Synthesis, spectroscopic characterization and Xray crystal structures of oxo-bridged oxo(haloaryl) imido hydrotris(3,5-dimethylpyrazolyl)borate molybdenum(V) complexes

Isil Topaloglu-Sozuer, Seckiner Dulger Irdem , John J. Jeffery \& Hayrullah Hamidov

To cite this article: Isil Topaloglu-Sozuer , Seckiner Dulger Irdem , John J. Jeffery \& Hayrullah Hamidov (2005) Synthesis, spectroscopic characterization and X-ray crystal structures of oxobridged oxo(haloaryl) imido hydrotris(3,5-dimethylpyrazolyl)borate molybdenum(V) complexes, Journal of Coordination Chemistry, 58:2, 175-187, DOI: 10.1080/00958970512331325494

To link to this article: http://dx.doi.org/10.1080/00958970512331325494

Published online: 20 Aug 2006.

Submit your article to this journal

Article views: 20

View related articles

Citing articles: 2 View citing articles

Synthesis, spectroscopic characterization and X-ray crystal structures of oxo-bridged oxo(haloaryl) imido hydrotris(3,5-dimethylpyrazolyl)borate molybdenum(V) complexes

ISIL TOPALOGLU-SOZUER* \dagger, SECKINER DULGER IRDEM \dagger, JOHN J. JEFFERY \ddagger and HAYRULLAH HAMIDOV \ddagger
\dagger Department of Chemistry, Faculty of Science, Izmir Institute of Technology, Izmir, Turkey \ddagger School of Chemistry, University of Bristol, Bristol BS8 1TS, UK

(Received 8 June 2004)

Abstract

Reaction of the oxomolybdenum(V) precursor [MoTp*(O)Cl ${ }_{2}$] ($\mathrm{Tp}^{*}=$ hydrotris(3,5-dimethyl-1-pyrazolyl) borate) with m-fluoroaniline, $\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~F}$, in toluene afforded the pair of geometric isomers of $\left[\mathrm{MoTp}^{*}(\mathrm{O}) \mathrm{Cl}\right](\mu-\mathrm{O})\left[\mathrm{MoTp} *(\mathrm{Cl})\left(\equiv \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~F}\right)\right](\mathbf{1 a}$, cis; $\mathbf{1 b}$, trans). Similarly the reaction with m-iodoaniline yielded the compound $\left[\mathrm{MoTp}^{*}(\mathrm{O}) \mathrm{Cl}\right](\mu-\mathrm{O})\left[\mathrm{MoTp} *(\mathrm{Cl})\left(\equiv \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{I}\right)\right]$ (2). This is a new synthetic method for preparing Mo-O-Mo bridged oxo(imido) molybdenum (V) species by double deprotonation of the anilines. The complexes were characterized by IR and ${ }^{1} \mathrm{H}$-NMR. spectroscopy, FAB mass spectrometry, elemental analysis and X-ray crystallography which revealed that the two chloro ligands are trans to each other in $\mathbf{1 b}$ and 2, whereas they are cis to each other in 1a. All compounds have Mo-O-Mo linkages and near linear arylimido moieties.

Keywords: Imido complexes; $\mathrm{Mo}(\mathrm{V})$ complexes; Oxo-imido complexes; Oxo-bridged molybdenum; Oxo complexes; Tris(pyrazol)borate complexes

1. Introduction

Poly(pyrazolyl)borate ligands were first synthesised by Trofimenko [1]. Hydrotris(3,5-dimethyl-1-pyrazolyl)borate, Tp *, is a facially co-ordinating ligand similar to the $6 \mathrm{e}^{-}$ donor Cp * (pentamethylcyclopentadienyl). It has been used to stabilize mononuclear $\operatorname{Mo}(\mathrm{V})$ complexes and allows a systematic investigation of their electronic and spectroscopic properties [2]. The sterically encumbering nature of the Tp * ligand compared with Cp* is very well known and has been investigated for catalyst systems [3,4]. Molybdenum is considered as a trace element, presents several oxidation states, and therefore may change easily its coordination number and form mono and binuclear

[^0]oxo complexes, which are of great importance from basic as well as applied points of view. The propensity of oxomolybdenum species in higher oxidation states to form di-, tri- and polynuclear complexes is well known [5]. Molybdenum is a relevant element for the synthesis of many homogeneous and heteregenous catalysts. The element is also essential in several enzymatic systems. It is also known that tris(pyrazolyl)borate ligands have had a significant impact on the modelling of the active centre of Mo enzymes [6]. One of the characteristics of molybdenum chemistry is related to the facile conversion between its oxidation states and changes of coordination number, observed particularly between $\mathrm{Mo}(\mathrm{IV}), \mathrm{Mo}(\mathrm{V})$ and $\mathrm{Mo}(\mathrm{VI})$. The chemistry of oxo $\mathrm{Mo}(\mathrm{V})$ complexes is of importance especially in industrial and biochemical catalysis [7].

Oxo and imido ligands commonly form multiple bonds when attached to transition metal centers. The chemistry of the corresponding complexes has experienced a remarkable growth recently $[8,9]$. Both the oxo and the imido groups permit stabilization of high formal oxidation states. In the case of the latter functionality, varying the electronic and steric characteristics of the organic group bonded to nitrogen allows the modification of the properties of the resulting metal complex.

Organoimido complexes of $\mathrm{Mo}(\mathrm{V})$ and $\mathrm{Mo}(\mathrm{VI})$ can be prepared by a wide range of methods that often make use of organic compounds as the imido transfer reagent [8,9]. There are several molybdenum imido compounds [10-15] and a number of related mixed terminal oxo-imido compounds reported [16-21] but limited information is available for transition metal compounds containing both imido and hydrotris (pyrazolyl)borate type ligands [16,22-29]. Although a number of systems involving μ-ligation in the presence of terminal imido groups have previously been reported [30-37], the chemistry of compounds having both arylimido and μ-oxo groups in the presence of tris(pyrazolyl)borate co-ligand is not widely explored.

In the present article, we report the synthesis, spectroscopic characterization and X-ray structures of a pair of geometric isomers $[\mathrm{MoTp} *(\mathrm{O}) \mathrm{Cl}](\mu-\mathrm{O})\left[\mathrm{MoTp}^{*}(\mathrm{Cl})\right.$ $\left.\left(\equiv \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~F}\right)\right](\mathbf{1 a}$, cis; $\mathbf{1 b}$, trans $)$ and the compound $[\mathrm{MoTp} *(\mathrm{O}) \mathrm{Cl}](\mu-\mathrm{O})\left[\mathrm{MoTp}^{*}(\mathrm{Cl})\right.$ ($\left.\left.\equiv \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{I}\right)\right]$ (2).

2. Experimental

2.1. Materials and instrumentation

All preparations and manipulations were carried out using Schlenk techniques under an oxygen-free nitrogen atmosphere. All glassware was oven dried at $120^{\circ} \mathrm{C}$. Solvents were dried by standard procedures, distilled and kept under nitrogen over $4 \AA$ molecular sieves.

The starting material $\left[\mathrm{MoTp}^{*}(\mathrm{O}) \mathrm{Cl}_{2}\right]$ was prepared according to a published method [38].

Infrared spectra were recorded on a Magna IR spectrophotometer using pressed KBr disks. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded in CDCl_{3} on a 400 MHz High Performance Digital NMR spectrometer at TUBITAK (Research Council of Turkey). Mass spectra were measured on a Joel AX505 FAB device using Xe at 3 kV and a positive ion matrix m-NBA (meta-nitrobenzylalcohol). Elemental analysis were carried out using a Leco

CHNS 932 instrument. The crystal structure data collection was carried out using a Bruker SMART CCD area-detector diffractometer.

All yields are based on starting materials.

