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SUMMARY

This study presents artificial neural network (ANN) methods in building energy use predictions.
Applications of the ANN methods in energy audits and energy savings predictions due to building retrofits
are emphasized. A generalized ANN model that can be applied to any building type with minor
modifications would be a very useful tool for building engineers. ANN methods offer faster learning time,
simplicity in analysis and adaptability to seasonal climate variations and changes in the building’s energy
use when compared to other statistical and simulation models. The model herein is presented for predicting
chiller plant energy use in tropical climates with small seasonal and daily variations. It was successfully
created based on both climatic and chiller data. The average absolute training error for the model was
9.7% while the testing error was 10.0%. This indicates that the model can successfully predict the
particular chiller energy consumption in a tropical climate. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Current statistics of energy use in different sectors show that the building sector uses
approximately 40 per cent of the world’s electricity. This electricity is used for heating, air
conditioning and ventilation (HVAC), lighting, operation of various equipment including
computers, processors and household related equipment, etc. However, power usage is often
inefficient with regard to the overall building operability. The main reasons for this inefficiency
are poor building envelope design, oversized HVAC equipment, inefficient HVAC and lighting
controls and maintenance related issues.

As fossil fuel based energy resources decrease and energy demand increases, better efficiency
of energy use and the search for alternative energy resources require immediate attention. Also
environment related concerns, such as ozone layer depletion and increase in the carbon dioxide
level in the air, necessitate a greater priority for this attention. This paper focuses on the
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efficiency aspects of building energy use. More specifically, the development of building energy
savings methods/models is emphasized. Measurements of the current energy consumption for a
particular building would serve as primary input for the methods/models in order to predict
future energy consumption. Such a prediction would be useful in several ways including:
building health monitoring and diagnostics, equipment controls, energy demand estimation by
utility companies, and energy savings predictions due to equipment retrofits or implementation
of an energy conservation measure (ECM).

A common practice amongst facility managements is a periodic review of total building
energy consumption or of a specific equipment performance. As a result of the energy
consumption reviews, certain ECMs are evaluated that would reduce the building’s energy use
while maintaining its efficiency. Typical ECMs evaluated in such studies are: building cooling
equipment and air distribution system evaluation and retrofits, building envelope, facility
management system (FMS) retrofits and lighting retrofits. The building energy analysis is done
under preliminary energy assessments (PEA) or Energy Feasibility Studies, sponsored by utility
companies or facility managements. Usually, the PEA is a simpler analysis based on
information gathered by walkthrough surveys and spot measurements. Yearly building
electricity consumption is estimated based on building schedule and seasonal diversities.

Moreover, Energy Feasibility Studies offer still more detailed analysis when compared to the
PEAs. This is so even when using the general assumptions and analysis methods similar to the
PEA. In addition to the data collected for the PEA analysis, a building simulation model is
developed and energy use is measured for longer periods of time. While the feasibility studies are
more effective when compared to the PEAs, they have several shortcomings in the analysis. To
begin with, the building simulation model may not reflect the actual building performance. The
main variables considered in the building simulation model are: building envelope, building
occupancy rate, lighting, HVAC equipment and ventilation rate. In practice, usually the exact
measurements for variables in the simulation models are not readily available. Instead, the best
estimates are applied to the model, and the variables are scaled or modified to match the
simulation results with the actual measurements. When there is an appearance that the
simulation results may agree with the measurements, still they may not reflect the correct ECM
savings. Secondly, linear regression methods are widely used to approximate the trends in the
measured data and often can be inaccurate. The developed linear regression models usually
present the approximations with a relatively high degree of error when compared to other
potential analysis methods such as artificial neural networks (ANN).

These aforementioned limitations, associated with the currently used energy assessment
methods, necessitate improved alternative tools/techniques. Artificial neural networks,
representing non-parametric techniques for achieving arbitrarily complex functional mappings,
are promising for wide applications in whole-building energy predictions; and that includes
ECM savings as well as FMS controls. Additional advantages of ANN methods over other
techniques, such as statistical and simulation methods, are their faster learning time, simplicity
in analysis and adaptability to changes in a building’s energy use.

