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a b s t r a c t

Natural convection heat transfer in a porous media filled and non-isothermally heated from the bottom
wall of triangular enclosure is analyzed using finite difference technique. Darcy law was used to write
equations of porous media. Dimensionless heatfunction was used to visualize the heat transport due
to buoyancy forces. Three different boundary conditions were applied for the vertical and inclined bound-
aries of triangular enclosures as Case I; both vertical and inclined walls were isothermal, Case II; vertical
wall was adiabatic and inclined one was isothermal, Case III; vertical wall is isothermal and inclined one
is adiabatic. A cosine function was utilized to get non-isothermal wall condition. The study was per-
formed for different aspect ratios (0.25 6 AR 6 1.0) and Darcy-modified Rayleigh numbers
(100 6 Ra 6 1000). It was observed that heat transfer enhancement was formed when vertical and
inclined walls were isothermal while bottom wall was at non-uniform temperature. Heat transfer from
bottom wall did not vary when the value of aspect ratio was higher than 0.50. In addition, heatline visu-
alization technique was a useful technique for non-isothermally heated and porous media filled triangu-
lar enclosures.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction than rectangular geometry such as triangle [15,16], parallelogram
Analysis of fluid-saturated porous media is an important issue
in engineering due to its wide applications in the areas geophysics,
heat exchangers, ground-coupled heat pumps, solar collectors,
reactors, grain storage, etc. As indicated by wide review studies
of Nield and Bejan [1], Vafai [2], Ingham and Pop [3], it is an inter-
disciplinary topic.

Natural convection phenomena in different shaped enclosures
filled with fluid-saturated porous media is also important in
engineering applications due to knowledge of flow field and tem-
perature distribution help to design high efficient thermal sys-
tems. In the past years, most of the researchers focused on
investigation of natural convection in porous square or rectangu-
lar enclosures with constant temperature or heat flux boundary
conditions as reported in the literature by Bejan [4], Goyeau
et al. [5], Gross et al. [6], Manole and Lage [7], Saeid and Pop
[8], Baytas and Pop [9]. However, non-isothermal boundary con-
ditions are also faced in practice. The numbers of studies on non-
isothermal boundary conditions are limited for enclosures filled
with clear fluids [10–12] and cavities filled with fluid-saturated
porous media [13,14]. The shape of enclosure can be different
ll rights reserved.
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[17] or trapezoidal enclosures [18–21] depending on application
requirements. To our best knowledge, the problem of natural
convection in a triangular enclosure filled with fluid-saturated
porous media with non-isothermal boundary conditions has not
been investigated before.

Heatline technique is an important method to visualize heat
transport in enclosures filled clear fluids or fluid-saturated porous
media. Isotherms are used to show the temperature distribution in
a domain, however, it is not easy to realize the direction and
intensity of heat transfer particularly in convection problems in
which path of heat flux is not perpendicular to isotherm due to
convection effect. Heatline is a useful tool for visualization and
analysis of not only direction but also intensity of heat transfer
in a domain. They provide corridors in where heat is transferred
from hot to the cold regions by convection and/or conduction.
Heatline technique was first proposed by Kimura and Bejan [22]
to visualize the convective heat transfer and the method has been
extended to different applications by Morega and Bejan [23], Dash
[24], Dalal and Das [25] and Costa [26]. A detailed review study on
applications of heatlines was performed by Costa [27]. The method
has been also applied to conjugate heat transfer by Zhao et al. [28],
Mobedi [29], Deng and Tang [30]. They indicated that the heatline
visualization is a powerful method to show the heat interaction
between solid and fluid at an interface.
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Nomenclature

AR aspect ratio parameter, (H/L)
g gravitational acceleration (m s�2)
h dimensional heatfunction
H height of triangle, dimensionless heatfunction, H = h/

(TH � TC)k
K permeability of the porous medium (m2)
L length of the bottom wall (m)
Nux local Nusselt number, Nux = (�oh/oY)Y=0

Ra Darcy-modified Rayleigh number, Ra = (gbK(TH � TC)L)/
taa

T fluid temperature (K)
u,v velocity components along x- and y-axes, respectively