2.2. Preparation of the complexes

2.2.1. $[\mathrm{MoTp} *(\mathrm{O}) \mathrm{Cl}](\boldsymbol{\mu}-\mathrm{O})\left[\mathrm{MoTp}^{*}(\mathrm{Cl})\left(\equiv \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~F}\right)\right](\mathbf{1 a}$, cis; $\mathbf{1 b}$, trans $)$. A mixture of $\left[\mathrm{MoTp} *(\mathrm{O}) \mathrm{Cl}_{2}\right](0.4 \mathrm{~g}, 0.83 \mathrm{mmol})$, 3-fluoroaniline $(0.18 \mathrm{~g}, 1.66 \mathrm{mmol})$ and dry $\mathrm{Et}_{3} \mathrm{~N}$ $\left(0.6 \mathrm{~cm}^{3}\right)$ in dry toluene $\left(20 \mathrm{~cm}^{3}\right)$ was heated to reflux with stirring under N_{2} for 14 h , during which time the solution became dark red-brown in colour. The mixture was cooled, filtered and evaporated to dryness. The residue was dissolved in dichloromethane and chromatographed on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane ($9: 1 \mathrm{l}, \mathrm{v} / \mathrm{v}$) as eluant. Two red-brown fractions were collected, isolated solids crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane and identified, respectively, as $\left[\mathrm{MoTp}^{*}(\mathrm{O}) \mathrm{Cl}\right](\mu-\mathrm{O})[\mathrm{MoTp} *(\mathrm{Cl})$ $\left.\left(\equiv \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~F}\right)\right]$ (cis) (1a) ($0.2 \mathrm{~g}, 24 \%$), Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{Mo}_{2} \mathrm{~N}_{13} \mathrm{O}_{2} \mathrm{~F}$ (\%): C, 43.31; H, 4.84; N, 18.24. Found: C, 43.72; H, 5.12; N, 18.62, and [MoTp*(O) $\mathrm{Cl}](\mu-\mathrm{O})\left[\mathrm{MoTp}^{*}(\mathrm{Cl})\left(\equiv \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~F}\right)\right]$ (trans) (1b) (0.16 g , 19\%), Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{Mo}_{2} \mathrm{~N}_{13} \mathrm{O}_{2} \mathrm{~F}$ (\%): C, 43.31; H, 4.84; N, 18.24. Found: C, 43.62; H, 4.37; N, 17.93.
2.2.2. $[\mathbf{M o T p} *(\mathbf{O}) \mathbf{C l}](\boldsymbol{\mu}-\mathbf{O})\left[\mathrm{MoTp}^{*}(\mathbf{C l})\left(\equiv \mathbf{N C}_{6} \mathbf{H}_{\mathbf{4}} \mathrm{I}\right)\right]$ (2). A mixture of $\left[\mathrm{MoTp} *(\mathrm{O}) \mathrm{Cl}_{2}\right]$ $(0.4 \mathrm{~g}, 0.83 \mathrm{mmol})$, 3 -iodoaniline $(0.36 \mathrm{~g}, 1.64 \mathrm{mmol})$ and dry $\mathrm{Et}_{3} \mathrm{~N}\left(0.6 \mathrm{~cm}^{3}\right)$ in dry toluene $\left(20 \mathrm{~cm}^{3}\right)$ was heated to reflux with stirring under N_{2} for 18 h . The mixture was then cooled and the solvent was removed in vacuo. The first dark-red solid purified by column chromatography (silica, dichloromethane $/ n$-hexane) $(2: 3, \mathrm{v} / \mathrm{v})$ as eluant was recrystallised from dichloromethane $/ n$-hexane $(2: 3)$ to give a dark-red band identified as $[\mathrm{MoTp} *(\mathrm{O}) \mathrm{Cl}](\mu-\mathrm{O})\left[\mathrm{MoTp} *(\mathrm{Cl})\left(\equiv \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{I}\right)\right]$ (2) $(0.27 \mathrm{~g}, 30 \%)$, Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{Mo}_{2} \mathrm{~N}_{13} \mathrm{O}_{2} \mathrm{I}$ (\%): C, 39.52; H, 4.34; N, 16.92. Found: C, 39.12; H, 4.03; N, 16.74.

2.3. X-Ray crystallography

Single crystals of $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{2}$ were coated in paraffin oil and mounted on glass fibers. X-Ray measurements were made using a Bruker SMART CCD area-detector diffractometer with Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA$) [39]. Intensities were integrated [40] from several series of exposures, each exposure covering 0.3° in ω, and the total data set being a complete sphere. Absorption corrections were applied, based on multiple and symmetry-equivalent measurements [41]. The structures of $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{2}$ were solved by direct methods/Patterson synthesis, Patterson synthesis and direct methods respectively and refined by least squares on weighted F^{2} values for all reflections (see table 5) [42]. All non-hydrogen atoms were assigned anisotropic displacement parameters and refined without positional constraints. Hydrogen atoms $\mathrm{H}(1 \mathrm{~A}), \mathrm{H}(2 \mathrm{~A})$ were located in the electron density difference map, assigned isotropic displacement parameters and refined without positional constraints. All other hydrogen atoms were constrained to ideal geometries and refined with fixed isotropic displacement parameters. Complex neutral-atom scattering factors were used [43]. Crystal data,
data collection, structure solution and refinement parameters for compounds $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{2}$ are listed in table 5.

3. Results and discussion

3.1. Synthetic studies

Reaction of $\left[\mathrm{MoTp} *(\mathrm{O}) \mathrm{Cl}_{2}\right]$ with 3-fluoroaniline in the presence of triethylamine in toluene under reflux yielded a pair of geometric isomers $[\mathrm{MoTp} *(\mathrm{O}) \mathrm{Cl}](\mu-\mathrm{O})$ $\left[\mathrm{MoTp}^{*}(\mathrm{Cl})\left(\equiv \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~F}\right)\right]\left(\mathbf{1 a}\right.$, cis; 1b, trans). Similarly, the reaction of $\left[\mathrm{MoTp} *(\mathrm{O}) \mathrm{Cl}_{2}\right]$ with 3-iodoaniline produced $\left[\mathrm{MoTp}^{*}(\mathrm{O}) \mathrm{Cl}\right](\mu-\mathrm{O})\left[\mathrm{MoTp} *(\mathrm{Cl})\left(\equiv \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{I}\right)\right]$ (2). The compounds are stable in air and soluble in chlorinated solvents. They can readily be separated from the reaction mixture by crystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane. Crystals of $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{2}$ for X-ray analysis were obtained by slow evaporation of its saturated hexane solution at room temperature.

