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Abstract. We propose a three layer software architecture for shared
resource management in mobile ad hoc networks(MANETS). At the low-
est layer, the Merging Clustering Algorithm(MCA)[11] partitions the
MANET into a number of balanced clusters periodically. At the second
layer, the Backbone Formation Algorithm(BFA) provides a virtual ring
using the clusterheads found by MCA. Finally, an example resource man-
agement protocol which is a modified and scaled version of the Ricart-
Agrawala algorithm implemented using the virtual ring structure is pre-
sented with the performance results.

1 Introduction

Mobile ad hoc networks do not have a fixed topology and the nodes of a MANET
communicate using temporary connections with their neighbors. A MANET can
be partitioned into a number of clusters to solve various problems such as routing
and mutual exclusion in such networks. Mutual exclusion algorithms provide an
efficient way of resource sharing in MANETS and also in distributed systems.
Distributed mutual exclusion algorithms are either permission based or token
based. A node would need permission from all of the related nodes to enter
a critical section in a permission based algorithm. In token-based algorithms
however, a node would require the possession of a system-wide unique token to
enter a critical section. Susuki-Kasami’s algorithm [8] (N messages) and Ray-
mond’s tree based algorithm [5] (log(N) messages) are examples of token based
mutual exclusion algorithms. Examples of non-token based distributed mutual
exclusion algorithms are Lamport’s algorithm [3] (3(N-1) messages), Ricart-
Agrawala (RA) algorithm (2(N-1) messages) [6] and Maekawa’s algorithm [4].
Safety, liveness and fairness are the main requirements for any mutual exclu-
sion algorithm. Lamport’s algorithm and RA algorithm are considered as one of
the only fair distributed mutual exclusion algorithms in literature. A distributed
mutual exclusion algorithm using tokens is shown in [9] and a k-way mutual
exclusion algorithm for ad hoc wireless networks where there may be at most
k nodes executing a critical section at one time is described in [10].

In this study, we propose a three layer architecture for resource management
in MANETSs. At the lowest layer, a clustering algorithm provides dynamic clus-
ters of the MANET, using the previously designed MCA [I1]. The Backbone
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Formation Algorithm at the second layer provides a virtual ring architecture
of the coordinators of the clusters formed by MCA [II]. Finally, we
show the implementation of the Distributed Mutual Exclusion Algorithm
described in [T2] as the third layer application which uses the virtual ring struc-
ture. We first partition the MANET into a number of clusters periodically using
the Merging Clustering Algorithm (MCA). The nodes in the cluster that have
direct connections, that is, in the communication ranges of the nodes of other
clusters are called neighbor nodes. The MCA also provides the leader for every
cluster which we will call coordinator here. Secondly, we construct a directed ring
architecture across coordinators. To achieve this goal, we propose the backbone
formation algorithm. After formation of the ring, the coordinators perform the
required critical section entry and exit procedures for the nodes they represent.
Using this architecture, we improve and extend the RA algorithm described in [2]
to MANETS and show that these algorithms may achieve an order of magnitude
reduction in the number of messages required to execute a critical section at
the expense of increased response times and synchronization delays which may
also be useful in environments that use wireless sensor networks where energy
efficiency, therefore message complexity is of paramount importance. The rest of
the paper is organized as follows. Section [2] provides the background. Section
reviews the extended RA algorithm on the proposed model called Mobile RA.
The implementation results are explained in Section [ and the discussions and
the conclusions are outlined in Section [l

2 Background

2.1 Clustering Using Merging Clustering Algorithm

An undirected graph is defined as G = (V| E), where V is a finite nonempty set
and E CV x V. The V is a set of nodes v and the F is a set of edges e. A graph
Gs = (Vs, Es) is a spanning subgraph of G = (V, E) if V¢ = V. A spanning
tree of a graph is an undirected connected acyclic spanning subgraph. Intuitively,
a minimum spanning tree (MST) for a graph is a subgraph that has the minimum
number of edges for maintaining connectivity [16]. Merging Clustering Algorithm
MC A [17] finds clusters in a MANET by merging the clusters to form higher level
clusters as mentioned in Gallagher, Humblet, Spira’s algorithm [I7]. However,
we focus on the clustering operation by discarding minimum spanning tree. This
reduces the message complexity as explained in [IT] . The second contribution
is to use upper(2 * K) and lower(K) bound heuristics for clustering operation
which results balanced number of nodes in the cluster formed. Cluster leader
is the node with the greatest node id in a cluster. Cluster id is equal to the
node id of the cluster leader.