2. ARTIFICIAL NEURAL NETWORK CONCEPT

The computational structure of ANN consists of an input layer, which accepts patterns from the
environment, an output layer that shows response with regard to the environmental variables,
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and hidden layers. The hidden layers which do not directly interact with the environment,
however, enact the primary function of relating the input to the output. These layers consist of
input weights, biases and transfer functions.

The neural network training process simply involves modification of weights until the
predicted output is in close agreement with the actual output. Defined relations between the
input layers, the hidden layers and the output layers determine a particular neural network
model. Three types of networks used most commonly in ANN applications are feedforward
networks, competitive networks and recurrent associative memory networks. Furthermore, each
network type may have different learning rules. The learning rules are described in broad
categories of supervised learning, unsupervised learning and reinforcement (or graded) learning
rules. Many studies on ANN theory have been published along with the development of the
ANN method. Zurada (1992) presents the theory of Neural Networks which can be followed by
readers with different technical trainings. A practical description of ANN methods with sample
applications is presented in Hagan et al. (1997).

3. ANN APPLICATIONS IN BUILDING INDUSTRY

The ANN has been investigated for its applicability in building energy predictions over the past
ten years (Ansett and Kreider, 1993; Curtiss et al., 1993; Cohen and Krarti, 1995; Kreider et al.,
1995; Haberl and Thamilseran, 1996; Breekweg et al., 2000). Various neural network
architectures have been applied in energy predictions. They include backpropagation, recurrent
neural networks, autoassociative neural networks and general regression neural network
demonstrating relatively successful results having coefficient of variations in the range of 2–40%
(Ansett and Kreider, 1993; Curtiss et al., 1993; Cohen and Krarti, 1995; Kreider et al., 1995;
Haberl and Thamilseran, 1996; Breekweg et al., 2000). These variations in the accuracy of the
predictions depend mostly on the ANN architecture used, the regularity of the building
operation and the accuracy of data measurement devices.

More specifically, in a study by Ansett and Kreider (1993), building utility measurement data
from a university campus centre, including electricity, natural gas, water and steam use, were
modelled. The study considered weather, building occupancy and activity as the independent
variables. Backpropagation architecture was used in this effort. The main focus was on testing
different training methods, layering and data input order. The study presented encouraging
potential for the application of neural networks in building energy modelling. The study also
stated the need for future investigation in selecting more accurate and effective learning
algorithms.

Curtiss et al. (1993) used ANN to optimize energy consumption on an HVAC system. In this
approach, the weather and building occupancy were considered as independent variables, and
the HVAC system setpoints such as mixed air temperature, chilled water temperature, duct
static pressure and chilled water flow rate were considered as dependent variables. Optimum
setpoints were identified by varying the dependent variables that would yield the minimum
electricity consumption. The building data were generated by using an HVAC Laboratory. The
results of this study showed the need to apply the model to larger sized buildings with actual
building measurement data, in order to validate the ANN method’s efficiency.

Cohen and Krarti (1995) used energy consumption data generated from the DOE-2.1E
Building Energy Analysis Program as input to the ANN model developed. The model was based
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on multi-layered feedforward networks. This study mentioned the potential use of ANN
methods in building energy savings estimates and recommended that future ANN modelling
studies be done based on ‘real’ building measurement data.

Kreider et al. (1995) investigated the prediction of future building energy consumption and
system identification without the knowledge of immediate past energy consumption. Recurrent
neural networks were used in the modelling. According to the authors, the recurrent networks
offer an accurate method for predicting hourly energy use well into the future for thermal end
uses when only weather data are known. During network training, actual measured data from a
few past hours were used as input to the model. However, during the prediction period, the
network’s own outputs were cycled back into the inputs. The building energy data for this model
were also generated from the DOE-2.1E Building Energy Analysis Program. Although the error
rate was relatively higher in this method when compared to, for example, the backpropagation
method, it was still presented as an applicable method in predicting the future building energy
use for retrofit energy savings estimation purposes. This study also stated the need for future
study based on ‘real’ building measurement data.

