
Communications in Nonlinear Science and Numerical Simulation 12 (2007) 1195–1201

www.elsevier.com/locate/cnsns
Solitary wave solution of nonlinear multi-dimensional
wave equation by bilinear transformation method

Gamze Tanoğlu *
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Abstract

The Hirota method is applied to construct exact analytical solitary wave solutions of the system of multi-dimensional
nonlinear wave equation for n-component vector with modified background. The nonlinear part is the third-order poly-
nomial, determined by three distinct constant vectors. These solutions have not previously been obtained by any analytic
technique. The bilinear representation is derived by extracting one of the vector roots (unstable in general). This allows to
reduce the cubic nonlinearity to a quadratic one. The transition between other two stable roots gives us a vector shock
solitary wave solution. In our approach, the velocity of solitary wave is fixed by truncating the Hirota perturbation expan-
sion and it is found in terms of all three roots. Simulations of solutions for the one component and one-dimensional case
are also illustrated.
� 2006 Published by Elsevier B.V.
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1. Introduction

The nonlinear science is the most important frontier for the fundamental understanding of nature. The
solutions of the nonlinear evolution equations are appearing as a travelling waves which play distinctive role
in nonlinear phenomena [1,2]. They are observed in various fields ranging from fluids and plasmas to solid-
state, chemical, biological and geological systems. In mathematics, a number of techniques have been devel-
oped to obtain the travelling wave solution for nonlinear evolution equations [3–5,15]. Although the Lie
method is one of the most popular classical method, it is not efficient for some non-integrable nonlinear PDEs
(as an example, the well-known Fisher equation) which have poor Lie symmetry being invariant only under
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the time and space translations [4]. The other method [5], based on travelling wave ansatz, reduces nonlinear
PDE to a nonlinear ODE. However in ODE system, the travelling wave speed is an unknown parameter that
must be fixed by the analysis and choosing a special trial trajectory [2]. The inverse scattering method is also
very powerful, but it is the most complicated and additionally needs information about analytical behaviour of
scattering data.

From another site, in 1971, the direct method proposed by Hirota has become a powerful tool to construct
multi-soliton solutions of integrable systems [3]. This, relatively simple and algebraic rather than analytic
method, allows one to avoid many analytic difficulties of the more sophisticated inverse scattering method.
Moreover, it is deeply related with Plücker coordinates of Grassmanians, quantum theory of fermions, s func-
tions and vertex operator representation of infinite-dimensional algebras [8]. The general idea of the method is
first to transform the nonlinear equation under consideration into a bilinear equation or system of equations,
and then use the formal power series expansion to solve it. For integrable systems the series admit exact trun-
cation for an arbitrary number of solitons. While for periodic solutions it includes an infinite number of terms.
We will see below that the truncation of Hirota’s perturbation series for non-integrable case, similarly to the
Painleve reduction [6], fixes the velocity of soliton.

The purpose of this paper is to demonstrate effectiveness of the Hirota method for constructing shock sol-
itary wave solution of n-component wave equation in three space dimensions. We extended our previous work
[16] for this aim. In addition, to our knowledge, the solitary wave solution for the system of multi-dimensional
nonlinear wave equation for n-component vector case has not been formulated explicitly by using Hirota
method. In this work, we consider equation for the vector order parameter U(x,y,z) = (U1(x,y,z),
U2(x,y,z), . . . ,Un(x,y,z)) and cubic nonlinear reaction term
a
o