(m s�1)
U,V non-dimensional velocity components along x- and y-

axes, respectively, (uL/aa,vL/aa)
x,y dimensional Cartesian coordinates (m)

X,Y non-dimensional coordinates, (X = x/L,Y = y/L)

Greek symbols
aa thermal diffusivity of porous media (m2 s�1)
b thermal expansion coefficient (K�1)
k amplitude of the sinusoidal temperature distribution
h non-dimensional temperature, h = (T � TC)/(TH � TC)
t kinematic viscosity (m2 s�1)
w dimensional stream function (m2 s�1)
W non-dimensional stream function, W = w/aa

Subscripts
C cold
H hot
max maximum
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The main purpose of this study is to visualize heat transport
due to natural convection in a non-isothermally heated triangular
enclosure filled with a fluid-saturated porous medium based on
Darcy equation model. The above literature review clearly shows
that the earlier studies did not investigate the visualization of
heat transport in porous triangular enclosures. Thus, the present
work is the first attempt at studying on that research area under
the above mentioned thermal conditions and geometry. However,
the problem can be easily extended to the case when the inertia
effects have to be incorporated (Al-Amiri [31]).
2. Definition of physical model

Considered the physical model of a right-angle triangular enclo-
sure filled with a fluid-saturated porous medium with length of
bottom wall, L, and height of vertical wall, H, as is illustrated in
Fig. 1a. Based on thermal boundary conditions, three different
cases were analyzed. For all cases considered the bottom wall is
non-isothermal; however the boundary conditions of vertical and
inclined walls vary with the case. In Case I, both vertical and in-
clined walls are isothermal and their temperature is taken as zero.
In Case II, the inclined wall is isothermal with T = TC and vertical
wall is adiabatic. The vertical wall of Case III is isothermal
(T = TC) and the inclined wall is adiabatic. The gravity acts in the
vertical direction. An aspect ratio is defined as AR = H/L. Regular
grid was used for all cases as given in Fig. 1b.
3. Governing equations

The dimensional set of the governing equations of the present
problem are the continuity, Darcy law and energy given by Eqs.
(1)–(3). Properties of the fluid and the porous medium are con-
stant; the cavity walls are impermeable; the Boussinesq approxi-
mation is valid; and the viscous drag and inertia terms in the
momentum (Darcy) equation are neglected (see Nield and Bejan
[1]). Under these assumptions, the governing equations can be
written as follows:

ou
ox
þ ov

oy
¼ 0 ð1Þ

ou
oy
� ov

ox
¼ � gbK

t
oT
ox

ð2Þ

u
oT
ox
þ v

oT
oy
¼ aa

o2T
ox2 þ

o2T
oy2

 !
ð3Þ
where u, v are the velocity components along x- and y-axes, respec-
tively, T is the fluid temperature, K is the permeability of the porous
medium and the physical meaning of the other quantities is given in
the Nomenclature. The above equations can be written in terms of
the stream function w defined as

u ¼ ow
oy
; v ¼ � ow

ox
ð4Þ

and non-dimensional variables

X ¼ x
L
; Y ¼ y

L
; h ¼ T � TC

TH � TC
; W ¼ w

aa
; U ¼ uL

aa
; V ¼ vL

aa
ð5Þ

where Ra is the Darcy-modified Rayleigh number defined as

Ra ¼ gbKðTH � TCÞL
taa

ð6Þ

Thus, Eqs. (1)–(3) can be written in non-dimensional form as

o2W

oX2 þ
o2W

oY2 ¼ �Ra
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ð7Þ
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The boundary conditions for the considered model are shown in
Fig. 1a. We have also classified them according to three different
cases given in Table 1. The non-dimensional sinusoidal temperature
distribution on the bottom wall is h = k(1 � cos(2pX)) and it is h = 2k
for X = 0.5 and we take k = 0.5.

