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Abstract. In this study we reconsider the phenomenological problems related to tachyonic modes in the con-
text of extra time-like dimensions. First we reconsider a lower bound on the size of extra time-like dimensions
and improve on the conclusion in the literature. Next we discuss the issues of spontaneous decay of stable
fermions through tachyonic decays and disappearance of fermions due to tachyonic contributions to their
self-energies. We find that the tachyonic modes due to extra time-like dimensions are less problematic than
the tachyonic modes in the usual 4-dimensional setting because the most troublesome Feynman diagrams
are forbidden once the conservation of momentum in the extra time-like dimensions is imposed.

Extra spatial coordinates have been considered thoroughly
in recent years. A glance at ArXiv shows that there are
hundreds of papers on extra dimensions published in the
last five years and almost all of them being wholly or
mainly on spatial extra dimensions. From the theoretical
point of view the scarcity of studies involving extra time-
like dimensions [1–7] is mainly due to the existence of
tachyonic modes in suchmodels, which are problematic be-
cause of the violation of causality and unitarity and the
lack of an adequate field theoretic description of tachy-
onic fields [2], while from the phenomenological point of
view the most serious problems are the extremely small
empirical lower bound in literature on the size(s) of extra
time-like dimensions [8], the spontaneous decay of stable
particles induced by negative energy tachyons [2, 9], and
the imaginary self-energy for charged fermions induced by
tachyonic photonmodes, which, in turn, seems to cause the
disappearance of the fermion into nothing in a very short
time [2]. In this study we will focus on the phenomenolog-
ical difficulties and try to see whether one may moderate
the phenomenological problems mentioned above in the
hope that a thoroughly consistent formulation of the field
theory of tachyons and their interactions with the usual
particles may be formulated in future (if tachyons exist at
all). The first phenomenological problem that will be con-
sidered here is the extremely small lower bound derived
from the lower bound on the lifetime of the proton [8]. In
the light of this extremely small lower bound on the size of
extra time-like dimension(s), in the order of a tenth of the
Planck scale, either one should dare to employ such (un-
naturally) small dimension(s) or should use brane models
where our physical world is a brane with an infinitesimal
width in the extra time-like direction [2] or a scheme where
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tachyonic modes are not allowed to be produced [5, 6].
A possible relaxation of the bound on the size of extra
time dimension(s) would give more freedom to the model
constructions with extra time-like dimension(s). So we re-
consider the lower bound obtained from the lower bound
on the proton lifetime and the calculation of a tree level
Feynman diagram. We find that the calculation leads to
no bound on the size of extra time-like dimensions. In fact
we just repeat the calculations in [8], except that we no-
tice the fact that there is a cutoff momentum in the Fourier
transform. In other words the difference between our result
and the original study results from the naive application
of the Fourier transform in [8] to get the non-relativistic
potential corresponding to the scattering of protons inside
a nucleus by tachyonic photon modes. In the original study
the effect of tachyonic modes on fermion self-energies are
neglected and no cutoff was taken, the integration is from
minus infinity to plus infinity in the momenta, while one
should take a cutoff corresponding to the maximum mo-
mentum available to the protons inside the nucleus. One
obtains the same result as the one obtained in [8] when one
lets the cutoff momentum go to infinity and neglects the
self-energy contributions. Next we consider the problems
of the spontaneous decay of the particles through release
of negative energy tachyons and the imaginary mass in-
duced through self-energy diagrams of fermions. We argue
that these problems may be evaded by imposing conser-
vation of momentum in the extra time direction provided
that the standard model particles are identified as the zero
modes of the Kaluza–Klein tower (that is, the standard
identification).
First consider the tree level diagram for the electromag-

netic scattering of two protons inside a nucleus [10, 11] (see
Fig. 1).
The scattering cross section corresponding to Fig. 1

may be obtained from the scattering amplitude of elastic
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Fig. 1. The Feynman diagram
for the scattering of two protons
with the initial 4-momenta and the
spins, p1, p2 and λ1, λ2, and the fi-
nal 4-momenta and the spins p′1, p

′
2

and λ′1, λ
′
2. The wavy line denotes

the tachyonic Kaluza–Klein modes
of photon

fermion–fermion scattering. The differential cross section
for elastic fermion–fermion scattering is related to scatter-
ing amplitude T by

dσ

dΩ
= |T |2 =

1

2p102p202p′102p
′
20

|M |2 , (1)

whereM is the matrix element given by

M =
e2

4π2
u(p′1, λ

′
1)γµu(p1 , λ1)

