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Abstract. We present new serial and parallel algorithms for multilevel graph 
partitioning. Our algorithm has coarsening, partitioning and uncoarsening 
phases like other multilevel partitioning methods. However, we choose fixed 
nodes which are at least  a specified distance away from each other and coarsen 
them with their neighbor nodes in the coarsening phase using various heuristics. 
Using this algorithm, it is possible to obtain theoretically and experimentally 
much more balanced partitions with substantially decreased total edge costs be-
tween the partitions than other algorithms. We also developed a parallel method 
for the fixed centered partitioning algorithm. It is shown that parallel fixed cen-
tered partitioning obtains significant speedups compared to the serial case. … 

1   Introduction 

The aim of a graph partitioning algorithm is to provide partitions such that the number 
of vertices in each partition is averaged and the number of edge-cuts between the 
partitions is minimum with a total minimum cost. Graph partitioning finds applica-
tions in many areas including parallel scientific computing, task scheduling, VLSI 
design ana operation research. One important area of research is on searching algo-
rithms that find good partitions of irregular graphs to map computational meshes to 
the high performance parallel computer processors for load balancing such that 
amount of computation for each processor is roughly equal with minimum communi-
cation among them. Solution of sparse linear systems where the graph representing 
the coefficient matrix is partitioned for load balancing among processors is one area 
that research is directed [1][2]. Recently, graph partitioning algorithms are used in 
mobile ad-hoc networks to form clusters for dynamic routing purposes [3][4]. In 
multi-constraint approach [5], each vertex is assigned a vector of k weights that  
represent the work associated with that vertex in each of the k computational phases. 
The aim is to partition the graph so that each of the k weights is balanced as well as 
the sum of edge weights are minimized. In the related multi-objective model [6], the 
partition tries to minimize several cost functions at the same time. Each edge is given 
a vector of j weights where different cost functions are an element of this vector. The 
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partitioning then tries to balance vertex weights by minimizing the cost functions. In 
skewed partitioning [7], each vertex can have k preference values showing its ten-
dency to be in each one of k sets which is taken into consideration by the partitioning 
algorithm. Partition refinement is an important step to improve partition quality. Ker-
nighan and Lin (KL) [8] provided a greedy method to swap a subset of vertices 
among partitions to reduce edge connectivity further. During each step of KL algo-
rithm, a pair of vertices, one from each partition are selected and swapped to give a 
reduced total edge weight among the partitions if possible. Multilevel graph partition-
ing is a comparatively new paradigm for graph partitioning and consists of coarsen-
ing, initial partitioning and refinement steps [9][10]. In the coarsening phase, a set of 
vertices is selected and are collapsed to form a coarser graph. This step is performed 
sufficient times to get a simple graph which can be divided into the required partitions 
by a suitable algorithm. The obtained partitions are projected back by uncoarsening 
and refinement by algorithms such as KL along this process. Chaco[11], METIS[12] 
and SCOTCH[13] are popular multilevel partitioning tools used in diverse fields. 

In this study, we propose new serial and parallel multilevel algorithms for graph 
partitioning. We compare these methods with the multilevel graph partitioning 
method of [10]. In Section 2, background including the multilevel graph partitioning 
method is reviewed. Section 3 describes our serial graph partitioning algorithm which 
is called Fixed Centered Partitioning (FCP). Parallel implementation of the FCP 
algorithm on a cluster of workstations is given in Section 4. Finally, experimental 
results obtained so far are presented and comparison of the algorithm with other algo-
rithms are outlined in Section 5 and the conclusions are given in Section 6. 

2   Background 

The multilevel graph partitioning model has proven to be very robust, general and 
effective. The idea is simply approximation of a large graph by a sequence of smaller 
and smaller graphs after which the smallest graph can be partitioned into p partitions 
by a suitable algorithm.This partition is then brought back to the original graph by 
refinements. Consider a weighted graph G0=(V0,E0) with weights both on vertices and 
edges. A multilevel graph partitioning algorithm consists of the following phases.  

