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Abstract

In this study, water vapor adsorption properties of the clinoptilolite rich zeolite tuff, from Bigadic (Turkey), and its modified

forms were examined. The modified forms were obtained by treating the tuff with HCl solutions (0.032, 0.16, 0.32, 1.6 or 5 M)

at 25, 40, 75 and 100 �C for 3 h. Infrared spectroscopy and water vapor adsorption were used for the characterization of the zeolites.

Langmuir, BET and Dubinin–Raduschevich methods were applied in the analysis of water vapor adsorption data. Applications of

Dubinin Raduschevich equation to the water adsorption data displayed that the super-micropore volume was not very sensitive to

acid treatment. It was found out that the Langmuir surface area and ultra-micropore volume depend on the degree of the removal of

aluminum from the structure.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Zeolites are crystalline, hydrated alumina silicates of

group 1 and 2 elements, consisting of SiO4 and AlO4 tet-

rahedra linked by oxygen atoms to compose the frame-

work. In the zeolite framework, each aluminum atom

introduces one negative charge on the framework which

must be balanced by an exchangeable cation (Ca2+,

Mg2+, Na+, K+, etc.). The exchangeable cations located

within the framework play a crucial role in adsorption
and thermal properties of the zeolites. Clinoptilolite,

one of the most commonly observed natural zeolite min-

eral, is a member of the heulandite group [1]. Its frame-

work structure consists of three channels. The channel A

and B, 10-member and 8-member rings, respectively; are

parallel to each other while the channel C, 8-member
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ring, intersects the channel A and B. Strong specific

interaction of the cationic sites with water vapor, due
to high dipole moment of the water leads to selective

adsorption of water by the zeolites. Based on this strong

water–clinoptilolite interactions, several processes with

different applications of water adsorption could be men-

tioned such as air drying [2,3], corn drying [4,5], energy

storage [6,7], hydrocarbon drying [8] applications. In

separation (gas or liquid) technology, the existence of

water hinders the adsorption of the others since it is
selectively adsorbed by various adsorbents, especially

by the zeolites. On the other hand the presence of water

determines the product obtained in catalytic reactions

[9,10].

Adsorption of small water molecule (molecular diam-

eter: 2.66 Å) is also used to obtain information regard-

ing the impurities in natural zeolite tuff [11] and

characterize the microporous adsorbents such as micro-
porous carbon and zeolite. The water vapor adsorption

on cation exchanged natural zeolite [12,13], HZSM-5

[14] and carbon [15] have been studied in the analysis
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of the interaction mechanism between water and ener-

getically heterogeneous surface.

The treatment of the natural zeolitic tuff with HCl

causes the dealumination (hydrolysis of Al–O–Si bonds)

besides of the exchange of the cations by hydronium

ions (H3O
+). The study [16] of water vapor adsorption

on dealuminated fuajasite showed that the change in

the shape of the adsorption isotherm and the existence

of correlation between the micropore volume accessible

to water and the framework Si/Al ratio. Similarly, Sano

et al. [17] obtained linear relationship between the num-

ber of framework aluminum of ZSM-5 zeolite and

limiting pore volume estimated by water vapor adsorp-

tion. In both studies, the water molecule was used as
probe molecule for understanding the dealumination de-

gree. In the study presented hereby the aim was to pre-

pare the HCl treated forms of the natural zeolitic tuff

and investigate the effect of the HCl treatment parame-

ters (temperature and concentration) on the water vapor

adsorption properties of natural zeolite.
2. Experimental

The natural zeolitic tuff used in this study originated

from the deposite in Bigadiç, Turkey. The major impu-

rity in the tuff was quartz. The tuff was crushed and

sieved to obtain 4–5 mm fractions, washed with distilled

water at 25 �C to remove the water soluble impurities.

This washed zeolite (CLI) was dried in a vacuum oven
at 180 �C and used to prepare the acid treated forms.

The chemical composition of CLI was (in oxide wt%):

SiO2, 71.75; Al2O3, 10.91; Fe2O3, 0.54; MgO, 1.08;
Table 1

Chemical composition of the acid (HCl) treated zeolites used in this study

HCl treatment conditions %Al2O3 %Fe2O3

Concentration (M) Temperature (�C)

0.032 25 10.81 0.54

40 10.70 0.54

75 10.70 0.54

0.16 25 10.57 0.53

40 10.22 0.54

75 10.28 0.52

100 9.13 0.48

0.32 25 10.43 0.53

40 9.88 0.53

75 8.72 0.48

1.6 25 10.00 0.53

40 9.58 0.52

75 8.02 0.30

100 6.41 0.26

5 25 9.68 0.51

40 9.58 0.50

75 4.68 0.31

100 2.58 0.05
CaO, 2.3; Na2O, 1.19; K2O, 4.3; TiO, 0.17; MnO,

0.0008 and H2O, 7.77. This result showed that with an

Si/Al ratio of 6.22 and (Na + K) P Ca, the CLI zeolite

is fine within the composition range of high-silica clinop-

tilolite [18].

