
Robust Placement of Mobile Relational Operators
for Large Scale Distributed Query Optimization

Belgin Ergenç*, Franck Morvan** , Abdelkader Hameurlain**
* Izmir Institute of Technology, Urla, Izmir, Turkey

E-mail: belginergenc@iyte.edu.tr
** IRIT Laboratory, Université Paul Sabatier, 118, Route de Narbonne,

31062 Toulouse Cedex, France
E-mail: {morvan, hameur}@irit.fr

Abstract

This paper presents a compile-time placement method
of mobile relational operators MROs in a large scale
environment. MROs are self adaptive to changing run-
time conditions by deciding their execution place if
they discover compile-time estimation errors.
Proposed placement methods tend to have a main
drawback with MROs running over a large scale
environment: their focus is on finding optimal
performance depending on single-point estimation at
compile-time, instead of optimal performance over an
estimation interval. We propose: (i) to determine the
migration space of a MRO including the sites on which
the MRO is allowed to migrate during its execution,
and (ii) to find the robust site which will allow
acceptable response time in an estimation interval.
Performance study shows that, with a risk of loosing
around 6% in response time, it is possible to gain up to
300% with the proposed robust placement.

1. Introduction

The mediation systems based on the mediator-
wrapper architecture [39] manipulate large
heterogeneous distributed data sources. One of the
major challenges is to propose optimization methods to
enable querying efficiently in the presence of
unpredictable sources and heavy communication costs.
Traditional query processing methods end up with sub-
optimal execution plans in such environments since it
is difficult to maintain up-to-date statistics and the
statistics describing the data coming from the sources
and the formulae associated with the cost of operations
are not revealed by all the autonomous sources [9, 18,
27]. By the motivation of avoiding performance
penalty caused by the optimizer’s mistakes in
unpredictable and volatile environment, there has been
growing number of adaptive query processing
approaches that try to re-optimize the execution plan

during execution in order to react to the compile-time
estimation errors [1, 19, 20]. The adaptation methods
may vary but the main behavior is to optimize at
compile-time and to execute-monitor-re-optimize at
run-time where the monitoring can be centralized or
decentralized.

Centralized monitoring does not allow all
adaptation methods to be applied on large scale
because of the relatively significant message passing
on a network with low bandwidth and strong latency,
and the bottleneck generated by the optimizer. On the
other hand, we observe decentralized methods [8, 19,
37] that try to improve the cost of local processing by
adapting the use of the CPU, I/O and memory to the
changes in execution environment. Whereas [1, 30]
take into account the cost of local processing together
with network resources. The approach presented in [1,
30] proposes making mobile every relational operator
of an execution plan. A mobile relational operator
(MRO) is able to react in an autonomous and
decentralized way during its execution with respect to
system state or variations in compile-time estimations.
In addition, the MRO can migrate from one site to
another site [1, 30]. In [1, 30] the control and
modifications of execution plans are decentralized
since the MRO makes its decision by itself.

Re-optimization methods suffer mainly from re-
optimization unaware optimization at compile-time.
Decisions made at compile-time can handicap the re-
optimization method performance at run-time. For
example, the optimizer might decide to place a MRO
on a site with compile-time estimations. This
placement can obstruct the MRO to move at run-time
with refreshed estimations when there is an estimation
error. Studies capturing the problem of building bridge
between compile-time optimization methods and run-
time adaptive methods are critical at this point. The
approach presented as proactive re-optimization in [5]
is an elegant example of such studies. The authors are
trying to find robust execution plans within bounding

Eighth International Conference on Parallel and Distributed Computing, Applications and Technologies

0-7695-3049-4/07 $25.00 © 2007 IEEE
DOI 10.1109/.53

227

Eighth International Conference on Parallel and Distributed Computing, Applications and Technologies

0-7695-3049-4/07 $25.00 © 2007 IEEE
DOI 10.1109/.53

227

boxes around estimates that define the uncertainty in
estimates of statistics. They prefer an execution plan
with acceptable performance instead of a good plan
based on single-point estimations since it might have
catastrophic performance in cases of estimation errors.
Although, their approach might be worth in a
centralized environment, large scale environment
imposes paying attention to the aspects of
minimization of data transfer in the presence of low
bandwidth and strong latency. Hence, the placement of
relational operators plays an important role. When we
look at the placement methods provided by the parallel
and distributed query processing field [6, 7, 10, 11, 13,
15, 23, 25, 32, 41] are based on single-point
estimations. Such a placement is as good as compile-
time estimations but it yields bad performance in cases
of estimation errors. When we use a MRO, its
placement is critical since wrong placement can block
its adaptation capability. Therefore, we suggest
focusing, in this paper, on an initial placement for
MROs to insure their adaptation capability at run-time
in cases of estimation errors. The challenge is not in
finding good placement based on single-point
estimates but on defining acceptable placement for an
estimation interval in order to avoid dramatic
performance at run-time. Our proposal can be seen as
an extension of the method proposed by [5] in a large
scale context and decentralized environment. The main
components of our initial placement method are: (i)
migration space which includes the possible execution
sites for the MRO, (ii) robust site which permits the
discovery of the initial site providing acceptable
performance for an estimation interval.

