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In the formulation of the Newton-Wigner postulates for the relativistic localized states 
the hypothesis of commutativity of the position operator components is silently accepted 
as an evident fact. In the present work it is shown that commutativity is not necessary 
condition and the alternative (noncommutative) approach to the relativistic position op- 
erator and localization concept can be realized in a framework of the physically as well as 
mathematically comprehensive scheme. 
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1 I n t r o d u c t i o n  

The concept of localization is one of the most important and most intriguing 
problems in quantum theory. The idea of localizability plays principal role in the 
physical interpretation of the theory. We can not avoid this concept when com- 
parin~ the nmasurement results wittl the theory predictions and considering the 
uncertainty relations. The localizability is necessary element in constructing the 
initial and final states when describing the collision phenomena. In the case of the 
two-body problem the question of the localizability of the bound state must be 
solved in a transparent way. 

In the non-relativistic case for the potentials V(r) depending only on relative 
distance between interacting particles r ~- Ir[ the coordinates of the center of mass 
R and r are separated. The Galilean invariance of the motion of the system as a 
whole is respected~ the free motion of the bound state (of the system as the whole) is 
described by the irreducible unitary representation of the Galilean group. From this 
point of view it would be natural to call the spherically symmetric potentials V('r) 
the Galilean potentials. The internal motion of the system is reduced to the motion 

,~ m,~ in the field of potential. of tile effective particle with the reduced mass/1, = ml+m2 
We can call the two-body systems with the spherically symmetric potentials V('r) 
the Galilean elementary systems by evident analogy with the relativistic particle 
localization concept of E. Wigner [2]. Let us remember also that  non-relativistic 
compound quark models of hadrons (with spherically symmetric potentials) are 
very efficient,, and they describe the bound states which are the elementary systems. 
But there are no doubts that  these compound systems are actually relativistic and it 
is necessary to find the comprehensive relativistic potential theory standing behind. 
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We stress that keeping in mind the potential relativistic potential models we 
seek for such relativistic analog of the relative coordinate r on which the inter- 
action potential depends so that the total relativistic invariance is respected in 
analogy with Galilean invariance of the non-relativistic two-particle problem with 
the spherically symmetric potentials V(r).  

This discussion can be continued but it is clear that old problem of finding the 
relativistic position operator still deserves to search for its solution. The basic ideas 
on this subject have bee expressed by Newton and Wigner [2]1).'Their essential 
result is that for single particles a notion of the localizability and a corresponding 
c o m m u t i n g  observables are uniquely determined by relativistic kinematics. On 
the other hand no relativistic quantum theory of interaction based on these ideas 
was constructed. In the present contribution we shall consider the possibility to 
introduce the concept of the n o n - c o m m u t i n g  relativistic position operators obey- 
ing all Newton-Wigner postulates, having the transparent physical interpretation 
and admitting very simple quantum dynamical interpretation. 

It must be stressed that the standard quantum-mechanical position operator 
~: = i h ~ p  is connected with the Euclidean structures in terms of which the local- 
ization of a particle is considered. Let us quote here [2]: "Existence and uniqueness 
of a notion of localizability for a physical system are properties which depend only 
on the transformation law of the system under Euclidean group, i.e., the group of 
all space translations and rotations. The analysis of localizability in the Lorentz 
and Galilei invariant cases is then just a matter  of discussing what representations 
of the Euclidean group can arise there". Both groups--Galilean and Poincar6-- 
contain the Euclidean group as their subgroup. But might be there are another 
realizations of the Euclidean group in the framework of the representation theory 
which allows another definition of the position operator? We try to show here that 
the answer is positive. 

