − λ

ǫ2/3
V.

Thus the relationship with (26) is λn

ǫ2/3
= µn. Using (29), we see that λn ∼ (nǫ)2/3.

Thus there are O(ǫ−1) critical (small) eigenvalues, all of them on the stable side.
It is useful to note the differences with the spectrum for the bistable nonlinearity
[AMP]. Notice also that from (30) and Fig. 6 we see that the oscillations of the
eigenfunctions take place in the layer.

(3) Theorem 2 establishes a type of stability of the solution, although its value is only
suggestive since stability, as everything else in this paper, has to be considered in the
context of the full system. The existence of a growing number of small eigenvalues,
although on the stable side, suggests a certain type of instability of the interface.
We believe that this behavior is related to the wetting by a differently ordered phase
L10 as found in [KC] in their lattice model, and expect Thm. 2 to be related to the
generation of this phase.

Figure 7. Schematic graph of an oscillatory eigenfunction Ψn.

4. The Proofs

4.1. Proof of Theorem 1. Consider (24), (27)

(34)



























d2R

ds2
= 2R

[

aR2 − bms
]

, s ∈ R

R(s) = O(es), s → −∞,
R(s)

√

bm

a
s

= 1 + O

(

1

s

)

, s → +∞.

We will obtain existence for (34) by the method of sub and supersolutions.

4.1.1. The subsolution. We will show the existence of constants C, d, λ > 1, and a function
g(s) with the following properties:

(i) g is smooth, vanishing for s ≤ λ, g′(s) ≥ 0, g changing convexity only at C, and
g(s) = 1 for s ≥ d, with g(C) = 1

2
.

(ii) 4 (C − 1)2 ≥ 1

bm − max
R

|g′′(s)| > 0
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(iii)
1

(λ − 1)2
≤ 2mb(3λ + 1).

Verification of (i), (ii), (iii)
Make a first choice of λ, C, d and g as in (i), to be modified later. By fixing λ for the time

being and by taking g sufficiently flat, that is spreading out the transition from 0 to 1 (and
so modifying our initial choice of C and d) we can satisfy the 2nd inequality in (ii). Next by
translating g to the right, that is by increasing λ, C and d, we can satisfy the first inequality
in (ii), and also (iii). We also require C > 1.

Set

(35) w = g(s)
√

σ(s − 1), σ =
bm

a

Claim 1. w is a subsolution,

(36) w′′ ≥ 2w(aw2 − bms), s ∈ R

Proof of the Claim: We compute

(37) w′′ = g′′√σ(s − 1) + g′√σ (s − 1)−
1

2 − 1

4

√
σ (s − 1)−

3

2 g,

and verify the claim separately for the concave and convex parts of g.

I. The Concave Region s ≥ C
First we obtain a lower bound for w′′. From (37)

(38) w′′ ≥ −max
R

|g′′|
√

σ(s − 1) − 1

4

√
σ(s − 1)−

3

2 .

Next we obtain an upper bound for 2w(aw2 − bms). We compute

2w(aw2 − bms) = 2g
√

σ(s − 1) (ag2σ(s − 1) − bms)(39)

= 2g
√

σ(s − 1) (g2bm(s − 1) − bms)(40)

( after increasing C if necessary)

≤ 2g
√

σ(s − 1) (−bm)

≤ −bm
√

σ(s − 1).

Thus, for establishing (35) it is sufficient to satisfy the inequality

−max
R

|g′′|
√

σ(s − 1) − 1

4

√
σ (s − 1)−

3

2 ≥ −bm
√

σ(s − 1),

which will hold if the following holds

(bm − max
R

|g′′|)
√

s − 1 ≥ 1

4
(C − 1)−

3

2 ,

which in turn would hold if

(41) 4 (C − 1)2 ≥ 1

bm − max |g′′| ,
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which is condition (ii) above.

II. The Convex Region (λ ≤ s ≤ C) Since

w′′ ≥ −1

4

√
σ (s − 1)−

3

2 g by (37),

it is sufficient to establish that

−1

4

√
σ (s − 1)−

3

2 g ≥ 2w(aw2 − bms)

(by (39)) = 2g
√

σ(s − 1) (bms(g2 − 1) − g2bm).