The rest of the paper is organized as follows.
Section 2 discusses the problems of single-point
placement methods with respect to MRO mapping onto
the sites and describes the problem position. Section 3
introduces the components required for initial
placement of MROs. Section 4 points out the results of
our performance evaluation, based on single join and
multi-join. Section 5 is dedicated to the survey of
related work. Finally, we give our conclusion.

2. Context and problem position

In this section we will present a mobile execution
model [1] in order to detail the problem related with
the initial placement of MROs.

2.1. Mobile execution model

On each site participating in the query processing,
there is a mediator as presented in [14]. The query is
submitted to the mediator where it is transformed and
optimized. The operators of an execution plan are
executed either by the mediators or by the wrappers.
Every MRO is executed on a mediator and a scan
operator (fixed operator) is executed on wrapper. On
this one, the translation of the sub-query and re-
formatting of the result for the mediator will be
abstracted by means of a scan operation. Now, we will
recall the mobile hash join algorithm [1].

Let us consider an example to illustrate the mobile
execution model: R1 and R2 are base or temporary
relations, with R1 located on site S1 and R2 located on
site S2, and |R1| < |R2| (|R1| is the size of R1). T is the
result of join between R1 and R2, T ← Join(R1, R2),
which must be materialized on site S1 where T is
expected. The hash join algorithm[33] comprises 2
steps: in the first step, the hash table is built from the
smallest relation R1; in the second step the hash table
is probed with the other relation R2. During the
building of the hash table, statistics on R1 can be
computed precisely. From these statistics on R1 and
compile-time statistics on R2, the selectivity factor for
example can be revised and statistics on T
consequently can be refreshed. Then, the mobile join
operator (MJO) decides on its own whether to move or
not (on S2 or on another site) by means of decision
function that computes the migration site. The decision
function is based on a cost model [14] extended with
the mobility cost and have parameters StatInfo (i.e.
updated statistics on relations), DataAvailability (i.e.
waiting for the first tuple and waiting time for any
tuple) and SystemState (i.e. communication bandwidth,
CPU, memory capacity). Hash table is moved along
with the MJO. For example T is expected on S1 and
compile-time estimate of the optimizer is |R2| < |R1| +
|T|: consequently the MJO is placed on S1. However if
it appears that |R2| > |R1| + |T| after building the hash
table on S1 the MJO migrates to site S2 for probing.
The algorithm given in Figure 1 illustrates the behavior
of the MJO.

2.2. Limitations of single-point placement
methods

Present single-point placement methods [10, 23, 32,
41] try to minimize the communication cost by placing
the relational operators on the sites minimizing the data
transfer by taking into account single-point estimates
instead of an estimation interval. Let us demonstrate
the problem with a simple query: T ← Join(R1, R2),
where R1 and R2 are base or temporary relations

228228

residing on the sites S1 and S2 and the site of T is S1.
Suppose the optimizer decides to place initially the
MJO on S2 with the estimation |R2| > |R1| + |T|. If the
compile-time estimate of the optimizer is correct, the
response time of the query on S2 is minimized.
However, if the compile-time estimate is not correct
and for example |R1| + |T| > |R2|, in this situation, the
MJO loses possibility of migration because its
migration triggers the transfer of its hash table and R2.
Our simple test shows (Figure 2) that in such situation,
the increase in the response time of the MJO might be
more than 220% compared with the best placement
which is on site S1. On the other hand, if the optimizer
places the MJO on S1 and if the compile-time estimate
is correct, the MJO response time is more than
expected with the overhead of migration (the cost of
serialization, transfer and de-serialization of the MJO)
which is shown around 6% of increase in response
time [1, 30]. However, if the compile-time estimate is
not correct, MJO can decide to stay on S1 and has
better performance. This simple example shows, with a
risk of loosing 6% in response time, it is possible to
gain more than 220% in cases of estimation errors.

Step 1: if (not local(R1)) then receive(R1);
 Build(R1, HT1); //and compute the statistics on R1
 Site Decision(StatisticalInformation,

 DataAvailibility, SystemState);
 if (not local(Site)) then migrate on Site;
Step 2: if (not local(R2)) then receive(R2);
 Probe(HT1, R2, T);
 if (not local(T)) then send(T) else materialize(T)

Figure 1. Algorithm of the mobile hash join [1]

3. Robust placement

In this section we will first introduce the
components of robust placement method and then
explain a robust placement algorithm. Robust
placement method is based on two components:
migration space and robust site.

