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a Department of Mathematics, Ege University, 35100 Bornova, İzmir, Turkey
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In this Letter, the Exp-function method, with the aid of a symbolic computation system such as
Mathematica, is applied to the (3 + 1)-dimensional Jimbo–Miwa equation to show its effectiveness and
reliability. Exact and explicit generalized solitary solutions are obtained in more general forms. The free
parameters can be determined by initial or boundary conditions. Being less restrictive and concise, the
method can be applied to many high-dimensional nonlinear evolution equations having wide applications
in applied physical sciences.
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1. Introduction

Many phenomena in physics and in the nonlinear sciences can be modeled by a class of integrable nonlinear evolution equations. Con-
sequently, construction of traveling wave solutions of nonlinear equations plays an important role in the study of nonlinear phenomena.
Nowadays, with the rapid development of software technology, solving nonlinear evolution equations via symbolic computation is taking
an increasing role due to its efficiency, accuracy and its easy use. To this end, in the open literature, various methods have been presented
in the last four decades. For example, Tanh–Coth function [1], Sine–Cosine function [2], Jacobi elliptic function method [3], symmetry
method [4], Weierstrass function method [5], the F-expansion method [6], Homotopy perturbation method [7–11], variational iteration
method [12] and so on. However, all methods mentioned above have some restrictions in their applications.

Recently, He and Wu [13] introduced a straightforward and concise method, called the Exp-function method, to obtain generalized
solitary solutions and periodic solutions. The solution procedure of the method, with the aid of symbolic computation, is very simple and
precise and can easily be extended to all kinds of nonlinear evolution equations. The Exp-function method has been successfully applied
to various nonlinear evolution equations [14–23].

In our present work, by using the Exp-function method, we would like to construct some explicit and exact formal solutions for a
well-known model, (3 + 1)-dimensional Jimbo–Miva equation [24–27], which is of particular interest in science and has the form

uxxxy + 3u yuxx + 3uxuxy + 2u yt − 3uxz = 0, (1)

where u = u(x, y, z, t). Eq. (1) is firstly investigated by Jimbo and Miwa and its certain soliton solutions are obtained [28]. Then, it is
studied by several authors regarding its solutions, symmetries and integrability properties [29–31].

Lately, Wazwaz [32,33] successfully studied one-soliton solutions to Eq. (1) by means of the tanh–coth method. He also employed
the Hirota’s bilinear method to the Jimbo–Miwa equation and confirmed that it is completely integrable and it admits multiple-soliton
solutions of any order.
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0375-9601/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2008.10.014

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:turgut.ozis@ege.edu.tr
http://dx.doi.org/10.1016/j.physleta.2008.10.014
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2. The Exp-function method

To start with, suppose we have a nonlinear partial differential equation for u(x, t) in the form

P (u, ux, ut , uxx, uxt , utt , . . .) = 0, (2)

where P is a polynomial in its arguments. To determine u(x, t) explicitly, we take the following six steps:
Step 1. Look for traveling wave solutions of Eq. (2) by introducing a complex variation ξ = kx + wt and taking u(x, t) = U (ξ), and

transform it to the ordinary differential equation

Q (U , U ′, U ′′, . . .) = 0, (3)

where prime denotes the derivative with respect to ξ .
Step 2. If possible, integrate Eq. (3) term by term one or more times. This yields constant(s) of integration. For simplicity, the integration

constant(s) can be set to zero.
Step 3. Assume that the solution U (ξ) of Eq. (4) is in the form

U (ξ) = ac exp(cξ) + · · · + a−d exp(−dξ)

bp exp(pξ) + · · · + b−q exp(−qξ)
, (4)

where c, d, p and q are unknown positive integers to be determined, and an and bm are unknown constants.
Step 4. Determine the highest order nonlinear term and the linear term of highest order in Eq. (3) and express them in terms of (4).

Then, in the resulting terms, balance the highest order Exp-function to determine c and p, and the lowest order Exp-function to determine
d and q.

Step 5. Substitute (4) into Eq. (3) and equate the coefficients of exp(nξ) to zero, obtain a system of algebraic equations for an , bm ,
k and w . Then, solve the system with the aid of a computer algebra system such as Mathematica, Maple or Matlab to determine these
constants.

