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Abstract 

This paper presents a compile-time placement method 
of mobile relational operators MROs in a large scale 
environment. MROs are self adaptive to changing run-
time conditions by deciding their execution place if 
they discover compile-time estimation errors. 
Proposed placement methods tend to have a main 
drawback with MROs running over a large scale 
environment: their focus is on finding optimal 
performance depending on single-point estimation at 
compile-time, instead of optimal performance over an 
estimation interval. We propose: (i) to determine the 
migration space of a MRO including the sites on which 
the MRO is allowed to migrate during its execution, 
and (ii) to find the robust site which will allow 
acceptable response time in an estimation interval. 
Performance study shows that, with a risk of loosing 
around 6% in response time, it is possible to gain up to 
300% with the proposed robust placement. 

1. Introduction 

The mediation systems based on the mediator-
wrapper architecture [39] manipulate large 
heterogeneous distributed data sources. One of the 
major challenges is to propose optimization methods to 
enable querying efficiently in the presence of 
unpredictable sources and heavy communication costs. 
Traditional query processing methods end up with sub-
optimal execution plans in such environments since it 
is difficult to maintain up-to-date statistics and the 
statistics describing the data coming from the sources 
and the formulae associated with the cost of operations 
are not revealed by all the autonomous sources [9, 18, 
27]. By the motivation of avoiding performance 
penalty caused by the optimizer’s mistakes in 
unpredictable and volatile environment, there has been 
growing number of adaptive query processing 
approaches that try to re-optimize the execution plan 

during execution in order to react to the compile-time 
estimation errors [1, 19, 20]. The adaptation methods 
may vary but the main behavior is to optimize at 
compile-time and to execute-monitor-re-optimize at 
run-time where the monitoring can be centralized or 
decentralized.  

Centralized monitoring does not allow all 
adaptation methods to be applied on large scale 
because of the relatively significant message passing 
on a network with low bandwidth and strong latency, 
and the bottleneck generated by the optimizer. On the 
other hand, we observe decentralized methods [8, 19, 
37] that try to improve the cost of local processing by 
adapting the use of the CPU, I/O and memory to the 
changes in execution environment. Whereas [1, 30] 
take into account the cost of local processing together 
with network resources. The approach presented in [1, 
30] proposes making mobile every relational operator 
of an execution plan. A mobile relational operator 
(MRO) is able to react in an autonomous and 
decentralized way during its execution with respect to 
system state or variations in compile-time estimations. 
In addition, the MRO can migrate from one site to 
another site [1, 30]. In [1, 30] the control and 
modifications of execution plans are decentralized 
since the MRO makes its decision by itself.  

Re-optimization methods suffer mainly from re-
optimization unaware optimization at compile-time. 
Decisions made at compile-time can handicap the re-
optimization method performance at run-time. For 
example, the optimizer might decide to place a MRO 
on a site with compile-time estimations. This 
placement can obstruct the MRO to move at run-time 
with refreshed estimations when there is an estimation 
error. Studies capturing the problem of building bridge 
between compile-time optimization methods and run-
time adaptive methods are critical at this point. The 
approach presented as proactive re-optimization in [5] 
is an elegant example of such studies. The authors are 
trying to find robust execution plans within bounding 
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boxes around estimates that define the uncertainty in 
estimates of statistics. They prefer an execution plan 
with acceptable performance instead of a good plan 
based on single-point estimations since it might have 
catastrophic performance in cases of estimation errors. 
Although, their approach might be worth in a 
centralized environment, large scale environment 
imposes paying attention to the aspects of 
minimization of data transfer in the presence of low 
bandwidth and strong latency. Hence, the placement of 
relational operators plays an important role. When we 
look at the placement methods provided by the parallel 
and distributed query processing field [6, 7, 10, 11, 13, 
15, 23, 25, 32, 41] are based on single-point 
estimations. Such a placement is as good as compile-
time estimations but it yields bad performance in cases 
of estimation errors. When we use a MRO, its 
placement is critical since wrong placement can block 
its adaptation capability. Therefore, we suggest 
focusing, in this paper, on an initial placement for 
MROs to insure their adaptation capability at run-time 
in cases of estimation errors. The challenge is not in 
finding good placement based on single-point 
estimates but on defining acceptable placement for an 
estimation interval in order to avoid dramatic 
performance at run-time. Our proposal can be seen as 
an extension of the method proposed by [5] in a large 
scale context and decentralized environment. The main 
components of our initial placement method are: (i) 
migration space which includes the possible execution 
sites for the MRO, (ii) robust site which permits the 
discovery of the initial site providing acceptable 
performance for an estimation interval.  