2U

ot2
þ c

oU

ot
¼ r2U � ðU � a1;U � a2ÞðU � a3Þ; ð1Þ
where aj ¼ ða1
j ; a

2
j ; . . . ; an

j Þ 2 Rn, (j = 1,2,3), are three distinct constant vectors, and ðU � a1; U � a2Þ �
Pn

i¼1

ðU i � ai
1ÞðU i � ai

2Þ means the Euclidean scalar product of vectors (U � a1) and (U � a2) and $2 = D =

o2/ox2 + o2/oy2 + o2/oz2 is the Laplace operator, a, b are real constants. In the scalar case, when n = 1,
a = 0, and in the one space dimension, for different choices of parameters a1, a2, a3 the model reduces to
the well-known nonlinear diffusion equations appearing in a different fields sometimes with different names:
the Fitzhugh–Nagumo equation (a1 = 0, a2 = 1, a3 = a) arising in population genetics [9] and models the
transmission of nerve impulse [10], autocatalytic chemical reaction model introduced by Schlögl [11,12], gen-
eralized Fisher equation [2], Newell–Whitehead equation [13] or Kolmogorov–Petrovsky–Piscounov equation
[14] (a1 = 0, a2 = 1, a3 = � 1), Huxley equation (a1 = a2 = 0, a3 = 1).

The paper is organized as follows. In the next section, using the modified Hirota ansatz, Eq. (1) is trans-
formed into the bilinear system of n + 1 differential equations, which we solve exactly using Hirota’s pertur-
bation approach. After finding the the wave vector, we obtain the exact analytical one-solitary wave solution
for Eq. (1). The speed of the solitary wave is also found in terms of three distinct constant vectors which deter-
mine the reaction part of the equation we considered. Then we present simulations of the solitary waves for
one component and one-dimensional case. Finally, we summarize our results and discuss possible extensions
to other equations.
2. Vector bilinear forms and solitary waves

The solution of the problem is assumed to have a form of Eq. (2) in order to reduce Eq. (1) with cubic non-
linearity and three distinct roots a1, a2, a3, to the bilinear form. So we have to modify the standard Hirota
ansatz by extracting one of the vector roots,
U ¼ a3 þ
g

f
; ð2Þ
where g(x, t) is a n-component real vector function and f(x, t) is a real function. All derivatives with respect to
the dependent variables in Eq. (1) are expressed in terms of the Hirota’s derivatives in the bilinear approach:
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oU

ot
¼ Dtðg � f Þ

f 2
; ð3aÞ

o
2U

ot2
¼ D2

t ðg � f Þ
f 2

� g

f
D2

t ðf � f Þ
f 2

; ð3bÞ

r2U ¼ D2
xðg � f Þ

f 2
þ

D2
yðg � f Þ

f 2
þ D2

z ðg � f Þ
f 2

� g

f
D2

xðf � f Þ
f 2

� g

f

D2
yðf � f Þ

f 2
� g

f
D2

z ðf � f Þ
f 2

; ð3cÞ
where the Hirota derivative according to xi is defined as
Dn
xi
ða � bÞ ¼ o

oxi
� o

ox0i

� �n

ðaðxÞbðx0ÞÞjx¼x0 . ð4Þ
After substituting Eqs. (3) into Eq. (1), the following expression is obtained:
a
D2

t ðg � f Þ
f 2

� a
g

f
D2

t ðf � f Þ
f 2

þ c
Dtðg � f Þ

f 2
� D2

xðg � f Þ
f 2

�
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yðg � f Þ
f 2

� D2
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f 2
þ g

f
D2

xðf � f Þ
f 2

þ g

f

D2
yðf � f Þ

f 2
þ g

f
D2

z ðf � f Þ
f 2

þ g

f
g

f
� ða1 � a3Þ

� �
;

g

f
� ða2 � a3Þ

� �� �
¼ 0. ð5Þ
By introducing n-dimensional vector function g and one more scalar function f instead of one n-dimensional
vector function U for Eq. (1), we have freedom to decouple this system of n-equations as the bilinear system of
n + 1 equations
ðaD2
t þ cDt � D2

x � D2
y � D2

z Þðg � f Þ ¼ 0; ð6aÞ
ð�aD2

t þ D2
x þ D2

y þ D2
z þ ð~a1; ~a2ÞÞðf � f Þ ¼ �ðg; gÞ þ ðð~a1 þ ~a2Þ; gÞf ; ð6bÞ
where ~a1 � a1 � a3 and ~a2 � a2 � a3. To solve this system in the Hirota method, the function f and the vector
function g are supposed to have form of the formal perturbation series in a parameter �
f ¼
X1
i¼0