Acid treated forms were prepared by treating 5 g of
CLI with 100 ml of 0.032, 0.16, 0.32, 1.6 and 5 M HCl

solutions in a shaker at 25, 40, 75 and 100 �C for 3 h.

Then it was washed until no Cl� ions were detected in

the washing water by using AgNO3 solution. The acid

extracts were analyzed for Na, K, Al, Ca, Mg and Fe

elements by using atomic absorption spectrophotometer

(X Orian 10BQ).

In the characterization of the CLI and its acid treated
forms, infrared and water vapor adsorption data were

used. The infrared spectra of the zeolites were taken

by using KBr pellet technique with Shimadzu IR 470

spectrometer. Water adsorption isotherms (at 25 �C)
were measured using volumetric apparatus (Omnisorp

100cx) by static technique. Prior to isotherm acquisition,

the CLI were outgassed for 16 h by heating at 160, 250,

400 or 600 �C under vacuum of higher than 10�5 mbar.
3. Results and discussion

3.1. Acid treatment studies

The cation content of the acid extracts was used to

calculate the chemical composition of the zeolites used
in this study and presented in Table 1. The exchange de-

gree (Xi) of each cation (i) which is the removal percent

of the initial amount of the cation into zeolite was also
%Na2O %K2O %CaO %MgO %SiO2

1.15 4.17 2.15 1.07 68.90

1.15 4.13 2.07 1.04 71.20

1.12 4.04 2.12 1.08 70.50

1.12 3.99 2.05 1.04 70.49

1.11 3.95 1.95 0.98 71.05

1.11 3.77 1.78 0.86 72.18

1.09 3.67 1.85 0.88 73.45

1.13 3.94 1.99 1.03 70.20

1.12 3.86 1.76 0.85 71.64

1.10 3.66 1.59 0.78 73.63

1.10 3.73 1.94 0.88 70.78

1.11 3.73 1.79 0.92 71.84

1.11 3.54 1.36 0.59 74.84

1.09 3.38 1.10 0.83 74.65

1.15 3.85 2.05 1.01 71.20

1.14 3.78 1.82 0.90 70.46

1.12 3.66 1.20 0.23 78.51

1.13 3.56 0.96 0.15 79.31
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Fig. 1. The change in dealumination degree with HCl concentration.
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Fig. 2. (a) Infrared spectra of CLI and acid treated natural zeolite at

75 �C. (b) Infrared spectra of CLI and acid treated natural zeolite with

1.6 HCl solutions.
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calculated to compare the effect of the HCl treatment on

each cation. As can be seen from Table 1, the cation

content of the zeolite decreased with increasing HCl

temperature and concentration but the removal of cat-

ion and aluminum was incomplete. The monovalent cat-

ions, such as Na+ and K+ ions content of the zeolite
slightly changed during the acid treatment applied in

this study. The exchange degree of the Na+ and K+ ions

(XNa and XK), is low (<10% and 20%, respectively) for

the temperatures of 25, 40, 75 and 100 �C and changes a

little with acid concentration. However temperature and

HCl concentration were very effective in the removal of

Fe3+, Ca2+ and Mg2+ cations and their exchange degrees

reached to 90%, 57% and 85% at 100 �C, respectively.
Table 1 becomes also clear that the removal of silicon

atom hardly takes place during acid treatment indicat-

ing the high stability of clinoptilolite rich natural zeolite

in the HCl solution. As seen from the Fig. 1 the dealu-

mination (XAl) gradually increased with HCl concentra-

tion and reached to 57% and 75% at 75 and 100 �C,
respectively; whereas, XAl was low (10%) and not influ-

enced by HCl concentration at 25 and 40 �C.

3.2. IR Studies

The IR spectra (at the 400–1200 cm�1 region) of the

representative acid treated zeolites are shown in Fig.

2(a) and (b). For the zeolites prepared the strong bands

at 1056 and 451.2 cm�1, assigned to a T–O asymmetric

stretching and T–O bending vibrations of the internal
tetrahedra, respectively, and the weak bands at 790

and 604.8 cm�1 wave numbers assigned to external sym-

metric stretching and double ring vibrations, respec-

tively, were observed.