Canceling out g
√

σ and noting that

s(g2 − 1) − g21 ≤ λ(g2 − 1) − g21 ≤ −3λ + 1

4

(

0 ≤ g ≤ 1

2

)

,

we see that it is sufficient to establish that

−1

4
(s − 1)−

3

2 ≥ −3λ + 1

2
bm

√

(s − 1), λ ≤ s ≤ C,

or equivalently
(s − 1)−2 ≤ 2mb(3λ + 1), λ ≤ s ≤ C,

which holds by (iii) above. The claim is established.

4.1.2. The supersolution. Set

(42) v̄(s) =







(κ)
1

2

√
σes, s ≤ 0

√
σ(s + κ)

1

2 , s ≥ 0,

with

(iv) κ ≥ 1/2 and bm(1 + ln (2κ)) ≥ 1.

Claim 2. v̄ is a continuous weak supersolution

(43) v̄′′ ≤ 2v̄(av̄2 − bms) weakly, s ∈ R

and
v̄ ≥ w

Proof of the Claim: We will verify that v̄ satisfies (43) classically for s ≤ 0 and s ≥ 0 and
that at s = 0

(44) v̄(0−) = v̄(0+), v̄′(0−) ≥ v̄′(0+)

I. On s ≤ 0, (43) holds if and only if

(45) κ
1

2 es ≤ 2κ
1

2 es (aκσe2s − bms) ⇔ aκσe2s − bms ≥ 1

2
which holds by (iv) above.

II. For s ≥ 0, (43) holds since the right hand side is positive and v̄′′ ≤ 0.

III. The transmission conditions (44):
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Continuity is immediate. Also,

v̄′(0−) = (κ)
1

2

√
σ ≥ 1

2

√
σ

1

(κ)
1

2

= v̄′(0+) ⇔ κ ≥ 1

2

which holds by (iv) above.

IV. v̄ ≥ w on R

Clearly, v̄ ≥ w for s ≤ λ. For s ≥ λ note that
√

σ(s + κ)
1

2 > [σ(s − 1)]
1

2 ≥ g(s)[σ(s − 1)]
1

2 = w.

This proves the claim.

4.1.3. Existence and estimates. By a well known theorem [Tr] it follows that there is a
solution of (34)(i) satisfying

(46) w(s) ≤ R(s) ≤ v̄(s), s ∈ R.

It follows that

(47)



















g(s)

√

bm

a

√
s − k ≤ R(s) ≤

√

bm

a

√
s + κ, s ≥ 0,

0 ≤ R(s) ≤ (κ)
1

2

√

bm

a
es, s ≤ 0,

giving the asymptotic estimates in (34). Notice that (47) implies in particular that R is
strictly positive in (−∞,∞). Indeed

R(s) ≥ 0 for all s ∈ (−∞,∞)

and if R(s0) = 0 for some s0, then R′(s0) = 0, and therefore by uniqueness R is identically
zero.

4.1.4. The monotonicity. Finally, we verify the monotonicity of R(s). Since R is strictly
positive, (34) implies

(

R′′

2R
− aR2

)′
= −bm,

i.e.,

(48) u′′ − 1

R
uu′ − 4aR2u = −2bm R,

where
u = R′.

From the lower bound in (47) it follows by a concavity argument that if u = R′ is not strictly
positive, then there exists s0 such that

u(s0) ≤ 0, u′(s0) = 0, u′′(s0) ≥ 0

but this is impossible because (48) implies

u′′(s0) − 4aR2u(s0) = −2bmR(s0) < 0

and therefore we conclude that R′ is strictly positive.
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The proof of Theorem 1 is complete. ˜

4.2. Proof of Theorem 2. Equation (26) with the asymptotic conditions (27) leads natu-
rally to Airy’s equation. We remind the reader of the relevant facts:

The Airy equation is

(49) y′′(x) = xy(x)

The Airy function is the unique (up to a multiple) solution to this equation that decays as
x → +∞. It is denoted by Ai(x). It satisfies the following asymptotics:

(50) Ai(x) ∼ 1

2
π− 1

2 x− 1

4 e−2x
3
2 , x → +∞,

while Ai(x) oscillates for x < 0 and has all its zeroes in x < 0: Its behavior for x negative
very closely resembles

(51) π− 1

2 (−x)−
1

4 sin

[

2

3
(−x)

3

2 +
1

4
π

]

as x → −∞.

We now return to (26). First from (27) we see that the potential in (26), q(s) = 2[3aR2(s)−
bms], satisfies lim|s|→∞ q(s) = ∞. From this it follows (see for example [HS] and Theorem
XIII.67 in [RS]) that the spectrum of (26) in L2(R) is discrete with limn→∞ µn = ∞. Next
we will be applying well-known WKB asymptotics to (26).