Coarsening Phase : In the coarsening phase, the graph G0 is transformed into a se-
quence of smaller graphs G1, G2 ….. , Gm such that |V0| > |V1| > |V2| > · · · > |Vm|. In 
most coarsening schemes, a set of vertices of Gi is combined to form a single vertex 
of the next level coarser graph Gi+1. Let V={vi} be the set of vertices of Gi combined 
to form vertex v of Gi+1. The weight of vertex v is set equal to the sum of the weights 
of the vertices in V={vi}. Also, in order to preserve the connectivity information in the 
coarser graph, the edges of v are the union of the edges of the vertices in vi.  The 
maximal matching of the graph is a set of edges such that there is not a pair adjacent 
on the same vertex. Various approaches to find maximal matching exist. The heavy 
edge matching (HEM) computes the matching Mi such that the weight of the edges in 
Mi is high. The vertices are visited in random order, but the collapsing is performed 
with the vertex that has the heaviest weight edge with the chosen vertex. In Random 
Matching (RM), vertices are visited in random order and an adjacent vertex is chosen 
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in random order as well [10]. During the successive coarsening phases, the weight of 
vertices and edges increase.  

Partitioning Phase : The second phase of the multilevel algorithm computes a high-
quality partition Pm of the coarse graph Gm=(Vm, Em) by a suitable algorithm such that 
each partition contains roughly equal vertex weights and the sum of the weights of the 
edge cuts between the partitions is minimum. 

Uncoarsening/Refinement Phase : During this phase, the partition Pm of the coarser 
graph Gm is projected back to the original graph, by going through  G m-1, Gm-2,…, G1. 
Since each vertex of Gi+1 contains a distinct subset of vertices of G m-1, obtaining Pi 

from Pi+1 is done by simply assigning the set of vertices collapsed in G i+1  to the par-
tition Pi+1[v]. Algorithms such as KL are usually used to improve partition quality. 

3   Serial Fixed Centered Partitioning 

The method we propose has coarsening, partitioning and uncoarsening phases as in 
the other multilevel partitioning methods. We however choose fixed initial nodes 
called centers and collapse the vertices around these centers which must have at least 
a fixed distance to the other selected center nodes.  The FCP algorithm is described in 
Section 3.1, the formal analysis of  the algorithm is stated in Section 3.2. and an 
example partition is given in Section 3.3. 

3.1   Serial FCP Algorithm 

The Serial FCP algorithm can be formally described as in Fig.1. Inputs to the algo-
rithm are the initial graph G0, number of partitions required and the two heuristics,  
HC and HM.  Since we have fixed centers that do not change as the graph gets coars-
ened, a way to allocate these centers initially is needed. The first approach we em-
ployed is to run Breadth-First-Search (BFS) algorithm for all the nodes in the graph 
and find p center nodes which have the maximum distance between them. BFS, how-
ever, is time consuming as it has a runtime of O(n3). Secondly, we may choose the 
centers randomly with the constraint that each center has at least some predetermined 
distance among them. The third approach chooses the centers randomly with no con-
straints. The minimum distance heuristic h1 between any two centers may be associ-
ated to the diameter value of the graph and the number of partitions by h1 = 2d/p 
where d is the diameter of the graph and p is the number of partitions required. The 
possible heuristics used to locate the centers initially could be summarized as follows: 

• HC1 : Apply Breadth-First-Search (BFS) to G0 and find p centers that are 
2d/p distance from each other 

• HC2 : Choose centers randomly with the condition that they are at least 2d/p 
distance from each other 

• HC3 : Choose the centers at random with no constraints 

Once the centers are chosen, FCP proceeds by collapsing a neighbor vertex at each 
iteration to the fixed centers as shown in Fig.1 using a second heuristic, HM. Two 
possible values for HM are the Heaviest Edge Neighbor (HEN) or Random Neighbor 
(RN). Based on the heuristic chosen, the Collapse function performs the collapse 
operation of a marked neighbor node with the center which simply merges the marked 
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vertex to the center by adding its weight to the center, removing the edge between 
them and inserting any previously coexisting edges  between them by adding the 
weights of the edges and representing them as a single edge with this weight.  

 
Procedure Serial_FCP 

     Input : G0 : initial graph 
                  p : number of partitions 
                 HC : heuristic to allocate initial centers 
                  HM : heuristic to mark neighbor nodes  
1.        Locate_centers(G0, HC); 
2.        for i=1 to |_n/p_| do 
3.            for each center c do 
4.                 Collapse(Gi, c, HM); 
 

Fig. 1. Serial FCP Algorithm 

3.2   Analysis of Serial FCP 

The time complexity and the quality of the partitions of the Serial FCP can be stated 
in the following theorems:  

Theorem 1: FCP performs partitioning of G(V,E) in O(|_n/p_|) steps where |V| = n 
and p is the number of partitions required. The time complexity of the total collapsing 
of FCP is O(n). 