Heat function for a dimensional convection problem can be de-
fined as

� oh
ox
¼ qcpvðT � TCÞ � k

oT
oy

ð9Þ

oh
oy
¼ qcPuðT � TCÞ � k

oT
ox

ð10Þ

where h is the dimensional heatfunction. By employing the non-
dimensional parameters defined by relations (5), Eqs. (9) and (10)
can then be written in dimensionless form Table 2

� oH
oX
¼ Vh� oh

oY
ð11Þ

oH
oY
¼ Uh� oh

oX
ð12Þ

where H is the non-dimensional heat function for the fluid and it is
defined as



Table 1
Definitions of boundary conditions

Wall Case I Case II Case III

Inclined h = 0 h = 0 oh
on ¼ 0

Vertical 0 < Y < H/L,h = 0 0 < Y < H=L; oh
oX ¼ 0 0 < Y < H/L,h = 0

Bottom 0 6 X 6 1,h = k(1 � cos(2pX)) 0 6 X 6 1,
h = k(1 � cos(2pX))

0 6 X 6 1,h = k
(1 � cos(2pX))

Table 2
Grid independency test at AR = 1.0, Ra = 1000 and Case I

Grid dimension Mean Nusselt number

(X by Y) (Nu)
31 � 31 7.65
41 � 41 8.44
61 � 61 9.37
81 � 81 9.86
101 � 101 9.92
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x
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1
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Fig. 1. (a) Physical model, (b) finite-difference grid for a triangular enclosure.

Table 3
Comparison of mean Nusselt number with the literature at Ra = 1000

References Nu

Bejan [4] 15.800
Goyeau et al. [5] 13.470
Gross et al. [6] 13.448
Manole and Lage [7] 13.637
Saeid and Pop [8] 13.726
Baytas and Pop [9] 14.060
This study 13.564

Table 4
Results for Ra = 100 to compare present results with literature

Inclined angle 15� 30� 45�

Nu (Ref. [17]) 2.95 2.62 2.23
Nu (present) 2.872 2.585 2.217
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H ¼ h
ðTH � TCÞk

ð13Þ

Assuming that H is a continuous function to its second order deriv-
atives it yields the following differential equation for heat function

o2H

oX2 þ
o2H

oY2 ¼
oðUhÞ

oY
� oðVhÞ

oX
ð14Þ

This equation is a Poisson equation which can be solved numeri-
cally. The convection terms which are written on the right side of
Eq. (14) act as a source term. The solution of this equation yields
dimensionless heatfunction in the inner region of the triangular
enclosure considered. The drawing of isolines of the heat function
provides heatlines.

The boundary conditions of the non-dimensional heatfunction
equation (Eq. 14) are obtained from the integration of differential
definition of H along the considered boundary conditions. For
example, the heatfunction boundary conditions for Case I triangle
are determined as follows:

for bottom wall 0 < X 6 1 : HðX;0Þ ¼ Hð0;0Þ þ
Z X

0

oh
oY

dX ð15Þ

for vertical wall 0 < Y 6 H=L : Hð0;YÞ ¼ Hð0;0Þ �
Z Y

0

oh
oX

dY

ð16Þ
for inclined wall 0 < X < 1 and ð17Þ

0 < Y 6 H=L : HðX;YÞ ¼ Hð1;0Þ �
Z ‘

‘¼0

oh
on

d‘ ð18Þ

where d‘ is the differential distance on the inclined wall and n
shows the normal direction of the inclined wall that points out-
ward. The value of heatfunction at the origin is H(0,0) = 0.

The physical quantities of interest in this problem are the local
and mean Nusselt numbers, which for bottom wall are given by

Nux ¼ � oh
oY

� �
Y¼0

; Nu ¼
Z 1

0
NuxdX ð19Þ
4. Numerical implementation

Finite difference method is used to solve the governing equa-
tions, Eqs. (7), (8) and the heatfunction equation, (14). Central dif-
ference method is applied for discretization of these equations. The
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Fig. 3. Streamlines (left), isotherms (middle) and heatlines (right) in the cavity for different Darcy-modified Rayleigh numbers at AR = 1.0 and Case I, (a) Ra = 100, (b) Ra = 250,
(c) Ra = 500.
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Fig. 2. Isotherms and heatlines in the cavity for different cases at Ra = 0 and AR = 1.0 (red lines: isotherms, blue dash lines: heatline). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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solution of linear algebraic equations was performed using succes-
sive under relaxation (SUR) method. The following convergence
criterion is employed for termination of procedure