Step 6. Substitute the values in the previous step into expression (4) and find the traveling wave solutions of Eq. (2). Then, to check
the correctness of the solutions, it is necessary to substitute them into the original Eq. (2).

3. Solutions of the Jimbo–Miwa equation

Now, to seek for the traveling wave solutions to Eq. (1), we make the transformation u(x, y, z, t) = U (ξ), ξ = kx + my + rz + wt , where
k, m, r and w are constants to be determined later. Then, we get

k3mU (4) + 6k2mU ′U ′′ + (2mw − 3kr)U ′′ = 0, (5)

where the primes and U (i) denote the derivatives with respect to ξ . Now, we make an ansatz

U (ξ) = ac exp(cξ) + · · · + a−d exp(−dξ)

bp exp(pξ) + · · · + b−q exp(−qξ)
(6)

for the solution of Eq. (5) and balance the terms U ′U ′′ and U (4) . By simple calculation, we have

U (4) = k1 exp[(c + 15p)ξ ] + · · ·
k2 exp[16pξ ] + · · · (7)

and

U ′U ′′ = k3 exp[(2c + 4p)ξ ] + · · ·
k4 exp[6pξ ] + · · · = k3 exp[(2c + 14p)ξ ] + · · ·

k4 exp[16pξ ] + · · · , (8)

where ki ’s are determined coefficients for simplicity. Balancing highest order of Exp-function in Eqs. (7) and (8), we have

c + 15p = 2c + 14p, (9)

which leads to the result

p = c. (10)

Similarly, from the ansatz (6), we have

U (4) = · · · + l1 exp[−(d + 15q)ξ ]
· · · + l2 exp[−16qξ ] (11)

and

U ′U ′′ = · · · + l3 exp[−(2d + 4q)ξ ]
· · · + l4 exp[−6qξ ] = · · · + l3 exp[−(2d + 14q)ξ ]

· · · + l4 exp[−16qξ ] , (12)

where li are determined coefficients for simplicity. Balancing lowest order of Exp-function in Eqs. (11) and (12), we have

−(d + 15q) = −(2d + 14q), (13)

which leads to the result

q = d. (14)
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We can freely choose the values of c and d in general. However, the final solution does not strongly depend on the values of c and d [13].
Case 1: p = c = 1, d = q = 1.
In this case, the solution of Eq. (5) can be expressed as

U (ξ) = a1 exp(ξ) + a0 + a−1 exp(−ξ)

b1 exp(ξ) + b0 + b−1 exp(−ξ)
. (15)

Substituting (15) into Eq. (5), we have

1

A

[
C4 exp(4ξ) + C3 exp(3ξ) + C2 exp(2ξ) + C1 exp(ξ) + C0 + C−1 exp(−ξ)

+ C−2 exp(−2ξ) + C−3 exp(−3ξ) + C−4 exp(−4ξ)
] = 0, (16)

where

A = (
b1 exp(ξ) + b0 + b−1 exp(−ξ)

)5
,

C4 = −k3ma1b0b3
1 + 3kra1b0b3

1 − 2mwa1b0b3
1 + k3ma0b4

1 − 3kra0b4
1 + 2mwa0b4

1,

C3 = −6k2ma2
1b2

0b1 + 12k2ma0a1b0b2
1 + 11k2ma1b2

0b2
1 + 3kra1b2

0b2
1 − 2mwa1b2

0b2
1

− 6k2ma2
0b3

1 − 16k3ma1b−1b3
1 + 12kra1b−1b3

1 − 8mwa1b−1b3
1 − 11k3ma0b0b3

1

− 3kra0b0b3
1 + 2mwa0b0b3

1 + 16k3ma−1b4
1 − 12kra−1b4

1 + 8mwa−1b4
1,

.

.

.

C−4 = k3ma0b4−1 − 3kra0b4−1 + 2mwa0b4−1 − k3ma−1b3
−1b0 + 3kra−1b3

−1b0 − 2mwa−1b3
−1b0.