Proof : FCP simply collapses p nodes with its heaviest edges at each step resulting in 
|_n/p_| steps. Since there are p collapsing at each step, total time complexity is O(n). 

Corollary 1: FCP performs partitioning of G(V,E) such that the final partitions have 
O(|_n/p_|+1) vertices.  

Proof: The FCP collapses one node to each partition and the total number of steps is 
O(|_n/p_|) by Theorem 1.In the last step, there will be O(p MOD n) nodes to collapse 
which means that the final partitions will have a maximum of n/p+1 nodes. 

3.3   FCP Examples 

Let us illustrate RM, HEM and FCP by the example shown in Fig. 1 where (a) is RM, 
(b) is HEM, (c) is FCP and heavy lines are used to show matchings. The initial graphs 
and outputs of RM and HEM are reproduced from [14]. The output graphs are formed 
after Θ(5) collapses for RM and HEM but Θ(6) for FCP after two steps. For this par-
ticular example, we see that FCP performs much better with a total edge cost of 16 
compared to RM (30) and HEM (24). We also get 3 vertices per partition with respect 
to 2 vertices in RM and HEM. If three partitions were required, we would have 
stopped for FCP but continue with matching for CM and HEM. Moreover, FCP does 
not have a matching phase, therefore it has much better runtimes than RM and HEM. 
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Fig. 2. Comparison of RM (a), HEM (b) and FCP (c) in an arbitrary network 

4   Parallel Fixed Centered Partitioning 

The proposed parallelization of FCP  consists of  three phases. In the first phase, the 
determination of the diameter of the network is done in parallel. The coordinatorsends 
the adjacency list of the graph to individual workers and each worker then estimates its 
local diameter of the graph by performing BFS on its local partition. The coordinator 
gathers all of the local diameters and estimates the total diameter. It then locates the 
centers based on this diameter and sends the identities of the centers to  each  processor.  

 

Process Parallel_FC_Coordinator 
 
       Input : G0 : initial graph 

              p : number of partitions 
             HC : heuristic to allocate initial centers 
            HM : heuristic to mark neighbor nodes 
  

1.    /*  Locate  Centers  */ 
2.     Send adjacency list and their identities to slaves 
3.     Receive local diameters from all slaves 
4.     estimate diameter of the graph and determine center nodes 
5.     Send center nodes to the slaves. 
6.    /*  Wait for local collapses */ 
7.     forall workers 
8.       Receive the collapsed nodes from the worker  
9.        while there are nodes to be collapsed /* Check Overlaps */ 
10.            Receive node identities from slaves 
11.            Send COLLAPSED or NOT_COLLAPSED to workers 
12.            mark NOT_COLLAPSED nodes as collapsed 

Fig. 3. Coordinator pseudocode for Parallel FCP
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In the second phase, each processor collapses the graph around its designated center 
independently until a predetermined h2 times such that no overlap would occur. The 
heuristic h2 used is set as d/p2 for the implementation. In the third phase, each proces-
sor attempts to collapse possibly overlapping regions with others. Therefore, every 
time a number of nodes are to be collapsed, acknowledegment from the coordinator is 
searched to check that these nodes have not been collapsed before. The coordinator 
and worker pseudocodes are shown in in Fig. 3 and Fig. 4. 

Fig. 4. Worker Pseudocode for Parallel FCP 

5   Results 

5.1   Results for Serial Centered Node Matching 

We implemented the graph partitioning using HEM, RM and FCP (alternatively 
called Centered Matching - CM) for various randomly created matrix sizes (128*128, 
256*256, 512*512, 1024*1024, 2048*2048). The graphs represented by the matrices 
are partitioned on Ultra 5 Sun Sparc servers which run Solaris7 as operating system 
and runtimes of partitioning algorithms are compared.  Center nodes in FCP are found 
by two different heuristics as HC1 and HC2.  by running the BFS algorithm for all 
nodes or randomly choosing and checking for a distance between as described in 
Section 3.1. As shown in Fig. 5, the first FCP (CM with random center) method is the 
fastest as expected since FCP does not have a matching phase. The second FCP 
method (CM with BFS) is the slowest because BFS is executed on all nodes of the 
graph to find center nodes. In Fig. 6, the total edge costs between the partitions are 
plotted for FCP (with HC2 and HC3) and HEM and RM. It may be seen that both 
FCP methods have a significant decreased total edge costs between the partitions. 