3.1. Migration space

It is not reasonable to allow a MRO to migrate to all
existing sites over large scale environment. The time to
compute the better site among all the sites present on
the network would be prohibitive. So, the optimizer
should define a subset of sites on which the MRO can
migrate during its execution: migration space. This one
should be defined taking into account the migration
spaces of the communicating operators.

Migration space of a MRO is defined as the set of
execution sites that the MRO can migrate during its
execution. Migration space should include the sites of

the producer and consumer operators [10, 25].
Consider the previous example and assume that R1 and
R2 are on the sites S1 and S2 respectively and the result
of the query is expected on site S1. Hence, the producer
operators like Scan(R1) and Scan(R2) should be on the
sites S1 and S2 respectively and the consumer operator
is on the site S1. Then, the migration space MS of
MRO is quoted MSMRO={S1, S2}.

0

20

40

60

80

100

120

-100 -80 -60 -40 -20 0 20 40 60 80 100

Error on |R1| (%)

R
es

po
ns

e
Ti

m
e

(s
ec

)

P-S2
P-S1

Figure 2. Response times of P-S1 and P-S2

 with respect to error on |R1|

3.2. Robust site

Figure 2 shows the response times of two execution
plans of the same MJO with respect to the error on
|R1|. P-S1 is the plan in which MJO starts its execution
on site S1. P-S2 is the plan in which MJO starts its
execution on site S2. In both plans MJO continues its
execution on site S1 or S2. Migration space of the MJO
is defined as MSMJO={S1, S2}. We assume to have
three points defined by the optimizer corresponding to
the estimated size of the relation R1: R1low, R1est and
R1high represent respectively the cases of smallest,
average and highest estimations of the optimizer on
|R1|. Inside the interval [R1low, R1est] both plans P-S1
and P-S2 achieve close response times to each other.
However, P-S1 incurs a slight extra cost due to
migration overhead-threshold which is found around
6% increase in response time [1] in our case. For the
interval [R1est, R1high], P-S1 is not affected by the
increased size of R1. On the other hand, if we look at
the cost of P-S2, we remark that the response time of
P-S2 increases dramatically since its migration causes
transfer of hash table and R2. As a result, for the
interval [R1low, R1est], S2 is the site giving minimum
response time (Slow = S2), for R1est, S2 is the site giving
minimum response time (Sest = S2) and for [R1est,
R1high], S1 gives the minimum response time (Shigh =
S1).

This simple example demonstrates that the
execution plans are quite related with the initial
placement and not all placements provide acceptable

Slow: S2 Sest: S2 Shigh: S1

R1low R1est R1high

229229

performance over an estimation interval. In order to
find a site giving acceptable performance over an
estimation interval we should check the response time
of the MRO for all the points of the estimation interval.
In our case, response times of P-S1 for R1low and R1est
is closed to minimum with the threshold, and for
R1high, PS-1 is the plan with a minimum response time.
Hence, the site S1 provides acceptable performance
over an estimation interval. We say that it is a robust
site for MRO.

In order to formalize the definition of a robust site,
we associate to each MRO the following annotation: (i)
three estimation points R1low, R1est and R1high, (ii) a
migration space defined as MSMRO={S1,S2,…,Sn}, (iii)
Slow, Sest and Shigh corresponding to the sites
minimizing the response time corresponding the values
of R1low, R1est and R1high respectively, (iv) a response
time set ={RT (Si, R1k)} meaning that the response
time achieved by initially placing MRO on Si with the
estimated size of R1k, for k ∈ {low, est, high} and Si ∈
MSMRO and (v) mobility overhead constant of the
optimizer defined as threshold.
A site Si is said to robust iff: ∀ k ∈ {low, est, high} and
∀ RT(Si, R1k) <= RT(Sk, R1k) * threshold.

A site is robust if and only if, for all estimated
points of R1, the response time of MRO initially
placed on it, is equal to or close to the response time of
the site giving minimum response time for this R1
estimation with the threshold. In other words, MRO
should have a response time that is close to the
response time of the site giving minimum response
time for the all the estimated points in the interval. If
we go back to the situation of S1 and S2 of Figure 2 we
can say that S1 is robust site since its response time for
R1low, R1est and R1high is equal or close to the minimum
response times of Slow, Sest and Shigh with the threshold.

The algorithm of the robust site function given in
Figure 3, takes a Node (MRO or Scan operator) as an
input and returns a robust site. The robustness of each
site is controlled with the CheckRobustness function
which takes a site, a MRO and a threshold as input and
returns true only if the response times of the MRO for
R1low, R1est and R1high on the site are equal or close to
the response times of Slow, Sest and Shigh with the
threshold respectively. If Slow and Shigh do not satisfy
the requirements of robustness than the site is Sest.