The rest of the paper is organized as follows. 
Section 2 discusses the problems of single-point 
placement methods with respect to MRO mapping onto 
the sites and describes the problem position. Section 3 
introduces the components required for initial 
placement of MROs. Section 4 points out the results of 
our performance evaluation, based on single join and 
multi-join. Section 5 is dedicated to the survey of 
related work. Finally, we give our conclusion.  

2. Context and problem position 

In this section we will present a mobile execution 
model [1] in order to detail the problem related with 
the initial placement of MROs. 

2.1. Mobile execution model  

On each site participating in the query processing, 
there is a mediator as presented in [14]. The query is 
submitted to the mediator where it is transformed and 
optimized. The operators of an execution plan are 
executed either by the mediators or by the wrappers. 
Every MRO is executed on a mediator and a scan 
operator (fixed operator) is executed on wrapper. On 
this one, the translation of the sub-query and re-
formatting of the result for the mediator will be 
abstracted by means of a scan operation. Now, we will 
recall the mobile hash join algorithm [1]. 

Let us consider an example to illustrate the mobile 
execution model: R1 and R2 are base or temporary 
relations, with R1 located on site S1 and R2 located on 
site S2, and |R1| < |R2| (|R1| is the size of R1). T is the 
result of join between R1 and R2, T ← Join(R1, R2), 
which must be materialized on site S1 where T is 
expected. The hash join algorithm[33] comprises 2 
steps: in the first step, the hash table is built from the 
smallest relation R1; in the second step the hash table 
is probed with the other relation R2. During the 
building of the hash table, statistics on R1 can be 
computed precisely. From these statistics on R1 and 
compile-time statistics on R2, the selectivity factor for 
example can be revised and statistics on T 
consequently can be refreshed. Then, the mobile join 
operator (MJO) decides on its own whether to move or 
not (on S2 or on another site) by means of decision 
function that computes the migration site. The decision 
function is based on a cost model [14] extended with 
the mobility cost and have parameters StatInfo (i.e. 
updated statistics on relations), DataAvailability (i.e. 
waiting for the first tuple and waiting time for any 
tuple) and SystemState (i.e. communication bandwidth, 
CPU, memory capacity). Hash table is moved along 
with the MJO. For example T is expected on S1 and 
compile-time estimate of the optimizer is |R2| < |R1| + 
|T|: consequently the MJO is placed on S1. However if 
it appears that |R2| > |R1| + |T| after building the hash 
table on S1 the MJO migrates to site S2 for probing. 
The algorithm given in Figure 1 illustrates the behavior 
of the MJO.  

2.2. Limitations of single-point placement 
methods  
 

Present single-point placement methods [10, 23, 32, 
41] try to minimize the communication cost by placing 
the relational operators on the sites minimizing the data 
transfer by taking into account single-point estimates 
instead of an estimation interval. Let us demonstrate 
the problem with a simple query: T ← Join(R1, R2), 
where R1 and R2 are base or temporary relations 
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residing on the sites S1 and S2 and the site of T is S1. 
Suppose the optimizer decides to place initially the 
MJO on S2 with the estimation |R2| > |R1| + |T|. If the 
compile-time estimate of the optimizer is correct, the 
response time of the query on S2 is minimized. 
However, if the compile-time estimate is not correct 
and for example |R1| + |T| > |R2|, in this situation, the 
MJO loses possibility of migration because its 
migration triggers the transfer of its hash table and R2. 
Our simple test shows (Figure 2) that in such situation, 
the increase in the response time of the MJO might be 
more than 220% compared with the best placement 
which is on site S1. On the other hand, if the optimizer 
places the MJO on S1 and if the compile-time estimate 
is correct, the MJO response time is more than 
expected with the overhead of migration (the cost of 
serialization, transfer and de-serialization of the MJO) 
which is shown around 6% of increase in response 
time [1, 30]. However, if the compile-time estimate is 
not correct, MJO can decide to stay on S1 and has 
better performance. This simple example shows, with a 
risk of loosing 6% in response time, it is possible to 
gain more than 220% in cases of estimation errors.  