×
1

k2+m2n+i0
u(p′2, λ

′
2)γ

µup2, λ2) , (2)

where

m2n =
n2

L2
, (3)

and the u are 4-component Dirac spinors; the γµ are the
usual gamma matrices. One should also include the ex-
change scattering where p′1↔ p

′
2, λ

′
1↔ λ

′
2, but we are only

interested in the order of magnitude results and the crossed
term of (2) gives a similar contribution as (2) itself and
does not alter the conclusion. So it is sufficient to consider
(2). In the non-relativistic limit [10] the 0-component of the
proton 4-momenta p01, p02 and the photon 4-momentum
transfer k are approximated by

p0 �m+
p 2

2m
−
p 4

8m3

k2 = (p1−p
′
1)
2
= (p10−p

′
10)
2
− (p1−p

′
1)
2

=

(
p 21 −p

′2
1

)2

4m
−k2 ,

1
√
2p0
u(p,λ) =

√
m+p0
2p0

(
χ(λ)

p·σ
m+p0

χ(λ)

)

�

((
1− p2

4m2

)
χ(λ)

1
2mp ·σχ(λ)

)

. (4)

Hence in the strict non-relativistic limit (i.e. p0 = m,

1− p2

4m2
= 1) T becomes

T =
e2

4π2
χ† (λ′1)χ(λ1)

1

|k|2−m2n
χ†(λ′2)χ(λ2)

|k|< |R|=R , (5)

γk =

(
0 −σk

σk 0

)

, γ0 =

(
I 0

0 −I

)

,

where we have introduced the cutoff R which should be
taken in the order of the momentum corresponding to the
binding energy of the nucleus. This cutoff is explicitly writ-
ten in (5) because k2 � −|k|2 is not enough to indicate
that T in (5) is the non-relativistic expression since the
photon is off-shell in the propagator and one may take
k2 �−|k|2 for relativistic values of |k| as well provided that
k0� |k|. In other words the strict non-relativistic limit im-
plies k2 =−|k| but k2 �−|k|2 does not necessarily imply
the strict non-relativistic limit. Therefore the explicit ex-
pression of the conservation is not true; that is, |k|< |R| is
necessary. In non-relativistic quantum mechanics the scat-
tering amplitude for the elastic scattering of a particle from
a potential V , in the Born approximation may be written
as [10–12]

T (k) =
1

(2π)2

∫
d3xe−ikxχ†(λ′1)χ

†(λ′2)V (x)χ(λ1)χ(λ2) .

(6)

After comparing (5) and (6) one notices that

f(|k|) =

∫
d3xe−ikxV (x) , (7)

where

f(|k|) =

{
e2

|k|2−m2n
for |k| ≤R ,

0 elsewhere .
(8)

V (x) is obtained as the Fourier transform of f(|k|) as

V (x) =
e2

(2π)3

∫
d3k

eikx

|k|2−m2n

=
e2

(2π)3

∫ R

0

|k|2dk

|k|2− n
2

L2

×

∫ π

0

exp{i|k|r cos θ} sin θdθ

∫ 2π

0

dφ

=
e2

2i(2π)2r

∫ R

−R

kdk

k2− n
2

L2

{exp(ikr)− exp(−ikr)}

=
e2

i(2π)2 r

∫ R

−R

k · exp(ikr)

k2− n
2

L2

dk . (9)

We take the wave function of two protons inside a nucleus
to be

Ψ =

√
m3π√
π
e−mπr , (10)
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wheremπ denotes the mass of pions. Then the decay width
is obtained as

Γ = Im〈Ψ |V (r)|Ψ〉 . (11)

The evaluation of Γ = 〈Ψ |V (r)|Ψ〉 is done in the appendix
and is found to be

〈Ψ |V (r)|Ψ〉 = i
e2m3π
π2

[
2mβ

(m2−β2)2
ln

(
β+R

β−R

)

−
(m2+β2)

(m2−β2)2
ln

(
m+R

m−R

)

−
2mR

(m2−β2)(m2−R2)

