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Abstract

We introduce a symmetry principle that forbids a bulk cosmological constant in six and ten dimensions. Then the symmetry
is extended in six dimensions so that it insures absence of 4-dimensional cosmological constant induced by the six-dimensional
curvature scalar, at least, for a class of metrics. A small cosmological constant may be induced in this scheme by breaking of
the symmetry by a small amount.

0 2005 Elsevier B.V. All rights reserved.

Cosmological constant problem is a long standing problEmThe problem can be stated as the huge dis-
crepancy between the observational and the theoretically expected values of the cosmological[@prastdrihe
lack of understanding of its extremely small val@. Numerous schemes, to solve this problem, range from the
models which employ supersymmetry, supergravity, superstrings, anthropic principles, modified general relativity,
self-tuning mechanisms, quantum cosmology, extra dimensions, and combinations of thegedd@ag\lthough
they shed some light on the direction of the solution of this problem, they have not given a wholly satisfactory,
widely accepted answer to this question. Among these attempts extra-dimensional models become more populat
because they give model builders more flexibi[thy-7]. This is mainly due to the fact the no-go theorem of Wein-
berg[2] is intrinsically four-dimensional; for example, the equations of motion for a field constant in 4 dimensions
may contain a contribution from extra-dimensional kinetic term in the Lagrangian hence making the Weinberg’s
argument non-applicable in higher dimensions. Moreover, the models where a four-dimensional space is embeddec
in a higher-dimensional space may have striking differences. For example, four-dimensional world may be embed-
ded in extra dimensions in such a way that the 4-dimensional brane remains flat under energy density changes
on the brane through the counter balance of the curvature due to the extra dimensions and the brarjé]tension
However, these models, although appealing, at present have some technical problems such as need for large extr
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dimensions which may be in conflict with astronomical data, fine tuning, technicalities with quantum loop cor-
rections, severe restrictions on dilaton—brane coupli@psSo, additional insight on the cosmological constant in
extra dimensions may be useful. In this Letter we study the implications of a symmetry, similar to scale invariance
with a complex scale factor, on the cosmological constant. In fact, it seems that such a symmetry principle was
also noticed by 't Hooft (though unpublishd@]. We find that this symmetry forbids a non-zero bulk cosmological
constantin 6 and 10 dimensions. We consider the 6-dimensional case in this Letter. We extend the symmetry so that
the contribution to the cosmological constant due to the extra-dimensional curvature scalar vanishes as well. We
find that breaking of the symmetry by a small amount may result in a small cosmological constant in this scheme.
We also briefly discuss the restriction put on the form of matter Lagrangian by this symmetry.

Consider the transformation which multiplies the coordinates by the imaginary number

xa—ixs, A=01...,D-1, Q)

where D stands for the dimension of the space. This transformation may be viewed as an analytic continuation
followed by a rotation byr/2 in each complex plane. We impose the symmetry

8AB —> gAB aSxs —>ixs, A=0,1,...,D—-1 (2)

Under Eq.(2) the scalar curvature is multiplied byl

R — —R, 3)
and
dPx — dPx if D=4n, (4)
— —dPx it D=22n+1), (5)
— +idPx FD=2n+1, (6)
n=0,1,23,....

The requirement that Einstein—Hilbert action

1
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should be invariant und€R) selects out

D=221+1), n=0,123,.... 8)

In fact, in the case of exact symmetry the action should be invariant up to a multiplicative constant because the
equations of motion remain the same. However, if the symmetry is broken (even by a small amount which is the
physical situation) then the part of the action respecting the symmetry must be strictly invariant since each constant
multiplying the symmetry preserving part of the action leads to a different equation of motion in general after
taking the symmetry breaking part into account. Another point worthwhile to mention is that unde) Eq.

ds®> — —ds°. 9)

This implies a symmetry under exchange of space-like and time-like intervals. The implications of this transfor-
mation need a separate study.
We notice from Eqs(3) and (5)that the cosmological constant term for the action
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(where A is constant inx4, A=0,1,..., D — 1) is not allowed by the symmetry induced by Ed) for D’s
satisfying(8). Under the requiremend > 4 and D < 10 (which comes from string theory) the only possible
dimensions allowed by the symmetry induced(Byare 6 and 10.