The effect of dealumination was observed with the

shift in the wave numbers of the IR bands. Fig. 2(a)

shows the change in the spectrum with the HCl concen-

tration at 75 �C. As seen from the figure the position of
the vibrations at 1056 cm�1 (the asymmetric stretching

mode involving mainly the tetrahedral atoms) is very
sensitive to the dealumination degree and this zeolitic

band shifted to 1080 cm�1 as the dealumination degree

increased from 20.1% to 57.1% depending on the in-

crease in HCl concentration from 0.032 to 0.32 M. Sim-

ilarly the effect of acid treatment temperature on the
HCl concentration of 1.6 M can clearly seen from the

Fig. 2(b) as shift in the position of the vibration at

1056 cm�1 to 1081 cm�1 with increase in the dealumina-

tion degree from 8.3% to 39.4% with increasing temper-

ature from 25 to 100 �C. The shifting of the 1056 cm�1

wave number of T–O–T bond to the higher values is

attributed to the dealumination of zeolite framework

and the change in the bond strength and Si–O–Si angle
[19].

3.3. Adsorption studies

Fig. 3 shows the effect of outgasing temperature on

the water vapour adsorption isotherms for CLI. The

gradual increase in the amount adsorbed was observed

for the zeolites outgassed up to 400 �C. As the outgas-
sing temperature further increased, the amount of water

vapor adsorbed by the zeolite decreased owing to



0

20

40

60

80

100

120

140

160

180

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Relative pressure, P/Po

A
m

ou
nt

 a
ds

or
be

d 
(c

c 
ST

P/
g 

ze
ol

ite
)

Fig. 3. Water vapor adsorption isotherm of the CLI outgassed at 160 �C (·), 250 �C (Æ), 400 �C (�) and 600 �C (�).
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collapse of the framework. Therefore, the outgasing of

CLI and acid treated zeolites was performed at 400

�C. The water vapour adsorption isotherms of the CLI
zeolite and its representative acid treated forms are given

in the Fig. 4. The isotherms are of type 1. However a

slight increase in adsorption at high relative pressure

was observed relating the presence of the impurity or
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Fig. 4. Water vapor adsorption isotherm of the CLI (�) and its acid

treated forms at 25 �C (upper) and 100 �C (lower). HCl Concentrations

(M): (�) 0.032; (*) 0.16; (j) 0.32; (m) 1.6; (d) 5.
extraframework formation on the crystal surface as ex-

pected for natural zeolites [20]. The isotherms are very

similar for the zeolites treated at 25 �C. However the
adsorption at the zeolites treated at 100 �C diminished

as a result of decrease in polar nature of the zeolite

crystal.

The surface area of the zeolites was determined by

using BET and Langmuir equations from isotherm data

and presented in the Table 2. Although the Langmuir

surface area is more commonly reported for monolayer

adsorption on microporous solids, BET method was
also used for understanding the strength of interaction

between zeolite surface and water vapor. Surface areas

are lower when calculated with the BET equation, indi-

cating that the formation of second adsorption layer

may occur before the surface could be covered com-

pletely by the adsorbate, since the desorption occurs

depending on the high amount of heat which has

evolved during water vapor adsorption. This can also
be understood from the high BET C values calculated

(Table 2). BET C values are related to the strength of

H2O–adsorbent interactions and the positive values

indicating the enthalpy of first adsorbed layer was high-

er than the latent heat of water vapor. As seen from

Table 2, the BET C values are very high meaning that

monolayer is instantly formed and multilayering starts

immediately.
The Dubinin–Raduschevich curve (LnW vs Ln(P0/

P)2) is plotted with experimental data in the range of rel-

ative pressure up to around 0.1 and presented in Fig. 5.

As seen from the figure the Dubinin–Raduschevich (D–

R) plots presents two linear parts. The first one, in the

low relative pressure range (high Ln(P0/P)
2), corre-

sponds to the adsorption of water on specific sites (bal-

ancing cation) in narrow pores (ultra-micro pores) and
the second one, in the high relative pressure range



Table 2

Water vapour adsorption properties of the acid treated clinoptilolite rich tuff

Temperature

(�C)
HCl

concentration

(M)

AL

(m2/g)

ABET

(m2/g)

C W01

(cc/g)

W02

(cc/g)

W0

(cc/g)

Vmax

(cc/g)