As part of an energy predictor competition titled ‘Great Energy Predictor Shootout’, Chonan
et al. (1996) applied Bayesian neural network for estimating building energy use. In this method,
the known relationship between the input variables and output was used in combination with
the neural network training. Jang et al. (1996) used an auto-associative neural network in
predicting missing building input–output data based on feedforward network identity mapping.
This method is effectively used when the building data have been available for some periods of
time and missing for other periods of time. The noise filter capabilities of auto-associative neural
networks proved to be effective in preprocessing the model data.

In another study, Curtiss (1996) described the use of neural networks in continuous control of
feedback loops in an HVAC system and overall building energy use prediction. In this method, the
input and output training data set were updated with new input data and a neural network output
prediction from one previous time segment. The training data set was renewed with the latest
building information and kept current for the near future predictions. Additionally, in this study,
Curtiss used the neural network control algorithm along with the traditional PI control algorithm
to develop the optimum control parameters and enhance control capabilities of both methods.

Breekweg et al. (2000) evaluated a number of ANN techniques in the development of a
generalized method for building energy-related fault detection. Real-time data from four
different buildings and simulation data from one building were modelled based on normalized
radial basis function (RBF), specifically the general regression neural network (GRNN) as the
normalized RBF was used. The coefficient of variation was higher, in the range of 20–40% for
most buildings, except two buildings, which were in the range of 4–8%. The large deviations in
the results were attributed to the quality of data measurement, building operation consistency
and minimization of the noise elements in the data set. This study also reported the necessity to
test the developed ANN model with energy data from different buildings in order to ensure the
generalizing capacity of the model.

Additionally, a literature search was conducted for building energy use prediction models
developed for tropical climates. However, to the authors’ knowledge, no specific study was
found on the topic.

Artificial neural networks have successfully passed the research stages and found real time
applications in many technologies including aerospace, defense, automotive, manufacturing
process controls, etc. However, such research development and acceptance of ANN as a useful
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tool in the building and utility sector has not been accepted yet. This is mainly because (1) there
is an absence of building automation systems, (2) there is high cost associated with installation
of continuous measurement devices, (3) buildings have a longer life period, which limits the
prompt adaptation of new technologies. Since the current concerns with decreasing energy
resources and a better commitment to have healthy building environments are becoming more
and more a priority, the development of building technology for optimum energy performance
is unavoidable.

The up to date research studies on the ANN applications in building energy predictions have
shown promising results; yet further research is needed to address several issues:

(i) determining the most suitable ANN architecture in building energy use applications;
(ii) developing methods to deal with noise in the data;
(iii) developing generalized ANN architectures which can be applied for energy predictions

of different building types with minimum modifications in the ANN structure;
(iv) targeting the coefficient of variations as low as 5% with consistency;
(v) identifying new applications in the HVAC field such as controls.

In addition, the ANN models in the work cited here have used building energy data from
building simulation, laboratory experiments and actual building measurement data. While for
the sake of simplicity the simulation data in the initial ANN modelling stages are useful, it is
essential to use actual building data during the later development stages to account for the
possible imperfections in the measured data. Also, the actual building data are the best indicator
of the building features, operation and equipment efficiency. However, as mentioned earlier, the
noise in the measurement data also has to be dealt with when employing actual measurements in
the ANN modelling. Therefore, repeated building data measurements from different buildings
should be used in developing the ANN model.

4. AN ANN BUILDING CASE STUDY FOR TROPICAL CLIMATES

A 42 storey commercial building with approximately 41 800m2 space in downtown Honolulu,
Hawaii was selected for a case study for ANN building energy prediction. The basement housed
the chiller room, a mechanical pump room, building maintenance offices, and a parking garage.
The plaza level first floor and second floor contained the entry lobby restaurants and retail
offices, and additional parking garages. Parking garage spaces took up 5–12 floors. The 14th
floor and the upper levels of the building are separated into two towers: an office tower and a
residential condominium tower. The 14th floor also contains a recreational deck with a
residential lounge and a pool. The cooling towers, exhaust fans and some other mechanical
elevator equipment are located on the roof of the residential tower. The building is air
conditioned by a central chilled water plant consisting of three chillers with a total 1250 ton
capacity. Air conditioning in the office tower is provided for 13–15 h during the day, and air
conditioning for the residential tower is provided 24 h a day which is controlled by thermostats
in each residential unit. Floor air handlers circulate the conditioned air through variable air
volume (VAV) terminal units.