 
Step 1: if (not local(R1)) then receive(R1);  
  Build(R1, HT1);  //and compute the statistics on R1 
  Site  Decision(StatisticalInformation,   

  DataAvailibility, SystemState); 
   if (not local(Site)) then migrate on Site; 
Step 2:   if (not local(R2)) then receive(R2); 
  Probe(HT1, R2, T); 
  if (not local(T)) then send(T) else materialize(T) 

Figure 1. Algorithm of the mobile hash join [1] 

3. Robust placement  

In this section we will first introduce the 
components of robust placement method and then 
explain a robust placement algorithm. Robust 
placement method is based on two components: 
migration space and robust site. 

3.1. Migration space  

It is not reasonable to allow a MRO to migrate to all 
existing sites over large scale environment. The time to 
compute the better site among all the sites present on 
the network would be prohibitive. So, the optimizer 
should define a subset of sites on which the MRO can 
migrate during its execution: migration space. This one 
should be defined taking into account the migration 
spaces of the communicating operators. 

Migration space of a MRO is defined as the set of 
execution sites that the MRO can migrate during its 
execution. Migration space should include the sites of 

the producer and consumer operators [10, 25]. 
Consider the previous example and assume that R1 and 
R2 are on the sites S1 and S2 respectively and the result 
of the query is expected on site S1. Hence, the producer 
operators like Scan(R1) and Scan(R2) should be on the 
sites S1 and S2 respectively and the consumer operator 
is on the site S1. Then, the migration space MS of 
MRO is quoted MSMRO={S1, S2}. 
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Figure 2. Response times of P-S1 and P-S2 

 with respect to error on |R1| 

3.2. Robust site 

Figure 2 shows the response times of two execution 
plans of the same MJO with respect to the error on 
|R1|. P-S1 is the plan in which MJO starts its execution 
on site S1. P-S2 is the plan in which MJO starts its 
execution on site S2. In both plans MJO continues its 
execution on site S1 or S2. Migration space of the MJO 
is defined as MSMJO={S1, S2}. We assume to have 
three points defined by the optimizer corresponding to 
the estimated size of the relation R1: R1low, R1est and 
R1high represent respectively the cases of smallest, 
average and highest estimations of the optimizer on 
|R1|. Inside the interval [R1low, R1est] both plans P-S1 
and P-S2 achieve close response times to each other. 
However, P-S1 incurs a slight extra cost due to 
migration overhead-threshold which is found around 
6% increase in response time [1] in our case. For the 
interval [R1est, R1high], P-S1 is not affected by the 
increased size of R1. On the other hand, if we look at 
the cost of P-S2, we remark that the response time of 
P-S2 increases dramatically since its migration causes 
transfer of hash table and R2. As a result, for the 
interval [R1low, R1est], S2 is the site giving minimum 
response time (Slow = S2), for R1est, S2 is the site giving 
minimum response time (Sest = S2) and for [R1est, 
R1high], S1 gives the minimum response time (Shigh = 
S1).   

This simple example demonstrates that the 
execution plans are quite related with the initial 
placement and not all placements provide acceptable 

Slow: S2   Sest: S2           Shigh: S1 

R1low   R1est       R1high 
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performance over an estimation interval. In order to 
find a site giving acceptable performance over an 
estimation interval we should check the response time 
of the MRO for all the points of the estimation interval. 
In our case, response times of P-S1 for R1low and R1est 
is closed to minimum with the threshold, and for 
R1high, PS-1 is the plan with a minimum response time. 
Hence, the site S1 provides acceptable performance 
over an estimation interval. We say that it is a robust 
site for MRO. 

In order to formalize the definition of a robust site, 
we associate to each MRO the following annotation: (i) 
three estimation points R1low, R1est and R1high, (ii) a 
migration space defined as MSMRO={S1,S2,…,Sn}, (iii) 
Slow, Sest and Shigh corresponding to the sites 
minimizing the response time corresponding the values 
of R1low, R1est and R1high respectively, (iv) a response 
time set ={RT (Si, R1k)} meaning that the response 
time achieved by initially placing MRO on Si with the 
estimated size of R1k, for k ∈ {low, est, high} and Si ∈ 
MSMRO and (v) mobility overhead constant of the 
optimizer defined as threshold. 
A site Si is said to robust iff: ∀ k ∈ {low, est, high} and 
∀ RT(Si, R1k) <= RT(Sk, R1k) * threshold. 

