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Abstract

A stabilized finite element method using the residual-free bubble functions (RFB) is proposed for solving the gov-

erning equations of steady magnetohydrodynamic duct flow. A distinguished feature of the RFB method is the resolv-

ing capability of high gradients near the layer regions without refining mesh. We show that the RFB method is stable by

proving that the numerical method is coercive even not only at low values but also at moderate and high values of the

Hartmann number. Numerical results confirming theoretical findings are presented for several configurations of inter-

est. The approximate solution obtained by the RFB method is also compared with the analytical solution of Shercliff�s
problem.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of the flow of incompressible, viscous, electrically conducting fluids in channels and ducts

under a uniform oblique magnetic field is important due to the practical applications in the field of mag-

netohydrodynamics (MHD). The design of cooling systems with liquid metals for a nuclear reactor, MHD

generators, accelerators, pumps and flowmeters are all such applications. The exact solution of the problem

can be obtained only for some special cases. Therefore it is important to devise effective numerical methods

for the approximate solution of the MHD problem.
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Many researchers investigated the MHD problem in two-dimensional case using several numerical meth-

ods. Singh and Lal [5,6] have obtained numerical solutions of the MHD flows through pipes of triangular

cross-section using a finite difference method. Then due to the difficulties in fitting arbitrary cross-section of

the channel, they presented the finite element method (FEM) solution of channel flows for Hartmann num-

ber less than 10 [7,14,8]. Tezer-Sezgin and Koksal extended these studies to moderate Hartmann numbers
up to 100 by using the standard FEM with linear and quadratic elements [17]. Further Demendy and Nagy

have used the analytical finite element method to obtain their numerical solution in the range of the Hart-

mann number M < 1000 in [18]. The boundary element method application of the MHD flow in a rectan-

gular duct with two conducting walls parallel to the applied magnetic field and the other walls being

insulators is given by Tezer-Sezgin [16] for Hartmann number up to 10. Solution of MHD flow in a rectan-

gular duct with insulating walls is presented using DQM by Tezer-Sezgin [15] in the presence of an oblique

magnetic field. The common deficiency of the existing numerical methods is that they produce physical

numerical results in several configurations of interest but Hartmann number M cannot be increased more
than 1000. For high Hartmann numbers the difficulty is similar to the advection–diffusion equation when

advection process dominates diffusion and can be explained by the formation of layers near the walls or

inside the region depending on the boundary conditions.

The present paper uses the Galerkin finite element method with standard piecewise linear polynomials

enriched by residual-free bubble (RFB) functions to solve the MHD flow problem in a straight channel

of uniform cross-section. The RFB functions enable us to resolve layers without refining the mesh. The

RFB method was first proposed by Brezzi and Russo [4] for the advection–diffusion equation. The stability

of the method for the advection–diffusion equation has been well investigated for linear and bilinear ele-
ments and for a wide range of Peclet number in a series of papers [13,2,12,9]. From a practical point of

view, the important range of the Hartmann numbers is 102 < M < 106. Using the RFB method we are able

to compute accurate numerical approximations to the solution of the MHD flow problem for this range of

the Hartmann number. Computational power of the new numerical method can be explained by its stability

analysis. This will be done at moderate and high values of Hartmann number for triangular elements. We

then proceed numerical experiments that show robustness of the numerical method.

The paper is organized as follows. In Section 2 the governing equations of the MHD flow problem un-

der consideration are specified. In Section 3 we discuss the discretization procedure with an emphasis on
the description of the residual-free bubble method applied to the MHD problem. The stability of the

numerical method for moderate and high Hartmann numbers is investigated in Section 4. Some compu-

tational issues that makes computer implementation more convenient are also discussed in this section.

Finally the computational power of the RFB method is tested via a comparison with the analytical solu-

tion of Shercliff�s problem in Section 5. Further numerical results verifying robustness of the method are

also presented.
2. Definition of the problem

We consider the problem of finding the velocity V and the induced magnetic field B for a laminar, fully

developed flow of an incompressible, viscous, electrically conducting fluid in a straight channel of uniform

cross-section. The fluid is driven down by a constant pressure gradient, the direction of the uniform trans-

verse applied magnetic field B0 may be arbitrary to the x-axis, and the fields V and B are parallel to the

z-axis. The dimensionless governing equations of this model [11]
�r2V þ ~a � rB ¼ �� in X;