�ifi; g ¼
X1
i¼0

�igi; ð7Þ
without loss of generality assume that f0 = 0. Substituting (7) into system (6) and equating coefficients of the
same powers of � converts (6) into a sequence of the zeroth, first, second and higher order, bilinear equations
ðaD2
t þ cDt � D2

x � D2
y � D2

z Þðg0 � 1Þ ¼ 0; ð8aÞ
ð�aD2

t þ D2
x þ D2

y þ D2
z þ ð~a1; ~a2ÞÞð1 � 1Þ ¼ �ðg0; g0Þ þ ð~a1 þ ~a2; g0Þ; ð8bÞ

ðaD2
t þ cDt � D2

x � D2
y � D2

z Þðg0 � f1 þ g1 � 1Þ ¼ 0; ð9aÞ
ð�aD2

t þ D2
x þ D2

y þ D2
z þ ð~a1; ~a2ÞÞð2 � f1Þ ¼ �2ðg0; g1Þ þ ð~a1 þ ~a2; g0f1 þ g1Þ; ð9bÞ

ðaD2
t þ cDt � D2

x � D2
y � D2

z Þðg0 � f2 þ g1 � f1 þ g2 � 1Þ ¼ 0; ð10aÞ
ð�aD2

t þ D2
x þ D2

y þ D2
z þ ð~a1; ~a2ÞÞð2 � f2 þ f1 � f1Þ

¼ �2ðg0; g2Þ � ðg1; g1Þ þ ð~a1 þ ~a2; g0f2 þ g1f1 þ g2Þ. ð10bÞ
We assume that all components of vector g0 are constants, then the first Eq. (8) is satisfied automatically.
From the second equation we get
ðg0; g0Þ � ð~a1 þ ~a2; g0Þ þ ð~a1; ~a2Þ ¼ ðg0 � ~a1; g0 � ~a2Þ ¼ 0. ð11Þ

Solutions of the last equation can be found as: (1) g0 ¼ ~a1, (2) g0 ¼ ~a2 and (3) ðg0 � ~a1Þ ? ðg0 � ~a2Þ. For sim-
plicity, we assume that g0 ¼ ~a1. As a next step we are going to find the first-order solutions, g1 and f1. Then
Eqs. (9) can be reduced to a linear system
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~a1ðao2
t � cot � DÞf1 þ ðao2

t þ cot � DÞg1 ¼ 0; ð12aÞ
� 2ao2

t f1 þ 2Df1 þ 2ð~a1; ~a2Þf1 þ 2ð~a1; g1Þ � ð~a1 þ ~a2; ~a1f1 þ g1Þ ¼ 0. ð12bÞ
where D denotes the three-dimensional Laplace operator. Nontrivial solution of this system is supposed to
have the form
g1 ¼ aeg1 ; f 1 ¼ beg1 ; ð13Þ

where a = (a1,a2, . . . ,an) and b are n + 1 constants, g1 = kx + xt + d0. Here kx = kxx + kyy + kzz means the
three-dimensional scalar product. Unknown constants, the wave vector k and frequency x are fixed by a dis-
persion relation, while n constants (a1,a2, . . . ,an) are fixed by Eqs. (12). After substituting (13) into system (12)
for variables (a1,a2, . . . ,an) and b we have (n + 1) · (n + 1) homogeneous linear algebraic system:
A

a1

a2

..

.

an

b

2
6666664

3
7777775
¼

0

0

..

.

0

0

2
6666664

3
7777775
where
A ¼

ðax2 þ cx� k2Þ 0 0 � ~a1
1ðax2 � cx� k2Þ

0 ðax2 þ cx� k2Þ 0 � ~a2
1ðax2 � cx� k2Þ

� � � � �
0 0 � ðax2 þ cx� k2Þ ~an

1ðax2 � cx� k2Þ
ð~a1

1 � ~a1
2Þ � � ð~an

1 � ~an
2Þ �2ðax2 � k2Þ þ ð~a1; ~a2 � ~a1Þ

2
6666664

3
7777775

.