This multiple utility building requires the building equipment to operate ‘24/7’ and has a
building automation system (BAS). The chiller electricity use, chilled water flow rate, chilled
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water supply and return temperatures and air handling unit electricity use is monitored
continuously. For this study, which was done over a period of three weeks, the hourly chilled
water flow rate, chilled water supply and return temperatures, building occupancy rate, and
hourly local climate data were used in predicting the total chiller power by the ANN method.

This particular building presented two unique considerations. Firstly, it is located in the
tropical climate of Honolulu, Hawaii where variations between the day and night, and summer
and winter are minimal. In summer, the maximum dry bulb temperature average for Honolulu
is 31.18C and the minimum dry bulb temperature average is 24.48C. The average wet bulb
temperature is 22.88C. In winter, the maximum dry bulb temperature average is 27.28C and the
minimum dry bulb temperature average is 19.58C. The average wet bulb temperature is 18.98C.
Average wind velocity in both summer and winter is relatively consistent at 10mph. In this
climate, air conditioning is required during the day, through the whole year and during the
night, most of the time.

Secondly, the building houses a variety of functions including office, residential, restaurants
and recreation. All of these have different air conditioning requirements and schedules, while
energy use throughout the day and night is continuous. The small variations in the seasonal
weather conditions and continuous building use presents consistent data for the ANN analysis
and this in turn gives a better prediction capacity for the developed ANN energy model.

5. ANN MODEL INPUT AND OUTPUT DATA

In this study, the power consumption of the central chiller plant, including the chillers, cooling
tower and pumps, was modelled based on the ANN method. The data used in the model cover
the time period from 4 April 2001 to 16 April 2001. Figure 1 shows the chiller plant power
consumption trend for this time period. Independent input variables mainly consisted of climate
data, and the model output was the chiller plant power consumption. Hourly climate data were
obtained from the National Climate Data Center for April 2001. The climate data variables
considered were specifically: dry bulb temperature, wet bulb temperature, dew point
temperature, relative humidity percentage, wind speed and wind direction. Table I lists the
input and output variables used in the model construction. Unlike the weather data, the data for
hourly power consumption of the chiller plant were not available for every hour of the 24 h a
day. Therefore, a matching of the weather and chiller power data produced a total of 121 data
sets to be used for the model creation. This was less than the total number of possible
combinations of 312 for 13 days.

6. MODEL DEVELOPMENT

ANNs contain layers of processing elements. Training of the ANN model is carried out by
feeding normalized data (all input quantities are compressed to a common scale of 0.1 and 0.9)
to the leftmost input layer neurons as shown in Figure 2 when a backpropagation (BP)
algorithm is employed. Normalization of input data is accomplished via the following formula

xi ¼ 0:1þ 0:9 ðxi � xmini Þ=ðxmaxi � xmini Þ ð1Þ
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where xi is the normalized measurement, xmini the minimum of input parameter i and xmaxi the
maximum of input parameter i.

The input quantities are then passed on to the neighbouring hidden layer after applica-
tion of a weight. A hidden layer totals up the weighted input received from each input
neuron, associates it with a bias and then passes the result through a nonlinear transfer
function (Figure 3). The final output layer collects all the quantities that were compressed
through the activation function. The activation function used in this study was sigmoid func-
tion (Munakata, 1998). The purpose of a backpropagation algorithm is to minimize error,
and to compute its associated optimal weight matrix. Error minimization process is explained
in detail in Zurada (1992). At the beginning, all weights were assigned random values

Total Chiller Power Consumption, 4/04/2001, 4/16/2001 
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Figure 1. Total chiller plant power consumption from 4 April 2001 to 16 April 2001.

Table I. The data used in ANN model construction.