2.2 Backbone Formation Algorithm

Backbone Formation Algorithm constructs a backbone architecture on a clus-
tered MANET [12]. Different than other algorithms, the backbone is constructed
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as a directed ring architecture to gain the advantage of this topology and to give
better services for other middleware protocols [I8/I9/20/2]. The second contri-
bution is to connect the clusterheads of a balanced clustering scheme which
completes two essential needs of clustering by having balanced clusters and min-
imized routing delay. Beside these, the backbone formation algorithm is fault
tolerant as the third contribution. Our main idea is to maintain a directed ring
architecture by constructing a minimum spanning tree between clusterheads
and classifying clusterheads into BACKBONE or LEAF nodes, periodically.
To maintain these structures, each clusterhead broadcasts a Leader Info mes-
sage by flooding. In this phase, clustermember nodes act as routers to trans-
mit Leader Info messages. Algorithm has two modes of operation; hop-based
backbone formation scheme and position-based backbone formation scheme. In
hop-based backbone formation scheme, minimum number of hops between clus-
terheads are taken into consideration in the minimum spanning tree construction.
Minimum hop counts can be obtained during flooding scheme. For highly mobile
scenarios, an agreement between clusterheads must be maintained to guarantee
the consistent hop information. In position-based backbone formation scheme,
positions of clusterheads are used to construct the minimum spanning tree. If
each node knows its velocity and the direction of velocity, these information can
be appended with a timestamp to the Leader Info message to construct better
minimum spanning tree. But in this mode, nodes must be equipped with a po-
sition tracker like a GPS receiver. Every node in the network performs the same
local algorithm as shown in [12].

2.3 Performance Metrics

Performance of a distributed mutual exclusion algorithm depends on whether
the system is lightly or heavily loaded. If no other process is in the critical sec-
tion when a process makes a request to enter it, the system is lightly loaded.
Otherwise, when there is a high demand for the critical section which results in
queueing up of the requests, the system is said to be heavily loaded. The impor-
tant metrics to evaluate the performance of a mutual exclusion algorithm are
the Number of Messages per request (M), Response Time (R) and the Synchro-
nization Delay (S). M can be specified for high load or light load in the system.
The Response Time R is measured as the interval between the request of a node
to enter critical section and the time it finishes executing the critical section.
The synchronization delay S is the time required for a node to enter a critical
section after another node finishes executing it. The minimum value of S is one
message transfer time 7" since one message suffices to transfer the access rights
to another node [7].

2.4 The Proposed Architecture

We propose a three layer architecture for MANETSs as shown in Fig. [[I Im-
plementations of other higher level functions on top of the lower two layers are
possible. The lowest layer is where the clustering takes place at the end of which,
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3 Mobile Ricart Agrawala Algorithm

2 Backbone Formation Algorithm

1 Merging Clustering Algorithm

Fig. 1. Proposed Architecture

balanced clusters are formed. The second layer inputs these clusters and form
a virtual ring of the coordinators of these clusters. Finally, the third layer shows
the implementation of the Mobile RA Algorithm on top of these two layers.

3 Mobile Ricart Agrawala Algorithm

For distributed mutual exclusion in MANETS, we proposed a hierarchical archi-
tecture where nodes form clusters and each cluster is represented by a coordina-
tor in the ring [1]. The relation between the cluster coordinator and an ordinary
node is similar to a central coordinator based mutual exclusion algorithm.
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Fig. 2. FSM of the Mobile RA Coordinator

The types of messages exchanged are Request, Reply and Release where a node
first requests a critical section and upon the reply from the coordinator, it enters
its critical section and then releases the critical section. The finite state machine
representation of the Mobile RA coordinator is shown in Fig. 2] [II2].

The coordinator sends a critical section request (Coord Req) to the ring for
each node request (Node Req) it receives. When it receives an external request
(Coord Req), it performs the operation of a normal RA node by checking the
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timestamps of the incoming request by the pending requests in its cluster and
sends a reply (Coord Reply) only if all of the pending requests have greater
timestamps than the incoming request. When a node sends a Node Rel mes-
sage, the coordinator sends Coord Rel messages to all of the requests in the
wait queue that have smaller timestamps than the local pending ones.

