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Abstract. In approximate function generation synthesis methods, error between the desired function’s 

output and designed mechanism’s output oscillate about zero error while crossing the zero error margin 

at precision points. The common goal of these methods is to minimize the error within the selected 

working region of the mechanism. For mechanisms like Bennett overconstrained six-revolute jointed 

linkages that have relatively large number of construction parameters, it is a difficult task to solve for 

them at once. Decomposition method enables to divide such linkages into two loops and independently 

solve for each loop with less construction parameters. Although some approximation methods are proven 

to produce smaller errors than others for a single-loop synthesis, in this work, it is shown that smaller 

errors are not guaranteed for a certain method when used along with decomposition method. Numerical 

examples indicate that in decomposition method, more attention should be given to the alternation of the 

error of each decomposed mechanism, rather than the approximation method used.  

 

Key words: Bennett double spherical linkages, input-output equation, decomposition method, mecha-

nism synthesis, overconstrained mechanism. 

1 Introduction 

The results of Sarrus [1] on planar-planar six-bar linkage was studied further and 

generalized into double-spherical six-bar and plano-spherical six-bar linkages by 

Bennett [2]. Alternative ways to develop these overconstrained linkages were stud-

ied such as; linkages obtained through intersecting Euclidean subspaces [3], or us-

ing double-Hooke’s joint linkages to develop double-spherical six-bar linkage [4].  

Several methods were proposed to design spherical four-bar mechanisms 

through kinematic synthesis procedures for function generation [5, 6, 7]. Best de-

sign is considered to be the one that results in smaller amount of errors for the de-

sired function. The work presented in this paper is on utilizing the decomposition 

method for the function generation synthesis of Bennett six-revolute jointed (6R) 

overconstrained linkages to decrease the error range of the desired function. 
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In a previous work of the authors on kinematic synthesis of double spherical six-

bar mechanisms, extensive description of the mechanism was given [8]. The de-

composition method was applied to decompose the function into two parts and 

therefore synthesize each spherical four-bar loops by introducing a passive joint as 

illustrated in Figure 1. The input-output (I/O) equation was derived for four-con-

struction-parameter synthesis for both parts of the linkage and only interpolation 

approximation method (IPM) was used. This idea was extended in [9, 10] for all 

types of Bennett overconstrained 6R linkages and I/O equations were derived for 

function generation using Chebyshev approximation. The work presented in this 

paper is a continuation of efforts for understanding the inconsistency in decreasing 

errors by using various methods for the double-spherical six-bar linkage.  

A single four-bar linkage designed with least-squares approximation (LSA) is 

expected to result smaller error range in function generation with respect to the re-

sults with IPM given that a wise selection of number of design points was made. 

However, in this paper by testing the methods with different functions to be gener-

ated, it is shown that when using the decomposition method, it is not the synthesis 

method that has domination on the total error range but direction of the error alter-

nation about the zero-error line. Therefore, in decomposition method, special care 

should be given to the alternation of error range rather than the approximate synthe-

sis method.  

In this paper, double-spherical 6R linkage is selected to evaluate the condition 

for minimizing the maximum errors in the decomposition method. However, this is 

also applicable to the function generation synthesis of the plano-spherical or double-

planar 6R linkages as well. Derivation of the I/O equations and description of the 

double-spherical 6R linkage for four angular construction parameters per loop are 

given in full detail in [8]. Also, IPM is described in [8]. LSA method used in this 

work is an application of the method described in [7]. In this paper, a new error 

calculation technique is introduced and the procedures are described along with nu-

merical example calculations. Finally, numerical example results are discussed and 

future works are addressed. 

2 Derivation of the I/O equations for the double-

spherical 6R linkage 

The I/O relationship of the double-spherical mechanism can decomposed into two 

parts. As shown in Figure 1, input angle ϕ can be considered as input of the first 

spherical four-bar loop and also the input of the double spherical linkage, while its 

output angle ψ̃ is associated with the passive joint. At the same time, the passive 

joint variable ψ̃ is the input of the second spherical four-bar mechanism. Finally, ψ, 

is the output of both second spherical four-bar loop and output of the double-spher-

ical six-bar linkage. 
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Synthesis procedure of spherical four-bar mechanisms are well studied and as a 

result, I/O equations for providing geometric constraints between links (twist angle 

between joints) can be derived and simplified by using an algebraic method. Trans-

formation of unit vector equation as described in [11] is used to find the relationship 

between the unit vectors (Si, Sj, and Sk) shown in Figure 1.  