A site is robust if and only if, for all estimated 
points of R1, the response time of MRO initially 
placed on it, is equal to or close to the response time of 
the site giving minimum response time for this R1 
estimation with the threshold. In other words, MRO 
should have a response time that is close to the 
response time of the site giving minimum response 
time for the all the estimated points in the interval. If 
we go back to the situation of S1 and S2 of Figure 2 we 
can say that S1 is robust site since its response time for 
R1low, R1est and R1high is equal or close to the minimum 
response times of Slow, Sest and Shigh with the threshold. 

The algorithm of the robust site function given in 
Figure 3, takes a Node (MRO or Scan operator) as an 
input and returns a robust site. The robustness of each 
site is controlled with the CheckRobustness function 
which takes a site, a MRO and a threshold as input and 
returns true only if the response times of the MRO for 
R1low, R1est and R1high on the site are equal or close to 
the response times of Slow, Sest and Shigh with the 
threshold respectively. If Slow and Shigh do not satisfy 
the requirements of robustness than the site is Sest.  

 

 
Figure 3. Robust site algorithm 

3.3. Robust placement of mobile relational 
operators of a query  

The robust placement algorithm, Figure 4, places a 
MRO together with its children. It has as input a MRO, 
the site where the query result is expected and a 
threshold. It is a recursive algorithm which places first 
the right and left child of MRO.  

If the Node is a Scan operator, the placement space 
is defined as the sites where its operand is replicated. It 
is mapped on a site of the placement space providing 
the required data with a minimum response time. For a 
filter operator (i.e. Select or Project operator), its 
migration space is defined to be the migration space of 
the direct child operator and it is mapped on the 
placement site of the direct child operator. When the 
operator is binary operator (e.g. join), the placement of 
the right child and left child is done first. Then the 
migration space of the binary operator is defined and 
finally the robust site is decided by the RobustSite 
function among the sites present in its migration space.  
 

CheckRobustness(site, Node, threshold): Boolean {  
 // threshold is the mobility overhead 
Return (RT(site, Node.R1low) ≤ RT(Node.sitelow,  

 Node.R1low) * threshold and  
   RT(site, Node.R1est) ≤ RT(Node.siteest,  

  Node.R1est) * threshold and 
   RT(site, Node.R1high) ≤ RT(Node.sitehigh, 

   Node.R1high) * threshold)} 
 
RobustSite(Node, threshold) { 
 CheckRobustness(site, Node, threshold): Boolean; 
 // SiteMinRT function returns the site giving the 
 // minimum response time with respect to given  
 // estimation point  
 Node.sitelow ← SiteMinRT(Node,  

   Node.migrationSpace, Node.R1low );
 Node.siteest ← SiteMinRT(Node,  
   Node.migrationSpace, Node.R1est); 

 Node.sitehigh ← SiteMinRT(Node,  
   Node.migrationSpace, Node.R1high); 

 if   (CheckRobustness(Node.sitelow, Node,  
  threshold)) then return Node.sitelow  

 // sitelow : robust site  
  else  if (CheckRobustness(Node.sitehigh,  

  Node, threshold))  
    then return Node.sitehigh  
 // sitehigh : robust site 
    else return Node.siteest; 
} 
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Figure 4. Robust placement algorithm 

4. Performance evaluation 

In this section, we compared single-point and robust 
placement methods mapping single join and multi-join. 
We study the behavior of both methods when there is 
error on the estimations related to the size of relations. 
Performance study is based on a simulation model 
which was validated by an implementation on a 
workstation network [28]. 

4.1. Simulation model 

Simulator is composed of two parts: simulated 
method and architecture. Disk, CPU, and memory 
characteristics describe each site of the target 
architecture. We assume that the characteristics of all 
the sites and communication links are the same. In 
addition, site failures and data unavailability are not 
considered even if the risk is high in large scale 
distributed systems. Finally, it is assumed that the 
buffer size of a MRO is unlimited.  

The main costs associated with the basic operations 
and with the parameters are given in Table 1, 
according to [12, 28] for the approximation of the 
duration of MRO migration. As the size of the hash 
table is varying, the simulator computes the duration of 
the hash table serialization from simulation parameters. 