In this Letter we study the minimal case, i.6.~= 6 case. It is evident that af% term is not allowed inD = 4.
On the other hand, a cosmological constant term,(E@), is allowed in 4 dimensions. In other words, although
the invariance of the action undé€?) forbids a six-dimensional cosmological constant it does not forbid a 4-
dimensional one. So a 4-dimensional cosmological constant may be induced through the six-dimensional curvature
scalar even if there is no contribution to it through a six-dimensional bulk cosmological constardirhensional
curvature scalarlp > 4) may be written as

R=Ri(xy, xq) + Ro(xy), ©=0123 a=45,...,D-1, (12)

where R; is the part of the curvature scalar which is independent,ofi.e., R> depends only on the extra di-
mensions) an; is the part which contains,-dependent and the mixed terms. A non-vanishiagn general
introduces a cosmological constant in 4 dimensions. So one must impose a symmetry which eliRyiratesl|
in order to make the 4-dimensional cosmological constant zero altogether.

The local 4-dimensional Poincaré invariance in six dimensions results in the fi€fric

ds® = a(x“)g,w dx*dx’ + gab(x”) dx®dx?, uwv=0,123, a,b=4>5. (12)

In addition to the symmetr{2) we require

8AB — 8AB ASX4 <> X5 (13)
and take
844 = —gs55 (14)

(which may be obtained by imposing, dx¢ dx? — gu» dx? dx” under Eq.(2)). Under these requirements we
find that the extra-dimensional components of the Riemann tensor areRzgre, 0, and its 4-dimensional part

R, depends only on the 4-dimensional coordinatés So R>(x“) = 0 in this case. In other words the local
4-dimensional Poincaré invariance together with the requirements(E2jsand (14)guarantee the absence of a
contribution from 6-dimensional curvature scalar to the 4-dimensional cosmological constant.

We have introduced the symmet(g) to eliminate the 6-dimensional bulk cosmological constant and the
symmetry(13) and (14)) to eliminate a possible contribution to the 4-dimensional cosmological constant from
6-dimensional curvature scalar. Now we give some examples first to see the picture more clearly and then consider
the case of the symmetry breaking by a small amount. First take the metric

ds? = Q2(y)guw(x) dx" dx" + 22(y)nap dy* dy®,  (nap) = diag—1, 1),
w,v=0,1,23, a,b=1,2, yi=xa4, y2=uxs, (15)

wherex stands for the 4-dimensional coordinates anfdr the extra-dimensional coordinates. Provided that the
metric tensor is a smooth function ofthe curvature scalar corresponding 1) is

R = 2728 Ry, — £272[107%0,05(In 21) + 2003, (In 21)9$21]
+ 292_2[77“b3a3b(|n 21) — 19,9, (In 22)].

Let us consider the case where

21 = 21(kyy1 + k2y2), 22 = Q22(kayr + kay2), y1=xa, Yy2=u1xs. (16)
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Then the curvature scalar is obtained as

d?(In 2 din21\?
R= 272" Ryy — 272 (k2 — k2) [10% - 20(—1) }

g duq
d?(In £27) d?(In £27)
—i—Z.Q_2 K2 — k2 2052 (k2 — k2 _
- -2 ()
u1=kiyr +koys, u2=kayr+kays. (17)

Becausé, ko are projected out byy, 92 they transform unde(l) like 91, d2; respectively,
k, — —ik, asx, —ix,;, a=1, 2. (18)

So,k1y1 + k2y2 is automatically invariant und€f) hences21, £2, automatically obey?2). The application of the
requirement, Eq(13)to £21 and£22 results in

k1= ko, k3 =ka. (19)

So the extra-dimensional contribution to the curvature scalarRién (11)vanishes. In other words, the symmetry

(13) and(14) requires the contribution to the cosmological constant from the extra-dimensional curvature scalar
be zero as well. The metric given {@6) is a smooth function of4, xs. So the form of metric and the fact one of

the extra dimensions is space-like and the other is spac§tiifdrings the over-all factors da‘f(g) — k§(4), which

vanish in the limit of the symmetr{l14) to make the curvature scalar zero. However, if the metric tensor is not a
smooth function ok 4 thenR2 does not havéf 3 — k% 4 as over-all factors, howevek; is still zero. To be more
specific we consider a metric of the form(@b) and (16)with

22 = Cos(|kay1| + lkay2l), 25=0, yi=xa, y»=axs, (20)

where aZ, x Z, orbifold symmetry induced by1y1 — —k1y1, koy2 — —k2y2, to get the absolute value signs in
(20) and two branes located at the poikis1 = 0, koy> = 0, k1y1 = 7, koy2 = . By using Eq(17) we obtain the
curvature scalar as

1
R=
Cog|k1y1| + lk2y2))

[¢"" Ry + 10kZ tanu §; — 10k3 tanu 52 + 5(kZ — k3)],  u = lkiyal + lk2y2l,
(21)

whered; = 8§ (kiy1) — 8(kayr — ), 82 = 8(kay2) — 8(kayz2 — 7), andg"V R, depends only on,,. Each delta
function defines a 5-dimensional subspace and the intersections of these 5-dimensional subspaces define four 3
branes which consist of two pairs of 3-branes related by the reversal of their signatures. We seedilatto
Eq.(21)is zeroin this case as well whépn= k; (i.e., when the symmetry in E(L4)is exact) aftelr is integrated
overys andy,.