Although a wide range of synthetic approaches [9] to transition metal imido complexes have been established, use of amines as the imido source is most appealing because they have almost unlimited potential for imido functionalisation. The formation of $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{2}$ from the oxomolybdenum (V) compound $\left[\mathrm{MoTp} *(\mathrm{O}) \mathrm{Cl}_{2}\right]$, was accomplished by double protonation of aniline amines, a well-known $[8,9]$ synthetic methodology for the preparation of organoimido complexes of $\mathrm{Mo}(\mathrm{V})$ and $\mathrm{Mo}(\mathrm{VI})$. Here, organic compounds are used as the imido transfer reagent. The interesthing feature of the compounds $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{2}$ is the formation of a Mo-O-Mo linkage despite the steric barrier provided by the 3-methyl groups of the Tp* ligand. Previously reported compounds having an $\mathrm{Mo}-\mathrm{O}-\mathrm{Mo}$ linkage and a tris(pyrazolylborate) co-ligand were prepared by completely different methods. For example, a number of dinuclear oxo-bridged $\mathrm{Mo}(\mathrm{V})$ compounds with tris(pyrazolborate) co-ligand were produced by various combinations of oxygen atom transfer, conproportionation, aquation and hydrolysis reactions at $\mathrm{Mo}(\mathrm{VI})$ or $\mathrm{Mo}(\mathrm{V})$. For example, McCleverty et al. [44] prepared the compound $[\mathrm{MoTp} *(\mathrm{O}) \mathrm{Cl}]_{2}(\mu-\mathrm{O})$ by the reaction of $\left[\mathrm{MoTp} * \mathrm{O}_{2} \mathrm{Cl}\right]$ and PPh_{3} in toluene containing approximately 0.03% water. Miller et al. [45] prepared the same compound by treatment of 1,3-dimethoxy-para-tert-butylcalix[4]arene and $\left[\mathrm{MoTp} *(\mathrm{O}) \mathrm{Cl}_{2}\right]$ in toluene under reflux. The synthesis was successful in the absence of calixarene as well and it was suggested that the complex was formed due to the presence of adventitious water, probably sourced from triethylamine. Syntheses of geometric isomers of $[\mathrm{MoTp}(\mathrm{O}) \mathrm{Cl}]_{2}(\mu-\mathrm{O})(\mathrm{Tp}=$ hydrotris (pyrazolborate)) were accomplished in aqueous media. The cis $\left(C_{2}\right)$ isomer of $\left[\mathrm{MoTp}(\mathrm{O}) \mathrm{Cl}_{2}(\mu-\mathrm{O})\right.$ was prepared by reaction of $\mathrm{KHB}(\mathrm{pz})_{3}$ with MoOCl_{5}^{2-} and the related trans $\left(C_{i}\right)$ isomer was obtained by treatment of $\mathrm{HB}(\mathrm{pz})_{3} \mathrm{MoCl}_{3}$ with $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ [41].

It could be suggested that in the reactions of $\left[\mathrm{MoTp} * \mathrm{OCl}_{2}\right]$ with m-substituted haloaryl anilines $\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{X}, \mathrm{X}=\mathrm{F}\right.$ or I), double deprotonation of the halo anilines takes place and the mononuclear species $\left[\mathrm{MoTp} * \mathrm{OCl}\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{X}\right)\right.$], $[\mathrm{MoTp} * \mathrm{OCl}$ $\left.\left(\mathrm{HNC}_{6} \mathrm{H}_{4} \mathrm{X}\right)\right]$ and $\left[\mathrm{MoTp} * \mathrm{OCl}\left(\equiv \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{X}\right)\right](\mathrm{X}=\mathrm{F}$ or I) formed as intermediates. The mononuclear imido species, $\left[\mathrm{MoTp} * \mathrm{OCl}\left(\equiv \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{X}\right)\right.$], may further react with unreacted starting material to form the oxo-bridged bimetallic oxo(haloaryl) imido molybdenum (V) compounds $[\mathrm{MoTp} *(\mathrm{O}) \mathrm{Cl}](\mu-\mathrm{O})\left[\mathrm{MoTp} *(\mathrm{Cl})\left(\equiv \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~F}\right)\right](\mathbf{1 a}$, cis; 1b, trans $)$ and $\left[\mathrm{MoTp}^{*}(\mathrm{O}) \mathrm{Cl}\right](\mu-\mathrm{O})\left[\mathrm{MoTp}^{*}(\mathrm{Cl})\left(\equiv \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{I}\right)\right](2)$ according to the following

Table 1. Characterisation data for $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{2}$.

Complex	Colour	Yield (\%)	FAB-MS
1a	Red-brown	24	998.2
1b	Red-brown	19	998.2
$\mathbf{2}$	Dark-red	30	1106.1

Table 2. IR data for the complexes $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{2}$.

Complex	$v_{\text {BH }}$	$v_{\text {Mo=O }}$	$v_{\text {Mo } \equiv \mathrm{N}}$	$v_{\text {Mo-O-Mo }}$
$\mathbf{1 a}$	2548	957	1204	787
$\mathbf{1 b}$	2548	957	1204	786
$\mathbf{2}$	2545	960	1205	787

reactions $(\mathrm{X}=\mathrm{F}, \mathbf{1 a}$, cis; $\mathbf{1 b}$, trans; $\mathrm{X}=\mathrm{I}, \mathbf{2})$.

$$
\begin{aligned}
& {\left[\mathrm{MoTp}^{*} \mathrm{OCl}_{2}\right]+\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{X} \xrightarrow[\text { toluene }]{\Delta, \mathrm{Et}_{3} \mathrm{~N}}\left[\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{Tp}^{*} \mathrm{Mo}\left(\mathrm{HNC}_{6} \mathrm{H}_{4} \mathrm{X}\right)\right]} \\
& \quad \longrightarrow\left[\mathrm{Cl}(\mathrm{O}) \mathrm{Tp} p^{*} \mathrm{Mo}\left(\equiv \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{X}\right)\right] \xrightarrow{\left[\mathrm{MoTp}^{*} \mathrm{OCl} l_{1}\right]}\left[\mathrm{Cl}(\mathrm{O}) \mathrm{Tp}^{*} \mathrm{Mo}(\mu-\mathrm{O}) \mathrm{MoTp}^{*} \mathrm{Cl}\left(\equiv \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{X}\right)\right] .
\end{aligned}
$$

3.2. Spectroscopic studies

Molecular ion peaks determined from the mass spectrometric data are in accord with the suggested structures for $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{2}$ (see table 1). All complexes exhibit the expected absorptions due to the $\mathrm{Tp} *$ ligand (ca. $2500 \mathrm{~cm}^{-1}$ due to $v_{(\mathrm{BH})}$ and $1400 \mathrm{~cm}^{-1}$ associated with the pyrazolyl ring) in the IR spectra (refer to table 2). They possess bands at ca. $960 \mathrm{~cm}^{-1}$ characteristic of the terminal $\mathrm{Mo}=\mathrm{O}$ unit for $\mathrm{Mo}(\mathrm{V})$ complexes. This value was reported as $964 \mathrm{~cm}^{-1}$ for the starting material [$\mathrm{MoTp}^{*}(\mathrm{O}) \mathrm{Cl}_{2}$] [38]. Both $\left[\mathrm{MoTp}(\mathrm{O}) \mathrm{Cl}_{2}\right](\mu-\mathrm{O})$ (cis, C_{2} isomer) and $\left[\mathrm{MoTp}(\mathrm{O}) \mathrm{Cl}_{2}\right.$] (μ-O), (trans, C_{i} isomer) exhibit peaks at $958 \mathrm{~cm}^{-1}$ for $\mathrm{Mo}=\mathrm{O}$ of the terminal oxo groups [46]. The compound $[\mathrm{MoTp}(\mathrm{O}) \mathrm{Cl}]_{2}(\mu-\mathrm{O})$ exhibits two $\nu_{(\mathrm{Mo}=\mathrm{O})}$ stretches at 960 and $859 \mathrm{~cm}^{-1}$. These have been reported as 961 and $971 \mathrm{~cm}^{-1}$ for $\left[\mathrm{MoTp}^{\mathrm{pr}}(\mathrm{O}) \mathrm{Cl}\right]$ $(\mu-\mathrm{O})\left[\mathrm{MoTp}{ }^{\mathrm{pr}}(\mathrm{O})(\mathrm{OH})\right]\left(\mathrm{Tp}^{\mathrm{pr}}=\right.$ Hydrotris(3-isopropylpyrazolyl)borate) [45]. The IR spectrum of the mixed valence compound, $\left[\mathrm{Mo}(\mathrm{V}) \mathrm{Tp}^{*} \mathrm{O}_{2}\right](\mu-\mathrm{O})[\mathrm{Mo}(\mathrm{VI}) \mathrm{Tp} *(\mathrm{O}) \mathrm{Cl}]$ exhibits three $v_{(\mathrm{Mo}=\mathrm{O})}$ bands in the region $850-1000 \mathrm{~cm}^{-1}$ assigned to $\mathrm{Mo}(\mathrm{V})=\mathrm{O}\left(955 \mathrm{~cm}^{-1}\right)$ and cis-Mo(VI)O $\mathrm{O}_{2}\left(925,895 \mathrm{~cm}^{-1}\right)$ [47]. A detailed infrared and Raman spectroscopic study was carried out for the geometric isomers (cis, C_{2} and trans, C_{i}) of $\left[\mathrm{MoTp}(\mathrm{O}) \mathrm{Cl}_{2}\right](\mu-\mathrm{O})$. According to this study, the peaks at $784 \mathrm{~cm}^{-1}$ and $456 \mathrm{~cm}^{-1}$ were assigned to the asymmetric stretch and the deformation mode of the linear oxobridged unit, respectively [48]. For the compound $\left[\mathrm{MoTp} *(\mathrm{O}) \mathrm{Cl}_{2}(\mu-\mathrm{O})\right.$, a medium intensity band at $753 \mathrm{~cm}^{-1}$ was also assigned to a stretching mode of a bridging Mo-O-Mo unit [45]. Hence, the peaks observed for the new compounds 1a, 1b and 2 at ca. $755 \mathrm{~cm}^{-1}$ and $455 \mathrm{~cm}^{-1}$ could be assigned to asymmetric stretching and deformation modes of the Mo-O-Mo unit, respectively. The presence of the μ-oxo ligand was indicated by a strong, broad $v_{\mathrm{as}}(\mathrm{Mo}-\mathrm{O}-\mathrm{Mo})$ band at $750 \mathrm{~cm}^{-1}$ for the compound $\left[\mathrm{Mo}^{(\mathrm{V})} \mathrm{Tp}^{*} \mathrm{O}_{2}\right](\mu-\mathrm{O})\left[\mathrm{Mo}^{(\mathrm{VI})} \mathrm{Tp}^{*}(\mathrm{O}) \mathrm{Cl}\right][47]$ as well.