4.2. Single join 

Let us consider two relations R1 and R2 residing 
respectively on sites S1 and S2 with number of tuples 
estimated as 10.000 and 30.000. Also, let us assume a 

simple hash join J: T = Join(R1, R2). The result is 
expected on the site S1. Migration space of the join 
MSJ= {S1, S2}. The estimated selectivity factor [34] of 
join J is 1.5/max(||R1||, ||R2||) where ||R1|| and ||R2|| 
indicate the number of tuples. The expected threshold 
of the optimizer capturing mobility overhead is 1.06 
increases in response time of the join operation. Our 
performance evaluation measures the influence of the 
errors on the |R1| (i.e. size of R1) on response time 
with single-point and robust placement methods. The 
size of R1 is varied from -80%, (80% smaller than the 
size estimated at compile-time) to 160%, (the size is 
160% bigger than the size estimated at compile-time).  

Table 1. Simulation parameters 
Disk  
parameters 

Disk page size 4 KB 

 Average time to read a 4-KB page 47.5 µs 
 Average time to write a 4-KB 

page 
195 µs 

CPU  
parameters 

Pentium III processor 550 
MHz 

 Memory size 512 MB
Network 
parameters 

Maximum bucket size 4 KB 

 Time to send a 4-KB page 50 ms 
 Latency 20 ms 
Miscellaneous Average size of a tuple 128 B 
 MRO size 2806 B 
 Duration of MRO migration1 150 ms 

 

 
Figure 5. Response time with respect to error on |R1| 
 

Figure 5 demonstrates the impact of the error on 
|R1| on response time of the join operation. Single-
point placement method places the MJO on site S2 
since estimated |R2| > |R1| + |T| whereas robust 
placement method places the MJO on site S1 since S1 is 
the robust site for R1low, R1est and R1high which are 
estimated by the optimizer as 256 KB, 1 280 KB and 
3 328 KB respectively. We observe clearly that the 
response time of robust placement is higher than the 
response time of single-point placement for the range 

                                                        
1 The duration of mobile relational operator  migration includes serialization of data, 

transfer of the serialized data and the execution state and de-serialization of data 

RobustPlacement(Node, resultSite, threshold){ 
if (isScan?(Node)) then  {         
 Node.migrationSpace ←  Node.R1.Replicates};  
 Node.site ← SiteMinRT(Node,    
   Node.migrationSpace, Node.R1est);} 
if (isFilter?(Node)) then  {   
 RobustPlacement(LeftChild(Node), resultSite,  
   threshold); 
 Node.migrationSpace ←     
   LeftChild(Node). migrationSpace; 
 Node.site ← LeftChild(Node).site;} 
if (isBinary?(Node)) then    
 {RobustPlacement(RightChild(Node),  resultSite,  
  threshold); 
 RobustPlacement(LeftChild(Node), resultSite,   
  threshold); 
 Node.migrationSpace ←  
  RightChild(Node).migrationSpace ∪   
  Leftchild(Node).migrationSpace ∪ resultSite; 
 Node.site ← RobustSite(Node, threshold);}  
} 
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[-80%, 20%]. In this range, the difference between two 
response times is between 2,9% and 3,7% which is less 
than the threshold. On the other hand, for the range of 
[20%, 160%], the speed up achieved by robust 
placement method reaches up to 300 % when 
compared with the response time of single-point 
placement method. So with the risk of loosing 3.7% in 
response time, it is possible to increase the 
performance by 300% approximately.  

4.3. Multi-join  

 Let us consider four relations R1, R2, R3 and R4 
residing respectively on sites S1, S2, S3 and S4 with 
number of tuples estimated as 10.000, 20.000, 20.000 
and 25.000 respectively. We assume a query T = 
J3(J1(R1,R2), J2(R3,R4)) where the execution plan is a 
bushy tree. The query result is expected on the site S5. 
The migration spaces of joins are MSJ1= {S1, S2, S5} 
and MSJ2= {S3, S4, S5} and MSJ3= {S1, S2, S3, S4, S5}. The 
selectivity factors of joins J1, J2 and J3 are 
1.5/max(||Ri||, ||Rj||). The plan generated by the single-
point optimizer is to place J1 on the site S2 since |R2| > 
|R1|, J2 on the site S4 since |R4| > |R3|. On the other 
hand, robust placement maps the J1 onto the site S1 

regarding the values of R1low, R1est and R1high which are 
estimated by the optimizer as 256 KB, 1 280 KB and 
3 328 KB respectively. J2 is placed on S3 by checking 
the robustness of the site for the values of R3low, R3est 
and R3high given as 512 KB, 2 560 KB and 7 168 KB 
respectively. Placement of J3 is done on S4 by both 
methods. In order to see the impact of the placement 
method on the response time of the query we compared 
both methods in the cases of error on the size of the 
relations in the query; R1, R2, R3 and R4. We 
generated error on the size of the relation in a range [-
80%, 160%] as in the case of single join.  