Figure 3. Robust site algorithm

3.3. Robust placement of mobile relational
operators of a query

The robust placement algorithm, Figure 4, places a
MRO together with its children. It has as input a MRO,
the site where the query result is expected and a
threshold. It is a recursive algorithm which places first
the right and left child of MRO.

If the Node is a Scan operator, the placement space
is defined as the sites where its operand is replicated. It
is mapped on a site of the placement space providing
the required data with a minimum response time. For a
filter operator (i.e. Select or Project operator), its
migration space is defined to be the migration space of
the direct child operator and it is mapped on the
placement site of the direct child operator. When the
operator is binary operator (e.g. join), the placement of
the right child and left child is done first. Then the
migration space of the binary operator is defined and
finally the robust site is decided by the RobustSite
function among the sites present in its migration space.

CheckRobustness(site, Node, threshold): Boolean {
 // threshold is the mobility overhead
Return (RT(site, Node.R1low) ≤ RT(Node.sitelow,

 Node.R1low) * threshold and
 RT(site, Node.R1est) ≤ RT(Node.siteest,

 Node.R1est) * threshold and
 RT(site, Node.R1high) ≤ RT(Node.sitehigh,

 Node.R1high) * threshold)}

RobustSite(Node, threshold) {
 CheckRobustness(site, Node, threshold): Boolean;
 // SiteMinRT function returns the site giving the
 // minimum response time with respect to given
 // estimation point
 Node.sitelow ← SiteMinRT(Node,

 Node.migrationSpace, Node.R1low);
 Node.siteest ← SiteMinRT(Node,
 Node.migrationSpace, Node.R1est);

 Node.sitehigh ← SiteMinRT(Node,
 Node.migrationSpace, Node.R1high);

 if (CheckRobustness(Node.sitelow, Node,
 threshold)) then return Node.sitelow

 // sitelow : robust site
 else if (CheckRobustness(Node.sitehigh,

 Node, threshold))
 then return Node.sitehigh
 // sitehigh : robust site
 else return Node.siteest;
}

230230

Figure 4. Robust placement algorithm

4. Performance evaluation

In this section, we compared single-point and robust
placement methods mapping single join and multi-join.
We study the behavior of both methods when there is
error on the estimations related to the size of relations.
Performance study is based on a simulation model
which was validated by an implementation on a
workstation network [28].

4.1. Simulation model

Simulator is composed of two parts: simulated
method and architecture. Disk, CPU, and memory
characteristics describe each site of the target
architecture. We assume that the characteristics of all
the sites and communication links are the same. In
addition, site failures and data unavailability are not
considered even if the risk is high in large scale
distributed systems. Finally, it is assumed that the
buffer size of a MRO is unlimited.

The main costs associated with the basic operations
and with the parameters are given in Table 1,
according to [12, 28] for the approximation of the
duration of MRO migration. As the size of the hash
table is varying, the simulator computes the duration of
the hash table serialization from simulation parameters.

4.2. Single join

Let us consider two relations R1 and R2 residing
respectively on sites S1 and S2 with number of tuples
estimated as 10.000 and 30.000. Also, let us assume a

simple hash join J: T = Join(R1, R2). The result is
expected on the site S1. Migration space of the join
MSJ= {S1, S2}. The estimated selectivity factor [34] of
join J is 1.5/max(||R1||, ||R2||) where ||R1|| and ||R2||
indicate the number of tuples. The expected threshold
of the optimizer capturing mobility overhead is 1.06
increases in response time of the join operation. Our
performance evaluation measures the influence of the
errors on the |R1| (i.e. size of R1) on response time
with single-point and robust placement methods. The
size of R1 is varied from -80%, (80% smaller than the
size estimated at compile-time) to 160%, (the size is
160% bigger than the size estimated at compile-time).

Table 1. Simulation parameters
Disk
parameters

Disk page size 4 KB

 Average time to read a 4-KB page 47.5 µs
 Average time to write a 4-KB

page
195 µs

CPU
parameters

Pentium III processor 550
MHz

 Memory size 512 MB
Network
parameters

Maximum bucket size 4 KB

 Time to send a 4-KB page 50 ms
 Latency 20 ms
Miscellaneous Average size of a tuple 128 B
 MRO size 2806 B
 Duration of MRO migration1 150 ms

