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Abstract— We consider a multiple input single output antenna
system with a feedback link. While most of the previous works
have considered perfect feedback channels, in this paper, we
evaluate the impact of a noisy feedback channel on the quality
and the performance of the transmission. We compare the finite
rate feedback scheme with the analog feedback schemes where
the channel parameters are transmitted without quantization
over the uplink channel. Two analog feedback schemes are
considered : the feedback of the channel vector and the feedback
of the normalized channel vector. We provide bounds on the
performance and give numerical results. We have shown that
at low to medium uplink SNR the analog feedback of the
normalized channel vector outperforms the analog feedback of
the channel vector. Depending on the range of uplink SNR,
quantized feedback can perform poorly compared to analog
feedback. 1 2

I. INTRODUCTION

Multiple antenna systems are playing an increasing role
in wireless communications. When channel state information
(CSI) is available at the transmitter, the potential gain increases
considerably. Among the possible techniques, transmit beam-
forming or linear precoding has been recognized as an interest-
ing solution to improve the performance of multiple antenna
systems. In time division duplex (TDD) systems, assuming that
the duplexing time delay is lower than the coherence time, it
is possible to learn the uplink channel without transmission
of the CSI. However, on frequency division duplex (FDD),
due to the phase difference between the uplink and downlink
channel it is generally not possible to directly estimate the
uplink channel. Then, the terminal must estimate the CSI and
then transmit it to the base station using the feedback channel.

A first solution is to directly transmit the unquantized
precoding vector or the unquantized channel vector. It can
be shown that this solution achieves the minimum mean
square error (MMSE) distortion in the Shannon sense. Analog
feedback has been described in [4] and recently studied in
multi user wireless systems in [5].

Due to the limited bandwidth of the feedback channel
another solution is to quantize the channel coefficients or the
precoding vector before transmission over the finite rate link.

1The work of Didier Le Ruyet is supported by the European Eureka+Pidea
SMART project.

2The work of Berna Özbek is supported by the FP6 IYTE Wireless Project.
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Fig. 1. communication system

In [1], the Lloyd algorithm was suggested for the design of
the beamforming vector codebook. [2] and [3] showed that the
codebook should be constructed by minimizing the maximum
inner product between any two beamforming vectors in the
codebook.

In this paper, we compare the performance of analog
and quantized feedback over a noisy feedback channel. We
consider the downlink channels as independent and identically
distributed (i.i.d.).

The system model is described in the next section. Then,
in sections 3 and 4, we evaluate analytically the distortion
function considering i.i.d. downlink channels. Simulation re-
sults are presented in section 5 and conclusions are drawn in
section 6.

II. SYSTEM MODEL

We consider a single user communication system employing
transmit beamforming and receive combining with Nt transmit
antennas and a single receive antenna. This communication
system is presented in Figure 1.

The baseband input output discrete relationship for a given
complex transmitted symbol s is represented by:

y = hws + n (1)
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Fig. 2. different feedback links : (a) quantized feedback (b) noisy analog
feedback of the normalized channel vector g (c) noisy analog feedback of the
channel vector h (d) noisy quantized feedback

where h = [h1 h2 . . . hNt
] is the channel vector and w =

[w1 w2 . . . wNt
]T is the precoding vector.

The instantaneous signal-to-noise ratio (SNR) is given by:

γ =
ES

N0
|hw|2 (2)

We define the normalized channel vector:

g =
h

||h|| (3)

In this paper, we consider different feedback links as shown
in Figure II. Since we focus on the impact of the feedback link
on the performance, we will consider that the channel vector
h has been perfectly estimated by the terminal.

Since analog feedback use analog modulation, we avoid
the problem associated to the quantization of the channel.
However, compared to digital modulation, the dynamic range
is much larger. In this paper, we will not consider the possible
RF transmitter problems related to this large dynamic range.
We will consider two analog feedback schemes :

• analog transmission of the channel vector h
• analog transmission of the normalized channel vector g

In the quantized feedback scheme, the vector w is taken
from a set of N = 2B vectors where B is the number of
feedback bits. The construction of the set of the precoding

vectors W = [w1,w2, . . . ,wN ] can be seen as a line packing
problem [2][3]. For i.i.d. channels, we have:

Wopt = min
W∈CNt×N

max
1≤i<j≤N

|wH
i wj |

= max
W∈CNt×N

min
1≤i<j≤N

d(wi,wj) (4)

where

d(wi,wj) =
√

1 − |wH
i wj |2 (5)

wi can be seen as the coordinates of a point situated at the
surface of an hypersphere with a unit radius centered at the
origin.

The instantaneous SNR can also be written as :

γ =
ES

N0
||h||2(1 − Z) (6)

where

Z = min
i

d2(gH ,wi)

= min
i

(1 − |gwi|2) (7)

Z is a random variable within the interval [0, 1]. Denote p(z)
and F (z) as the probability density function and the cumulated
distribution function of Z. In the next section, we evaluate the
symbol error rate (SER) from p(z).