The two vibrations at ca. 3370 and $3450 \mathrm{~cm}^{-1}$ from the symmetric and asymmetric stretching modes of the NH_{2} groups of the free ligands have completely disappeared in the IR spectra of $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{2}$. This led us to think of the existence of either $\mathrm{Mo}=\mathrm{N}$ or $\mathrm{Mo} \equiv \mathrm{N}$ linkages. In general, identifying a $v_{(\mathrm{Mo}=\mathrm{N})}$ or $v_{(\mathrm{M} \equiv \mathrm{N})}$ vibration is a difficult task because of the variability in the $\mathrm{Mo}-\mathrm{N}$ bond order and coupling of the $\mathrm{Mo}=\mathrm{N}$ vibration to other vibrations in the molecule, in particular the adjacent $\mathrm{N}-\mathrm{C}$ vibration of the imido group [9]. However, a value of $1100-1300 \mathrm{~cm}^{-1}$ for $v_{(\mathrm{Mo}=\mathrm{N})}$ has been suggested [49] and McCleverty et al. [16] reported values in the range $1200-1250 \mathrm{~cm}^{-1}$ for the compounds [MoTp*(O)Cl(=NR)] $(\mathrm{R}=4$-tolyl or $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}-4$). The IR spectra of the oxo-bridged oxo(arylimido) molybdenum(V) compounds 1a, $\mathbf{1 b}$ and 2 also exhibited peaks around $1200-1300 \mathrm{~cm}^{-1}$ and may be ascribed to $v_{(M o \equiv N)}$.

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the complexes $[\mathrm{MoTp} *(\mathrm{O}) \mathrm{Cl}](\mu-\mathrm{O})[\mathrm{MoTp} *(\mathrm{Cl})$ $\left.\left(\equiv \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{X}\right)\right](\mathrm{R}=\mathrm{F}, \mathrm{I})$ exhibited all the expected peaks (see table 3) in accord with the structures determined by X-ray analysis. In general the signals attributable to the ligand $\mathrm{Tp}^{\mathrm{Me}, \mathrm{Me}}$ appeared as two groups of singlets in the region $\delta 5-6$ due to the $H(4)$ protons and $\delta 2-3$ due to the methyl groups attached to the pyrazolyl ring. The low symmetry of the compounds $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{2}$ means that all three pyrazolyl $\mathrm{H}(4)$ protons and six methyl groups of the $\mathrm{Tp*}$ ligand, are non-equivalent in the NMR spectra. In the spectrum of $\mathbf{1 a}$, the $\mathrm{H}(4)$ protons appear as six singlets in the region δ $6.21-5.52$ whereas three singlets were observed at $\delta 5.82,5.74,5.65$ and $\delta 5.81,5.72$, 5.45 for $\mathbf{1 b}$ and 2, respectively, due to the $\mathrm{H}(4)$. This could be attributed to accidental degeneracy of the three $\mathrm{H}(4)$ resonances in two non-equivalent Tp * ligands. This effect has previously been observed by McCleverty et al. [50]. All compounds exhibited peaks (total integrated area equivalent to 36 protons) attributable to the methyl protons of

Table 3. ${ }^{1} \mathrm{H}$ NMR data for the complexes.

$\delta_{\mathrm{H}}{ }^{\mathrm{a}}$	Multiplicity and assignment
$\mathbf{1 a}$	$7.41\left(\mathrm{~d}, 2 \mathrm{H}, J(\mathrm{HH}) 8, \mathrm{C}_{6} H_{4} \mathrm{~F}\right)$
	$7.18\left(\mathrm{~d}, 2 \mathrm{H}, J(\mathrm{HH}) 8, \mathrm{C}_{6} H_{4} \mathrm{~F}\right)$
	$6.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Me}_{2} \mathrm{C}_{3} H \mathrm{HN}_{2}\right)$
	$6.13\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Me}_{2} \mathrm{C}_{3} H \mathrm{~N}_{2}\right)$
	$5.97\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Me}_{2} \mathrm{C}_{3} H \mathrm{~N}_{2}\right)$
	$5.93\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Me}_{2} \mathrm{C}_{3} H \mathrm{~N}_{2}\right)$
	$5.56\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Me}_{2} \mathrm{C}_{3} H \mathrm{~N}_{2}\right)$
	$5.52\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Me}_{2} \mathrm{C}_{3} H \mathrm{~N}_{2}\right)$
	$2.45-3.67\left(\mathrm{~m}, 36 \mathrm{H}, \mathrm{Me}_{2} \mathrm{C}_{3} H \mathrm{~N}_{2}\right)$
$\mathbf{1 b}$	$7.19\left(\mathrm{~s}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right)$
	$5.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Me}_{2} \mathrm{C}_{3} H \mathrm{~N}_{2}\right)$
	$5.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Me}_{2} \mathrm{C}_{3} H \mathrm{~N}_{2}\right)$
	$5.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Me}_{2} \mathrm{C}_{3} H \mathrm{~N}_{2}\right)$
	$2.28-3.56\left(\mathrm{~m}, 36 \mathrm{H}, \mathrm{Me}_{2} \mathrm{C}_{3} H \mathrm{~N}_{2}\right)$
$\mathbf{2}$	$7.69\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6} H_{4} \mathrm{I}\right)$
	$7.41\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{C}_{6} H_{4} \mathrm{I}\right)$
	$6.95\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{C}_{6} H_{4} \mathrm{I}\right)$
	$5.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Me}_{2} \mathrm{C}_{3} H \mathrm{~N}_{2}\right)$
	$5.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Me}_{2} \mathrm{C}_{3} H \mathrm{~N}_{2}\right)$
	$5.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Me}_{2} \mathrm{C}_{3} H \mathrm{~N}_{2}\right)$
	$1.96-2.68\left(\mathrm{~m}, 36 \mathrm{H}, \mathrm{Me}_{2} \mathrm{C}_{3} \mathrm{HN}_{2}\right)$

${ }^{\mathrm{a}}$ In CDCl_{3}.
the Tp* ligand in the region $\delta 2-3$. For $\mathbf{1 a}$, the $\mathrm{C}_{6} \mathrm{H}_{4}$ protons are split into two sets of two whereas for $\mathbf{1 b}$ they are equivalent. For $\mathbf{2}, \mathrm{C}_{6} \mathrm{H}_{4}$ protons are split into a singlet, a doublet and a triplet. NH protons generally appear as a sharp singlet in the range $\delta 11-13 \mathrm{ppm}$ [9]. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{2}$ did not display any signals in this region, which further supports the formation of $\mathrm{Mo}=\mathrm{N}$ or $\mathrm{Mo} \equiv \mathrm{N}$ linkages.