]
, (12)

where m = 2imπ, β =
n
L
. The result in (12) is the decay

width corresponding to the nth mode Kaluza–Klein tower.
One should sum over n = 1, 2, ... to get the total contri-
bution of tachyonic modes to the decay width. This may
be easily approximated, in the case where mπ � β and
R� β [8] (which is the case for protons inside nuclei), by

〈Ψ |V (r)|Ψ〉 � i
e2m3π
π2

[
4mR

β3(β−R)

−
1

β2
ln

(
m+R

m−R

)
+

2mR

β2(m2−R2)

]
,

∞∑

n=1

〈Ψ |V (r)|Ψ〉 � i
e2m3πL

2

π2

[
ζ(3)

4mRL

(β−R)

− ζ(2) ln

(
m+R

m−R

)
+ ζ(2)

2mR

(m2−R2)

]
,

(13)

where L denotes the radius of the extra time-like dimen-
sion, ζ denotes the Riemann zeta function (defined by

ζ(n) =
∑∞
k=1

1
kn ) and ζ(2) =

π2

6 , ζ(3)� 1.2. After examin-

ing (12) or (13) one notices that 〈Ψ |V (r)|Ψ〉 is real if β >R
(which is the most natural choice). Otherwise it means that
the tachyonic photon masses are in the order of MeV. (In
fact one obtains the result of [8] when one lets R→∞.) In
other words the tachyonic photon modes cannot lead to de-
cay of the proton through processes given in Fig. 1 unless
the size of the extra dimension is larger than nuclear sizes.
However this does not imply that tachyonic modes can-
not induce spontaneous decay of protons once the size(s) of
the extra time-like dimension(s) are taken smaller than the
nuclear sizes. There are other contributions which may in-
duce spontaneous decay of protons although the size(s) of
the extra time-like dimension(s) are taken smaller than nu-
clear sizes. Such a possible contribution is induced through
fermion self-energies as discussed in the second next para-
graph. Inspection of (14) reveals that the rate of sponta-
neous decay of a proton (or quark) is much larger than the
one that would be induced by the process given in Fig. 1.
Moreover fermion self-energy diagrams would induce an
imaginary part for the pion self-energy, and hence for its
mass. This, in turn, would make the pion mass in (12) com-
plex. So there would be an imaginary contribution to (12)

Fig. 2. The Feynman diagram for the contribution of a pho-
tonic tachyon to fermion self-energy. The wavy line denotes the
tachyonic Kaluza–Klein modes of the photon, and the solid line
denotes the fermion

even in the case R < β, that is, even in the case that the
sizes of the extra dimension(s) are much smaller than the
nuclear sizes. So we will impose conservation of momen-
tum in the extra time-like dimensions in the paragraph
after the next paragraph to forbid fermion self-energy di-
agrams with tachyonic photons. In that way the processes
similar to Fig. 1 are forbidden as well as the processes in
Fig. 2. One may wonder if the calculation of that process
(given in (12)) is unnecessary or redundant once conser-
vation of momentum is imposed in the extra dimensions.
In fact it is not. The result of (12) gives more flexibility
in model building. For example, one may consider a pro-
cess similar to the one given in Fig. 1, where one of the
incoming and one of the outgoing protons are replaced by
their tachyonic Kaluza–Klein counterparts. (These modes
may be produced in the early universe in models where
quarks are allowed to propagate in the extra time-like di-
mensions.) Such processes are not forbidden by conserva-
tion of momentum (in the extra time-like dimensions) and
their decay would be of the same form as (12) provided that
the wave functions for protons and their tachyonic counter-
parts have the same form as (10). So the reality of (12) is
important in the discussion of the stability of protons in the
presence of tachyonic modes.
One might think that the scattering of high energy free