III. AVERAGE SER APPROXIMATION FOR QUANTIZED

FEEDBACK

For the Rayleigh fading channel, the SER can be evaluated
using the Craig’s formula [6]:

SER(γ) =
1
π

∫ (M−1)π
M

0

exp
(
− gPSKγ

sin2 θ

)
dθ (8)

where M is the constellation size and gPSK = sin2(π/M) is
the constellation dependent term.

The average SER can be calculated by averaging over all
the possible instantaneous SNR γ [7]:

SER =
∫ ∞

γ=0

SER(γ)p(γ)dγ

=
1
π

∫ (M−1)π
M

0

∫ 1

0

(
1 +

gPSK(1 − z) Es

N0

sin2 θ

)−Nt

p(z)dzdθ

(9)

In [3] [7], the authors have introduced an upper bound on
F (z) for quantized feedback scheme assuming that the regions
associated to each codeword do not overlap :

F (z) ≤ F̃ (z)

{
NzNt−1 if 0 ≤ z < N− 1

Nt−1

1 if z ≥ N− 1
Nt−1

(10)
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Fig. 3. probability density function p(z) and p̃(z) for Nt = 4 and N =
16, 256 for the quantized feedback.

and the associated power density function (pdf) p̃(z):

p̃(z) =

{
N(Nt − 1)zNt−2 if 0 ≤ z < N− 1

Nt−1

0 if z ≥ N− 1
Nt−1

(11)
This pdf is given in Figure III for Nt = 4 and N = 16, 256.

In this Figure, we also present the pdf obtained using the best
packing codebook given in [8] for N = 16 and a codebook
based on Fast Fourier Transform matrices for N = 256 using
a randomly incomplete search [9]. We can observe that there
is a noticeable difference between the bound and the simulated
pdf.

Finally, we can obtain a lower bound on the average SER
by replacing p(z) by (11) in equation (9) [7]. We have

SERlb =
1

π

∫ (M−1)π
M

0

A(θ)dθ (12)

with

A(θ) =
(
1 +

gPSK γ̄

sin2 θ

)−1
[
1 +

[
1 −

( 1

N

) 1
Nt−1

]
gPSK γ̄

sin2 θ

]1−Nt

(13)
While the pdf are quite different, In figure 7 we can see

that for N = 16 the lower bound is very close to the
average simulated SER obtained using the codebook presented
previously (0.2 dB shift only).

When the feedback channel is noisy, the decoded codeword
index can be different from the original one. We introduce a
random variable Y taking into account the possible transmis-
sion errors.

Y = 1 − |gwj |2 (14)

where
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Fig. 4. probability density function p(y) for the quantized feedback.

{
j = arg mini(1 − |gwj |2) if no transmission error

j �= arg mini(1 − |gwj |2) if transmission error
(15)

The pdf of Y is obtained by the association of two pdf
pC(y) and pE(y) corresponding respectively to the non trans-
mission/transmission error case. pC(y) is the same pdf than
the previous pdf p(z). We have :

p(y) = (1 − CER)pC(y) + CERpE(y) (16)

The codeword error rate (CER) depends on the chosen mod-
ulation.

In Figure 4, we give the pdf p(y) obtained for Nt = 4,
N = 16 codewords and (Es/N0)UL = 4dB using Monte-
Carlo simulations. The 4 bits have been encoded using 4 BPSK
symbols. We can observe the impact of the noise on this pdf.
As shown in Figure 4, by optimizing the mapping between
the codewords and the transmitted symbols, it is possible to
slightly improve the performance.

The pdf pE(y) is difficult to evaluate analytically. However,
for a given normalized channel vector g, asymptotically the
received vectors wj are uniformly distributed over the unitary
radius hypersphere. Consequently we can find a SER lower
bound by approximating pE(z) as a uniform pdf.

From (9), the SER is expressed as :

SER =
1
π

∫ (M−1)π
M

0

[ ∫ 1

0

(
1 +

gPSK(1 − y) Es

N0

sin2 θ

)−Nt

× (1 − CER)pC(y)dy

+
∫ 1

0

(
1 +

gPSK(1 − y) Es

N0

sin2 θ

)−Nt

CERpE(y)dy

]
dθ

(17)

From this result and using the previous lower bound we
obtained the modified SER lower bound as follows :
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SERlb =
1
π

∫ (M−1)π
M

0

[
A(θ)(1−CER) +

1
Nt − 1

CER

]
dθ

(18)

IV. SER PERFORMANCE FOR ANALOG FEEDBACK

In this section, we consider two analog feedback schemes:
the normalized channel vector or precoding vector feedback
and the non-normalized channel vector feedback. In both
scheme, we assume that the mobile has performed a perfect
estimation of the channel vector h.

In the first version, the normalized channel vector g is
transmitted over the noisy feedback channel. The received
vector is given by:

w′ = gH + ε (19)

After normalization we have:

w =
w′

||w′|| (20)

Each element of the noisy vector ε is a zero mean complex
gaussian noise with variance σ2

UL = (N0)UL

2 per dimension.
The precoding vector is applied to the transmitted vector.