4.2.1. The turning points. The first step is to check that the equation

(52) q(s) − µn = 0,

for n large, has exactly two simple solutions. Since µn→∞, this will follow from showing
that q(s) is strictly increasing (decreasing) for s > B (s < −B), B appropriately large and
fixed.

We have that

(53)
1

2
q′(s) = 6aR(s)R′(s) − bm.

The case s→∞.

We will establish the estimate

(54) R′(s) > As−1/2, s > B,

where A is any number satisfying

(55) A <
1

2

√

bm/a,

and B depends on A.
Then by (53), (27), and (55),

1

2
q′(s) = 6aR(s)R′(s) − bm = 6a

√

bm

a
s (1 + o(1))R′(s) − bm
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> 6a

√

bm

a
s (1 + o(1))As−1/2 − bm

= 6
√

abmA(1 + o(1)) − bm,

which can be made arbitarily close to 3bm(1+ o(1))− bm, from which it follows that q′(s) >
2bm > 0, s > B > 0. Thus q is strictly increasing for s > B.

Proof of (54). In the following, A will be a fixed number satisfying (55). We will be working

with Eq. (48):

(56) u′′ − 1

R
uu′ − 4aR2u = −2bmR, u ≡ R′ > 0.

We begin by verifying that u = As−1/2 is a subsolution to (56). By (25) the desired
inequality is

3

4
As−5/2 +

1

2R
A2s−2 − 4a

{
√

bm

a
s (1 + o(1))

}2

As−1/2

≥ −2bm

√

bm

a
s (1 + o(1)).

For this to hold for large enough s, it is sufficient to show that

4a

(

bm

a
s

)

(1 + o(1))As−1/2 < 2bm

√

bm

a
s (1 + o(1)),

which in turn follows from (55).
Next, we indicate briefly how the comparison argument is completed to render (54).

Step I: Show that there is a B > 0 such that uδ(s) = As−1/2 − δ is a strict subsolution of
(56) for s ≥ B, uniformly in δ ∈ [0, 1). This is done by a routine calculation similar to the
above.

Step II: Since v ≡ 0 is a subsolution of (56), it follows that wδ(s) = (As−1/2 − δ)+ is a strict
subsolution of (56) for s ≥ B.

Step III: Find a number B, depending on A, such that

(57) R′(B) = u(B) > AB−1/2 ≥ wδ(B).

for all δ ∈ [0, 1]. For integers n, by (27), R(n) =
√

bm/a n1/2(1 + O(n−1)), n→∞. Thus

R(n + 1) − R(n) =
1

2

√

bm/a n−1/2(1 + O(n−1)).

For each n there exists a number n̂ ∈ (n, n + 1) such that the left side is R′(n̂). It follows
that for some α independent of n,

R′(n̂) =
1

2

√

bm/a n̂−1/2(1 + O(n−1)) >
1

2

√

bm/a n̂−1/2(1 − αn−1) > An̂−1/2

for large enough n, by (55). The inequality (57) (it suffices to set δ = 0) now follows with
B = n̂.
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Step IV: By taking δ large (say δ = δ0) we can guarantee that

(58) u(s) > wδ0(s), s ≥ B.

Step V: We intend to reduce δ continuously to 0 and show that (58) holds for δ0 replaced by
all 0 < δ ≤ δ0. If (58) were violated at some point in this process, let δ∗ be the first value of
δ where the violation occurs, and s∗ the location. Then by (57), s∗ > B and also s∗ < ∞
(since u > 0 and wδ∗ = 0 for s large). Therefore

(59) u(s∗) = wδ∗(s
∗), u′(s∗) = w′

δ∗(s
∗),

(60) u(s) ≥ wδ∗(s), s ≥ B.

Evaluating (56) at s = s∗ and utilizing that wδ∗ is a strict subsolution, we get

w′′
δ∗(s

∗) − 1

R(s∗)
wδ∗(s

∗)w′
δ∗(s

∗) − 4aR2(s∗)wδ∗(s
∗) > −2bmR(s∗),

and conclude via (59) that w′′
δ∗(s

∗)− u′′(s∗) > 0, which contradicts (60) in a right neighbor-
hood of s∗ (via (59)). Thus we can take δ→0 and obtain (54).

The case s→−∞.