jhPþ1 � hP j
hP 6 10�4 ð20Þ

The same criterion was used to obtain the solution of heatfunction
equation, Eq. (14). For the solution of all depended variables in Eqs.
(7), (8) and (14) the value of 0.1 is taken for under-relaxation
parameter. The uppermost grid-point on each vertical grid line
coincided with the top wall of the triangular enclosure as indicated
by Haese and Teubner [32] and Asan and Namli [15], as seen in
Fig. 1b. The inclined wall was approximated with staircase-like zig-
zag lines. Table 1 shows a serial tests on grid-independency against
the mean Nusselt number for the Case I and AR = 1.0 and Ra = 1000.
As seen from this table, grid sizes from 31 � 31 to 101 � 101 were
tried. The number of grid points is taken as 61 � 61 with uniform
spaced mesh in both X- and Y-directions. It should be mentioned
that the numerical algorithm used in this study was tested with
the problem of classical natural convection heat transfer in a differ-
entially heated square porous enclosure. Published experimental
data are not available for the cavity configuration and boundary
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Fig. 4. Streamlines (left), isotherms (middle) and heatlines (right) in the cavity for differ
AR = 0.25.
conditions considered in this study. Thus, the validation of achieved
results against suitable experimental data could not be performed.
However, the numerical results were also obtained for a square
cavity configuration and compared with the results reported by dif-
ferent authors as tabulated in Table 3. We used again 61 � 61 grid
points for this test. As can be seen from the table, the obtained re-
sults show good agreement with the results from the open litera-
ture. Another test was performed for an inclined geometry of
Baytas and Pop [17] as listed in Table 4. The present code also gives
good results with those of Baytas and Pop [17]. The contours of
streamline and isotherms are almost the same to those reported
in the literature for rectangular enclosure; however, they are not
presented here to save space. For validation of heatfunction results
the code was tested by obtaining results for conduction mode of
heat transfer, namely, Ra = 0. It is well known that the heatline must
be normal to the isotherms for pure conduction. As shown in
Fig. 2a–c, which represents all cases considered, heatlines and iso-
therms are perpendicular to each other. Heatfunction equation
was also solved for square cavity with differential wall tempera-
tures and compared with the results of Deng and Tang [30]. Ob-
tained results from the present code showed good agreement
with this study.
-1.52

-3.68
-1.52

0.65

3.90
4.98

3.
902.
82

-1.52

-0.43

1.
73

2.82

-3
.6

8

-2.60

-1
.8

4
0.

29
2.

41

4.
54

5.60

3.48

1.35

0.29
-0.78-2.91 -1.84

-0.78

-0
.2

4
1.

72

4.
66

6.62

6.62

4.66

2.70

0.74

-1.22
-0.24

0.82

2.82

4.83 6.84 9.85

ent aspect ratios at Ra = 1000 and Case I, (a) AR = 1.0, (b) AR = 0.75, (c) AR = 0.50, (d)



Y. Varol et al. / International Journal of Heat and Mass Transfer 51 (2008) 5040–5051 5045
5. Results and discussion

The results of flow fields, temperature distributions, heat trans-
fer and visualization of heat transport with heatline for the porous
non-isothermally heated triangular enclosure are examined in this
section. The thermal behaviors of the different cases are discussed
separately. As it was mentioned before, the bottom wall of the tri-
angular enclosure is heated non-isothermally for the all considered
cases.