3.3. Description of crystal structures

An ORTEP view of the molecular structure of $\mathbf{1 a}$ is shown in figure 1 . Selected bond distances and bond angles are listed in table 4. The structure of $[\mathrm{MoTp} *(\mathrm{O}) \mathrm{Cl}](\mu-\mathrm{O})$ $\left[\mathrm{MoTp} *(\mathrm{Cl})\left(\equiv \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~F}\right)\right]$ (1a) reveals two non-equivalent $\mathrm{MoTp} * \mathrm{Cl}$ units connected by a single oxo bridge. There are two pseudo-octahedral metal centers with three nitrogen atoms of each Tp* ligand occupying one face of the octahedron. $\mathrm{Mo}(1)$ is coordinated by facial Tp *, terminal oxo, terminal chloro and bridging oxo ligands whereas $\mathrm{Mo}(2)$ is coordinated by facial $\mathrm{Tp} *$, terminal chloro, arylimido and bridging oxo ligands. The two chlorine atoms are cis to each other. The complex contains a nearly linear $\mathrm{Mo}-\mathrm{O}-\mathrm{Mo}$ bridge $\left(172.98(15)^{\circ}\right)$ which is very close to the value reported for $\left[\mathrm{MoTp}^{*}(\mathrm{O}) \mathrm{Cl}\right]_{2}(\mu-\mathrm{O})$ [177.4(4) ${ }^{\circ}$] [45]. Lincoln and Koch have reported [46] the structures of two related geometric isomers (cis, C_{2} and trans, C_{i}). The reported $\mathrm{Mo}-\mathrm{O}-\mathrm{Mo}$ bond angles for these compounds are comparable to those encountered here [177.3(2) for the C_{2} dimer and 180.0° for the trans C_{i} dimer].

The interesting feature of the structure of $\mathbf{1 a}$ is the presence of a $\mathrm{Mo}-\mathrm{N}-\mathrm{R}$ linkage which is considered to be essentially linear with a $\mathrm{Mo}(2)-\mathrm{N}(61)-\mathrm{C}(61)$ bond angle of

Figure 1. An ORTEP view of 1a, showing the atom numbering scheme. Hydrogen atoms are omitted for clarity.

Table 4．Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{2}$.

1a． $5 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$		1b $\cdot \mathrm{C}_{4} \mathrm{H}_{10}$		$2 \cdot \mathrm{C}_{6} \mathrm{H}_{14} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	
$\mathrm{Mo}(2)-\mathrm{N}(61)$	$1.743(3)$	$\mathrm{Mo}(1)-\mathrm{N}(1)$	$1.726(3)$	$\mathrm{Mo}(2)-\mathrm{N}(1)$	1．711（6）
$\mathrm{Mo}(2)-\mathrm{O}(2)$	1.899 （2）	$\mathrm{Mo}(1)-\mathrm{O}(1)$	1.899 （3）	$\mathrm{Mo}(2)-\mathrm{O}(1)$	$1.901(5)$
$\mathrm{Mo}(1)-\mathrm{O}(1)$	$1.677(3)$	$\mathrm{Mo}(2)-\mathrm{O}(2)$	1．681（3）	$\mathrm{Mo}(1)-\mathrm{O}(1)$	$1.874(5)$
$\mathrm{Mo}(1)-\mathrm{O}(2)$	1．871（2）	$\mathrm{Mo}(2)-\mathrm{O}(1)$	$1.877(3)$	$\mathrm{Mo}(1)-\mathrm{O}(2)$	$1.675(6)$
$\mathrm{Mo}(2)-\mathrm{Cl}(2)$	$2.3998(10)$	$\mathrm{Mo}(1)-\mathrm{Cl}(1)$	$2.4151(10)$	$\mathrm{Mo}(2)-\mathrm{Cl}(1)$	2．4013（18）
$\mathrm{Mo}(1)-\mathrm{Cl}(1)$	$2.4006(11)$	$\mathrm{Mo}(2)-\mathrm{Cl}(2)$	$2.3988(10)$	$\mathrm{Mo}(1)-\mathrm{Cl}(2)$	2.3914 （19）
$\mathrm{Mo}(1)-\mathrm{N}(11)$	2．174（3）	$\mathrm{Mo}(2)-\mathrm{N}(41)$	$2.162(3)$	$\mathrm{Mo}(1)-\mathrm{N}(12)$	$2.156(6)$
$\mathrm{Mo}(1)-\mathrm{N}(1)$	2.215 （3）	$\mathrm{Mo}(2)-\mathrm{N}(51)$	2.209 （3）	$\mathrm{Mo}(1)-\mathrm{N}(8)$	2．212（6）
$\mathrm{Mo}(1)-\mathrm{N}(21)$	2.324 （3）	$\mathrm{Mo}(2)-\mathrm{N}(61)$	2.348 （3）	$\mathrm{Mo}(1)-\mathrm{N}(10)$	$2.355(6)$
$\mathrm{Mo}(2)-\mathrm{N}(31)$	2．285（3）	$\mathrm{Mo}(1)-\mathrm{N}(31)$	2．177（3）	$\mathrm{Mo}(2)-\mathrm{N}(4)$	2．163（6）
$\mathrm{Mo}(2)-\mathrm{N}(41)$	2．171（3）	$\mathrm{Mo}(1)-\mathrm{N}(11)$	2.215 （3）	$\mathrm{Mo}(2)-\mathrm{N}(6)$	$2.206(6)$
$\mathrm{Mo}(2)-\mathrm{N}(51)$	$2.207(3)$	$\mathrm{Mo}(1)-\mathrm{N}(21)$	2.292 （3）	$\mathrm{Mo}(2)-\mathrm{N}(2)$	2.296 （6）
Bond angles					
$\mathrm{Mo}(1)-\mathrm{O}(2)-\mathrm{Mo}(2)$	172．98（15）	$\mathrm{Mo}(2)-\mathrm{O}(1)-\mathrm{Mo}(1)$	169．57（15）	$\mathrm{Mo}(1)-\mathrm{O}(1)-\mathrm{Mo}(2)$	168．8（3）
$\mathrm{C}(61)-\mathrm{N}(61)-\mathrm{Mo}(2)$	161．5（3）	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Mo}(1)$	178．3（3）	$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{Mo}(2)$	176．3（6）
$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{O}(2)$	104．86（12）	$\mathrm{O}(2)-\mathrm{Mo}(2)-\mathrm{O}(1)$	102．61（13）	$\mathrm{O}(2)-\mathrm{Mo}(1)-\mathrm{O}(1)$	102．8（3）
$\mathrm{N}(61)-\mathrm{Mo}(2)-\mathrm{O}(2)$	105．16（13）	$\mathrm{N}(1)-\mathrm{Mo}(1)-\mathrm{O}(1)$	99．49（14）	$\mathrm{N}(1)-\mathrm{Mo}(2)-\mathrm{O}(1)$	100．2（3）
$\mathrm{N}(61)-\mathrm{Mo}(2)-\mathrm{Cl}(2)$	98．87（11）	$\mathrm{N}(1)-\mathrm{Mo}(1)-\mathrm{Cl}(1)$	95．63（11）	$\mathrm{N}(1)-\mathrm{Mo}(2)-\mathrm{Cl}(1)$	98．4（2）
$\mathrm{O}(2)-\mathrm{Mo}(2)-\mathrm{N}(41)$	92．54（11）	$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{N}(21)$	86．91（12）	$\mathrm{O}(1)-\mathrm{Mo}(2)-\mathrm{N}(2)$	86．9（2）
$\mathrm{O}(2)-\mathrm{Mo}(2)-\mathrm{N}(31)$	85．69（11）	$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{N}(11)$	165．26（12）	$\mathrm{O}(1)-\mathrm{Mo}(2)-\mathrm{N}(4)$	90．8（2）
$\mathrm{O}(2)-\mathrm{Mo}(2)-\mathrm{N}(51)$	163．83（11）	$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{N}(31)$	90．80（12）	$\mathrm{O}(1)-\mathrm{Mo}(2)-\mathrm{N}(6)$	165．4（2）
$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{N}(11)$	91．20（12）	$\mathrm{O}(2)-\mathrm{Mo}(2)-\mathrm{N}(41)$	92．91（13）	$\mathrm{O}(2)-\mathrm{Mo}(1)-\mathrm{N}(8)$	91．6（3）
$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{N}(1)$	91．16（12）	$\mathrm{O}(2)-\mathrm{Mo}(2)-\mathrm{N}(51)$	91．24（13）	$\mathrm{O}(2)-\mathrm{Mo}(1)-\mathrm{N}(10)$	169．4（3）
$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{N}(21)$	169．15（12）	$\mathrm{O}(2)-\mathrm{Mo}(2)-\mathrm{N}(61)$	169．36（13）	$\mathrm{O}(2)-\mathrm{Mo}(1)-\mathrm{N}(12)$	93．6（3）
$\mathrm{O}(2)-\mathrm{Mo}(2)-\mathrm{Cl}(2)$	93．49（8）	$\mathrm{O}(2)-\mathrm{Mo}(2)-\mathrm{Cl}(2)$	97．43（10）	$\mathrm{O}(2)-\mathrm{Mo}(1)-\mathrm{Cl}(2)$	98．7（2）
$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{N}(1)$	91．16（12）	$\mathrm{O}(1)-\mathrm{Mo}(2)-\mathrm{Cl}(2)$	96．13（8）	$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{Cl}(2)$	96．10（16）
$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{Cl}(1)$	97．20（10）	$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{Cl}(1)$	97．12（8）	$\mathrm{O}(1)-\mathrm{Mo}(2)-\mathrm{Cl}(2)$	98．7（2）
$\mathrm{O}(2)-\mathrm{Mo}(1)-\mathrm{Cl}(1)$	92．64（8）	$\mathrm{N}(1)-\mathrm{Mo}(1)-\mathrm{O}(1)$	99．49（14）	$\mathrm{O}(1)-\mathrm{Mo}(2)-\mathrm{N}(1)$	100．2（3）