�r2Bþ ~a � rV ¼ 0 in X;
ð1Þ



Fig. 1. A 2D duct flow.
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where X is a bounded domain in R2 with the boundary oX and ~a ¼ ðsin a; cos aÞ; a is the angle between the

externally applied magnetic field and the x-axis (see Fig. 1). The parameter � is the inverse of the Hartmann
number � = 1/M where this number is defined by M = B0L(d/l)1/2; B0 is the intensity of the external mag-

netic field, L is the characteristic dimension of the channel cross-section, d and l are the electric conduc-

tivity and coefficient of viscosity of the fluid respectively. The general boundary conditions which are

suitable in practice for the MHD problem can be expressed as
V ¼ 0 on oX;

B ¼ 0 on C1;

oB
on

¼ 0 on C2;

ð2Þ
where oX = C1 [ C2 with C1 \ C2 = ;. We call C1 as the insulated part and C2 as the conducting part of the

boundary oX. We use standard notation for function spaces: C0(X) is the space of continuous functions in

X, L2(X) is the space of square-integrable functions in X, H1(X) is the Sobolev space of L2(X) functions

whose derivatives are square-integrable functions in X and H 1
0ðXÞ is the Sobolev space of H1(X) functions

in X with zero value on the boundary oX. Also (Æ ,Æ) denotes the L2 inner product on X.
3. The numerical method

Let V�B ¼ H 1
0ðXÞ � H 1ðXÞ. The problem (1) with boundary conditions (2) can be equivalently stated

as the following variational problem: Find V 2 V and B 2 B such that
cðV ;B; eV ; eBÞ ¼ ð��; eV Þ for all ðeV ; eBÞ 2 V�B; ð3Þ
where
cðV ;B; eV ; eBÞ ¼ ��ðrV ;reV Þ þ ð~a � rB; eV Þ � �ðrB;reBÞ þ ð~a � rV ; eBÞ:
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To specify Galerkin finite element method we choose a partition K of X consisting of triangular ele-

ments in the standard way (e.g. no overlapping, no vertex on the edge of neighboring element). Let

Vh �Bh denote the finite dimensional subspace of V�B. We assume Vh;Bh consist of typical C0(X) fi-

nite element functions and that if Bh 2 Bh then Bh(x) = 0 for any x belonging to the part C1 of the

boundary.
The finite dimensional subspaces that we wish to work are given by
Vh ¼ V1 þVb ¼ V1 

[
K

BV ðKÞ
 !

� V ¼ H 1
0ðXÞ;

Bh ¼ B1 þBb ¼ B1 

[
K

BMðKÞ
 !

� B ¼ H 1ðXÞ;
where V1 and B1 denote the finite element spaces of continuous, piecewise linear polynomials defined over
triangular elements, BV ðKÞ � H 1

0ðKÞ and BMðKÞ � H 1
0ðKÞ. Moreover the finite dimensional spacesS

KBV ðKÞ and
S

KBMðKÞ are spanned by so-called residual- free bubble functions which will be specified

later. We note that the spaces V1 and Vb are orthogonal to each other with respect to the inner product

($.,$.), which is also true for the pair of spaces B1 and Bb. To prove the orthogonality of the spaces B1 and

Bb observe
ðrB1;rBbÞ ¼
X
K

ðrB1;rBbÞK ¼
X
K

Z
oK

oB1

on
Bb dC �

Z
K
Bb DB1 dX

� 	
¼ 0; ð4Þ
since Bb = 0 on oK and DB1 = 0 on each element K. Obviously the subscript K indicates that integration is

restricted to the element K.

Let us state the standard Galerkin finite element method for the problem (3) with our choice of finite
dimensional spaces: Find V h 2 Vh and Bh 2 Bh. such that
chðV h;Bh; eV h; eBhÞ ¼ ð��; eV hÞ for all ðeV h; eBhÞ 2 Vh �Bh; ð5Þ

where
chðV h;Bh; eV h; eBhÞ ¼ ��ðrV h;reV hÞ þ ð~a � rBh; eV hÞ � �ðrBh;reBhÞ þ ð~a � rV h; eBhÞ:

Bubble functions are required to vanish on the boundary oK of each element K by definition. For the

particular case of the residual-free bubbles, we define the bubble component Vb of Vh and Bb of Bh by also

requiring that the pair {Vh,Bh} satisfy the original differential equation (1) in the interior of each K and zero

elsewhere. That is
�r2ðV 1 þ V bÞ þ ~a � rðB1 þ BbÞ ¼ �� in K;

�r2ðB1 þ BbÞ þ ~a � rðV 1 þ V bÞ ¼ 0 in K;

V b ¼ Bb ¼ 0 on oK:

ð6Þ
In particular this implies, on a mesh of triangles, that for each K we have
�r2V b þ ~a � rBb ¼ ��� ~a � rB1 in K;

�r2Bb þ ~a � rV b ¼ �~a � rV 1 in K;

V b ¼ Bb ¼ 0 on oK:

ð7Þ
In (5), take eV h ¼ eV b and eBh ¼ eBb on K and eV h ¼ eBh ¼ 0 elsewhere to obtain
chðV h;Bh; eV b; eBbÞK ¼ ð��; eV bÞK : ð8Þ
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Our choice of the residual-free bubbles in Eq. (6) ensures that Eq. (8) is satisfied automatically. Then the

numerical method that we implement is obtained by setting eV h ¼ eV 1 and eBh ¼ eB1 in Eq. (5):
chðV h;Bh; eV 1; eB1Þ ¼ ð��; eV 1Þ for all ðeV 1; eB1Þ 2 V1 �B1; ð9Þ
where
chðV h;Bh; eV 1; eB1Þ ¼ chðV 1;B1; eV 1; eB1Þ þ chðV b;Bb; eV 1; eB1Þ;

chðV 1;B1; eV 1; eB1Þ ¼ ��ðrV 1;reV 1Þ þ ða � rB1; eV 1Þ � �ðrB1;reB1Þ þ ða � rV 1; eB1Þ;

chðV b;Bb; eV 1; eB1Þ ¼ ða � rBb; eV 1Þ þ ða � rV b; eB1Þ;
or, by integration by parts,
chðV b;Bb; eV 1; eB1Þ ¼ �ðBb; ~a � reV 1Þ � ðV b; ~a � reB1Þ; ð10Þ

where bubble functions {Vb,Bb} are defined in terms of {V1,B1} by Eq. (7). Thus the enrichment of the

finite element spaces of piecewise linear functions by bubble functions can be viewed as a modification
of the Galerkin formulation by the addition of two additional terms: ða � rBb; eV 1Þ and ða � rV b; eB1Þ.
4. Stability of the numerical method

We will show that additional terms are actually responsible for the stability of the numerical method,

especially when the Hartman number is high. We do that by proving that the form chðV h;Bh; eV 1; eB1Þ is coer-

cive over the product space Vh �Bh �V1 �B1 under the assumption that the triangulation is regular and
this regularity is uniform as h ! 0.

For large values of �, the form ch is coercive over Vh �Bh �V1 �B1 because the bubble functions be-

comes negligible and the sum of advection terms are zero by integration by parts. Thus we derive the sta-

bility estimates for small values of e. We will do this in two separate cases in the following subsections.

A linear change of variables decouples Eq. (1) into a pair of advection–diffusion problems in the case

that the boundary oX is perfectly insulated (B = 0). When � is small the advection terms become dominant

and it is appropriate to use a stabilized FEM, for example, the residual-free bubble method. The stability of

the residual-free bubble method for the advection–diffusion problems was investigated for triangular ele-
ments in [12,3]. By using some basic arguments of [12] we prove that the form ch is coercive over

Vh �Bh �V1 �B1 resulting in the numerical method (9) is stable.

4.1. The asymptotical case: � ! 0

Since the bubble functions are required to vanish over the whole element boundary oK, the change of

variables
U 1
b ¼ V b þ Bb;

U 2
b ¼ V b � Bb;

ð11Þ
decouples Eq. (7) into a pair of advection–diffusion equation admitting the advection in opposite directions:
�r2U 1
b þ ~a � rU 1

b ¼ ��� ~a � rB1 � ~a � rV 1 in K;

�r2U 2
b � ~a � rU 2

b ¼ ��� ~a � rB1 þ ~a � rV 1 in K;

U 1
b ¼ U 2

b ¼ 0 on oK:

ð12Þ
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For each element K, let oK1 ¼ fx 2 oK : ~a � ~nðxÞ < 0g be the first part of its boundary and

oK2 ¼ fx 2 oK : ~a � ~nðxÞ > 0g be the second part of its boundary, where ~n is the outward-pointing unit nor-

mal to oK. Assuming that ~a � ~nðxÞ is bounded away from zero; then excluding vertices, for each K we have

oK = oK1 [ oK2.