The fact that the manifold of the physically realizable states contains only 
solutions with the positive energy has a number of consequences for the observables. 
Consider the solutions of the Klein-Gordon equation ~, ~: 

~ , r  { ( + ) : f p ~ = ( p ~  2, pO_>0}, (1) 

with the inner product 

f(+) df~p d p m c  
(~,~b) = ~ (p ) r  d ~ t p -  pO (2) 

The standard position operator 
x = ihVp (3) 

is non-hermitian in the metric (2): 

1) There exists a huge literature on the subject, see e.g. [4, 12] and references therein. 
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ihp 
~(+) d~p [ (ih~Tp p 2 + , m 2 c 2 ) ~ ( p ) ) r  (4) 

So the operator i5~7p does not correspond to any observable and can no be 
interpreted as an physical operator. It follows also that the Klein-Gordon wave 
function can not be considered as an probability amplitude to find the particle at 
the point x at the moment of time x ~ 

The simplest way to obtain the position operator is to accept that the position 
operator is the hermitian part of :~ = ihVv: 

1 [R + Rt] = ihVp ih p (5) 
:~Nw= ~ 2 p 2 + m 2 c  2" 

Newton and Wigner derived this operator on a basis of a number of conditions 
which localized states must satisfy (see [1]). 

For the wave function of the localized state (at the moment x ~ ~y(X) in the 
configurational space we obtain. 

A number of conclusions can be derived from the Newton-Wigner theory. We 
indicate two of them: 

^ i  First: The position operator components xNW commute 

e w,XNw, = 0 ,  = ia , j .  (6) 

Second: The localized eigenfunction is not a(x - y) as in the non-relativistic 
theory, it is a function ~y (x) smeared in the spatial region of the size of the Compton 
wave length of the particle Ao, because 6(x - y) can't be constructed from the 
positive frequency solutions only: 

(7) ~y(X) = c o n s t k h r ]  K5/4 , r = [ x - y l ,  A0 mc 

Kv(z) is MacDonald's function, A0 is Compton wave length of the particle. 
The content of this article is as follows. In Sect. 2 we consider the noncom- 

mutative alternative to the Newton-Wigner coordinate and related concept of the 
relativistic configurational space. In Sect. 3 the two-body problem in the relativistic 
configurational space is formulated. 

2 A l t e r n a t i v e  to  N e w t o n - W i g n e r  approach  

The Newton-Wigner theory uses essentially the momentum space. To determine 
the nonlocal operator XNW (5) directly in the configurational space would be very 
difficult. 

Czech. J. Phys. 55 (2005) A253 



R. M. Mir-Kasimov 

But there is another circumstance essential for formulating the main idea of the 
present paper. In [1] the wave functions localized at different points are connected 
by translation: 

x ~ x + a ,  e i k ( x + a )  = e i k x e  ika  . (8 )  

The second relation has two mathematical  meanings. 

1. We consider, as in [1] the translations in the configurational space. Then the 
plane waves (exponentials) are the matrix elements of the irreducible unitary 
representations of the translation group numbered by the value of momen- 
tum k. Fourier transformation is the expansion in matrix elements of the 
unitary irreducible representations of the translation group of the configura- 
tional space. 

2. We consider (in contrast to [1]) the translations in the momentum k-space. 
Then the same formula (8) describes the matrix element of the product of two 
irreps numbered by x and a correspondingly by the vector (of the momentum 
space) k. Tile inverse  Fourier transformation is the expansion in matrix 
elements of the unitary irreducible representations of the translation group of 
the momentum space space. 

Such a symmetry between transformation within the same representation and 
the product of the representations is specific to the Euclidean translations. In the 
non-relativistic theory the difference between 1. and 2. is ibrmal and unimportant  
because the geometries of the configurational and momentum spaces are isomor- 
phic (mathematically) and Euclidean. Physical sense of the configurational and 
momentum spaces is different of course. The translations of the momentum space 
corresponds to Galilean transformations: 

x ---* x + V t ,  

• 1 7 7  + V ,  

rn• ~ m•  + m V  (9) 

p . , p + k ,  p = m •  k = m V .  

The position operator (4) is the generator of translations of the momentum space. 
Now we formulate the alternative to the Newton-Wigner concept. It  is based 

on the simple observations. 