In order to clarify the generation of the I/O equations, following equalities are 

provided:  Si (li, mi, ni) that rotates around Sj (lj, mj, nj) by angle αi,k, Sk (lk, mk, nk) 

can be calculated as 𝐒k = 𝐒i cos αi,k + 𝐒ji sin αi,k where, 𝐒ji = 𝐒j × 𝐒i. Revolute 

joint axes of the mechanism are described via joint unit vectors (Fig. 1). To find all 

vectors is significant for formulating the I/O equations. First, S1 = (1,0,0) and S2 = 

(0,0,1) are selected as unit vectors of an orthogonal coordinate frame. The other 

vectors are found accordingly making use of calculation procedure given above. 
 

Fig. 1 Double-spherical six-bar linkage mechanism with joint axes. 

The I/O equation of the first four-bar is calculated as (Cα = cosα and Sα = sinα): 

𝐒6 . 𝐒4  =  Cα4,6. Substituting values of S4 and S6 and manipulating results in: 

−Cα4,6 + Cα2,4Cα2,8Cα8,6 + Cα1,3Cα8,6Sα2,4Sα2,8 + Cα1,3Cα1,15Cα2,8Sα2,4Sα8,6 −
 Cα1,15Cα2,4Sα2,8Sα8,6 + Sα1,3Sα1,15Sα2,4Sα8,6 = 0       (1) 

where the input ϕ is α1,3 and output ψ̃ is α1,15. The I/O equation for the second four-

bar is derived from 𝐒𝟏𝟐. 𝐒𝟏𝟎 = Cα10,12. Substituting values of S12 and S10 and ma-

nipulating results in: 
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−Cα10,12 + Cα8,10Cα8,14Cα14,12 + Cα14,12Cα1,9Sα8,14Sα8,10 + 

Cα8,14Cα1,9Cα1,13 Sα8,10Sα14,12 − Cα8,10C α1,13Sα8,14Sα14,12 

+    Sα1,15Sα1,13Sα8,10Sα14,12 = 0                       (2) 

where the input ψ̃ is α1,9, which is also the output for the first loop, α1,15. The output 

for the second loop, ψ, is α1,13, which is also the output of the double-spherical 6R 

linkage. 

3 A new way of error calculation  

A function y = f̂(x) to be generated can be decomposed into two as ỹ = ĥ(x), y =

ĝ(ỹ) and y = ĝ (ĥ(x)) = f̂(x) where x and y are the input and output of the func-

tion, where as ỹ is and intermediate variable. For approximating these functions, the 

I/O equation of the double-spherical linkage can be written in polynomial form in 

terms of the construction parameters. Then the I/O equations can be determined for 

the first and second spherical four-bar loops and the double-spherical linkage as: 

ψ̃ = h(ϕ, c̅), ψ = g(ψ̃, d̅) and  ψ = g(h(ϕ, c̅), d̅) = f(ϕ, c̅, d̅). These functions rep-

resent the generated output angles for the designed loops, where c̅ =

{α2,8, α2,4, α8,6, α4,6} and d̅ = {α8,14, α14,12, α8,10, α12,10} are vectors containing the 

construction parameters of the first and second four-bar loops, respectively. The 

input/outputs of f, g, h functions are linearly related with the input/outputs of the 

f̂, ĝ, ĥ functions as ϕ = á1x + á2, ψ̃ = b́1ỹ  + b́2 and ψ = b1y + b2, where the co-

efficients á1, á2, b́1, b́2, b1, b2 depend on the limits of x, ỹ, y, ϕ, ψ̃ and ψ. The cumu-

lative errors in the output angles of the two loops were defined in terms of the input 

angles in [8] as follows: 

è1 = ∑ |h(ϕ, c̅) − (b́1ĥ (
ϕ−á2

á1
) + b́2)|180

ϕ=72     (3) 