3.1 Illustration of the Mobile RA Algorithm

Fig. B shows an example scenario for the Mobile RA Algorithm in the network
where the network of 20 nodes is partitioned into clusters 19, 14, 17 and 18 using
MCA. K parameter is selected as 4. Nodes 19, 14, 17 and 18 are the cluster
leaders and the cluster coordinators of clusters 1, 2, 3 and 4. They form a ring
together with 0,3 and 10. Node 6, node 4, node 16 makes request for critical
section respectively at 3.75s, 3.85s, 3,90s. Execution Time of critical section is
taken as 350ms. The following describes the events that occur:

Coord_Req(4,18.,3.85)

Coord_Req(4.18.,3.85)

Fig. 3. Operation of the Mobile RA Algorithm

1. Node 6 in cluster 19 makes a critical section request at 3.75s by send-
ing Node Req (6,19,3.75) message to node 19 which is the cluster coor-
dinator. Node 19 receives the message at 3.76s and changes its state to
WAIT RP. Node 19 sends a Coord Req (6,19,3.75) message to next coor-
dinator (node 14) on the ring. Node 14, which is in IDLE state and has no
pending requests in its cluster, receives the Coord Req (6,19,3.75) message
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at 3.78s and forwards the message to the next coordinator(node 17) on the
ring. The message traverses the ring and received by node 19 which is in
WAIT RP state at 3,82s meaning all of the coordinators have confirmed
that either they have no pending requests or their pending requests all have
higher timestamps. Node 19 sends a Coord Rep message to node 6 and
changes its state to WAIT ND. Node 6 receives the Coord Rep message at
3.83s and enters the critical section. Step 1 is depicted in Fig. Bl(a).

2. Node 4 in cluster 18 makes a critical section request by sending a Node Req
(4,18,3.85) at 3.85s. Node 18 receives the Node Req (4,18,3.85) message
at 3.86s and sends a Coord Req (4,18,3.85) message to its next coordina-
tor(node 19) on the ring. Node 19, which is in WAIT N D state, receives the
message and enqueues the Coord Req (4,18,3.85) at 3.87s. Node 16 makes
a critical section request at 3.90s. Node 18 which is in WAIT RP state
receives the Coord Req (16,17,3.90) message and enqueues the message at
3.93s. Step 2 is depicted in Fig. Bl(b).

3. Node 6 exits from critical section at 4.18s and sends a Node Rel mes-
sage to node 19. Node 19 which is in WAIT ND state receives the mes-
sage at 4.19s and makes a transition to IDLFE. Node 19 dequeues and
forwards Coord Req (4,18,3.85) message to next coordinator(node 14). The
Coord Req (4,18,5.85) message is forwarded by node 17 since its request has
higher timestamp. Node 18 receives its original request at 4.25s and sends
a Coord Rep message to node 4. Node 4 enters the critical section at 4.26s.
Step 3 is depicted in Fig. Bl(c).

4. Node 4 finishes to execute critical section at 4.61s. Node 18 receives the
Node Rel message at 4.62s. Node 18 dequeues and forwards the Coord Req
(16,17,3.90) message to its next coordinator(node 19) on the ring. Operation
is continued as explained before. Node 17 receives Node Rel message from
node 16 at 5.03s. The Step 4 is depicted in Fig. Bl(d).

If there are multiple requests within the same cluster, time stamps are checked
similarly for local request. The order of execution in this example is nodes 6 —
4 — 16 in the order of the timestamps of the requests.

We briefly state the following properties of the Mobile RA Algorithm which
were described and proven in [2]

— The total number of messages per critical section using the Mobile RA Al-
gorithm is k£ + 3d where k is an upper bound on the n umber of neighbor
nodes in the ring including the cluster coordinators and d is an upperbound
on the diameter of a cluster.

— The Synchronization Delay (S) in the Mobile RA Algorithm varies from 2dT
to (k+2d—1)T.

— In the Mobile RA Algorithm, the response times are Rygni=(k + 3d)T + E
and Rpeqvy varies from w(2dT + E) to w((k +2d — 1)T + E) where k is the
number of clusters and w is the number of pending requests.