(a) Case I:Fig. 3 shows the streamline (on the left), isotherms
(on the middle) and heatlines (on the right) in a porous
triangular enclosure with AR = 1.0 for different values of
the Darcy-modified Rayleigh number. We can see that,
double circulation cells were formed in different rotating
directions, starting from the middle of the bottom wall
for all Darcy-modified Rayleigh numbers considered. The
1.24 -2.64
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Fig. 5. Streamlines (left), isotherms (middle) and heatlines (right) in the cavity for di
Ra = 250, (c) Ra = 500.
cell in left side becomes dominant on right one with
increasing of the Darcy-modified Rayleigh number. In
other words, the cell formed at the right corner is
squeezed to a rather small fraction of the domain. It
impinges to the inclined wall and its strength increases
with the domination of convection mode of heat transfer.
It rotates in clockwise direction but the big cell rotates
counterclockwise. The figure also shows the maximum
and minimum streamfunction values. As given in the fig-
ure, the absolute values of minimum and maximum of
streamfunction increase with increasing of the Darcy-mod-
ified Rayleigh number which indicates the increase of the
flow strength. We can also see from the isotherms that
they are distributed almost parallel to each other but
plumelike distribution is observed with the increasing of
Darcy-modified Rayleigh number. Because of the presence
of inclined wall, the isotherms are observed to have skew-
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ness towards to the left vertical wall of the enclosure. The
magnitude of heatfunction increases with increasing of
Darcy-modified Rayleigh number as is seen from heatline
contours. This shows the increase of heat transfer rate
from the bottom wall with increase of Darcy-modified
Rayleigh number. Two vortices are seen from the heatlines
above the heater. The corridors occur between two heat-
lines shows the path of heat from hot to cold region. As
is seen from heatlines of Case I (Fig. 3), heat from the bot-
tom wall is transferred to both vertical and inclined
walls.Further, we tested the effects of aspect ratio AR on
streamlines, isotherms and heatlines for Ra = 1000, which
is the highest Darcy-modified Rayleigh number in this
study, and results are illustrated in Fig. 4. The value of
AR varies in the range of 0.25 and 1.0. For the case of
AR = 1.0, a third cell was formed near the top of the trian-
gle. In the similar manner, closed vortices are also
observed at heatline. A strong plumelike distribution is
also shown from the isotherms due to higher Darcy-mod-
ified Rayleigh number. The third cell becomes very small
and it disappeared with the decreasing of aspect ratio. Val-
ues of streamfunction showed that flow strength decreases
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with decreasing of aspect ratio. Bénard cells were formed
at AR = 0.25 due to small height of the enclosure. In this
case, isotherms show wavy variation and four vortices
are observed from the heatfunction contours.

(b) Case II:Fig. 5 shows the streamlines (on the left), isotherms
(on the middle) and heatfunction contours (on the right)
for Case II. The temperature of inclined wall is taken as zero
and vertical wall is adiabatic in this case. As given in Case I,
two cells were formed inside the enclosure in different rota-
tion direction. On the contrary to the Case I, the right cell
becomes dominant to the left one. The left vortices are
squeezed to the left bottom corner and its dimension is
decreased with increasing of Darcy-modified Rayleigh num-
ber. At Ra = 100, the circulation inside the enclosure is so
weak that the viscous forces are dominant over the buoy-
ancy force. With the increasing of Darcy-modified Rayleigh
number, the intensity of the recirculation inside the enclo-
sure increases and hydrodynamic and thermal boundary
layers near the walls become thinner. As a result of this,
the strength of the fluid increases with increasing of
Darcy-modified Rayleigh number. As illustrated in isotherms
that for Ra = 500, the temperature gradients are confined to
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the bottom wall in the form of a thermal boundary layer.
This layer becomes thinner with increasing of Darcy-modi-
fied Rayleigh number. Heatfunction contours showed that
center of the vortices in heatlines and isotherms are almost
in same location since confinement of the flow causes the
heat transfer enhancement. This is clear from results for
the highest Darcy-modified Rayleigh number which is plot-
ted in Fig. 6. This figure also shows the effects of the aspect
ratio AR on flow and temperature field for Case II. Aspect
ratio is not significant for AR = 1.0 and AR = 0.75. But in the
case of AR = 0.50, the results of streamlines, isotherms and
heatlines are similar to the Case I since the height of adia-
batic wall (vertical wall) becomes smaller with decreasing
of AR. The vertical wall of triangle enclosure is adiabatic
and no heat transfers from the bottom or the inclined wall
to the vertical wall as seen from heatlines of Case II (Figs.
5 and 6). If the heat transfer corridors for Case II are fol-
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lowed, it will be observed that most of heat in the enclosure
is transferred from the hot part of the bottom wall to the
inclined wall and in addition heat transfer from hot to cold
part of bottom wall arises.