$161.5(3)^{\circ}$ within the range $160-180^{\circ}$ suggested by Dehnicke [49]. For the compounds $\left[\mathrm{Tp} * \mathrm{Mo}(\mathrm{NAr})_{2} \mathrm{Cl}\right]$ and $\left[\mathrm{Tp} * \mathrm{Mo}(\mathrm{NAr})\left(\mathrm{NBu}^{t}\right) \mathrm{Cl}\right]\left(\mathrm{Ar}=2,6-\mathrm{Pr}_{2}^{\mathrm{i}} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ the $\mathrm{Mo}-\mathrm{N}-\mathrm{C}$ bond angles were reported as $173.06(16)$ and $168.25(16)^{\circ}$ respectively [35]. The Tp^{*} ligand is coordinated to each molybdenum atom with $\mathrm{Mo}-\mathrm{N}$ bond lengths (table 4) typical for this type of compound [46]. For 1a, the $\operatorname{Mo}(1)-\mathrm{O}(1)$ distance is $1.677(3)(\AA)$. The $\operatorname{Mo}(1)-\mathrm{O}(2)$ and $\mathrm{Mo}(2)-\mathrm{O}(2)$ bond distances are 1.871(2) and $1.899(2) \AA$ which are close to the values of 1.908(4) and $1.880(4) \AA$ reported for $\left[\mathrm{MoTp}{ }^{\mathrm{Pr}} \mathrm{OCl}\right](\mu-\mathrm{O})\left[\mathrm{MoTp} \mathrm{pr}^{\mathrm{Pr}} \mathrm{O}(\mathrm{OH})\right]\left(\mathrm{Tp}^{\mathrm{Pr}}=\right.$ hydrotris(3-isopropylpyrazolyl)borate) [45]. $\mathrm{Mo}(1)-\mathrm{Cl}(1)$ and $\mathrm{Mo}(2)-\mathrm{Cl}(2)$ distances of $2.4006(11), 2.3998(10) \AA$, respectively, are all also within the usual ranges [46] and comparable to the values 2.346(2) and 2.364(2) \AA for $\left[\operatorname{MoTp}(\mathrm{O}) \mathrm{Cl}_{2}(\mu-\mathrm{O})\left(c i s, C_{2}\right.\right.$ dimer $)$.

An ORTEP view of the molecular structure of $\mathbf{1 b}$ is shown in figure 2 and selected bond distances and bond angles are listed in table 4. The X-ray structure determination of $\mathbf{1 b}$ reveals it to be a geometrical isomer of $\mathbf{1 a}$. The dimer possesses no crystallographically imposed symmetry. The chloride ligands are trans to each other. The Mo-O-Mo angle of $169.57(15)^{\circ}$ deviates considerably from linearity in comparison to 1a. For $[\mathrm{MoTp} *(\mathrm{O}) \mathrm{Cl}]_{2}(\mu-\mathrm{O})$ (trans, C_{i}), a linear Mo-O-Mo bond (180.0°) was reported whereas for $\left[\mathrm{MoTp}{ }^{\mathrm{Pr}} \mathrm{OCl}\right](\mu-\mathrm{O})\left[\mathrm{MoTp}{ }^{\mathrm{Pr}} \mathrm{O}(\mathrm{OH})\right]$, this linkage was non-linear (158.5(2) ${ }^{\circ}$ [45]. For $\mathbf{1 b}$, the $\mathrm{Mo}(1)-\mathrm{N}(1)-\mathrm{C}(1)$ bond angle of $178.3(3)^{\circ}$ is very close to linear and comparable to the value $173.06(16)^{\circ}$ reported for [$\left.\mathrm{Tp} * \mathrm{Mo}(\mathrm{NAr})_{2} \mathrm{Cl}\right][35]$. The $\mathrm{Mo}(1)-\mathrm{O}(1), \mathrm{Mo}(2)-\mathrm{O}(1), \mathrm{Mo}(2)-\mathrm{O}(2), \mathrm{Mo}(1)-\mathrm{Cl}(1), \mathrm{Mo}(2)-\mathrm{Cl}(2)$ distances of $1.899(3), 1.877(3), 1.681(3), 2.4159(5), 2.3988(10) \AA$ for $\mathbf{1 b}$ are also comparable to $\mathbf{1 a}$ and within suggested ranges [46]. $\mathrm{Mo}(2)-\mathrm{N}(62)$ and $\mathrm{Mo}(1)-\mathrm{N}(1)$ bond lengths of

Figure 2. An ORTEP view of 1b, showing the atom numbering scheme. Hydrogen atoms are omitted for clarity.
1.743(3) for $\mathbf{1 a}$ and $1.726(3) \AA$ for $\mathbf{1 b}$ are also indicative of a $\mathrm{Mo} \equiv \mathrm{N}$ bond and in agreement with reported values for compounds containing the $\mathrm{Mo} \equiv \mathrm{N}$ bond. In the case of transition metals in high oxidation states, the free electron pair of the nitrogen atom participates in the $\mathrm{M}-\mathrm{N}$ bond, resulting in a linear $\mathrm{M}-\mathrm{N}-\mathrm{R}$ arrangement with a $\mathrm{M} \equiv \mathrm{N}$ triple bond [49]. In terms of electron counting the $\mathrm{Mo} \equiv \mathrm{N}$ arrangement is also essential.