1. From (4) we conclude that  the geometry of the momentum space i.e. the man- 
ifold of realizable states of the relativistic particle of the positive frequency 
is the Lobachevsky space (1). We shall develop the one particle relativistic 
theory accepting this as the triggering point. Then we must substitute; 

2. Galilean group . ~ Lorentz group; 

3. Galilean boosts ~ Lorentz boosts 

= ihVp ~ X r e l  , (10) 
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where 

X r e  I ~ -  ih + - -  Vp (11) ,art 2 c 2 

Thereby we consider (11) as tile candidates for the relativistic position oper- 
ators. But these are non-commuting operators. So proceeding along this geomet- 
rically natural way first what we must do is to give up with the commutat ivi ty  
of components of the position operator. We stress that  in [1] the commntat ivi ty 
requirement is tacitly contained in the list of basic natural requirements. 

First of all we note immediately that  operators (11) are hermitian with the norm 
(2). After lifting the commutativity condition we can say that  that  the new position 
operators are (the simplest!) hermitian operators in this metric. Now in contrast 
with the commutative case the components of the position operator can not be 
measured. But no limitations exist that  the very concept of the configurational 
space in the relativistic case can be modified as compared with the non-relativistic 
theory. The consequence of such a modification must be the change of the all concept 
of the measuring the position, uncertainty relations etc. 

To make this statements more clear, let us return for a t ime being to the non- 
relativistic case. As coordinates commute, we can diagonalize simultaneously all 
three components of it. 

At the same time many other operators of the universal enveloping algebra of 
the Euclidean Lie algebra also are diagonal. For example the Casimir operator :k 2 
which is invariant operator of the Euclidean group of the m o m e n t u m  space  

[:k '2] e ip• = A p e  ipx = x2e ipx , 
(12) 

:rieipx = xie ipx ~ 0 ~ x < :>C~ --0<2 < X i < O0 

Important  is that  the common eigenfunctions of these operators e ipx are the 
kernels of the Fourier transform connecting the Euclidean momentum space of the 
non-relativistic quantum mechanics and c o r r e s p o n d i n g  c o n f i g u r a t i o n a l  space .  

In the relativistic case it is natural to consider as the momentum space adequate 
from the physical point of view the space given by (1), i.e. the Lobachevsky space 
of the physical solutions of the Klein-Gordon equation. Integration over this space 
(with the Lorentz-invariant volume element IDglp) is given by (2). If we wish to 
follow the concept presented in the previous paragraph we should consider the 
universal enveloping algebra of the Lorentz group., determine the maximal set of 
mutually commuting operators, determine their common eigenfunctions (new plane 
waves) and spectrum. The Casimir operator of the Lorentz group Lie algebra can 
be chosen in the form 

M 2 h 2 
§ ~2 (13) 

Xre I 17~2C 2 m2c 2 , 

where M is the angular momentum operator. The non-relativistic limit of (13) is 
:~2 (see (12)). Spectrmn of r for the unitary representations takes continuous and 
discrete values. All these representations find the applications in various models of 
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relativistic interactions. We shall concentrate on the so called principal series for 
which 0 _< r < oo. 

The  eigenfunctions of ~2 are the matr ix  elements of uni tary  irreducible repre- 
sentations of the Lorentz group or their generating funct ions--kernels  of Gelfand-  
Graev transformations:  

§  { r i p ) =  (pIr)*.  (14) 

They  play the role of plane waves in the given relativistic formalism. Explicit ly 

(rip) (POmPn) - l - i rmc /h  
= , n 2 = 1.  (15) 

The  unit  vector n gives the sense to the symbol r - - b y  definition 

r = r n  (16) 

We shall call the space of vectors r the relativistic configurational space 2) The  
partial  expansion for the plane wave (15) is 

OO 

(rip) = ~ i l (2 /+  1)pl(cosh X, r )Pl (np �9 n ) ,  
l=0 

2 1,  pO = c o s h x ,  p = s i n h x n p ,  np -- , 

where 
pl(coshx, r) = ( - 1 ) z ~  F ( i r +  l + 1) p-1/2+ir  

FOr + 1) " -1/2+iT c o s h x .  