ANN model data

Variable Input Output

Time (hour) X
Dry bulb temperature X
Wet bulb temperature X
Dew point temperature X
Relative humidity X
Wind speed X
Wind direction X
Total building power consumption X
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between �1 and 1. As the iteration continued, the weights were updated to approach their
optimal values.

7. MODEL CONSTRUCTION, APPLICATION AND RESULTS

In this study, the common three layer-feedforward type of ANN was used. The input layer,
hidden layer and the output layer contained 7, 6 and 1 neurons, respectively. Neurons in each
layer are completely connected to each neuron in the neighbouring layer. No bias or momentum
term was used in the generation of the model. The original data were composed of 121 sets each
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Figure 2. The ANN model architecture used in this study.

Figure 3. Activation function, f(net), compresses summed data.
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with 7 input parameters ðx1; x2; x3; . . . ;x7Þ; and 1 output parameter (y). The input quantities and
their ranges are given in Table II. The data were first split into two parts to use for training (80
sets) and testing (41 sets) of the model. 2000 iterations were performed in this study to train the
model. As shown in Figure 4, the resulting average absolute percent training error was 9.7% for
the output variable of the total central plant power. The next stage of modelling involved
testing, during which 41 measured data sets were fed to the optimized model to produce the
model output for comparison to the physically measured data. The results indicated that the
average testing errors were 10.0% for the total chiller power. The model was, therefore,
successfully created, and was able to closely agree with the actual measured data (Figure 5).
Parameters like the model architecture, the number of hidden layer neurons, the type of
activation function and the scaling interval were selected as specified above after several trials
with other parameter combinations. In most studies in the literature, the number of hidden layer
neurons is about the same as the number of input layer neurons (Zurada, 1992; Munakata,
1998). In this study, a computer program that utilizes the ANN BP algorithm was written, and
run in Matlab on a PC.

Table II. The data used in ANN model construction.

Data used in model building

Code Variable Minimum Average Maximum

x1 Time (53min after the hour) 1 12.69 24
x2 Dry bulb temperature (8C) 21.1 24.22 28.3
x3 Wet bulb temperature (8C) 19.3 20.75 22.6
x4 Dew point temperature (8C) 17.2 18.87 20
x5 Relative humidity (%) 56 72.82 90
x6 Wind speed 0 10.89 22
x7 Wind direction 0 66.36 360
y Total chiller plant power (kW) 126.49 257.47 450.94

y = 0.876x + 32.268

R2 = 0.876
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Figure 4. ANN model training results.
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8. DISCUSSION

The ANN model developed in this study processes data from two main origins: climate and
HVAC system. Therefore, with the help of this model, we are able to predict the chiller plant
power consumption as a function of meteorological parameters like the wind speed, wind
direction, dry bulb and wet bulb temperatures and relative humidity. Air conditioning processes
are controlled within narrow parameter ranges in Hawaii because the annual climate variation is
narrow. Hence, the data range employed in this model construction was narrow. This has
resulted in a model that can predict within a narrow range. The unique climate consistency in
Hawaii indicates that there is a greater chance that the ANN methods can be successfully
implemented in building energy predictions.

9. CONCLUSIONS

ANNs are useful tools for building energy analysis. Once an accurate ANN model is developed,
a building engineer can easily apply this method to predict and evaluate a particular building
energy performance without needing detailed knowledge of the ANN method. However, a
generalized ANN method that can be used for building energy predictions with maximum
success has yet to be developed. Additional factors such as data noise elimination, identification
of the most suitable ANN architecture for a particular application, achieving lower coefficient of
variations with consistency, have to be addressed before there can be full acceptance of the
ANN methods in the building industry. A three-layer ANN model was developed as a case
study for the prediction of total building chiller plant power consumption in a multipurpose
high rise building. The satisfactory predictions of the observed chiller power by the model
showed that ANN could be a very useful tool for the modelling of HVAC systems. The model
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Figure 5. ANN model testing results.
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lends itself to use by HVAC engineers as a guide for the conditions that give the lowest possible
load when a sensitivity analysis is performed for the effects of the factors.
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