è2 = ∑ |g(ψ̃, d̅) − (b1ĝ (
ψ̃−b́2

b́1
) + b2)|108

ψ̃=18                     (4) 

where the angle limits 72 ≤ ϕ ≤ 180 and 18 ≤ ψ̃ ≤ 108 are sample values and 

can be selected arbitrarily by the designer considering the design constraints, if there 

is any. In Eq. (5), et is the total error for the double-spherical mechanism. One can 

also use the root mean square (RMS) of the errors as well. 

       et = ∑ |g(h(ϕ, c̅), d̅) − (b1ĝ (ĥ (
ϕ−á2

á1
)) + b2)|180

ϕ=72            (5) 
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The total error et is composed of both first and second part loop errors. Each 

error has a real value for a specific double-spherical linkage’s input value of ϕ an-

gle. The error values inside the absolute sign in Eqs. (3), (4) and (5) can be positive 

or negative and the combined error of the two loops can have a very low value when 

corresponding individual errors in the loops have opposite signs. To calculate the 

mean of the total error, etm in terms of the loop errors, è2 can be modified to be a 

function of ϕ angle instead of ψ̃ angle as shown below. To accommodate this pro-

cedure, the errors due to the first loop are modified as: 

e1(ϕ) = b1 (ĝ (
h(ϕ,c̅)−b́2

b́1
) − f̂ (

ϕ−á2

á1
))               (6) 

e1m = ∑ |e1(ϕ)|180
ϕ=72 n⁄      (7) 

where e1m is the mean error in ψ due the first spherical loop expressed in terms of 

angle ϕ with a sampling rate s = 1°, i.e. ϕ = 72°, 73°, … ,180°. One can use finer 

or coarse sampling rate. n = (180 – 72 + 1)/s = 109 for s = 1. In defining e1(ϕ) the 

second spherical four-bar loop is assumed to be a perfect mechanism resulting no 

error in ψ. For error due to the second loop  

e2(ϕ) = g ((b́1ĥ (
ϕ−á2

á1
) + b́2) , d̅) − (b1ĝ (ĥ (

ϕ−á2

á1
)) + b2)                (8) 

e2m = ∑ |e2(ϕ)|180
ϕ=72 n⁄      (9) 

where e2m is the mean error in ψ due the second spherical loop, where the first 

spherical four-bar loop is assumed to be a perfect mechanism with resulting no er-

rors in ψ̃ . Finally for the double-spherical linkage 

etm = ∑ |e1́ + e2́|180
ϕ=72 n⁄         (10) 

where etm is the total mean error in ψ. The total error calculated in Eq. (10) is the 

same total error calculated in Eq. (5). However, new calculation method of the two 

error values for two decomposed loops will enable to visualize how the errors are 

combined to result in the total error. 

4 Numerical examples and results  

In this section, an exponential and a power function are selected for the function to 

be generated so that they resemble a nonlinear relation between the input and the 

output. For function generation of the both functions, IPM and LSA are used. 
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For the numerical examples, the first function to be generated by the double-

spherical 6R linkage is y = x1.3. This function is decomposed into two as ý = x0.8 

and y = ý1.625. One can also choose some other type of decomposition between the 

two functions (such as ý = x2.6 and y = ý0.5). Second function to be generated is 

y = e2x, which is decomposed into two as ý = e1.2x and y = ý(2/1.2). Once again, 

other options for decomposing the function are possible. For both of the functions, 

input angle limits are selected as 72 ≤ ϕ ≤ 180. Intermediate angle limits are se-

lected as 18 ≤ ψ̃ ≤ 108. Output angle limits are selected as 72 ≤ ψ ≤ 180. These 

limits can be changed to decrease the error or comply with some design constraints. 

In IPM, precision points are distributed in the range of input angles for each 

mechanism using equal spacing method in range of x from x0 = 1 to xm = 2 for 

the first loop and from ý0 = 10.8 to ým = 20.8 for the second loop in numerical 

example one and ý0 = e1.2 to ým = e2.4 for the second loop in numerical example 

two, and xn = xn−1 + δ for n = 1, 2, 3 where δ = (xm − x0) 3⁄ . Output values at 

the precision points can be calculated as yi = f̂(xi) for i = 0, 1, 2, 3.  