 

Figure 6. Response time with respect to error on |R1|  

Figure 6 demonstrates the impact of the error on 
|R1| on response time of the query. For the error in the 
range [-80%, 80%] MJOs placed by single-point 
placement method remain on their initial sites and the 
query response time is kept at minimum. On the other 

hand, if we look at the performance of robust 
placement method for the same range of error we find 
that the query response time is higher by [2,9%, 
3,43%] since there is mobility overhead caused by J1 
and J2. The overhead of each join is less than the 
threshold. For the range of [80%, 160%], first join 
placed by robust placement decides to stay on S1 
whereas it decides to migrate to S1 by single-point 
placement. We remark that robust placement method 
causes speedup from 16,8% to 36,4% corresponding to 
the range of [80%, 160%]. 

 

Figure 7. Response time with respect to error on |R2| 

Figure 7 demonstrates the impact of the error on 
|R2| estimated at compile-time on the query response 
time with the two placement methods. Response time 
achieved by robust placement is higher by [3,4%, 
4,4%]. Changing size of the second relation does not 
affect the response time of the query in both methods. 
Since the MJOs do not take any adaptation decision 
depending on R2. MJOs placed by single-point 
placement method remain on their initial sites whereas, 
the first and second MJOs placed by robust placement 
method move to the sites S2 and S4 respectively. 
Performance of robust placement method is higher 
than single-point placement since the response times of 
the first and second MJOs include mobility overhead 
as well. 

 
Figure 8. Response time with respect to error on |R3| 
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Figure 8 shows the impact of the error on |R3| on 
the query response time. For the range [-80%, 20%], 
MJOs placed by single-point placement method remain 
on their initial sites and the query response time is at 
minimum. For the same range of error, response time 
of the single-point placement is higher by [2,9%, 
5,6%]. On the other hand, for the range [20%, 160%], 
single-point placement causes an unexpected increase 
in response time since J2 decides to migrate to site S3. 
If we look at the performance of robust placement 
method, for the range of [-80%, 20%] we find speedup 
by [4,6%, 57,97%] since J3 decides to stay on site S3. 
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Figure 9. Response time with respect to error on |R4| 

Figure 9 demonstrates the impact of the error on 
|R4| on the query response time with the two placement 
methods. Performance of robust placement method is 
less than the single-point placement by [4,1%, 5,6%]. 
Again, like the case shown in Figure 7, changing |R4| 
does not make major change in the query response 
time in both methods since the MJOs do not take any 
adaptation decision depending on the |R4|. 

4.4. Discussion  

In this section, we analyzed the performance of 
single-point placement and robust placement methods 
when there is error on the compile-time estimation. 

In the first part, we analyzed the response time of a 
single join placed by single-point and robust placement 
methods when there is an error on |R1| over a range [-
80%, 160%]. The result of the study showed that 
robust placement method outperformed by almost up 
to a factor of three when the error on |R1| exceeds 
20%. For the error less than 20%, the robust placement 
performance is higher than single-point placement by 
[2,9%, 3.7%]. This loss is less then the threshold of 
mobility overhead which is 6%.  

In the second part, we analyzed the response time of 
an execution plan composed of three joins in the form 
of a bushy tree with the MJOs placed by the single-
point and robust placement methods. Again, the error 
generated on |R1|, |R2|, |R3| and |R4| is between [-80%, 
160%]. Robust placement has better performance in 

case of the error on |R1| when the error exceeds 80% 
and in case of the error on |R3| when the error exceeds 
20%. The performance gain reaches up to 60% in 
response time. Performance loss the  single-point 
placement in cases of error on |R2| and |R4| estimated 
at compile-time does not exceed threshold (e.g. 5,6% 
maximum). We noticed that the error on the size 
estimated at compile-time of the first relation has 
greater impact on the query response time. Robust 
placement method outperforms when there is error on 
the size of the first relation since it expects adaptation 
and chooses the initial site according to this possibility.  