Since the sending and receiving ends of the algorithm are the same as of
RA algorithm, the safety, liveness and fairness attributes are the same. The
performance metrics for the Mobile RA Algorithm is summarized in Tab. [l
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Table 1. Performance of Mobile RA Algorithm

Mlight Mheavy Rlight Rheavy—min S’mzn Smaz

k+3d k+3d (k+3)dT+E w2dT+E) 2dT (k+2d—1)T

4 Results

We implemented the protocol stack with the ns2 simulator. A random load
generator is implemented to generate high, medium and low loads for different
number of nodes. Different size of flat surfaces are chosen for each simulation
to create small, medium and large distances between nodes. Very Small, Small
and Medium surfaces vary between 310m x 310m to 400m x 400m, 410m x
410m to 500m x 500m, 515m X 515m to 650m x 650m respectively. Random
movements are generated for each simulation. Low, medium and high mobility
scenarios are generated and respective node speeds are limited between 1.0m/s
to 5.0m/s, 5.0m/s to 10.0m/s, 10.0m/s to 20.0m/s. K parameter of merging
clustering algorithm is changed to obtain different size of clusters. Response
times and synchronization delays as measured with respect to load, mobility,
distance and K are recorded. Execution of critical section is selected as 100ms.

Response time behaves as expected in low load scenarios as shown in Fig. @
Synchronization delay values are smaller in medium load as shown in Fig. Bl The
synchronization delay is 0 in low load scenarios since there will be no waiting re-
quests in the queues. When the load is increased, response time increases due to
the waiting times of requests in the queue. Also, the response time and the syn-
chronization delay increase due to collisions and routing delays caused by high
network traffic as shown in Fig.[d and Fig.[Bl Response time and synchronization
delay values are scalable against against the mobility as shown in Fig.[@land Fig.[7l

Fig. 8 and Fig. [@ shows the effects of distance between nodes to response
time and synchronization delay. As the distance between nodes increases the
connectivity is decreased. This situation causes greater delays. K parameter is

Response Time against Load

1200
1000

800

g —— Low Load
T 600 —- Medium Load
E 400 —4— High Load

L 4
L

200 — e

0 20 40 60 80 100 120

& &
&

<
4

Number of Nodes

Fig. 4. Response Time against Load for Mobile RA
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selected between 3 to 8 in a MANET with 60 node. In fixed number of nodes,
as the cluster size increases, total number of clusters in the network decreases.
This also reduces the number of cluster leaders forming the ring and routing

delay which causes decrease in the response time and the synchronization delay
as shown in Fig. [[0 and Fig. [l
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Consequently, our results conform with the analysis that response time against
low and medium loads increases linearly with a small gradient. Synchronization
delay values against medium and high load also increase linearly. Response time
against high load makes a sharp increase due to high network traffic. Response
time and synchronization delay values are stable under different mobility and
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Table 2. Comparison of the Mobile Mutual Exclusion Algorithms with others

Regular Mobile Algs. Mobile (k=m=d)

Ricart-Agrawala Alg. 2(N — 1) k + 3d O(4sqrt(N))
Token Passing Alg. N O(k+3d) O(4sqrt(N))

surface area conditions. Response time and synchronization delay value decrease
linearly against the number of clusters in the MANET.

5 Conclusions

We proposed a three layer architecture for resource management in a MANET
and the implementation results of the Mobile RA Algorithm for MANETSs. The
MANET is partitioned into clusters at regular intervals by the MCA which also
provides connected clusterheads. Ring architecture is constructed by Backbone
Formation Algorithm. The Mobile RA Algorithm, together with the architecture
that it is executed on, provides improvement over message complexities of Ricart
and Agrawala and other distributed mutual exclusion algorithms. A comparison
of the two algorithms with their regular counterparts in terms of their message
complexities is shown in Tab. 2l If we assume k=m=d for simplicity, the message
complexities of the mobile algorithms are in the order of sqrt(N) where N is
the total number of nodes in the network [2]. From the test results, we observe
that response time R is scalable with respect to the number of mobile nodes for
all load states in the MANET as high, medium or low loads. R is also scalable
with respect to node mobility and the distance between the mobile nodes. The
coordinators have an important role and they may fail. New coordinators may
be elected and also any failed node member can be excluded from the clusters
using Backbone Formation Algorithm. Our work is ongoing and we are looking
into implementing this algorithm in wireless sensor network architectures where
preserving energy is important, hence low message complexities are required. We
are also considering k-way distributed mutual exclusion algorithms in MANETS.