One must break this symmetry by a small amount in order to get a small cosmological constant in agreement
with observations. First we consider the mei{{20). Assume that the symmetry imposed (@) is broken for
the metric(20) by a small amounk; — k2 = A. Then the 4-dimensional cosmological constant induce&-bis
approximately equal to

2k1A S5mk1A
5CoSudydys = . 22
16nG/ WAL= 4o (22)
We notice that the induced cosmological constant
20k12A
A® AT 2 (23)

|k1|?
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will be even closer to zero 1 ~ k» is large and the smallness of the cosmological constant is protected by the
symmetry. We have shown that the breaking of the symmetry for the n{g@i)deads to a small cosmological
constant provided the symmetry is broken by a small amount. In other words, a small breaking of the symmetry
does not lead to a big cosmological constant. Now we get a more general conclusion for the more general class
of metrics(12). The Einstein equations corresponding to a conformally transformed nmﬁggv relate to the

Einstein equations corresponding to the original metric in six dimensions as

Gap=Gap+455858,In23,In2 — 3,8, In2) + gap (613, I 2 8, In 2 + 4% 3,8, In 2), (24)

WhereGAB = RAB — %gABR is the Einstein tensor correspondinggtp = -ngAB andG g = Rap — %gAB is
the Einstein tensor correspondinggt®g. The terms containingg on the right-hand side ¢24) may be identified
as the terms corresponding to the energy—momentum tensor induced by the conformal transformation. Meanwhile,
we observe that Dirac delta function can be written as
lim o[1-tanif(az)] =8(2), (25)

a—>00

which follows from the fact that the derivative of step function gives the Dirac delta function. If we &t=n
BInCoshx(y1 — yo) then the non-vanishing terms in E@4) give

1NN - %% and 3101In2 — BS(y1 — yo1) asa — oo. (26)

A small 8 corresponds to the breaking of the symmetry by a small amount. If westake2, wheree « 1 then
a small perturbation in energy—momentum distribution leads to an even smaller bulk cosmological constant and
results in an over-all rescaling of the metric 2y

The restriction put on the form of the matter Lagrangian by the symmetr{2fEgan be determined by requiring
the invariance of the corresponding action which requires the Lagrafigieansform asC — (—i)? L. Then the
transformation rule for the scalar field follows as

%g”amaw — (=i)P %g“ww impliesg — (—i)"Z" ¢. (27)

The mass termym?¢? is compatible with this symmetry sinee? — —m? (which follows from p? = m?). How-

ever, ap* term is not compatible with this symmetry (unleBs= 4). So this symmetry implies thgt* terms may

be induced only on 4-dimensional branes. This together with the zero (or almost zero) value of cosmological con-
stant requires a two branes (or even number of branes) scenario, ghterens are induced at both of the branes
simultaneously and their contribution cancel (or almost cancel) after integrated out over the extra dimensions. The
transformation rule for fermions follows as

iy Aoy — (—)Pivytoay  impliesy — (—i) 7 . (28)
The mass termnyy, the fermion—scalar interaction term and the fermion—gauge boson interaction term
ivyA By, all are compatible with the symmetry, while

- ., 3D-4

VYé — (—i) 2 (29)

is compatible with the symmetry only fdp = 4. So this term may only be induced on a 4-dimensional brane.
Becauseé4, and B, are combined in the covariant derivatitig — i B4, B4 must transform in the same way &s.
This implies that the gauge field kinetic teray F p FA5

FacFA€ = (3aBc — 3cBa)(3* B — 3 B*) — (—i)P Fac FA€ (30)

is also compatible with the symmetry.
A comment is in order at this point. We have found in the above paragraph that the mass terms are allowed
in all dimensions unlike the usual scale invariant field theories and the result of Nobbgjhalihough he uses
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the same symmetry as the one given here. The difference between the conclusions come from the difference in
the identification of how mass terms behave under the scaling transformation. In the usual scale invariance and
in the Nobbenhuis’s studf@] masses are taken to be invariant under the symmetry transformation while in this
study the masses transform like momentd € m?). In fact, the approach in the present study is in agreement
with the identification of mass terms as the kinetic terms of the higher dimensions and under this condition this
is the only consistent transformation provided that one scales all the dimensions simultaneously. Otherwise, it
means that either one does not scale all the dimensions or does not consider the mass terms as the kinetic term
of higher dimensions. In fact, the difference in the approach to the scaling property of mass term is just a matter
of convenience. It depends on one’s aim of using the scale invariance. If one just tries to get phenomenological
results confined to relatively low energies where the extra dimensions related to the masses are not observable
one should take the masses be invariant under scale transformation. However, if one tries to get general results
applicable to all dimensions (as is the case in this study) one should transform the mass terms like momenta
because it is just the kinetic term written in another form in this case. Another difference between the result of
Nobbenhuis and mine is that he reaches the conclusion that the cosmological constant must vanish in the usua
four dimensionsD = 4, while | obtain the same result fd» = 2(2n + 1), i.e., D = 2, 6, 10. This difference is