protons (e.g. in cosmic rays) through processes similar to
the one given in Fig. 1 may change the bound given above.
The cross section in that case can be directly found from
(5) and is seen to be real. So the decay width of a two free
nucleon system due to a process similar to Fig. 1 is zero.
One may notice this fact without doing the calculation of
the corresponding decay width explicitly. The decay width,
i.e. the imaginary part of 〈Ψ |V (r)|Ψ〉, is due to the mixture
of the arguments of the real exponent in Ψ and the complex
exponential in V (r). If one takes Ψ to be the wave func-
tion of two free protons (which is expressed by a complex
exponential) then in the evaluation of 〈Ψ |V (r)|Ψ〉 the over-
all complex exponentials cancel and 〈Ψ |V (r)|Ψ〉 results in
a real number, so it has no imaginary component. In other
words the decay width of two free protons due to tachy-
onic photon modes is always zero. However for confined
particles one may expect a wave function of the form of
(10), which results in a non-zero decay width. Hence the
quarks inside the nucleons may give such a non-zero decay
width. On the other hand we do not know the wave func-
tions of quarks inside nucleons, so it is impossible to obtain
an exact lower bound on the size of extra time-like dimen-
sions by considering the quarks inside nucleons. However
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one may expect this wave function not to be drastically dif-
ferent from (10). In that case one would expect the lower
bound on the size of extra dimensions to be in the order
of (cutoff momentum)−1, that is, O( 1

1 GeV ). In the same
way one may put a still smaller lower limit if the quarks
are made of composites of some other particles (preons). If
this generalization is reliable then one may relate the lower
limit on the size of the extra time-like dimension(s) and
the binding energy. In this case one may speculate that, if
an extra time-like dimension of the size much larger than
the (Planckmass)−1 is discovered, then it excludes the pos-
sibility of stable bound states with energies much higher
than the inverse of the size of the extra time-like dimension.
Next we consider the problem of the spontaneous de-

cay of a particle (e.g. an electron) into a tachyon and the
original particle, and the problem of an imaginary mass
contribution to the stable fermions (e.g. electron or pro-
ton) through self-energy diagrams involving a tachyon.
The decay of a particle (say an electron) into another elec-
tron and a negative energy tachyonic photon is kinemat-
ically allowed. It is difficult to identify these negative en-
ergy tachyons with anti-tachyons because negative energy
tachyons may be made to be of positive energy by a simple
Lorentz boost [9]. So the result of such decays can be catas-
trophic because the kinematics allows large negative values
to occur for the energy of such a tachyon, and such a large
negative value energy destabilizes the whole vacuum. How-
ever, once we identify the tachyon with the Kaluza–Klein
mode of the photon in the extra time dimension, this decay
becomes impossible since (at least in the transient time till
the formation of the standing waves) there will be a non-
zero net momentum flow in the extra time direction due to
the tachyon and there is no other momentum to balance it.
The problem of the imaginary contribution to the

masses of stable fermions through self-energy diagrams in-
volving tachyons can be avoided in the same way, i.e. by
imposing the conservation of momentum corresponding to
the extra time-like dimension. Without taking this con-
servation into account, the contribution of the self-energy
diagram given in Fig. 2 to the fermion mass (in the Pauli–
Villars regularization scheme) is of the form

δm∝
e2m

4π2
ln
µ2−Λ2

µ2
, µ2 > 0 , (14)

wherem, e, µ andΛ stand for the fermionmass, the electric
charge of the fermion, the mass of the tachyonic photon,
the Pauli–Villars regularization cutoff scale, respectively,
and we have modified the propagator of the tachyonic pho-
ton mode (in the Pauli–Villars regularization scheme) by

1

k2−µ2
→ (

1

k2−µ2
)
Λ2−µ2

k2−µ2+Λ2
. (15)

By definition Λ> µ, so (14) results in an imaginary contri-
bution of the form

i
e2m

4π
, (16)

which is independent of µ and Λ and essentially equal to
the width of the spontaneous decay of the fermion through

the release of a tachyonic photon. This result is extremely
problematic because it predicts a decay rate for the fermion
comparable to the decay width of hadronic resonances and
moreover the result in (16) may be multiplied by a large
number because the number of Kaluza–Klein modes is
about Λ

µ0
where µ0 is the mass of the first Kaluza–Klein

mode and Λ is at most of the order of the Planck mass.
However if we require conservation of the momentum in
the extra time direction (at least in the transient time till
the formation of standing waves), then the usual fermions
(i.e. Kaluza–Klein zeromodes of fermions) can only radiate
the usual photons (i.e. Kaluza–Klein zero modes of pho-
tons) and the contribution to the fermion self-energies given
by Fig. 2 is absent and hence the problem is removed. In
other words, the contribution of a tachyonic photon to the
electron mass (as given in Fig. 2) results in extremely prob-
lematic results if the tachyonic mode is not due to an extra
time dimension. On the other hand the diagram in Fig. 2 is
forbidden (hence the problem is removed) if one considers
the tachyon to be due to an extra time dimension and re-
quires the conservation ofmomentum corresponding to this
dimension.
In this study we have re-examined some phenomeno-