Nontrivial solution of this system of equations exists only if Det(A) = 0. This determinant can be evaluated
by expansion along the last row, so that we have expression
DetðAÞ ¼ ðax2 þ cx� k2Þn�1
;

ðax2 þ cx� k2Þð�2ax2 þ 2k2 þ ð~a1; ~a2 � ~a1ÞÞ � ðax2 � cx� k2Þð~a1; ~a1 � ~a2Þ
� �

.
ð14Þ
It gives us the following dispersion relations:
ax2 þ cx� k2 ¼ 0; ð15Þ

and
ax2 þ cx� k2 � ð~a1; ~a2 � ~a1Þ ¼ 0. ð16Þ

The dispersion relation (15) gives us a trivial solution, thus we use dispersion (16) for the further calculations.
Solving the first n equations in the above (n + 1) · (n + 1) linear algebraic system we have
a ¼ bc1~a1; ð17Þ

where
c1 ¼
2k2 � 2ax2 þ ð~a1; ~a2 � ~a1Þ

ð~a1; ~a2 � ~a1Þ
; ð18Þ
or combining this with Eq. (16), we find the other representation for c1
c1 ¼
2cx� ð~a1; ~a2 � ~a1Þ
ð~a1; ~a2 � ~a1Þ

. ð19Þ
Thus, we have
g1 ¼ bc1~a1eg1 ; f 1 ¼ beg1 . ð20Þ
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Substituting g1, f1 to the first system of Eqs. (10) and using property of bilinear Hirota operators [7]
ðD2
t þ Dt � D2

xÞðg1 � f1Þ ¼ b2c1~a1ðD2
t þ Dt � D2

xÞðeg1 � eg1Þ ¼ 0 ð21Þ

for g2, f2 we find the following set of equations:
~a1ðao2
t � cot � DÞf2 þ ðao2

t þ cot � DÞg2 ¼ 0; ð22Þ

similar to the first equation in system (12). The simplest solution for these equations is the trivial one g2 = 0
and f2 = 0. Then, from the second equation in (10) we find additional constraint on g1, f1:
ð~a1; ~a2Þf 2
1 ¼ �ðg1; g1Þ þ ð~a1 þ ~a2; g1Þf1. ð23Þ
Substituting solution (20) into Eq. (23) results in the following relation:
ðc1 � 1Þð~a1; ðc1~a1 � ~a2ÞÞ ¼ 0. ð24Þ

Assuming c1 = 1, leads to the trivial result k = 0. Thus, if c1 5 1 from Eq. (24) the following nontrivial solu-
tion can be found:
c1 ¼
ð~a1; ~a2Þ
ð~a1; ~a1Þ

. ð25Þ
From Eqs. (25) and (19), we can find the frequency explicitly
x ¼ ð~a1; ~a2 � ~a1Þð~a1; ~a2 þ ~a1Þ
2cð~a1; ~a1Þ

. ð26Þ
Combining this equation with Eq. (18), we find restrictions on allowed values of the length for the wave vector
k

k2 ¼ ð~a1; ~a2 � ~a1Þ2

2ð~a1; ~a1Þ
1þ a

ð~a1; ~a2 þ ~a1Þ2

2c2

 !
. ð27Þ
Finally, the velocity vector is given by formula
v ¼ �x
k

jkj2
. ð28Þ
With the wave vector k given by Eq. (27) and frequency x given by Eq. (26) for the speed of solitary wave we
have the expression in terms of three vectors a1, a2, a3 as
jvj ¼ v

ja1 � a3j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
av2 þ c2

p ; ð29Þ
where
v ¼ ða1 � a3; a1 þ a2 � 2a3Þffiffiffi
2
p .
It is easy to show that each bilinear equation, which has order greater than 2, has simple solution as, gi = 0
and fi = 0, for i > 2. Therefore, we have only finite number of terms in the expansion (7). After substituting f

and g in Eq. (2), we find the following exact solution of our problem:
U ¼ a3 þ ða1 � a3Þ
1þ c1eg1