Tile expansion (17) is analogous to the non-relativistic one 

(17) 

(18) 

OO 

e ipr = E i l ( 2 / +  1)jt(pr)Pl(np. n),  (19) 
/=0 

where jl(pr) = \ / ~ v r  J/+l/2 are the spherical Bessel functions. In the non-relati- 

vistic limit 
pl(coshx, r) ~ jz(pr). (20) 

The  orthogonali ty and completeness conditions for the relativistic plane waves 
are 

(21r)3 (riP) (p l r '}dap  = 5(r - r ' ) ,  

1 f p0 (21) 
(27r)3 - - (PI r )  ( r lp ' )d r  = 5(p - p ' )  = 5(p - p ' )  rru---~' 

2) The concept of the relativistic configurational space have bbeen introduced in [6] (see also 
[5]), for further references see [7-9]. " 
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The relativistic configurational space is an example of the quantum 3-dimensio- 
nal Euclidean space. The quantum nature of the r-space is predefined by the fact 
that  the the Lie algebra of its isometry group is realized in a framework of non- 
commutative differential calculus. The momentum operators (generators of trans- 
lations) are 

( 0 )  ! ( 0 ) A r 1 6 2  e x p ( i  0 ) 
H0=/5  ~  i~rr + sinh i ~ r  2r 2 ~r  ' 

p t = _ s i n O c o s ~ b [ e x p ( i O ) _ H o ] _ i ( c o s t ? ; o s r  0 singa 0 ~ )  t lOr )  
00 r sin v~ exp , 

fie = _ sin'0 sin r exp i - H0 - i cos Osin'da + exp 

1 153 - cos 0 exp i - H0 'r ~-~ exp i . (22) 

They play the role of inner derivatives in relevant differential calculi. These oper- 
ators mutually commute 

[~",~]  = 0, v , , . - -  0 ,1,2,a .  (23) 

But the corresponding differentials of the coordinate functions don't commute 
with the coordinate functions themselves. For the details we refer the reader to 
[9-11]. Note that that the integration in the second formula in (21) is carried over 
with the Euclidean volume element dr. 

The common eigenfunctions of :5 u are (rip) (14) 

:5U(rlp) = pUir[p), (24) 

from which we conclude that the "plane waves" (14) indeed describe the free rela- 
tivistic motion with definite value of the 4-momentum. This is a new realization of 
the Lie algebra of the Euclidean group which we discussed in the I n t r o d u c t i o n .  

Operators /)u identically satisfy the relativistic relation between energy and 
momentum (1). Important is also to note that these operators solve the problem of 
"extracting the root square" in the relation :5 u = Vzp 2 + m2c2: 

iS~ = p~ = x/p 2 + m2c 2 (rip) . (25) 

In the non-relativistic limit 
p2 h 

[p]<<mc,  pO ~_ mC + 2 m c  , r >> --mc (26) 

relativistic plane waves (rip) transfer to usual plane waves 

(rip) = exp [ - ( 1  +irm::-~)In k(P~ / j  -~ 

e x p [ -  ( l + i r m s  1 - p n - + - + m c  2m2c 2p2 . . . ) ]  

------exp ( i ~ ) =  exp ( i - ~ ) .  
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The  wave function of the particle can be expanded in the Fourier integral in the 
relativistic plane waves 

~b(r) - (2rr)a/2 (rip) ff)(p) d a p .  (28) 

Part icles are localized in the relativistic configurational space in a usual sense. 
The  posit ion opera tor  ~ in r - represen ta t ion  acts on a wave function in a usual way 

~b( r )  = r e ( r ) .  (29) 

The  eigenfunctions ~bro(r) of ~ corresponding to the eigenvalue r0 are @ro(r) = 
(r  - r0) so tha t  

~b.o (r) = rr .(r) (30) 

Eigenhmct ions  corresponding to different eigenvalues--i .e,  the s ta tes  localized at 
different points  r0 and Yo--are  or thogonal  

/ ~rog?odr  = 6 (r0 - r0) ,  (31) 

which is the usual localization condition in the new relativistic configurational 
space. 