5. Related work  

Large scale environment needs paying attention to 
two major aspects: heterogeneity and autonomy of the 
data sources and the minimization of data transfer in 
presence of low bandwidth and strong latency of 
network. To overcome the execution plan sub-
optimality, various adaptive query processing methods 
are proposed. The main idea is to use the execution 
plan selected by the optimizer at compile-time and 
make re-optimization at run-time to adapt to changing 
conditions [1, 2, 19, 21]. The adaptive methods can be 
classified according to nature of the decision making 
about adaptation: centralized and decentralized 
methods. In the centralized methods [2, 19, 20, 21, 41], 
a main process is in charge of monitoring and 
changing, at runtime, the execution plans, whereas 
correcting sub-optimality is done in operator or sub-
query level in decentralized methods [1, 8, 29, 30, 37].  

Regardless of the nature of the decision making 
about adaptation, the approach of compile-time 
optimization followed by run-time adaptation has 
limitations. In fact, the optimizer selects execution 
plans without taking into consideration the issues 
affecting adaptation at run-time. The approaches for 
foreseeing the need for adaptation to changing run-time 
parameters start with the parametric optimization [16, 
17, 20]. The goal is identify several execution plans at 
compile-time for different ranges of values of run-time 
parameters and to enable the optimizer to defer the 
choice of an execution plan at run-time. In error-aware-
optimization proposed by [38], intervals are estimates 
considered to identify robust plans with single 
uncertain statistics and single join. However, both 
parametric optimization and error-aware optimization 
do not consider re-optimization or statistical collection 
at run-time. Studies presented in [3, 4, 5, 27] are worth 
considering in terms of narrowing the space between 
compile-time and run-time re-optimization. They 
combine and exploit the ideas of switchable plan, 
switch operator, robust plan at compile-time and 
collection of statistics and re-optimization at run-time. 
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The main idea behind these works is, instead of having 
good plan based on single-point estimations that might 
have bad performance in cases of estimation errors, to 
find a robust plan based on an estimation interval with 
an acceptable performance in all the points present in 
that interval. This worth approach has been developed 
for centralized environment. However, in large scale 
environment imposes paying attention to the aspects of 
minimization of data transfer in the presence of low 
bandwidth and strong latency. In consequence, the 
placement of relational operators becomes critical.  

Main efforts related to placement methods are to 
adapt the directed acyclic graph (DAG) scheduling 
approaches of parallel processing field [22] to parallel 
query processing. The methods proposed here are 
concentrated to apply tree decomposition with different 
methods and granularity [11, 36] in order to have 
schedulable components or to have different 
parallelization strategies: independent [7], pipelined [6, 
13, 24, 25, 31, 35, 40] or partition parallelism [11, 15]. 
All these strategies are applicable to fast 
interconnected networks and homogeneous databases 
where the communication cost is low and sources are 
predictable. Nonetheless, none of the scheduling 
strategies developed in these fields meet the 
requirements of the large scale environment where the 
sources are heterogeneous and data and network 
characteristics are unpredictable. Simplified methods 
of scheduling applicable to large scale come from the 
field of distributed databases exploiting independent 
parallelism [10, 23, 26, 32, 41]. The main idea is to 
place the relational operators near to data sources or 
place them on the server site, again based on single-
point estimations at compile-time.  

6. Conclusion  

In this paper, we presented a robust placement 
method to map, at compile-time, the mobile relational 
operators (MROs) of a query on execution sites over a 
large scale environment. MROs are self adaptive to 
changing run-time conditions. They make decision of 
migration in order to change their execution place if 
they discover estimation errors. Proposed placement 
methods, based on single-point estimation at compile-
time, might lead bad performance in case of estimation 
errors.  

We proposed: (i) to determine the migration space 
of a MRO which includes the sites on which the MRO 
is allowed to migrate during its execution, and (ii) to 
find a robust site which will allow acceptable response 
time for the estimation points in the estimation 
interval. The robust placement method makes the 
placement of MROs on execution sites based on an 
estimation interval. A site which allows acceptable 

performance over an estimation interval is chosen 
instead of a site giving the best performance on a 
single estimation point.  

The experimental study focused on comparing the 
performance of mobile join operators (MJOs) of a 
query execution plan by single-point and robust 
placement methods in cases of estimation errors. For 
the robust placement method, we assumed to have an 
interval defined by the low, average (est) and high 
estimation points computed at compile-time related 
with the size of relations. Single-point placement 
method mapped the MJOs onto execution sites by 
finding the optimal performance based on average 
estimation, whereas the robust placement tried to place 
them by leaning on low, average and high estimations. 
We discovered that with a risk of loosing around 6% in 
response time, it is possible to gain up to 300% in 
some cases with the robust placement method.  
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