Equating the coefficients of exp( jξ) to zero and solving the resulting algebraic system for a1, a0, a−1, b1, b0, b−1, k, m, r and w , we have
the following sets of solutions:

First set:

a0 = b0

(
a1

b1
− k

)
∓

√
k2b2

0 − 4k2b−1b1, a−1 = b−1

(
a1

b1
− 2k

)
, w = k(3r − k2m)

2m
. (17)

Second set:

a0 = b0

(
a−1

b−1
+ 2k

)
, a1 = 0, b1 = 0, w = k(3r − k2m)

2m
. (18)

Third set:

a0 = 0, a−1 = b−1

(
a1

b1
− 4k

)
, b0 = 0, w = k(3r − 4k2m)

2m
. (19)

Now, substituting (17) into (15) yields the generalized solitary solution

u(x, y, z, t) =
a1 exp(ξ) + b0(

a1
b1

− k) ∓
√

k2b2
0 − 4k2b−1b1 + b−1(

a1
b1

− 2k)exp(−ξ)

b1 exp(ξ) + b0 + b−1 exp(−ξ)
, (20)

where ξ = kx + my + rz + k(3r−k2m)
2m t . Next, substituting (18) into (15) leads to the following generalized solitary solution

u(x, y, z, t) =
b0(

a−1
b−1

+ 2k) + a−1 exp(−ξ)

b0 + b−1 exp(−ξ)
, (21)

where ξ = kx + my + rz + k(3r−k2m)
2m t . Finally, substituting (19) into (15) results in another generalized solitary solution, which reads

u(x, y, z, t) = a1 exp(ξ) + b−1(
a1
b1

− 4k)exp(−ξ)

b1 exp(ξ) + b−1 exp(−ξ)
, (22)

where ξ = kx + my + rz + k(3r−4k2m)
2m t .

The free parameters in the obtained solutions might imply some meaningful results in the physical model.
Case 2: p = c = 2, d = q = 1.
Under such case, the trial function (6) can be expressed as follows

U (ξ) = a2 exp(2ξ) + a1 exp(ξ) + a0 + a−1 exp(−ξ)

exp(2ξ) + b1 exp(ξ) + b0 + b−1 exp(−ξ)
, (23)

where we set the free parameter b2 = 1 for simplicity. Substituting (23) into Eq. (5), we get

1 [
C9 exp(9ξ) + C8 exp(8ξ) + · · · + C1 exp(ξ) + C0 + C−1 exp(−ξ) + C−2 exp(−2ξ) + C−3 exp(−3ξ) + C−4 exp(−4ξ)

] = 0, (24)

A



7014 T. Öziş, İ. Aslan / Physics Letters A 372 (2008) 7011–7015
where A = (exp(2ξ)+ b1 exp(ξ)+ b0 + b−1 exp(−ξ))5. Here, to save space, we omit to display the coefficients C j explicitly. Then, equating
the coefficients of exp( jξ) to zero and solving the resulting algebraic system for a2, a1, a0, a−1, b1, b0, b−1, k, m, r and w , we have the
following sets of solutions:

First set:

a0 = b0(a2 − 2k), a−1 = 0, a1 = b1(a2 − k1) ∓
√

−4k2b0 + k2b2
1, b−1 = 0, w = k(3r − k2m)

2m
. (25)

Second set:

a0 = 0, a1 = 0, a−1 = b−1(a2 − 6k), b0 = 0, b1 = 0, w = 3k(r − 3k2m)

2m
. (26)

Third set:

a0 = (a2 − 4k)b0, a1 = a2b1, a−1 = (a2 − 4k)b0b1, b−1 = b0b1, w = k(3r − 4k2m)

2m
. (27)

Now, substituting (25) into (23) yields the generalized solitary solution

u(x, y, z, t) =
a2 exp(ξ) + b1(a2 − k1) ∓

√
−4k2b0 + k2b2

1 + b0(a2 − 2k)exp(−ξ)

exp(ξ) + b1 + b0 exp(−ξ)
, (28)

where ξ = kx + my + rz + k(3r−k2m)
2m t . Next, substituting (26) into (23) leads to the following generalized solitary solution

u(x, y, z, t) = a2 exp(2ξ) + b−1(a2 − 6k)exp(−ξ)

exp(2ξ) + b0 exp(−ξ)
, (29)

where ξ = kx + my + rz − 3k(r−3k2m)
2m t . Finally, substituting (27) into (23) results in another generalized solitary solution, which reads

u(x, y, z, t) = a2 exp(2ξ) + a2b1 exp(ξ) + b0(a2 − 4k) + b0b1(a2 − 4k)exp(−ξ)

exp(2ξ) + b1 exp(ξ) + b0 + b0b1 exp(−ξ)
, (30)

where ξ = kx + my + rz + k(3r−4k2m)
2m t .