3 R e l a t i v i s t i c  t w o - b o d y  p r o b l e m .  

In the relativistic configurational r -space no local addit ion theorem like (8) exists 
and we must  use the expansion (17). From this expansion the following "nonlocal" 
addit ion theorem follows [6] 

f(riPl) ( p 2 l r ) d n  = f(rIpl(-)p2) dn, (32) 

where q = P l ( - ) P 2  is a vector Pl  boosted into the Lorentz frame moving with the 

velocity v - p2c 
x /p  2 + ,m,2c 2 

q = P l ( - ) P 2 ,  

( p l ( - ) p 2 ) 0  = (coshx1 coshx2 - sinh X1 sinh X2 (np l .  np~)) . (33) 

Of  course for tile s tandard  plane waves the integral addit ion theorem like (32) 
is valid 

Jexp (ipl m' r) .exp (-ip. ml r) dn = /eip" -~- (34) 

The formula (34) becomes necessary if we wish to multiply not the exponents 
themselves but their partial expansions (19). We see that the integration over dn 
is necessary to restore the partial expansion 

" ( ) eipr = E il ( 2 / +  1) jl m2Pl  -- m, lp2 7~I Pz(np. n) (35) 
Z=0 
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in the right hand side of (34). But such angular averaging commutes with the 
Galilean Hamiltonians (spherically symmetric potentials) 

/ [~--~+ V(r)] ! b ( r ) d n =  [~-~ + V ( r ) ] / r  (36) 

Transferring to the relativistic two-body problem we must first note that hyper- 
boloids in the momentum space corresponding to different particles are different, 
see (1). This must be taken into account for example in (15): 

<rip,: ) = (coshxi - sinhxi (nv~. n)) -1-i'm~c/~ , i = 1, 2, (37) 

where '," is the (dimensional) analog of the relative distance between particles in the 
relativistic configurational space. 

(,-o) _~ Thus the free relativistic two body wave function ( ~ e ~ /  (t / can be chosen in a 
form 

eft ( r )  = - ~ -  P l  P2 -~- r . (38)  

It describes the free motion in the CM system, the relativistic free motion (see 
Sec. 2), and has the right non-relativistic limit. There are several possibilities to 
generalize for tile relativistic case the forlnula (34) but our choice is the simplest 
from the formal point of view and most transparent from the physical point of view. 
In explicit form 

r eft (r) = (cosh)~l - -  sinh X1 (nm" n))-l-i(rn2/M)(rrnlc/h)X 
(39) 

• (cosh X2 - sinh X2 (np2' n))-l+i(ml/U) (rrn2c/h). 

Now we apply the addition theorem (32) and obtain 

f ( - - ~ r  P l>  <P2 - ~ r > d n : / ( r l q ) d n ,  (40) 

where q is given by (33). Remarkable is that the mass entering the expression for 
the relativistic plane wave in the right hand side of (40) is the reduced mass p 

(r[q) = (cosh X q  - sinh X q  (nu'  n))- l - i"uc/n (41) 

We shall consider (41) as the free relativistic effective wave function describing 
the relative motion. In the presence of potential the 0~o)(r) is modified and we have 

q~) (r) = 1 J'(rlk)r dak" (42) 
(271")3/2 

Now we consider the arbitrary frame of reference. In absence of the external 
field the our 2-body system moves with the constant velocity. This allows us to 
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write the relativistic 2-body wave function in the form similar to the nonrelativistic 
case 

r ( g ,  k) = ~ (P - K) r (p) (43) 

and 

or 

r (~) 1 f = TRCefr (r) = TR (27r)3/------- ~ (rlk> r  = 

_ 1 f eiPR(r]k) r 
(27r)3/2 eft (44) 

r r) = 1 / (27r)a/------- 5 eiKReikrcg) (K, k ) d K  dgtk. (45) 

Now bilocal character of the 2-body wave function in contrast to the non- 
relativistic case becomes essential because the variables R, and r have the different 
nature. 
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