Figure 5. Response time with respect to error on |R1|

Figure 5 demonstrates the impact of the error on
|R1| on response time of the join operation. Single-
point placement method places the MJO on site S2
since estimated |R2| > |R1| + |T| whereas robust
placement method places the MJO on site S1 since S1 is
the robust site for R1low, R1est and R1high which are
estimated by the optimizer as 256 KB, 1 280 KB and
3 328 KB respectively. We observe clearly that the
response time of robust placement is higher than the
response time of single-point placement for the range

1 The duration of mobile relational operator migration includes serialization of data,

transfer of the serialized data and the execution state and de-serialization of data

RobustPlacement(Node, resultSite, threshold){
if (isScan?(Node)) then {
 Node.migrationSpace ← Node.R1.Replicates};
 Node.site ← SiteMinRT(Node,
 Node.migrationSpace, Node.R1est);}
if (isFilter?(Node)) then {
 RobustPlacement(LeftChild(Node), resultSite,
 threshold);
 Node.migrationSpace ←
 LeftChild(Node). migrationSpace;
 Node.site ← LeftChild(Node).site;}
if (isBinary?(Node)) then
 {RobustPlacement(RightChild(Node), resultSite,
 threshold);
 RobustPlacement(LeftChild(Node), resultSite,
 threshold);
 Node.migrationSpace ←
 RightChild(Node).migrationSpace ∪
 Leftchild(Node).migrationSpace ∪ resultSite;
 Node.site ← RobustSite(Node, threshold);}
}

231231

[-80%, 20%]. In this range, the difference between two
response times is between 2,9% and 3,7% which is less
than the threshold. On the other hand, for the range of
[20%, 160%], the speed up achieved by robust
placement method reaches up to 300 % when
compared with the response time of single-point
placement method. So with the risk of loosing 3.7% in
response time, it is possible to increase the
performance by 300% approximately.

4.3. Multi-join

 Let us consider four relations R1, R2, R3 and R4
residing respectively on sites S1, S2, S3 and S4 with
number of tuples estimated as 10.000, 20.000, 20.000
and 25.000 respectively. We assume a query T =
J3(J1(R1,R2), J2(R3,R4)) where the execution plan is a
bushy tree. The query result is expected on the site S5.
The migration spaces of joins are MSJ1= {S1, S2, S5}
and MSJ2= {S3, S4, S5} and MSJ3= {S1, S2, S3, S4, S5}. The
selectivity factors of joins J1, J2 and J3 are
1.5/max(||Ri||, ||Rj||). The plan generated by the single-
point optimizer is to place J1 on the site S2 since |R2| >
|R1|, J2 on the site S4 since |R4| > |R3|. On the other
hand, robust placement maps the J1 onto the site S1

regarding the values of R1low, R1est and R1high which are
estimated by the optimizer as 256 KB, 1 280 KB and
3 328 KB respectively. J2 is placed on S3 by checking
the robustness of the site for the values of R3low, R3est
and R3high given as 512 KB, 2 560 KB and 7 168 KB
respectively. Placement of J3 is done on S4 by both
methods. In order to see the impact of the placement
method on the response time of the query we compared
both methods in the cases of error on the size of the
relations in the query; R1, R2, R3 and R4. We
generated error on the size of the relation in a range [-
80%, 160%] as in the case of single join.

Figure 6. Response time with respect to error on |R1|

Figure 6 demonstrates the impact of the error on
|R1| on response time of the query. For the error in the
range [-80%, 80%] MJOs placed by single-point
placement method remain on their initial sites and the
query response time is kept at minimum. On the other

hand, if we look at the performance of robust
placement method for the same range of error we find
that the query response time is higher by [2,9%,
3,43%] since there is mobility overhead caused by J1
and J2. The overhead of each join is less than the
threshold. For the range of [80%, 160%], first join
placed by robust placement decides to stay on S1
whereas it decides to migrate to S1 by single-point
placement. We remark that robust placement method
causes speedup from 16,8% to 36,4% corresponding to
the range of [80%, 160%].

Figure 7. Response time with respect to error on |R2|

Figure 7 demonstrates the impact of the error on
|R2| estimated at compile-time on the query response
time with the two placement methods. Response time
achieved by robust placement is higher by [3,4%,
4,4%]. Changing size of the second relation does not
affect the response time of the query in both methods.
Since the MJOs do not take any adaptation decision
depending on R2. MJOs placed by single-point
placement method remain on their initial sites whereas,
the first and second MJOs placed by robust placement
method move to the sites S2 and S4 respectively.
Performance of robust placement method is higher
than single-point placement since the response times of
the first and second MJOs include mobility overhead
as well.

Figure 8. Response time with respect to error on |R3|

232232

Figure 8 shows the impact of the error on |R3| on
the query response time. For the range [-80%, 20%],
MJOs placed by single-point placement method remain
on their initial sites and the query response time is at
minimum. For the same range of error, response time
of the single-point placement is higher by [2,9%,
5,6%]. On the other hand, for the range [20%, 160%],
single-point placement causes an unexpected increase
in response time since J2 decides to migrate to site S3.
If we look at the performance of robust placement
method, for the range of [-80%, 20%] we find speedup
by [4,6%, 57,97%] since J3 decides to stay on site S3.