(c) Case III:Boundary conditions are taken in Case III as
inclined wall is adiabatic, vertical wall is isothermal
(h = 0) and again bottom wall is non-isothermal. Fig. 7
shows the streamlines (on the left), isotherms (on the mid-
dle) and heatlines (on the right) for different Darcy-modi-
fied Rayleigh numbers for Case III. As seen from the
streamlines plot that two circulation cells were formed
as obtained other cases. In this case, left cell is dominant
to right one on the contrary of other cases. The cell, which
rotates in clockwise rotating direction, is squeezed to the
right bottom corner with �0.62. Isotherms plot shows that
skewness of the isotherms toward to the inclined wall on
the contrary of other cases. Heatlines reveal that the heat
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is transferred from the middle of the non-isothermal
source to a large portion of the enclosure. It makes a huge
vortex inside the enclosure. Domination of vortices
increases with increasing of Darcy-modified Rayleigh num-
ber. Again aspect ratio AR is an effective parameter for this
case too (Fig. 8). But there is no Bénard cells in this case
depend of the boundary conditions. Flow strength
decreases with decreasing of aspect ratio. The heatlines
of the Case III shows that there is not heat transfer to
the inclined wall which is adiabatic. A weak heat transfer
from bottom to bottom in the right corner region of enclo-
sure forms, though most of heat in the enclosure is trans-
ferred from the bottom to the vertical wall.Variation of the
local Nusselt number along the bottom wall is presented in
Fig. 9 for different three cases at different Darcy-modified
Rayleigh numbers and AR = 1.0. As seen from Fig. 9a that
variation of local Nusselt number is symmetrical due to
symmetry in the temperature field. As indicated earlier
those both vertical and inclined walls have colder than
that of bottom wall. Values of local Nusselt number
increase with increasing of Darcy-modified Rayleigh num-
ber especially at the middle section of the non-isothermal
wall due to adding of large amount of heat from that sec-
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Fig. 8. Streamlines (left), isotherms (middle) and heatlines (right) in the cavity for differe
AR = 0.25.
tion to the system. As given by the study of Sarris et al.
[10], which is performed for viscous fluid filled square
enclosure with non-isothermal heating from the ceiling,
local Nusselt number is positive at these region. However,
local Nusselt numbers are negative at the corners of the
bottom wall due to losing of heat (Fig. 9b). In the Case
II, again local Nusselt numbers are positive almost right
half part of the bottom wall due to increasing of recircula-
tion intensity at that part of the cavity as given from the
streamline plots in Figs. 5 and 6. Absolute value of local
Nusselt number increases with increasing of Darcy-modi-
fied Rayleigh number near the left bottom corner of the
triangular enclosure. On the contrary of Case II, positive
values are observed at the left part of the bottom wall in
Case III depends of the recirculation intensity which is
given in Figs. 7 and 8. Local Nusselt number shows sinu-
soidal wave like variation at the right bottom corner of
the enclosure (Fig. 9c). Fig. 10 shows the effects of aspect
ratio on variation of local Nusselt number for three cases
and Ra = 1000. As seen from the figure that local Nusselt
numbers show almost symmetrical distribution according
to mid-section of the bottom wall for all values of aspect
ratio (Fig. 10a). All values are almost positive due to heat
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gain from the non-isothermal heater. A sinusoidal variation
has been observed at AR = 0.25 due to forming of Bénard
cell at this value of aspect ratio as seen from the Fig. 4d.
In the Case II, variation of local Nusselt number for
AR = 0.25 is almost the same with Case I. But there is no
symmetrical trend for other values of aspect ratio
(Fig. 10b). It means that boundary conditions play an
extremely important role on heat transfer. In these case,
there are negative values near the corners of the bottom
wall for AR = 0.50, 0.75 and 1.0. There are two peaks for
except AR = 0.25 due to presence of two circulation cells
inside the cavity AR. Fig. 10c indicates that heat transfer
is positive almost at left half of the bottom wall and neg-
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Fig. 9. Variation of local Nusselt number along the bottom wall for different Darcy-
modified Rayleigh numbers at AR = 1.0, (a) Case I, (b) Case II, (c) Case III.
ative at the other side. They also indicate that there is no
Bénard flow structure inside the cavity even at same
parameter with other cases. It means that type of bound-
ary conditions is highly effective on formation of Bénard
cells.