1þ eg1
; ð30Þ
where c1 ¼ ð~a1; ~a2Þ=ð~a1; ~a1Þ. We note that the constant b appearing only in front of exponential terms can be
absorbed by the arbitrary constant d0 in Eq. (13) and leads just to shift of the soliton’s origin. In terms of
original vectors a1, a2, a3 solution acquires the final form
U ¼ a3 þ
a1 � a3

ja1 � a3j2
ðða1 � a3Þ; ða1 � a3 þ ða2 � a3Þeg1ÞÞ

1þ eg1
. ð31Þ
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Fig. 1. Evolution of the travelling wave with v 5 0. The parameters a1 = 0, a2 = 2, a3 = 1.5, a = 1, c = 10.
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This solution is the shock-solitary wave with asymptotics U! a1, for g1!�1 and U! (1 � c1)a3 + c1a1,
for g1! +1, at a fixed time. As easy to see, these asymptotic solutions are the stationary (Ut = 0) homoge-
neous (Ux = Uy = Uz = 0) solutions of Eq. (1). The parameter c1 in this solution has meaning of the ratio
c1 ¼ ðj~a2j=j~a1jÞ cos a, where 0 6 a 6 p is the angle between vectors ~a1; ~a2. Since Eq. (24) has infinite number
of solutions, our shock soliton interpolates between the ‘‘vacuum’’ solution determined by vector a1 and
the solution with vector a3 þ ð~a1; ~a2Þ~a1=j~a1j2 which is valued in the continuum set.

If we choose another root for g0 (g0 ¼ ~a2) in Eq. (11), then we have another shock soliton solution of Eq. (1)
U ¼ a3 þ ða2 � a3Þ
1þ c2eg1

1þ eg1
; ð32Þ
where c2 ¼ ð~a1; ~a2Þ=ð~a2; ~a2Þ. Solution (32) has asymptotic U! a2, for g1!�1 and U! (1 � c2)a3 + c2a2, for
g1! +1, at a fixed time. The parameter c2 has meaning of the ratio c2 ¼ ðj~a1j=j~a2jÞ cos a, where a as above for
the c1, is the angle between vectors ~a1; ~a2.

In the scalar case, when n = 1, the wave number (27), frequency (26) and velocity (28) (as well as the form of
our solution (34)) reduces to following expression:
k2 ¼ ða2 � a1Þ2

2
1þ a

ða2 þ a1Þ2

2c2

" #
; x ¼ a2

2 � a2
1

2c
; jvj ¼

a1þa2�2a3ffiffi
2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aða1þa2�2a3ffiffi
2
p Þ2 þ c2

q ; ð33Þ
and
u ¼ a3 þ
ða1 � a3Þ þ eg1

ða2 � a3Þ þ eg1
ða2 � a3Þ; ð34Þ
where g1 = kx + wt + c. Fig. 1 shows a typical one-soliton solution with a1 = 0, a2 = 2, a3 = 1.5, a = 1, c = 10.

3. Summary and discussion

In this paper, we systematically found the exact analytical solitary wave solution for the system of multi-
dimensional nonlinear wave equation by using the modified Hirota technique. Proposed modified Hirota
ansatz allows us to construct a bilinear representation for the equation we considered. The system of bilinear
equation can be easily solved by Hirota’s approach. Truncating of the perturbation series in our second-order
calculations restricts value of wave number and velocity of the travelling wave, and, in this sense, works sim-
ilarly to the way of Ablowitz and Zeppetella [6] who obtained an exact travelling wave solution of Fisher’s
equation by finding the special wave speed for which the resulting ODE is of the Painleve type.
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Finally, we showed that Hirota method is very efficient and systematic procedure to obtain exact solutions
of such nonlinear equations. We hope that the results obtained in this work will allow one to construct non-
linear wave configurations of amazing complexity, like circular or curved solitons, scroll-waves and vortex
tubes.
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