An ORTEP view of the molecular structure of $\mathbf{2}$ is shown in figure 3. As determined for $\mathbf{1 a}$ and $\mathbf{1 b}$, there are two non-equivalent $\mathrm{MoTp} * \mathrm{Cl}$ units connected by a single oxo bridge. $\mathrm{Mo}(1)$ is coordinated by facial Tp^{*}, terminal oxo, terminal chloro and bridging oxo ligands whereas $\mathrm{Mo}(2)$ is coordinated by facial $\mathrm{Tp*}$, terminal chloro, arylimido and a bridging oxo ligands The two chlorine atoms are trans to each other. There is a nearly linear Mo-O-Mo linkage with an angle of $168.8(3)^{\circ}$, which is close to $169.57(15)^{\circ}$ and smaller than $172.98(15)^{\circ}$ determined for $\mathbf{1 b}$ and 1a, respectively. The $\operatorname{Mo}(2)-\mathrm{N}(1)-\mathrm{C}(11)$ metal-imido moiety is almost linear with a bond angle of $176.3(6)^{\circ}$. This value is larger than the corresponding $\operatorname{Mo}(2)-\mathrm{N}(61)-\mathrm{C}(61)$ bond angle of $161.5(3)^{\circ}$ found in 1a, close to the $\mathrm{Mo}(1)-\mathrm{N}(1)-\mathrm{C}(1)$ bond angle of $178.3(3)^{\circ}$ found in $\mathbf{1 b}$, and comparable to similar values reported previously [35,49]. The $\operatorname{Mo}(2)-\mathrm{N}(1)$ bond distance of $1.711(6) \AA$ is comparable to those in $\mathbf{1 a}$ and $\mathbf{1 b}$ is also indicative of a $\mathrm{Mo} \equiv \mathrm{N}$ for compound $\mathbf{2}$. $\mathrm{Mo}(1)-\mathrm{O}(1), \mathrm{Mo}(1)-\mathrm{O}(2), \mathrm{Mo}(2)-\mathrm{O}(1), \mathrm{Mo}(1)-\mathrm{Cl}(2), \mathrm{Mo}(2)-\mathrm{Cl}(1)$ distances of $1.874(5)$, $1.675(6), 1.901(5), 2.3914(19), 2.4013(18) \AA$, respectively, are all in agreement with reported values [46].

Figure 3. An ORTEP view of 2, showing the atom numbering scheme. Hydrogen atoms are omitted for clarity.

Table 5. Crystal data and structure refinement details for $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{2}$.

	1a. $5 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	1b $\cdot \mathrm{C}_{4} \mathrm{H}_{10}$	2. $\mathrm{C}_{6} \mathrm{H}_{14} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
Empirical formula	$\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{FMo}_{2} \mathrm{~N}_{13} \mathrm{O}_{2} \cdot 5 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{FMo}_{2} \mathrm{~N}_{13} \mathrm{O}_{2} \cdot \mathrm{C}_{4} \mathrm{H}_{10}$	$\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{IMo}_{2} \mathrm{~N}_{13} \mathrm{O}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{14} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
Formula weight	1210.51	1056.32	1238.37 -
Temperature/K	173(2)	293(2)	293(2)
Wavelength $/ \AA$	0.71073	1.54178	0.71073
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	P2(1)/n	$P \overline{1}$	P2(1)/c
Unit cell dimensions/ $\mathrm{A}^{\text {, }}$,	$a=12.3726(15), \alpha=90$	$a=10.35260(10), \alpha=96.8230(10)$	$a=14.785(3), \alpha=90$
	$b=25.148(3), \beta=92.556(2)$	$b=10.85720(10), \beta=99.7700(10)$	$b=10.269(2), \beta=99.89(3)$
	$c=16.747(2), \gamma=90$	$c=23.1456(2), \gamma=96.2990(10)$	$c=36.795(7), \gamma=90$
Volume/ A 3	5205.7(11)	$2523.16(4)$	$5503.6(19)$
Z	4	2	4
Density (calculated) $\mathrm{Mg} \mathrm{m}^{-3}$	1.545	1.393	1.505
Absorption coefficient/ mm^{-1}	0.892	5.456	1.164
$F(000)$	2452	1086	2524
Crystal size/mm	$0.12 \times 0.12 \times 0.07$	$0.12 \times 0.12 \times 0.1$	$0.2 \times 0.08 \times 0.08$
θ range for data collection/ ${ }^{\circ}$	1.46 to 27.52	1.96 to 70.06	1.64 to 27.49
Index ranges	$-16 \leq h \leq 16,-32 \leq k \leq 32,-21 \leq l \leq 21$	$-12 \leq h \leq 12,-12 \leq k \leq 12,-27 \leq l \leq 28$	$-19 \leq h \leq 19,-13 \leq k \leq 13,-47 \leq l \leq 47$
Reflections collected	54997	19529	62372
Independent reflections		$8505\left[R_{\text {int }}=0.0364\right]$ Full-matrix least-squares on F^{2}	$12641\left[R_{\mathrm{int}}=0.0930\right]$
Refinement method	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}
Data/restraints/parameters	11945/0/624	8505/55/601	12641/98/635
Goodness-of-fit on F^{2}	$S=1.053$	$S=1.025$	$S=1.137$
R indices [$I>2 \sigma(I)$]	$R_{1}=0.0433, w R_{2}=0.1033$	$R_{1}=0.0429, w R_{2}=0.1190$	$R_{1}=0.0844, W \mathrm{r}_{2}=0.1953$
R indices (for all data)	$R_{1}=0.0924, w R_{2}=0.1270$	$R_{1}=0.0488, w R_{2}=0.1222$	$R_{1}=0.1078, w R_{2}=0.2059$
Largest diff. peak and hole/e A^{-3}	1.726 and -1.469	1.263 and -0.728	2.791 and -2.690

The interesting feature related to compounds $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{2}$ is the $\mathrm{Mo}-\mathrm{N}-\mathrm{C}$ part of the metal-imido moiety. In general, two Lewis structures have been proposed for the metal nitrogen bond in imido complexes [51].

In structure (A), the nitrogen acts as a six electron donor and a Mo-N-R angle close to 180° is expected; in structure (B), the nitrogen acts as a four electron donor and the $\mathrm{Mo}-\mathrm{N}-\mathrm{R}$ linkage is bent. The majority of known $\mathrm{Mo}(\mathrm{V})$ and $\mathrm{Mo}(\mathrm{VI})$ imido compounds have linear linkages [51]. In 1a, 1b and 2, the Mo-N-C moieties are almost linear and related bond lengths and bond angles are all in agreement with a molybdenum-nitrogen bond order of three.

Supplementary material

Crystallographic data for the structural analyses have been deposited with the Cambridge Crystallographic Data Centre, CCDC No. 236291 for compound 1a $\cdot 2.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CCDC}$ No. 236252 for compound 1b $\cdot \mathrm{C}_{4} \mathrm{H}_{10}$, CCDC No. 236292 for compound $2 \cdot \mathrm{C}_{6} \mathrm{H}_{14} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, UK CB2 1EZ (Fax: +44 1223-336033; E-mail: deposit@ccdc.cam.ac.uk or www://www.ccdc.cam.ac.uk).