5.1. Overall heat transfer

We summarized the study by showing the variation of the aver-
age Nusselt numbers for three cases at different Darcy-modified
Rayleigh numbers. Negative values for the local Nusselt numbers
are seen in Fig. 9 due to non-uniform temperature boundary con-
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ditions. It means that the direction of heat transfer is different.
Thus, mean Nusselt numbers were calculated from the positive
values and presented in Figs. 11 and 12 for different Darcy-modi-
fied Rayleigh number and aspect ratio AR, respectively. Calculation
was made using Eq. (19). As plotted in Fig. 11 that mean Nusselt
number for Case I is higher than that of Case II and III and it is al-
most the same for II and III. Globally, the mean Nusselt number is
an increasing function of Darcy-modified Rayleigh number on non-
isothermal wall. This result has been also found in the study of Bil-
gen and Ben Yedder [12], which is on sinusoidally heated enclo-
sure. Differences between Nusselt numbers increase with the
increasing of Darcy-modified Rayleigh number due to increasing
of domination of convection mode of heat transfer. Fig. 12 shows
the variation of mean Nusselt number with aspect ratio for
Ra = 1000. As seen from this figure there is again a higher heat
transfer as that observed in the Case I. The trend of mean Nusselt
number with AR is almost the same as that for Cases I and II and
it decreases with increasing of aspect ratio AR. On the contrary,
heat transfer increases with increasing of AR for Case III. Variation
of mean Nusselt numbers becomes constant for AR > 0.50. This re-
sult is valid for all three cases considered.

5.2. On flow field

Finally, we compared the obtained results showing the maxi-
mum values of the stream function. These results give an idea on
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Fig. 11. Variation of mean Nusselt number with Darcy-modified Rayleigh number
for different cases at AR = 1.0.
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Fig. 14. Variation of absolute streamfunction with aspect ratio for different cases at
Ra = 1000.
flow strength or measure of intensity of the flow and extent of
the recirculation region. Fig. 13 shows the variation of the maxi-
mum stream function with Darcy-modified Rayleigh number for
three cases considered at AR = 1.0 and the variation of the maxi-
mum stream function with the aspect ratio AR is given in Fig. 14
for Ra = 1000. These two figures indicate that the values of the
stream function are increased with increasing both aspect ratio
and Darcy-modified Rayleigh number. Lower flow strength is ob-
served in Case I and the highest one in Case III, respectively. Ob-
tained results for variation of stream function are supported by
the study of Sarris et al. [10].
6. Conclusion

Three different temperature boundary conditions were tested
for the problem of natural convection in a non-isothermal triangu-
lar enclosure using the heatline method. We tested the results for
different Darcy-modified Rayleigh numbers Ra and aspect ratios
AR. Heatline method was used to visualize heat transport inside
the enclosure. Important findings from the study may be drawn
as follow:

(a) Heat transfer, flow field and temperature distribution are
strongly affected by changing of temperature boundary con-
ditions at vertical and inclined walls.



Y. Varol et al. / International Journal of Heat and Mass Transfer 51 (2008) 5040–5051 5051
(b) Heatline visualization technique is a useful method that
gives information on heat transport from the heated and
cooled region inside the porous triangular enclosure with
non-isothermal boundary conditions.

(c) Aspect ratio affects the amount of circulation mass inside
the enclosure and it also affects the heat transfer depending
on the boundary conditions. Heat transfer increases with
aspect ratio only for Case III. For AR > 0.50, aspect ratio
becomes insignificant on heat transfer.

(d) Heat transfer is an increasing function of Darcy-modified
Rayleigh number for all cases. Conduction becomes domi-
nant at small Darcy-modified Rayleigh number. Higher heat
transfer is observed in Case I.

(e) Finally, application of temperature boundary conditions as
Case I is better from the heat transfer point of view. To
achieve this result, higher Darcy-modified Rayleigh number
and lower aspect ratio are necessary.
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