CLI 384 299 684 0.0570 0.065 0.122 0.13

25 0.032 384 298 431 0.060 0.063 0.122 0.13

0.16 381 298 496 0.054 0.067 0.120 0.13

0.32 388 297 6907 0.058 0.065 0.122 0.14

1.6 370 279 856 0.040 0.070 0.111 0.14

5 388 279 519 0.053 0.069 0.112 0.14

40 0.032 361 271 360 0.052 0.058 0.111 0.13

0.16 359 260 1828 0.050 0.057 0.106 0.12

0.32 369 293 2007 0.050 0.056 0.106 0.13

1.6 359 280 117 0.050 0.073 0.122 0.13

5 402 326 110 0.062 0.067 0.128 0.13

75 0.032 362 279 567 0.050 0.049 0.099 0.12

0.16 410 317 96 0.059 0.061 0.199 0.14

0.32 372 297 106 0.044 0.060 0.104 0.13

1.6 350 287 52 0.049 0.052 0.101 0.13

5 197 239 31 0.023 0.054 0.077 0.11

100 0.16 383 298 327 0.045 0.059 0.104 0.13

1.6 395 319 65 0.054 0.059 0.116 0.15

5 306 273 37 0.026 0.063 0.089 0.14
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Fig. 5. Dubinin–Raduschevich plots of the CLI and its acid treated forms at 25 �C (upper) and 100 �C (lower).
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(low Ln(P0/P)
2), related to filling of wide pores (super-

micropores) with non-specific sites under the effect of

dispersion interactions. For that reason, in the analyses

of the D–R plots the two-term Dubinin–Radushkevich

equation [21],

W ¼ W 01 exp � RT
E1

ðLnðP 0=P ÞÞ
� �2

 !

þ W 02 exp � RT
E2

ðLnðP 0=P ÞÞ
� �2

 !
ð1Þ

was used, where W is the amount adsorbed (cc/g) at

relative pressure (P/P0) and E1 and E2 are characteristic

energy of adsorption in ultra-micropore and super-

micropore, respectively. R is gas constant and T is

adsorption temperature. Adsorption characteristic en-

ergy can be calculated from the slope of the D–R plots.

As seen from Fig. 5, in the high relative pressure (low

Ln(P0/P
2)) range the D–R plots have almost similar

trends but are scattered in low relative pressure range

(high Ln(P0/P
2)) at 25 �C HCl treatment. This shows

that HCl treatment altered only the adsorption mecha-

nism in ultra-micropores. However the adsorption

mechanism in super and ultra-micropore was influenced

by the HCl treatment at 100 �C. On the other hand, the

extrapolation to Ln(P0/P)
2 = 0 of D–R plots leads to the

determination of the specific total micropore volume,
W0. The volume at the intersection of the two linear

lines (at about 0.06 of relative pressure) is used to calcu-

late ultra-micropore volume, W01. The super-micropore

volume, W02 was obtained by subtracting of W01 from

W0 and presented in Table 2. As seen from the table,

the ultra-micropore volumes, W01 are influenced by
the acid treatment depending on HCl temperature and

concentration. However W02 values of the zeolites prac-

tically did not change (ca. 0.06 cc/g) during the acid

treatment. Similarly the maximum adsorption capacity,

Vmax (amount adsorbed at P/P0 = 0.85) at adsorption

temperature, 25 �C did not significantly change. The ef-

fect of the acid treatment can be explained with the

change in the Al2O3 content of zeolite. Fig. 6 shows
the change in Langmuir surface area, AL and micropore

volumes with the aluminum content (as Al2O3%) of zeo-

lite. The surface area, AL and ultra micropore volume,

W01 did not significantly change when aluminum con-

tent was higher than 8% (i.e., dealumination degree

was 40%). Further dealumination was reflected as de-

crease in AL and W01. For example the zeolites treated

with 5 M HCl at 75 and 100 �C, which have 57.1%
and 76.1% dealumination degree, respectively, have the

smallest W01 values, ca. 0.025 cc/g. This decrease may

be due to the removal of aluminum from the framework.
4. Conclusion

This study in which the effect of acid (HCl) treatment
on the water vapor adsorption properties of clinoptilo-

lite rich zeolitic tuff was investigated, concentration

and temperature of HCl solution were not effective in

the removal of monovalent cation such as Na and K.

However, the increase of both temperature and concen-

tration caused an increase in the removal of univalent

cations such as Mg, Fe and Ca. Removal of the alumi-

num was very sensitive to HCl solution concentration
at high treatment temperature. During this removal
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the super-micropore volume did not significantly change

(about 0.06 cc/g). The ultra-micropore volume and the

Langmuir surface area decreased approximately to

0.026 cc/g and 300 m2/g when dealumination degree

reached to P40%. This can be explained with the re-

moval of framework aluminum with the above percent
where the specific interaction was dominant.
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