The received signal y is given by:

y = hws + n (21)

As previously, Z is a random variable within the interval
[0, 1]. We have the following relation:

Z = 1 − |gw|2

= 1 −
∣∣∣∣g gH + ε

||gH + ε||
∣∣∣∣
2

= 1 −
∣∣∣∣ 1 + gε

||gH + ε||
∣∣∣∣
2

= 1 − 1 + 2�(gε) + |gε|2
1 + 2�(gε) + ||ε||2 (22)

In the second version, the channel vector h is transmitted
over the noisy feedback channel. The received vector is given
by :

w′ = hH + ε (23)

We have :

w =
hH + ε

||hH + ε|| (24)

We have the following relation :

Z = 1 − |gw|2

= 1 −
∣∣∣∣g hH + ε

||hH + ε||
∣∣∣∣
2

(25)

= 1 − ||h||2 + 2||h||�(gε) + |gε|2
||h||2 + 2||h||�(gε) + ||ε||2 (26)
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Fig. 5. probability density function p(z) for the analog feedback.

Since it is difficult to compare the expressions (22) and (26)
we will evaluate the pdf of Z using Monte-Carlo simulations.

The pdf p(z) are given in Figure 5 for Nt = 4 for the analog
feedback of h and (Es/N0)UL = 4dB (Es = 1, σ2

UL = 0.2)
and for the analog feedback of w and (Es/N0)UL = 4dB
(Es = 1/Nt, σ2

UL = 0.05) and (Es/N0)UL = −2dB (σ2
UL =

0.2).
From these results and using the equation (9), we can

predict that an analog feedback of the normalized channel
vector g give better performances than the analog feedback
of the channel vector h since the tail of p(z) is longer for the
feedback of h. While the feedback of h achieves the same
MMSE distortion as a scheme that optimally quantizes and
encodes the CSI in the Shannon sense [4], this scheme is not
optimal from the overall performance point of view.

This result can be explained since the constraint imposed to
the norm of g allow us to eliminate some energy of the uplink
noise compared to the other scheme. Consequently Z is on
average lower using the normalized channel vector feedback.

V. ON TIME CORRELATED CHANNEL

The channel vectors are often time correlated and the base
station can exploit this correlation in order to reduce the
distorsion.

When analog feedback of the channel vector h or g is
performed, a Kalman filter can be implemented to track the
channel vector. Using the Jakes model, the elements of the
channel vector h can be easily modelled using an AR model
since the Doppler spectrum is frequency limited. On the other
hand for the normalized channel g due to the norm constraint,
it is possible to exploit the dependance between the elements.
Further study must be carry on in order to evaluate the impact
of this problem on the overall performance. When quantized
feedback is performed, it is much more difficult to track the
channel since the state space model is strongly non linear and
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Fig. 6. SER = f(ES/N0)DL for the analog feedback schemes.

information is only available at each transition between the
codewords. Different solutions such as particle filtering are
possible in order to exploit these information to reduce the
distorsion.

VI. SIMULATION RESULTS

In this section we consider the different feedback schemes
for NT = 4 and i.i.d. channels.

In order to fairly compare all the different schemes, we have
fixed the same average transmit energy per symbol. While
for the g feedback scheme the energy corresponding to the
transmission of the vector g is a constant (since ||g|| = 1), at
the symbol level, the transmitted signal is gaussian with the
same variance than for the h feedback scheme.

In figure 6, we give the performance SER = f(ES/N0)DL

of the h and g feedback schemes for different f(ES/N0)UL.
As shown previously the g feedback scheme outperforms the
h feedback scheme.

In figure 7, we give the performance SER = f(ES/N0)DL

of the quantized feedback scheme for different f(ES/N0)UL.
The number of codewords is N = 16 and the modulation is
BPSK (4 symbols are needed to transmit one codeword index).
Compared to the analog feedback schemes, we can observe a
floor effect on the SER depending on the uplink noise power.
We also give the curves obtained using the lower bound (18)
for different (ES/N0)UL. We can see from the curves that the
lower bounds are quite tight.

Of course, it is possible to decrease the floor effect by
adding an error correcting code (for example using 4 QPSK
symbols and a Reed-Muller (8,4) code to transmit one code-
word index).

In figure 8, we compare the performance of the analog
and partial feedback schemes for f(ES/N0)DL = 6dB.
For all the schemes, 4 symbols are needed to transmit one
codeword index. As shown previously, the g feedback scheme
outperforms the other feedback schemes. While the quantized
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Fig. 7. SER = f(ES/N0)DL for the quantized feedback schemes.
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precoding scheme with N = 256 gives better performance
than with N = 16, since the quantization error is lower, at low
f(ES/N0)UL this scheme is more sensitive to transmission
errors.

VII. CONCLUSIONS

In this paper, we have compared different feedback schemes
for i.i.d. channels. We have shown that at low to medium
SNR the analog feedback of normalized channel vector g gives
better performance than the analog feedback of the channel
vector h. While the increase of the number of codewords in the
finite rate feedback reduces the distortion on w, for the same
number of symbols per codeword, it is also more sensitive to
uplink noise. As shown in the simulation section, depending
on the range of uplink SNR, quantized feedback can perform
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poorly compared to analog feedback.
A further study will be the impact of correlated channels

and the non linearity on the performance of such schemes.
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