due to different methods employed in the implementation of the symmetry. Nobbenhuis uses the covariance of
the equations of motion (i.e., Einstein field equations) under the symmetry employed in this Letter while | use the
invariance of the action functional under the same symmetry as the basis of my arguments. The requirement, of
the covariance of the Einstein equations, used in Nobbenhuis’s study leads to the result that the Einstein tensor
and cosmological constant cannot coexist, either of them must vanish. This method does not tell anything about
the allowed number of dimensions. The conclusion of Nobbenhuis depends on the assumption that the Einstein
tensor is already allowed in four dimensions, so the cosmological constant must vanish. On the other hand, the
requirement of the invariance of the action, used in the present study, does not only give the result that both of
the cosmological constant and the Einstein tensor cannot coexist but it also leads to the formula for the num-
ber of dimensionsp =2(2n + 1) = 2,6, 10, ..., which forbid a non-vanishing cosmological constant. In other
words, in our analysis the Ricci scalar cannot be four-dimensional in origin, it must be induced, as an effec-
tive four-dimensional Ricci scalar, from higher dimensions (e.g., from a 6-dimensional Ricci scalar) so that it
has some hidden invariance under the symmetry (through the extra-dimensional parameters which are integratec
out).

Given the fact that the symmetry employed here is a sub-case of the complexified version of the scale invariance
(hence, of the conformal invariance) and the fact that there are some serious problems with the quantization of the
classical field theories with conformal invariand®] (especially in dimensions other than two) one may wonder
if a similar problem exists for this symmetry, that is, if the symmetry introduced in this Letter is preserved after
quantization. It is a well-known fact that the lack of persistence of the scale invariance in quantum field theory
results from the non-invariance of the correlation functions (gpint functions) under scale invariance. This
non-invariance results in the nonconservation of the Noether current due to the breakdown of the scale symmetry
after the quantization. This, in turn, induces conformal anomalies which are rather difficult to manage (especially
in dimensions other than two). This situation is improved in the case of the symmetry introduced in this Letter.
As it is evident from Eqs(27), (28), (30)the 2-point functions (which serve as the building blocks#gvoint
functions) scale as—i)P?~2 for scalars and gauge fields and scalé-as 21 for fermions. Therefore, the 2-point
functions are invariant under this symmetry in the dimensibns 2 = 4n (D = 4n + 2) for scalars and gauge
fields and inD — 1 =4n (D = 4n + 1) for fermions (where: =0, 1, 2,...). Hence one may speculate models
where the renormalizability of the model for scalars—gauge fields and fermions is manifest at different dimensions
higher than four (e.g., say, & = 11 or D = 7 for fermions and aD = 10 or D = 6 for scalars and gauge fields)
and at lower dimensions the theory behaves as an effective theory with a (in some sense) hidden symmetry. For
the time being, these remarks are just speculations. A detailed study of this topic is necessary to arrive reliable
conclusions about this point. In any case, with respect to quantization, this symmetry seems to be more promising
than the usual scale symmetry.
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| hope that this study will give additional insight towards the solution of the cosmological constant problem.
However, there is more work to be done in this direction. The metric employed here is static so the cosmological
constant is constant in time. The need for inflation in the history of the universe needs a much larger value for
the cosmological constant in the early universe. So, the next step should be making the metric time-dependent
to get a time-dependent cosmological constant. The self-tuning solutions with large extra dimensions discussed
in the introduction[8] need smaller sizes for the extra dimensions in the inflationary universe era to get larger
cosmological constants in that era. On the other hand, the extra dimensions here may be small or large. Moreover,
the extra dimensions in the inflationary era may be larger or smaller than their present values. For example, a term
of kot in the argument of the conformal term Gomay break the symmetry thus induce a cosmological constant.
The induced cosmological term would depend on the phase fegittience it may be different at different times
independent of the size of the extra dimensions. Another point, which needs further study, is the source of this
symmetry and its breaking mechanisms both in a physical and a mathematical content. | hope the investigation of
all these and other interesting unanticipated aspects of this symmetry give fruitful results.
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