Process Parallel_FC_Worker 
 

       Input : G0 : initial graph 
                   p : number of partitions 
                   HM : heuristic to mark neighbor nodes 
  

1.        Determine  Local Diameter; 
2.        Receive adjacency list and my_index; 
3.        Find the local diameter; 
4.        Send local diameter to coordinator; 
5.        Receive diameter and my_center from master 
6.        h2 = d/p2 /* Local Collapses */ 
7.        Collapse nodes until distance h2 from my_center; 
8.       Send the identities of the collapsed nodes to the master; 
9.        /* Overlapping Collapses */ 
10.        while any uncollapsed neighbor of mycenter exists 
11.            Send neighbor to master for checking; 
12.            Receive check from master; 
13.            if (check== neighbor not collapsed) 
14.                  Collapse neighbor and mark it as collapsed; 
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Fig. 5. Execution Times for theGraph partitioning methods 
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Fig. 6. Edge Cost Comparison of the Four Algorithms 
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Fig. 7. Number of nodes in each part for all graph partitioning methods(2048*2048 matrix) 
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Fig. 7 depicts the number of nodes in each partition with FCP (HC2), HEM and 
RM. As shown, FCP generates much more balanced partitions than other methods. 
This is because of the operation principle of FCP where the centers are visited in 
sequence as stated in Corollary 1. 

5.2   Results for Parallel Centered Node Matching 

We implemented the parallel FCP method on a network of workstations running Paral-
lel Virtual Machine (PVM) v3.4.4. The processors find their local diameters and coarsen 
their neighbor nodes around their local centers to partition the graph. A coordinator and 
2,4,5,6 worker workstations are used in the same VLAN over a Gigabit Ethernet. All of 
the servers are Ultra 5 Sun Sparc running Solaris 7. Workers  communicate with the 
coordinator using a point-to-point protocol. For various graph sizes,  the computational 
run times are recorded. Fig. 8 displays the results of the Parallel FCP for various number 
of processors ranging from 1 to 6. It may be seen that after a threshold value of the 
number of workers, the communication costs become dominant. 
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6   Conclusions 

6   Conclusions 

We proposed a new graph partitioning algorithm called FCP and compared this 
method with other methods such as HEM and RM. FCP provides more favorable 
partitions than the other methods theoretically and experimentally. However, FCP 
needs to assign some nodes in the graph as center nodes which have at least a certain 
distance to each others. The experimental results confirmed the theoretical FCP prop-
erties in terms of the runtime, total edge cost between the partitions and the partition 
quality. FCP using any heuristic performed much better than HEM and RM in terms 
of total edge cost and partition quality. For the runtime, FCP with HC2 and HC3 
resulted in lower times than HEM and RM but FCP with HC1 proved to be the slow-

Fig. 8. Comparison of serial and parallel runtimes of FCP. T1: serial runtime. Ti represents  
the execution time with i workers 
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est as expected. FCP does not have a matching phase which results in a faster execu-
tion time and divides the graph into almost equal partitions as stated in Corollary 1. 
We also developed a parallel version of FCP. In this case, the diameter of the graph is 
estimated after each processor finds their local diameters and then the centers can be 
found by the coordinator. After finding centers where each of is assigned to different 
workers, each  workstation continues collapsing the neighbor nodes of its center until 
there are no uncollapsed nodes left by getting acknowledgement from the coordinator 
after some predetermined value. The efficiency of the parallel algorithm rises for 
larger graphs until a  threshold value where the communication costs start to  
dominate. 

Our general conclusions can be summarized as follows. FCP provides improve-
ment over the other graph matching algorithms such as RM and HEM in three as-
pects. Firstly, it does not have a matching phase, therefore it is faster. Secondly, it 
provides almost equal partitions with significantly lower total edge costs between the 
partitions than the other methods and thirdly it is suitable for parallel processing as 
each center collapses independently. One negative aspect of FCP is the initial marking 
of the fixed centers and random allocation could be a solution in this case. Also, the 
parallel algorithm employed requires a heuristic to be able to perform collapsing 
without any supervision initially. We are looking into more efficient ways of finding 
centers and performing FCP in parallel. Another interesting research direction would 
be modifying the FCP to perform multi-constraint, multi-objective graph partitioning. 
In this case, several cost functions would need to be minimized when choosing the 
vertices to collapse. 
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