0,0
20,0
40,0
60,0
80,0

100,0
120,0
140,0

-80 -60 -40 -20 0 20 40 60 80 100 120 140 160

Error on |R4| (%)

R
es

po
ns

e
Ti

m
e

(s
ec

)

Single Point Placement
Robust Placement

Figure 9. Response time with respect to error on |R4|

Figure 9 demonstrates the impact of the error on
|R4| on the query response time with the two placement
methods. Performance of robust placement method is
less than the single-point placement by [4,1%, 5,6%].
Again, like the case shown in Figure 7, changing |R4|
does not make major change in the query response
time in both methods since the MJOs do not take any
adaptation decision depending on the |R4|.

4.4. Discussion

In this section, we analyzed the performance of
single-point placement and robust placement methods
when there is error on the compile-time estimation.

In the first part, we analyzed the response time of a
single join placed by single-point and robust placement
methods when there is an error on |R1| over a range [-
80%, 160%]. The result of the study showed that
robust placement method outperformed by almost up
to a factor of three when the error on |R1| exceeds
20%. For the error less than 20%, the robust placement
performance is higher than single-point placement by
[2,9%, 3.7%]. This loss is less then the threshold of
mobility overhead which is 6%.

In the second part, we analyzed the response time of
an execution plan composed of three joins in the form
of a bushy tree with the MJOs placed by the single-
point and robust placement methods. Again, the error
generated on |R1|, |R2|, |R3| and |R4| is between [-80%,
160%]. Robust placement has better performance in

case of the error on |R1| when the error exceeds 80%
and in case of the error on |R3| when the error exceeds
20%. The performance gain reaches up to 60% in
response time. Performance loss the single-point
placement in cases of error on |R2| and |R4| estimated
at compile-time does not exceed threshold (e.g. 5,6%
maximum). We noticed that the error on the size
estimated at compile-time of the first relation has
greater impact on the query response time. Robust
placement method outperforms when there is error on
the size of the first relation since it expects adaptation
and chooses the initial site according to this possibility.

5. Related work

Large scale environment needs paying attention to
two major aspects: heterogeneity and autonomy of the
data sources and the minimization of data transfer in
presence of low bandwidth and strong latency of
network. To overcome the execution plan sub-
optimality, various adaptive query processing methods
are proposed. The main idea is to use the execution
plan selected by the optimizer at compile-time and
make re-optimization at run-time to adapt to changing
conditions [1, 2, 19, 21]. The adaptive methods can be
classified according to nature of the decision making
about adaptation: centralized and decentralized
methods. In the centralized methods [2, 19, 20, 21, 41],
a main process is in charge of monitoring and
changing, at runtime, the execution plans, whereas
correcting sub-optimality is done in operator or sub-
query level in decentralized methods [1, 8, 29, 30, 37].

Regardless of the nature of the decision making
about adaptation, the approach of compile-time
optimization followed by run-time adaptation has
limitations. In fact, the optimizer selects execution
plans without taking into consideration the issues
affecting adaptation at run-time. The approaches for
foreseeing the need for adaptation to changing run-time
parameters start with the parametric optimization [16,
17, 20]. The goal is identify several execution plans at
compile-time for different ranges of values of run-time
parameters and to enable the optimizer to defer the
choice of an execution plan at run-time. In error-aware-
optimization proposed by [38], intervals are estimates
considered to identify robust plans with single
uncertain statistics and single join. However, both
parametric optimization and error-aware optimization
do not consider re-optimization or statistical collection
at run-time. Studies presented in [3, 4, 5, 27] are worth
considering in terms of narrowing the space between
compile-time and run-time re-optimization. They
combine and exploit the ideas of switchable plan,
switch operator, robust plan at compile-time and
collection of statistics and re-optimization at run-time.

233233

The main idea behind these works is, instead of having
good plan based on single-point estimations that might
have bad performance in cases of estimation errors, to
find a robust plan based on an estimation interval with
an acceptable performance in all the points present in
that interval. This worth approach has been developed
for centralized environment. However, in large scale
environment imposes paying attention to the aspects of
minimization of data transfer in the presence of low
bandwidth and strong latency. In consequence, the
placement of relational operators becomes critical.