logical difficulties due to tachyonic photon modes in the
study of extra time-like dimension(s). We have shown that
the lower bound on the size of extra time dimension(s)
due to the lower bound on the lifetime of the proton may
be relaxed, and moreover the presence of tachyons related
to the extra time dimension(s) is not as problematic as
the tachyons in the usual 4-dimensional picture. Although
we believe that we have made some progress in the phe-
nomenological viability of extra time-like dimensions there
are still some points to be studied further. We hope that
this study will facilitate more freedom in model building in
future studies.
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Appendix

In this appendix we give the details of the evaluation of the
integral given in (12). We have
∫ R

−R

kdk

k2− n
2

L2

∫ ∞

0

re(ik−2mπ)r dr

∫ π

0

sin θdθ

∫ 2π

0

dφ

= 4π

∫ R

−R

kdk

k2− n
2

L2

∫ ∞

0

re(ik−2mπ)r dr

=−4π

∫ R

−R

kdk

(k2− n
2

L2
)(k+2 imπ)2

. (A.1)

The denominator of the integral may be written as

1

(k+β)(k−β)(k+m− ε)(k+m+ ε)

=
1

(x−x1)(x−x2)(x−x3)(x−x4)
, (A.2)
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where

m= 2imπ , β =
n

L
x= k , x1 =−β , x2 = β ,

x3 =−m+ ε , x4 =−m− ε . (A.3)

We use the identity

1

(x−x1)(x−x2)
=

1

x1−x2

[
1

x−x1
−

1

x−x2

]
(A.4)

to write (A.2) as

1

(x−x1)(x−x2)(x−x3)(x−x4)

=
1

x1−x2

{
1

(x1−x3)(x1−x4)
·
1

x−x1

−
1

(x2−x3)(x2−x4)
·
1

x−x2

}

+
1

x3−x4

{
1

(x1−x3)(x2−x3)
·
1

x−x3

−
1

(x1−x4)(x2−x4)
·
1

x−x4

}

. (A.5)

The second term in (A.5) is

1

x3−x4

{
1

(x1−x3)(x2−x3)
·
1

x−x3

−
1

(x1−x4)(x2−x4)
·
1

x−x4

}

=
1

2ε

{

a
1

x−x3
− b

1

x−x4

}

=
1

2ε

{
(a− b)x+ bx3−ax4
(x−x3)(x−x4)

}

,

(A.6)

where

a=
1

(x1−x3)(x2−x3)
, b=

1

(x1−x4)(x2−x4)
,

(A.7)

(a− b)x

x3−x4
=

2mx
[
(m− ε)2−β2

][
(m+ ε)2−β2

] , (A.8)

bx3−ax4
x3−x4

=−
β2−3m2− ε2

[
(m− ε)2−β2

][
(m+ ε)2−β2

] ; (A.9)

then (A.6) becomes

1

x3−x4

{
1

(x1−x3)(x2−x3)
·
1

x−x3

−
1

(x1−x4)(x2−x4)
·
1

x−x4

}

=

{
2mx

[
(m− ε)2−β2

][
(m+ ε)2−β2

]

−
β2−3m2− ε2

[
(m− ε)2−β2

][
(m+ ε)2−β2

]

}

·
1

(x−x3)(x−x4)
. (A.10)

After combining (A.6) and (A.10) and using the explicit
values of x1, x2, x3, x4, and letting ε→ 0, one obtains

k

(k2−β2)(k+m)2
= −

1

2β(m−β)2
k

k+β

+
1

2β(m+β)2
k

k−β

+
2m

(m2−β2)2
k2

(k+m)2

−
β2−3m2

(m2−β2)2
k

(k+m)2
.

(A.11)

The evaluation of the integral (A.1) by the use of (A.11)
gives

〈Ψ |V (r)|Ψ〉 = i
e2m3π
π2

[
2mβ

(m2−β2)2
ln

(
β+R

β−R

)

−
(m2+β2)

(m2−β2)2
ln

(
m+R

m−R

)

−
2mR

(m2−β2)(m2−R2)

]

. (A.12)
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