Let bU 1

b and bU 2

b be the asymptotical solution of Eq. (12). That is, for each K, we have,
~a � r bU 1

b ¼ �~a � rB1 � ~a � rV 1 in K; bU 1

b ¼ 0 on oK2;

� ~a � r bU 2

b ¼ �~a � rB1 þ ~a � rV 1 in K; bU 2

b ¼ 0 on oK1:
ð13Þ
Let (xP,xQ) be a line segment that is parallel to the direction of the vector ~a and that lies in a single K

with xP 2 oK1 and xQ 2 oK2 (Fig. 2). Then
bU 1

bðxÞ ¼
1

j~a j

Z xQ

x
~a � rðB1 þ V 1Þds;

bU 2

bðxÞ ¼
1

j~a j

Z x

xP

~a � rðB1 � V 1Þds;
ð14Þ
for x 2 (xP,xQ) where s is the arc length parameter. Hence recalling (11) we have
bV b ¼
bU 1

b þ bU 2

b

2
¼ 1

2 j~a j

Z xQ

x
~a � rðB1 þ V 1Þdsþ

Z x

xP

~a � rðB1 � V 1Þds;

bBb ¼
bU 1

b � bU 2

b

2
¼ 1

2 j~a j

Z xQ

x
~a � rðB1 þ V 1Þds�

Z x

xP

~a � rðB1 � V 1Þds:
Letting eV 1 ¼ �V 1, eB1 ¼ �B1 and plugging the expressions for bV b and bBb above into the terms contain-

ing bubble functions (10) in the discrete problem (9) we get
Fig. 2. The definition of the line segment (xP,xQ).
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�ðbBb; ~a � reV 1ÞK � ðbV b; ~a � reB1ÞK ¼ 1

j~a j ð~a � rðB1 þ V 1ÞÞ2jK
Z xQ

x
ds; 1

� �
K

þ 1

j~a j ð~a � rðB1 � V 1ÞÞ2jK
Z x

xP

ds; 1
� �

K

¼ ha
3 j~a j k~a � rðB1 þ V 1Þk2

K þ ha
3 j~a j k~a � rðB1 � V 1Þk2

K ðsee [1]Þ

¼ 2ha
3 j~a j k~a � rV 1k2

K þ 2ha
3 j~a j k~a � rB1k2

K ðParallelogram lawÞ

ð15Þ
since all ~a � r terms are constant. That shows the extra terms (10) in the numerical method (9) adds stability

through the terms (15). Here ha is defined as the longest line segment parallel to the vector ~a and contained

in the element K.

Remark 1. In computer implementation, we go back to Eq. (14) and evaluate the integral so that we get
bU 1

bðxÞ ¼ V 1ðxQÞ þ B1ðxQÞ � V 1ðxÞ � B1ðxÞ;bU 2

bðxÞ ¼ B1ðxÞ � V 1ðxÞ � B1ðxP Þ þ V 1ðxP Þ:
ð16Þ
Corresponding values of bV b and bBb, can be found by transforming variables back in (11):
bV 1

bðxÞ ¼
V 1ðxQÞ þ V 1ðxP Þ

2
þ B1ðxQÞ � B1ðxP Þ

2
� V 1ðxÞ;

bB2

bðxÞ ¼
V 1ðxQÞ � V 1ðxP Þ

2
þ B1ðxQÞ þ B1ðxP Þ

2
� B1ðxÞ:

ð17Þ
Now plugging these expressions into the terms containing the bubbles (10) in the numerical method (9)

we get
�ðbBb; ~a � reV 1ÞK � ðbV b; ~a � reB1ÞK ¼ � V 1ðxQÞ � V 1ðxP Þ
2

; ~a � reV 1

� �
K

� B1ðxQÞ þ B1ðxP Þ
2

; ~a � reV 1;

� �
K

þ ðB1; ~a � reV 1ÞK

� V 1ðxQÞ þ V 1ðxP Þ
2

; ~a � reB1

� �
K

� B1ðxQÞ � B1ðxP Þ
2

; ~a � reB1;

� �
K

þ ðV 1; ~a � reB1ÞK ð18Þ
The terms containing the functions whose values are determined by the values of interpolation functions

on the element boundary are the additional terms to the terms found in the Galerkin formulation with

piecewise linears; it is these additional terms that yield stability in the numerical method.
4.2. Midrange: 0 < � � 1

We can further obtain a stability estimate for the numerical method for the values of � in the range
0 < � � 1. Let us fix an element K. Decompose the bubble functions Vb and Bb as V b ¼ V b0 þ V �

b and

Bb ¼ Bb0 þ B�
b where they are defined, on each K, by
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�r2V b0 þ ~a � rBb0 ¼ �~a � rB1 in K;

�r2Bb0 þ ~a � rV b0 ¼ �~a � rV 1 in K;