Main efforts related to placement methods are to
adapt the directed acyclic graph (DAG) scheduling
approaches of parallel processing field [22] to parallel
query processing. The methods proposed here are
concentrated to apply tree decomposition with different
methods and granularity [11, 36] in order to have
schedulable components or to have different
parallelization strategies: independent [7], pipelined [6,
13, 24, 25, 31, 35, 40] or partition parallelism [11, 15].
All these strategies are applicable to fast
interconnected networks and homogeneous databases
where the communication cost is low and sources are
predictable. Nonetheless, none of the scheduling
strategies developed in these fields meet the
requirements of the large scale environment where the
sources are heterogeneous and data and network
characteristics are unpredictable. Simplified methods
of scheduling applicable to large scale come from the
field of distributed databases exploiting independent
parallelism [10, 23, 26, 32, 41]. The main idea is to
place the relational operators near to data sources or
place them on the server site, again based on single-
point estimations at compile-time.

6. Conclusion

In this paper, we presented a robust placement
method to map, at compile-time, the mobile relational
operators (MROs) of a query on execution sites over a
large scale environment. MROs are self adaptive to
changing run-time conditions. They make decision of
migration in order to change their execution place if
they discover estimation errors. Proposed placement
methods, based on single-point estimation at compile-
time, might lead bad performance in case of estimation
errors.

We proposed: (i) to determine the migration space
of a MRO which includes the sites on which the MRO
is allowed to migrate during its execution, and (ii) to
find a robust site which will allow acceptable response
time for the estimation points in the estimation
interval. The robust placement method makes the
placement of MROs on execution sites based on an
estimation interval. A site which allows acceptable

performance over an estimation interval is chosen
instead of a site giving the best performance on a
single estimation point.

The experimental study focused on comparing the
performance of mobile join operators (MJOs) of a
query execution plan by single-point and robust
placement methods in cases of estimation errors. For
the robust placement method, we assumed to have an
interval defined by the low, average (est) and high
estimation points computed at compile-time related
with the size of relations. Single-point placement
method mapped the MJOs onto execution sites by
finding the optimal performance based on average
estimation, whereas the robust placement tried to place
them by leaning on low, average and high estimations.
We discovered that with a risk of loosing around 6% in
response time, it is possible to gain up to 300% in
some cases with the robust placement method.

7. References

[1] J.P. Arcangeli, et al. “Mobile agent based self-adaptive
join for wide-area distributed query processing”. Journal of
Database Management, 15(4), 2004, pp. 25-44.

[2] R. Avnur and J.M. Hellerstein. Eddies: “Continuously
adaptive query processing”. Proc. of ACM SIGMOD, 2000,
pp. 261-272.

[3] B. Babcock and S. Chaudhuri. “Towards a robust query
optimizer”. A principled and practical approach. Proc. of
ACM SIGMOD, 2005, pp. 119-130.

[4] S. Babu and P. Bizarro. “Adaptive query processing in
the looking glass”. Proc. of 2nd Biennal Conf. on Innovative
Data Systems Research (CIDR), 2005, pp. 238-249.

[5] S. Babu, et al. “Proactive re-optimization”. Proc. of ACM
SIGMOD, 2005, pp. 107-118.

[6] C. Chekuri, et al. “Scheduling problems in parallel query
optimization”. Proc. of ACM PODS, 1995, pp. 255-265.

[7] M.S. Chen, et al. “Scheduling and processor allocation
for parallel execution of multi-join queries”. Proc. of ICDE,
1992, pp. 58-67.

[8] C. Collet and T.-T. Vu. “QBF: A Query broker
framework for adaptable query evaluation”. Proc. of 6th Intl.
Conf. on Flexible Query Answering Systems, 2004.

[9] W. Du, et al. “Query Optimization in a Heterogeneous
DBMS”. Proc. of VLDB, 1992, pp.277-291.

[10] M.J. Franklin, et al. “Performance tradeoffs for client-
server query processing”. Proc. of ACM SIGMOD, 1996, pp.
149-160.

[11] M.N. Garofalakis and Y.E. Ioannidis. “Multi-
dimensional resource scheduling for parallel queries”, Proc.
of ACM SIGMOD, 1996, pp. 365-376.

234234

[12] D. Hagimont and L. Ismail. “Agents mobiles et
client/serveur: evaluation de performance et comparison”.
Technique et Science Informatiques, 19(9). 2000, pp. 1223-
1244.

[13] W. Hasan and R. Motwani. “Optimization algorithms
for exploiting the parallelism-communication tradeoff in
pipelined parallelism”. Proc. of VLDB, 1994, pp. 36-47.

[14] M. Hussein, et al. “Embedded Cost Model in Mobile
Agents for Large Scale Query Optimization”, Intl.
Symposium on Parallel and Distributed Computing, 2005,
pp. 199-206.

[15] W. Hong and M. Stonebraker. “Optimization of parallel
query execution plans in XPRS”. In Proc. of the 1st Intl.
Conf. on Parallel and Distributed Information Systems, 1991,
pp. 218-225.