234 O. Dagdeviren and K. Erciyes
References
1. Erciyes, K.: Distributed Mutual Exclusion Algorithms on a Ring of Clusters.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

ICCSA 2004, Springer-Verlag, LNCS 3045 (2004) 518-527
Erciyes, K.: Cluster-Based Distributed Mutual Exclusion Algorithms for Mobile
Networks. EUROPAR 2004, Springer-Verlag, LNCS 3149 (2004) 933-940

. Lamport, L.: Time, Clocks and the Ordering of Events in a Distributed System.

CACM 21 (1978) 558-565

. Maekawa, M.: A sqrt(n) Algorithm for Mutual exclusion in Decentralized Systems.

ACM Transactions on Computer Systems 3 2 (1985) 145-159

. Raymond, K.: A Tree-Based Algorithm for Distributed Mutual Exclusion. ACM

Trans. Comput. Systems 7 1 (1989) 61-77

. Ricart, G. and Agrawala, A.: An Optimal Algorithm for Mutual Exclusion in Com-

puter Networks. CACM 24 1 (1981) 9-17

. Shu, Wu: An Efficient Distributed Token-Based Mutual Exclusion Algorithm with

a Central Coordinator. Journal of Parallel and Distributed Processing 62 10 (2002)
1602-1613

. Susuki, I. and Kasami, T.: A Distributed Mutual Exclusion Algorithm. ACM Trans.

Computer Systems 3 4 (1985) 344-349

. Walter, J.E., Welch, J.L., and Vaidya, N.H.: A Mutual Exclusion Algorithm for

Ad Hoc Mobile Networks. Wireless Networks 7 6 (2001) 585-600

Walter, J.E., Cao, G., and Mohanty, M.: A K-way Mutual Exclusion Algorithm
for Ad Hoc Wireless Networks. Proc. of the First Annual Workshop on Principles
of Mobile Computing (2001)

Dagdeviren, O., Erciyes, K., and Cokuslu, D.: Merging Clustering Algorithms,
ICCSA, LNCS 3981 (2006) 681-690

Dagdeviren, O. and Erciyes, K.: A Distributed Backbone Formation Algorithm for
Mobile Ad hoc Networks. To be published in the Proc. of ISPA06 (2006)

West, D.: Introduction to Graph Theory. Second edition, Prentice Hall, Upper
Saddle River, N.J. (2001)

Chen, Y.P. and Liestman, A.L.: Approximating Minimum Size Weakly-Connected
Dominating Sets for Clustering Mobile Ad Hoc Networks. Proc. 3rd ACM Int.
Symp. Mobile Ad Hoc Net. and Comp. (2002) 165-72

Haynes, T.W., Hedetniemi, S.T., and Slater, P.J.: Domination in Graphs, Advanced
Topics. Marcel Dekker Inc. (1998)

Grimaldi, R.P.: Discrete and Combinatorial Mathematics. An Applied Introduc-
tion. Addison Wesley Longman, Inc. (1999)

Gallagher, R.G., Humblet, P.A., and Spira, P.M.: A Distributed Algorithm for
Minimum-Weight Spanning Trees. ACM Transactions on Programming Languages
and Systems 5 (1983) 66-77

Baldoni, R. Virgillito, A., and Petrassi, R.: A Distributed Mutual Exclusion Al-
gorithm for Mobile Ad-Hoc Networks. Computers and Communications (2002)
539-544

Delmastro, F.: From Pastry to CrossROAD: CROSS-Layer Ring Overlay for Ad
Hoc Networks. Third IEEE International Conference on Pervasive Computing and
Communications Workshops (2005) 60-64

Yang, C.Z.: A Token-Based h-out of-k Distributed Mutual Exclusion Algorithm for
Mobile Ad Hoc Networks. 3rd International Conference on Information Technology
(2005) 73-77



	Introduction
	Background
	Clustering Using Merging Clustering Algorithm
	Backbone Formation Algorithm
	Performance Metrics
	The Proposed Architecture

	Mobile Ricart Agrawala Algorithm
	Illustration of the Mobile_RA Algorithm

	Results
	Conclusions