V b0 ¼ Bb0 ¼ 0 on oK:

ð19Þ
and
�r2V �
b þ ~a � rB�

b ¼ �� in K;

�r2B�
b þ ~a � rV �

b ¼ 0 in K;

V �
b ¼ B�

b ¼ 0 on oK:
As the components V �
b and B�

b appears on the right-hand side of (9), they are simply related with con-

sistency of the method and plays no role in the stability. Therefore it is enough to prove that the form

ch is coercive over the reduced space Vh0 �Bh0 �V1 �B1 where
Vh0 ¼ fV h0 ¼ V 1 þ V b0 : V 1 2 V1g;

Bh0 ¼ fBh0 ¼ B1 þ Bb0 : B1 2 B1g:

We note that the bubble components of Vh0 or Bh0 are completely determined by their linear counter-

parts through Eq. (19). We further define our new variables U 1
b0 and U 2

b0 by U 1
b0 ¼ V b0 þ Bb0 and

U 2
b0 ¼ V b0 � Bb0. The functions U 1

b0 and U 2
b0 obviously satisfies the following system of equations
�r2U 1
b0 þ ~a � rU 1

b0 ¼ �~a � rB1 � ~a � rV 1 in K;

�r2U 2
b0 � ~a � rU 2

b0 ¼ �~a � rB1 þ ~a � rV 1 in K;

U 1
b0 ¼ U 2

b0 ¼ 0 on oK

ð20Þ
and their asymptotical solutions bU 1

b0 and bU 2

b0 satisfies
~a � r bU 1

b0 ¼ �~a � rB1 � ~a � rV 1 in K; bU 1

b0 ¼ 0 on oK2;

� ~a � r bU 2

b0 ¼ �~a � rB1 þ ~a � rV 1 in K; bU 2

b0 ¼ 0 on oK1:

ð21Þ
Let us consider the form ch over the reduced space. Using integration by parts and (15) we have
chðV b0;Bb0;�V 1;�B1Þ ¼
X
K

Bb0; ~a � rV 1ð ÞK þ V b0; ~a � rB1ð ÞK

 �

¼
X
K

bBb0; ~a � rV 1

� �
K
þ Bb0 � bBb0; ~a � rV 1

� �
K

�
þ bV b0; ~a � rB1

� �
K
þ V b0 � bV b0; ~a � rB1

� �
K

�
¼
X
K

2ha
3 j~a j k~a � rV 1k2

K þ 2ha
3 j~a j k~a � rB1k2

K

�
þ Bb0 � bBb0; ~a � rV 1

� �
K
þ V b0 � bV b0; ~a � rB1

� �
K

�
: ð22Þ
To obtain a stability estimate, we need to prove that the third and the fourth term in this sum is dom-

inated by the first two terms. This can be achieved by the virtue of Lemma 3 in [12] and Lemma 1 in [1].

Observe that V b0 � bV b0 and Bb0 � bBb0 can be rewritten in terms of our new variables as follows:
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V b0 � bV b0 ¼ ðU 1
b0 � bU 1

b0Þ þ ðU 2
b0 � bU 2

b0Þ;

Bb0 � bBb0 ¼ ðU 1
b0 � bU 1

b0Þ � ðU 2
b0 � bU 2

b0Þ:
ð23Þ
Define the operators L1 and L2 as L1 ¼ �r2 þ ~a � r and L2 ¼ �r2 � ~a � r. We further observe that

U 1
b0 � bU 1

b0 and U 2
b0 � bU 2

b0 satisfy the following differential equations:
L1ð bU 1

b0 � U 1
b0Þ ¼ �r2 bU 1

b0 in K;

bU 1

b0 � U 1
b0 ¼ 0 on oK2;

bU 1

b0 � U 1
b0 ¼ V 1ðxQÞ þ B1ðxQÞ � V 1ðxP Þ � B1ðxP Þ on oK1;

ð24Þ

L2ð bU 2

b0 � U 2
b0Þ ¼ �r2 bU 2

b0 in K;

bU 2

b0 � U 2
b0 ¼ 0 on oK1

bU 2

b0 � U 2
b0 ¼ B1ðxQÞ � V 1ðxQÞ � B1ðxP Þ þ V 1ðxP Þ on oK2:

ð25Þ
Now we can apply Lemma 3 from [12] and Lemma 1 from [1] to the differences U 1
b0 � bU 1

b0 and U 2
b0 � bU 2

b0

to get the bounds
k bU 1

b0 � U 1
b0kK 6 CC0k~a � rV 1 þ ~a � rB1kK ;

k bU 2

b0 � U 2
b0kK 6 CC0k~a � rV 1 � ~a � rB1kK ;