[16] A. Hulgeri and S. Sudarshan. “AniPQO: Almost non-
intrusive parametric query optimization for nonlinear cost
functions”. Proc. of VLDB, 2003, pp. 766-777.

[17] Y. Ioannidis et al. “Parametric query optimization”. In
Proc. of VLDB, 1992, pp. 103-114

[18] Y. E. Ioannidis and S. Christodoulakis, “On the
Propagation of Errors in the Size of Join Results”, Proc. of
ACM SIGMOD, 1991, pp. 268-277.

[19] Z. Ives, et al. “An adaptive data integration system for
data integration”. Proc. of ACM SIGMOD, 1999, pp. 299-
310.

[20] Z. Ives, et al. “Adapting to source properties in
processing data integration queries”. Proc. of ACM
SIGMOD, 2004, pp. 395-406.

[21] N. Kabra and D. DeWitt, “Efficient mid-query re-
optimization of sub-optimal query execution plans”, Proc. of
ACM SIGMOD, 1998, pp. 106-117.

[22] Y.K. Kwok and I. Ahmad. “Static scheduling algorithms
for allocated directed task graphs to multiprocessors”. ACM
Computing Surveys, 31(4), 1999, pp. 406-471.

[23] L. Liu, et al. “Distributed query scheduling service: An
architecture and its implementation”. Intl. Jour. of
Cooperative Information Systems, 7(2&3), 1998, pp. 123-
166.

[24] B. Liu and E.A. Rundensteiner. “Revisiting pipelined
parallelism in multi-join query processing”. Proc. of VLDB,
2005, pp. 829-843.

[25] M-L. Lo, et al. “On optimal processor allocation to
support pipelined hash joins”. Proc. of ACM SIGMOD,
1993, pp. 69-78.

[26] L.F. Mackert and G.M. Lohman. “R* Optimizer
validation and performance evaluation for distributed
queries”. Proc. of VLDB, 1986, pp 149-159.

[27] V. Markl, et al. “Robust query processing through
progressive optimization”. Proc. of ACM SIGMOD, 2004,
pp. 659-670.

[28] F. Morvan and A. Hameurlain. “Dynamic memory
allocation strategies for parallel query execution”. Proc. of
the 17th ACM Symposium on Applied Computing, 2002, pp.
897-901.

[29] F. Morvan, et al. “Mobile agent cooperation methods for
large scale distributed dynamic query optimization”. Proc. of
DEXA Workshops, 2003, pp. 542-547.

[30] B. Özakar, et al. “Query optimization: mobile agents
versus accuracy of the cost Estimation”, Intl. Journal of
Computer Systems Science and Engineering, 20(3), 2005, pp.
161-168.

[31] B. Özakar, et al. “Mobile join operators for restricted
sources”. Intl. Journal on Mobile Information Systems, 1(3),
2005, pp.167-184.

[32] M. Rodriquez-Martinez and N. Roussopoulos.
“MOCHA: A self-extensible middleware system for
distributed data sources”. Proc. of ACM SIGMOD, 2000, pp.
213-224.

[33] D. Schneider and D.J. DeWitt. “A performance
evaluation of four parallel join algorithms in a shared-nothing
multiprocessor environment”. Proc. of ACM SIGMOD,
1989, pp. 110-121.

[34] E.J. Shekita, et al. “Multi-join optimization for
symmetric multiprocessors”. Proc. of VLDB, 1993, pp. 479-
492.

[35] A. Termehchi and M. Ghodsi. “Pipelined operator tree
scheduling in heterogeneous environments”. Jour. of Parallel
and Distributed Computing, 63(6), 2003, pp. 630-637.

[36] K.L. Tan and H. Lu. “On resource scheduling of multi-
join queries in parallel database systems”, Information
Processing Letters, 48(4), 1993, pp. 189-195.

[37] T. Urhan and M. Franklin. “XJoin: a reactively
scheduled pipelined join operator”. IEEE Data Engineering
Bulletin, 23(2), 2000, pp. 27-33.

[38] S. Viglas. “Novel query optimization and evaluation
techniques”, PH. D. Thesis, Department of Computer
Sciences, University of Wisconsin-Madison, 2003.

[39] G. Wiederhold. “Mediators in the architecture of future
information systems”, IEEE Computer, 25(3), 1992, pp. 38-
49.

[40] J. Wu, et al. “Scheduling of query execution plans in
symmetric multiprocessor database systems”. Proc. of the
18th Intl. Parallel and Distributed Processing Symposium,
2004.

[41] Y. Zhou, et al. “An adaptable distributed query
processing architecture”. Data and Knowledge Engineering,
53(3), 2004, pp. 283-309.

235235