To find the LSA solution for the first loop, the summation is done for 72 ≤ ϕ ≤ 

180 by s = 1° step  n = 109 (n is the number of design points). To find the LSA 

solution for the second part, the previous procedure is repeated with ψ̃ ranging from 

18° to 108° by 1° step  n = 91 in numerical example one and by 7° step  n = 

13 in numerical example two. The step size in numerical example two is increased 

to 7° in order to get a real solution.  

Tables 1 and 2 present mean errors for the first four-bar spherical loop and the 

second four-bar spherical loop and mean total error of the double-spherical linkage 

obtained using both IPM and LSA for generating two different functions. The de-

signed construction parameters of the mechanisms are also presented in the tables, 

where the superscripts indicate the first or second loop of the decomposed linkage. 

Table 1.  The calculated mean errors and construction parameters for y = x1.3  

Mean error values Construction Parameters (rad) 

 IPM LSA  IPM1 LSA1  IPM2 LSA2 

e1m 7.6e-4 5.5e-4 α2,8 0.422 0.430 α8,14 0.825 0.729 

e2m 0.0019 0.0013 α2,4 0.803 0.823 α14,12 -0.720 -0.800 

etm 0.0017 0.0015 α8,6 1.177 1.203 α8,10 0.504 0.543 

   α4,6 1.164 1.175 α12,10 0.921 0.979 

Table 2.  The calculated mean errors and construction parameters for y = e2x 

Mean error values Construction Parameters (rad) 

 IPM LSA  IPM1 LSA1  IPM2 LSA2 

e1m 0.0020 0.0015 α2,8 0.376 0.346 α8,14 1.597 0.992 

e2m 0.0033 0.0024 α2,4 -1.125 -1.028 α14,12 -0.255 -0.405 

etm 0.0019 0.0024 α8,6 -0.771 -0.693 α8,10 0.195 0.296 

   α4,6 0.842 0.767 α12,10 1.430 0.853 



Alternating Error Effects on Decomposition Method in Function Generation Synthesis  7 

Each loop’s error throughout the input angle range (about 1.26 to 3.14 rad) is 

given in Figs. 2 and 3 for the generation of y = x1.3 and y = e2x, respectively. 

       
(a)                                                                        (b) 

Fig. 2 Error of output angle for y = x1.3 by using (a) IPM (b) LSA. 

  

(a)                                                                        (b) 

Fig. 3 Error of output angle for y = e2x by using (a) IPM (b) LSA. 

5 Conclusions 

It is observed in both case studies with different functions that, in the independent 

kinematic synthesis of the first and the second spherical four-bar loops, smaller er-

ror ranges were obtained with LSA with respect to IPM. Nevertheless, total error 

calculated with the LSA for the double-spherical 6R linkage is smaller in the first 

example and larger in the second example with respect to the results obtained with 

IPM.  

In order to serve for better understanding of the inconsistency, a new error cal-

culation procedure is defined during the design of a single spherical four-bar mech-

anism. Resultant error variations are analyzed in a single plot to indicate the error 

oscillation. Also, it is shown that the total error of the double-spherical 6R mecha-

nism can be calculated by adding up the total errors calculated after the first four-

bar loop is designed and the total errors calculated after the second four-bar loop is 

designed. 

Evaluating the numerical results, it is concluded that the alternating total errors 

for the synthesis of the first and second spherical four-bar loops can result in smaller 
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total error for the kinematic synthesis of the double-spherical six-bar linkage re-

gardless of the approximation method used. In order to result in a minimized error 

range in the obtained function, independent of the method of approximate synthesis 

chosen, the error alternation plots for both decomposed mechanisms should be in-

spected to ensure an opposite direction of alternation of errors. Investigating a way 

to guarantee error alternation is the scope of a future work on this area. 

Although, synthesis procedure presented in this paper can be carried out for more 

examples with different ranges, the numerical examples presented in this paper pro-

vide basis for the above conclusions.  
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