ð26Þ
where the constant C 0 is given by
C0 ¼ C0ð�; ha; j~a jÞ ¼
�1=2h1=2

a

j ~aj3=2
þ �

j ~aj2

 !
: ð27Þ
We remark that these two lemmas holds only if no edge in the triangulation is aligned with the direction

of the flow. The relation (23) and the application of the triangle inequality enable us to write
kV b0 � bV b0kK 6 2CC0ðk~a � rV 1kK þ k~a � rB1kKÞ;

kBb0 � bBb0kK 6 2CC0ðk~a � rV 1kK þ k~a � rB1kKÞ:
ð28Þ
Let us consider the last two terms in (22). By Cauchy–Schwartz inequality
j ðV b0 � bV b0; ~a � rB1Þ j6 2CC0 k~a � rV 1kKk~a � rB1kK þ k~a � rB1k2

K

� �
;

j ðBb0 � bBb0; ~a � rV 1Þ j6 2CC0 k~a � rV 1k2

K þ k~a � rV 1kKk~a � rB1kK
� �

:

We employ the well-known inequality �ab P � a2

2
� b2

2
to get the desired result. Starting from (22) we

have,
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chðV b0;Bb0;�V 1;�B1ÞK ¼
X
K

2

3

ha
j~a j k~a � rV 1k2

K þ k~a � rB1k2

K

� ��
þ Bb0 � bBb0; ~a � rV 1

� �
K
þ V b0 � bV b0; ~a � rB1

� �
K

�
P
X
K

2

3

ha
j~a j k~a � rV 1k2

K þ k~a � rB1k2
K

� ��
� 2CC0 k~a � rV 1k2

K þ 2k~a � rV 1kKk~a � rB1kK þ k~a � rB1k2
K

� ��
P
X
K

2

3

ha
j~a j k~a � rV 1k2

K þ k~a � rB1k2

K

� ��
� 4CC0k~a � rV 1k2

K � 4CC0k~a � rB1k2

K

�
P
X
K

2

3

ha
j~a j k~a � rV 1k2

K � 4C
�1=2h1=2

a

j~aj3=2
þ �

j~aj2

 !
k~a � rV 1k2

K

 

þ 2

3

ha
j~a j k~a � rB1k2

K � 4C
�1=2h1=2

a

j~aj3=2
þ �

j~aj2

 !
k~a � rB1k2

K

!

P
X
K

1

6

ha
j~a j k~a � rV 1k2

K þ 1

6

ha
j~a j k~a � rB1k2

K

� �

where we have assumed � 6 ha j~a j minf1; 1

256C2g for the last inequality and considered the cases 1 6 256C2

and 1 > 256C2 separately. We state this result in the following theorem.

Theorem 1. Let Vb0 and Bb0 be defined as in (19). Suppose that no edge in the triangulation is aligned with the

direction of the flow and that
� 6 ha j~a j min 1;
1

256C2

� 	

for all triangles K in the triangulation. Then
chðV b0;Bb0;�V 1;�B1Þ P
X
K

1

6

ha
j~a j k~a � rV 1k2

K þ 1

6

ha
j~a j k~a � rB1k2

K

� �
:

5. Numerical results

In this section we report three series of experiments for the MHD flow problem using the numerical
method (9) introduced in Section 3. To employ the numerical method we have to find the residual-free bub-

ble part {Vb,Bb} of the numerical solution {Vh,Bh} and assemble the contribution coming from the bubble

part of the solution to the global stiffness matrix. This can be done by a two-level finite element method

(TLFEM) as described in [12]. In the TLFEM, we set another layer of mesh––call it submesh––inside each

element K and apply a non-standard finite element method to find approximations to the bubble functions

{Vb,Bb}. We use a 4 · 4 uniform submesh in our experiments. However, starting from 1000, Hartmann

number becomes high enough so that we can replace the bubble functions {Vb,Bb} with their asymptotical

counterparts fbV b; bBbg. Thus we replace the terms containing bubble functions Vb or Bb in the numerical



Fig. 3. Mesh employed in test problems.
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method (9) with the expressions in (18). We note that this replacement makes implementation more con-

venient and computation much cheaper.

The cross-section of the duct for the MHD flow is a square defined by jxj 6 1 and jyj 6 1, taking the
origin at the centre of the section. We choose a fix uniform 80 · 80 mesh of four-node quadrilateral ele-

ments for all test problems (Fig. 3).