This is very easy compared to the previous case. From (24) it follows that R′′ > 0 for s < 0.
Thus R′ is increasing. This, together with (27), shows that R(s)R′(s)→0 as s→−∞. Con-
sequently from (53) we see that q′(s) < 0 for s < −B.

In conclusion, we established that

(61) µn − 2(3aR2(s) − bms) = 0

has two simple solutions An < 0 < Bn, for n large. We now apply the results of WKB
asymptotic analysis (see e.g. [BO] p. 521, especially the example) to conclude that

∫ Bn

An

√

µn − 2(3aR2(s) − bms) ds = (n +
1

2
)π + O(1), n→∞;

[An, Bn] is the oscillatory range of the nth eigenfunction.

4.2.2. Further properties. From (47) and (61) via (27) we obtain after a few calculations the
asymptotic relations

(62)
An ∼ − µn

2bm
, Bn ∼ µn

4bm
,

µn ∼
[

2bm
(

n + 1
2

)

π
]

2

3

Utilizing once more the asymptotics (27), we note that for s outside a fixed large interval
[−K, K], K > 0, the eigenfunctions Vn approximately satisfy the equation

y′′ − [4bms − µ]y = 0, s ≥ K,

y′′ − [−2bms − µ]y = 0, s ≤ −K.
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Thus
(63)














Vn(s) is approximated by cnAi

(

(4bm)
1

2

(

s − µn

4bm

))

, for s ≥ K, uniformly in n,

Vn(s) is approximated by dnAi

(

(2bm)
1

2

(

− s − µn

2bm

))

, for s ≤ −K, uniformly in n,

where cn and dn are constants to be estimated from the normalization. Indeed using (62),
(63), (50), and (51), we obtain that cn and dn are O

(

n−1/6
)

. The calculation that gives
this takes into account the ever increasing number of oscillations outside the fixed interval
[−K, K] as n increases, and employs the asymptotic estimates (50) and (51).

By Sturmian theory the eigenvalues µn are simple and their corresponding eigenfunctions
have exactly n − 1 nodes.

Finally, we show that the principal eigenvalue is positive,

(64) µ1 > 0.

We argue by contradiction. Assume that µ1 ≤ 0. Since V1 is the principal eigenfunction it
can be chosen so that V1 > 0, and therefore it satisfies

(65) V ′′
1 − 2[3aR2(s) − bms]V1 = −µ1V1 ≥ 0, on R, V1 ∈ L2.

Thus V1 is a positive subsolution of the operator defined by the left side of (65).
Utilizing the asymptotics in (27) by a comparison argument we obtain, via (50), the

estimate

(66) 0 < V1(s) ≤ C1e
−C2|s|

3
2

for appropriate constants C1, C2. From (65), via (66) and a standard argument, similar
estimates hold for the derivative of V1,

(67) |V ′
1(s)| ≤ C1e

−C2|s|
3
2 .

We note that the specific exponent is not important here. All that matters is the integrability
on all R of the estimating function.

Differentiating (34) and setting w = dR
ds

we obtain

(68) w′′ − 2[3aR2(s) − bms]w = −2bmR(s) < 0.

By Theorem 1, w > 0. Multiplying (65) by w and (68) by −V1 and adding, we obtain

(69) wV ′′
1 − w′′V1 > 0 ⇐⇒ (wV ′

1 − w′V1)
′ > 0.

By (66), (67) and simple estimates on R′, R′′ we have that

lim
s→−∞

(wV ′
1 − w′V1) = 0

Hence, by (69)

wV ′
1 − w′V1 > 0 ⇐⇒ w′

w
<

V ′
1

V1

.

Integrating we obtain
∫ s

s0

w′

w
ds <

∫ s

s0

V ′
1

V1

ds ⇐⇒ ln

(

w(s)

w(s0)

)

< ln

(

V1(s)

V1(s0)

)
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or
0 ≤ w(s) < cV1(s), c a constant,

i.e.,

(70) 0 ≤ R′(s) < cV1(s), s ∈ IR.

From the estimate R(s) = O(es) as s → −∞ and (70) it follows that

0 ≤ R(s) =

∫ s

−∞
R(s)ds < c

∫ s

−∞
V1(s)ds(71)

(by (66)) ≤ c

∫ s

−∞
e−c|s|

3
2 ds ≤ C, uniformly in s.

Estimate (71) contradicts (27).
The proof of Theorem 2 is complete. ˜
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