Moreover, we observe that (28) is equivalent to (20).
Case 3: p = c = 2, d = q = 2.
Then the trial function (6) becomes

U (ξ) = a2 exp(2ξ) + a1 exp(ξ) + a0 + a−1 exp(−ξ) + a−2 exp(−2ξ)

b2 exp(2ξ) + b1 exp(ξ) + b0 + b−1 exp(−ξ) + b−2 exp(−2ξ)
. (31)

There are some free parameters in (31), so we set b2 = 1, b1 = 0, b−1 = 0 for simplicity and thus (31) takes the form

U (ξ) = a2 exp(2ξ) + a1 exp(ξ) + a0 + a−1 exp(−ξ) + a−2 exp(−2ξ)

exp(2ξ) + b0 + b−2 exp(−2ξ)
. (32)

By the same procedure as illustrated in the previous cases, we obtain the following sets:
First set:

a0 = b0(a2 − 2k) ∓ 2
√

k2b2
0 − 4k2b−2, a−2 = (a2 − 4k)b−2, a−1 = 0, a1 = 0, w = k(3r − 4k2m)

2m
. (33)

Second set:

a0 = 0, a−2 = (a2 − 8k)b−2, a−1 = 0, a1 = 0, b0 = 0, w = k(3r − 16k2m)

2m
. (34)

Now, substituting (33) into (32) yields the generalized solitary solution

u(x, y, z, t) =
a2 exp(2ξ) + b0(a2 − 2k) ∓ 2

√
k2b2

0 − 4k2b−2 + b−2(a2 − 4k)exp(−2ξ)

exp(2ξ) + b0 + b−2 exp(−2ξ)
, (35)

where ξ = kx + my + rz + k(3r−4k2m)
2m t . Next, substituting (34) into (32) leads to the following generalized solitary solution

u(x, y, z, t) = a2 exp(2ξ) + b−2(a2 − 8k)exp(−2ξ)

exp(2ξ) + b−2 exp(−2ξ)
, (36)

where ξ = kx + my + rz + k(3r−16k2m)
2m t .

Case 4: p = c = 3, d = q = 2.
Then the trial function (6) becomes

U (ξ) = a3 exp(3ξ) + a2 exp(2ξ) + a1 exp(ξ) + a0 + a−1 exp(−ξ) + a−2 exp(−2ξ)

b3 exp(3ξ) + b2 exp(2ξ) + b1 exp(ξ) + b0 + b−1 exp(−ξ) + b−2 exp(−2ξ)
. (37)

We rewrite (37) in the following form

U (ξ) = a3 exp(2ξ) + a2 exp(ξ) + a1 + a0 exp(−ξ) + a−1 exp(−2ξ) + a−2 exp(−3ξ)
. (38)
b3 exp(2ξ) + b2 exp(ξ) + b1 + b0 exp(−ξ) + b−1 exp(−2ξ) + b−2 exp(−3ξ)
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If we take a−2 = b−2 = 0 in (38), then we get the same form as (31). This means that the Case 4 is equivalent to the Case 3. Similarly,
taking a−1 = b−1 = a−2 = b−2 = 0 and b3 = 1 in (38) means that the Case 4 is also equivalent to the Case 2. Moreover, it is possible to
rewrite (37) as in the form

U (ξ) = a3 exp(ξ) + a2 + a1 exp(−ξ) + a0 exp(−2ξ) + a−1 exp(−3ξ) + a−2 exp(−4ξ)

b3 exp(ξ) + b2 + b1 exp(−ξ) + b0 exp(−2ξ) + b−1 exp(−3ξ) + b−2 exp(−4ξ)
. (39)

Now, if we take a0 = b0 = a−1 = b−1 = a−2 = b−2 = 0 in (39), then we get the same form as (15). This means that the Case 4 is equivalent
to the Case 1.

4. Conclusion

In summary, we have successfully applied the Exp-function method to the (3 + 1)-dimensional Jimbo–Miwa equation and constructed
generalized solitary solutions with parameters. The free parameters, of course, might be related to initial or boundary conditions as well.
We predict that these solutions will be of great importance for analyzing the nonlinear phenomena arising in applied physical sciences.
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