In our computations we use a Fortran77 compiler on a Linux platform and all the graphics are obtained

by using the visualization software VIGIE 1.7 developed by INRIA.

5.1. Shercliff’s problem: transverse magnetic field on a square channel

This is an example with analytical solution where the walls of the channel are insulated (B = 0). The
velocity is zero on the solid walls (V = 0). The external magnetic field is applied in the direction of the

x-axis (a = p/2) (see Fig. 4 for the problem statement). The analytical solution of this problem is given

by Shercliff [10] so that we can compare the approximate solution with the exact solution.
Fig. 4. Shercliff�s problem.



Table 1

The flow field and the magnetic field in Shercliff�s problem at M = 100

x y Vh Vexact Bh Bexact

0.00 0.00 0.0100000 0.0100000 0.0000000 0.0000000

0.25 0.00 0.0100000 0.0100000 �0.0025000 �0.0025000

0.50 0.00 0.0100000 0.0100000 �0.0050000 �0.0050000

0.75 0.00 0.0100000 0.0100000 �0.0075000 �0.0075000

0.00 0.25 0.0100000 0.0100000 0.0000000 0.0000000

0.25 0.25 0.0100000 0.0100000 �0.0025000 �0.0025000

0.50 0.25 0.0099999 0.0100000 �0.0050000 �0.0050000

0.75 0.25 0.0099999 0.0099999 �0.0074999 �0.0074999

0.00 0.50 0.0099993 0.0099992 0.0000000 �0.0000000

0.25 0.50 0.0099983 0.0099981 �0.0024984 �0.0024982

0.50 0.50 0.0099947 0.0099944 �0.0049947 �0.0049944

0.75 0.50 0.0099873 0.0099868 �0.0074873 �0.0074868

0.00 0.75 0.0097662 0.0097614 0.0000000 0.0000000

0.25 0.75 0.0097209 0.0097163 �0.0023043 �0.0023030

0.50 0.75 0.0095898 0.0095858 �0.0046050 �0.0046024

0.75 0.75 0.0093899 0.0093863 �0.0068903 �0.0068869

Table 2

The flow field and the magnetic field in Shercliff�s problem at M = 500

x y Vh Vexact Bh Bexact

0.00 0.00 0.0020000 0.0020000 0.0000000 0.0000000

0.25 0.00 0.0020000 0.0020000 �0.0005000 �0.0005000

0.50 0.00 0.0020000 0.0020000 �0.0010000 �0.0010000

0.75 0.00 0.0020000 0.0020000 �0.0015000 �0.0015000

0.00 0.25 0.0020000 0.0020000 0.0000000 0.0000000

0.25 0.25 0.0020000 0.0020000 �0.0005000 �0.0005000

0.50 0.25 0.0020000 0.0020000 �0.0010000 �0.0010000

0.75 0.25 0.0020000 0.0020000 �0.0015000 �0.0015000

0.00 0.50 0.0020000 0.0020000 �0.0000000 0.0000000

0.25 0.50 0.0020000 0.0020000 �0.0005000 �0.0005000

0.50 0.50 0.0020000 0.0020000 �0.0010000 �0.0010000

0.75 0.50 0.0020000 0.0020000 �0.0015000 �0.0015000

0.00 0.75 0.0020000 0.0020000 0.0000000 0.0000000

0.25 0.75 0.0019999 0.0019999 �0.0005000 �0.0004999

0.50 0.75 0.0019998 0.0019997 �0.0009998 �0.0009997

0.75 0.75 0.0019994 0.0019992 �0.0014994 �0.0014992
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In Tables 1 and 2 we compare the approximate solution with the exact solution for Hartmann numbers

100 and 500, respectively, at several grid points in the first quadrant of the channel. One can see that two

results are comparable.

Velocity and magnetic field contours for M = 100, 500, 1000 and 10,000 for this problem (a = p/2) are

going to be presented with the contours obtained for other values of angle a (a = p/4 and a = p/3) in the

second problem for comparison.



Fig. 5. 2D square-channel problem with externally applied magnetic fields.

Fig. 6. 2D square-channel problem with conducting boundary.
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5.2. 2D square-channel problem with an oblique applied magnetic fields

The same MHD problem is considered here by taking externally applied magnetic field making a positive

angle with the x-axis (see Fig. 5). Computations are carried for values of a = p/4, p/3 and p/2, respectively.

For these values of a velocity contours (or induced magnetic field contours) are given on the same picture.