Acknowledgments

We are thankful to the Research Council of the Izmir Institute of Technology and TUBITAK, Research Council of Turkey, for financial support, and Prof. J. A. McCleverty for providing the hydrotris(3,5-dimethylpyrazol-1-yl)borate ligand.

References and notes

[1] S. Trofimenko, J. Am. Chem. Soc. 89, 3170 (1967).
[2] J.W.E. Cleland, K.M. Bernhart, K.M. Yamanouchi, D. Collison, F.E. Mabbs, R.B. Ortega, J.H. Enemark, Inorg. Chem. 26, 1017 (1987).
[3] N. Kitajima, B.W. Tolman, Prog. Inorg. Chem. 43, 419 (1995).
[4] M.S. Sanforf, L.M. Henling, R.H. Grubbs, Organometallics 17, 5384 (1998).
[5] C.D. Garner, C.M. Charnock, In Comprehensive Coordination Chemistry, p. 323, G.Wilkinson, R.D. Gilliard, J.A. McCleverty (Eds), Pergamon Press, Oxford (1987).
[6] J.H. Enemark, K.B. Swedo, J. Chem. Educ. 56, 70 (1979).
[7] D. Sellmann, B. Hadawi, F. Knoch, M. Moll, Inorg. Chem. 34, 5963 (1995).
[8] W.A. Nugent, J.M. Mayer, Metal-Ligand Multiple Bonds, Wiley-Interscience, New York (1988).
[9] D.E. Wigley, Prog. Inorg. Chem. 42, 239 (1994).
[10] W.D. Philip, V.C. Gibson, W. Clegg, J. Chem. Soc., Dalton Trans. 3313, (1995).
[11] G.L. Casty, T.D. Tilley, G.P.A. Yap, A.L. Rheingold, Organometallics 16, 4746 (1997).
[12] V.C. Gibson, C. Redshaw, G.L.P. Walker, J.A.K. Howard, V.J. Hoy, J.M. Cole, L.G. Kuzmina, D.S. De Silva, J. Chem. Soc., Dalton Trans. 161 (1999).
[13] J.A.M. Brandts, M.V. Leur, R.A. Gossage, J. Boersma, A.L. Spek, G. van Koten, Organometallics 18, 2633 (1999).
[14] P.J.A.M. Brandts, J. Boersma, A.L. Spek, G. van Koten, Eur. J. Inorg. Chem. 1727 (1999).
[15] M.C.W. Chan, F.W. Lee, K.K. Cheung, C.M. Che, J. Chem. Soc., Dalton Trans. 3197 (1999).
[16] S.M. Lee, R. Kowallick, M. Marcaccio, J.A. McCleverty, M.D. Ward, J. Chem. Soc., Dalton Trans. 3443 (1998).
[17] W. Klaui, T. Hardt, J. Organomet. Chem. 553, 241 (1998).
[18] G.R. Clark, A.J. Nielson, C.E. Rickard, J. Chem. Soc. Dalton Trans. 4265 (1996).
[19] R.C.B. Copley, P.W. Dyer, V. Gibson, J.A.K. Howard, B. Whittle, Polyhedron 15, 3001 (1996).
[20] W.M. Vaughan, K.A. Abboud, J.M. Boncella, J. Organomet. Chem. 127, 1201 (1994).
[21] T.A. Coffey, G.D. Forster, G. Hogarth, J. Chem. Soc., Dalton Trans. 2337 (1995).
[22] V.C. Gibson, C. Redshaw, W. Clegg, M.R.J. Elsegood, J. Chem. Soc., Dalton Trans. 3207 (1997).
[23] J. Sundermeyer, J. Putterlik, M. Foth, J.S. Field, N. Ramesar, Chem. Ber. 127, 1201 (1994).
[24] S. Scheuer, J. Fischer, J. Kress, Organometallics 14, 2627 (1995).
[25] W.M. Vaughan, K.A. Abboub, J.M. Boncella, J. Organomet. Chem. 485, 37 (1995).
[26] J.M. Boncella, M.L. Cajigal, A.S. Gamble, K.H. Abboud, Polyhedron 15, 2071 (1996).
[27] A. Galindo, F. Montilla, A. Pastor, E. Carmona, E. Gutierrez-Puebla, A. Monge, C. Ruiz, Inorg. Chem. 36, 2379 (1997).
[28] V.C. Gibson, C. Redshaw, W. Clegg, M.R.J. Elsegood, U. Siemeling, T. Turk, Polyhedron 23, 189 (2004).
[29] F. Montilla, A. Pastor, A. Galindo, J. Organomet. Chem. 590, 202 (1999).
[30] A.A. Danopoulos, G. Wilkinson, B.H. Bates, M.B. Hursthouse, J. Chem. Soc., Dalton Trans. 269 (1991).
[31] A.A. Danopoulos, G. Wilkinson, T.K.N. Sweet, M.B. Hursthouse, Polyhedron 15, 873 (1996).
[32] V. Saboonchian, A.A. Danopoulos, A. Gutierrez, G. Wilkinson, D.J. Williams, Polyhedron 10, 2241 (1991).
[33] A.A. Danopoulos, G. Wilkinson, D.J. Williams, J. Chem. Soc., Chem. Commun. 181 (1991).
[34] H.W. Lam, G. Wilkinson, D.J. Williams, Polyhedron 10, 2647 (1991).
[35] V.C. Gibson, C. Redshaw, G.L.P. Walker, W. Clegg, M.R.J. Elsegood, J. Organomet. Chem. 689, 332 (2004).
[36] J.B. Strong, B.S. Haggerty, A.L. Rheinhold, E.A. Maatta, Chem. Commun. 1137 (1997).
[37] V.C. Gibson, A.J. Graham, D.L. Ormsby, B.P. Ward, A.J.P. White, D.J. Williams, J. Chem. Soc., Dalton Trans. 2597 (2002)
[38] S.A. Roberts, C.G. Young, C.A. Kippe, J.W.E. Cleland, K. Yamanouchi, M.D. Carducci, J.H. Enemark, Inorg. Chem. 29, 3650 (1990).
[39] W.L. Madison, SMART Diffractometer control software, Bruker Analytical X-ray Instruments Inc., Madison, WI (1998).
[40] W.L. Madison, SAINT integration software, Siemens Analytical X-ray Instruments Inc., Madison, WI (1994).
[41] G.M. Sheldrick, SADABS: A program for absorption correction with the Siemens SMART system, University of Göttingen, Germany (1996).
[42] W.L. Madison, SHELXTL program system version 5.1, Bruker Analytical X-ray Instruments Inc., Madison, WI (1998).
[43] International Tables for Crystallography, Kluwer, Dordrecht (1992).
[44] M.B. Kassim, R.L. Paul, J.C. Jeffery, J.A. McCleverty, M.D. Ward, Inorg. Chim. Acta 327, 160 (2002).
[45] A. Miller, C. Doonan, L. Laughlin, E.R.T. Tiekink, C. Young, Inorg. Chim. Acta 337, 393 (2002).
[46] S. Lincoln, S.A. Koch, Inorg. Chem. 25, 1594 (1986).
[47] A.A. Eagle, M.F. Mackoy, C.G. Young, Inorg. Chem. 30, 1425 (1991).
[48] S. Lincoln, T.M. Loehr, Inorg. Chem. 29, 1907 (1990).
[49] K. Dehnicke, J. Strahle, Angew. Chem., Int. Ed. Engl. 20, 413 (1981).
[50] J.A. McCleverty, G. Denti, S. Reynolds, J. Chem. Soc., Dalton Trans. 81 (1993).
[51] E.A. Maatta, B.L. Haymore, R.A. Wenthworth, Inorg. Chem. 19, 1055 (1980).

[^0]: *Corresponding author. Tel.: +90-232-7507530. Fax: +90-232-7507509. E-mail: isiltopaloglu@iyte.edu.tr