Those graphics are obtained and presented at Hartmann numbers M = 100, 500, 1000 and 10,000, respec-

tively, in Figs. 7–14. As Hartmann number increases the boundary layer formation close to the walls for

both velocity and induced magnetic field is well observed. Velocity becomes stagnant at the center of the
channel. When external magnetic field applies obliquely, the boundary layers are concentrated near the cor-



Fig. 7. Velocity field in Problem 5.2 at M = 100 (a = p/4, p/3 and p/2, respectively).

Fig. 8. Magnetic field in Problem 5.2 at M = 100 (a = p/4, p/3 and p/2, respectively).
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Fig. 9. Velocity field in Problem 5.2 at M = 500 (a = p/4, p/3 and p/2, respectively).

Fig. 10. Magnetic field in Problem 5.2 at M = 500 (a = p/4, p/3 and p/2, respectively).
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Fig. 11. Velocity field in Problem 5.2 at M = 1000 (a = p/4, p/3 and p/2, respectively).

Fig. 12. Magnetic field in Problem 5.2 at M = 1000 (a = p/4, p/3 and p/2, respectively).
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Fig. 13. Velocity field in Problem 5.2 at M = 10,000 (a = p/4, p/3 and p/2, respectively).

Fig. 14. Magnetic field in Problem 5.2 at M = 10,000 (a = p/4, p/3 and p/2, respectively).
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ners in the direction of the field for both solutions of V and B. These are the well-known behaviors of the

magnetohydrodynamic flow.

5.3. 2D square-channel problem with partly conducting boundary

In this problem external magnetic field B0 is perpendicular to the wall at x = �1. This wall is electrically

insulated except for a length 2l at the center (Fig. 6).

In Figs. 15–24 the velocity and the induced magnetic field contours are presented for several values of l

(l = 0.2, 0.5 and 0.7) for the same Hartmann number on the same picture. The values of Hartmann number

we test are M = 100, 500, 1000, 10,000 and 100,000, respectively. As Hartmann number M increases,

boundary layers are formed not only close to the walls but also inside of the channel. In front of the dis-

continuity points y = �l and y = +l parabolic boundary layers are formed in the direction of applied field

leading three stagnant regions for the velocity. This behavior can be observed from the figures. For very
high values of Hartmann number we note that the numerical solutions show the dominant characteristics

of the MHD flow very clearly: Flow in the channel is completely separated into two rectangular flow re-

gions with the boundary layers leaving the center regions stagnant. Thus our FEM scheme with the resid-

ual-free bubble functions enables to obtain results of the MHD problem for very high Hartmann numbers.
6. Conclusions

We considered the application of the residual-free bubble method to MHD flow problem in a straight

channel of uniform cross-section. We showed that the method is stable at moderate and high values of
Fig. 15. Velocity field in Problem 5.3 at M = 100 (l = 0.2, 0.5 and 0.7, respectively).



Fig. 16. Magnetic field in Problem 5.3 at M = 100 (l = 0.2, 0.5 and 0.7, respectively).

Fig. 17. Velocity field in Problem 5.3 at M = 500 (l = 0.2, 0.5 and 0.7, respectively).
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Fig. 18. Magnetic field in Problem 5.3 at M = 500 (l = 0.2, 0.5 and 0.7, respectively).

Fig. 19. Velocity field in Problem 5.3 at M = 1000 (l = 0.2, 0.5 and 0.7, respectively).
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Fig. 20. Magnetic field in Problem 5.3 at M = 1000 (l = 0.2, 0.5 and 0.7, respectively).

Fig. 21. Velocity field in Problem 5.3 at M = 10,000 (l = 0.2, 0.5 and 0.7, respectively).
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Fig. 22. Magnetic field in Problem 5.3 at M = 10,000 (l = 0.2, 0.5 and 0.7, respectively).

Fig. 23. Velocity field in Problem 5.3 at M = 100,000 (l = 0.2, 0.5 and 0.7, respectively).
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Fig. 24. Magnetic field in Problem 5.3 at M = 100,000 (l = 0.2, 0.5 and 0.7, respectively).

A.I. Nesliturk, M. Tezer-Sezgin / Comput. Methods Appl. Mech. Engrg. 194 (2005) 1201–1224 1223
Hartmann number when a partition of triangular elements is employed. Our analysis also led us to some

computational trick that make the implementation more convenient. On the basis our of computer exper-

iments we can conclude that the RFB method gives more stable and accurate results than previous numer-

ical method used to solve the MHD problem. We finally note that the present method can be generalized to
channels with arbitrary cross-sections.
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