
Multilevel Static Real-Time Scheduling
Algorithms Using Graph Partitioning

Kayhan Erciyes1 and Zehra Soysert2

1 Izmir Institute of Technology,
Computer Eng. Dept., Urla, Izmir 35340, Turkey

kayhanerciyes@iyte.edu.tr
2 Ege University International Computer Institute,

35100 Bornova, Izmir, Turkey
soysert@bornova.ege.edu.tr

Abstract. We propose static task allocation algorithms for the periodic
tasks of a distributed real-time system. The cyclic task consists of task
threads which may communicate and share resources. A graph parti-
tioning process and a thread sequencing algorithm are applied to these
threads to yield local schedules. The exact analysis is then obtained and
further refinements are performed if the worst case response time of a
task is greater than its deadline.

1 Introduction

Scheduling in real-time systems can be broadly described as static or dynamic.
Static scheduling of processes with known release times, deadlines, precedence,
and exclusion relations is decribed in [13]. Schedulability tests for Rate Mono-
tonic (RM) and Earliest Deadline First (EDF) algorithms for cyclic tasks when
their deadlines equal their periods are presented in [5]. An exact sheduling test
method for RM algorithm [9] is derived in [6]. A method to find the schedulability
of a task set when Deadline Monotonic Scheduling is used is described in [1]. The
task of scheduling tasks on a multiprocessor/distributed environment is NP-hard
[12]. For this reason, various heuristics such as iterative improvement algorithms
[7], and the probabilistic optimization as simulated annealing algorithms [10] and
genetic algorithms [11] have been proposed. A middleware distributed real-time
scheduling method is shown in [2]. The goal of our ongoing work is to investigate
the balancing of static load over a distributed real-time system where compu-
tation nodes executing real-time kernels are connected by a real-time network
that provides bounded mesage delays. Formally, if T = {t1, t2, ..., tm} is the set
of real-time tasks and P = {p1, p2, ..., pn} is the set of processors, we need to
derive the mapping function M : T → P so that every task meets its deadline.
To accomplish this, we consider the periodic tasks of the real-time system con-
sisting of real-time threads each with a hard deadline. Threads have interprocess
communications and may access shared resources. We sketch the static execu-
tion characteristics of these threads which are computation times, interprocess

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3514, pp. 196–203, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Multilevel Static Real-Time Scheduling Algorithms Using Graph Partitioning 197

communication patterns and deadlines as a directed graph and use a novel mul-
tilevel graph partitioning heuristic to divide the graph into n regions. The output
of the graph partitioning algorithm are the task thread sets to be executed by
each processor. We then sequence these threads for each processor by a Task Se-
quencing Algorithm, providing that the precedence constraints are obeyed and
deadlines are met. In the second phase, we apply the exact scheduling analysis
to work out the worst case response times Rij for j = 1..Ni of the individual
task components taking the blocking times by lower priority threads in the same
or other tasks. If for any task component, Rij is larger than deadline, our par-
titioning is unsuccesful and we go into refinement phase where we try to move
threads from one processor to another to provide Rij < dij .

The rest of the paper is organized as follows. Section 2 provides the com-
putation model and the partitioning algorithm output of which is scheduled by
the task sequencing algorithm described in Section 3. The exact analysis and
the refinement procedure that is invoked if the exact analysis detects missing
deadlines of tasks is described in Section 4. An example of operation is shown
in Section 5 and future directions are outlined in the Conclusions Section.

2 Task Graph Partitioning Algorithm

For the hard-real time tasks we assume the following computation model:

• Worst case execution time of each task Ci and its deadline Di are known in
advance and for periodic tasks, deadlines equal periods. (Di = Pi)

• Each task Ti consists of a number of threads tik, each of which has a com-
putation time cik and a deadline dik for k = 1..Ni where Ni is the count of
threads of ti.

• Task threads have interprocess communication which determine their prece-
dence. If a task thread tij has to communicate the result of its computation
to task thread tik, we say tij ≺ tik, that is, the execution of tij precedes the
execution of tik.

• Tasks threads, of the same or different tasks, may access shared resources,
therefore may block, competing for these resources. The maximum blocking
time bi for a task and its threads can be determined priori using the Priority
Ceiling Protocol analysis [8].

The aim of the our partitioning algorithm is to partition the task thread graph
into subgraphs so that each task thread meets its deadline and also to provide
a partition such that the load (total execution time of task threads) is averaged
over all subgraphs. We use a modified multilevel graph partitioning method of
[4] where instead of finding maximal matching, the graph is partitioned around
fixed centers as in [3]. The task threads tik of a periodic real-time task ti can
be constructed using a directed graph G = (V,E,w) where V is the set of task
threads, E is the set of edges giving interprocess communication between threads
and w : � → E is the set of weights associated with edges. This method has
coarsening, partitioning and uncoarsening phases. During the coarsening phase,

198 K. Erciyes and Z. Soysert

a set of smaller graphs are obtained from the initial graph Gi = (Vi, Ei) such that
|Vi| > |Vi+1|. When graph Gi+1 is to be constructed from graph Gi, a maximal
matching Mi ⊆ Ei is found and vertices that are incident on both edge of this
matching are collapsed. The rules for collapsing are as follows. If u, v ∈ Vi are
collapsed to form vertex w ∈ Vi+1, the total weight of vertices u and v become
the weight of w, the edges incident on w is set equal to the union of the edges
incident on u and v minus the edge (u, v). If there is an edge that is incident on
both u and v, then the weight of this edge is set equal to the sum of the weights
of these two edges. Vertices that are not incident on any edge of the matching
are simply copied over to Gi+1 [4].

We have adapted the modified version of the method presented in [3] for
the real-time case where a directed graph depicts task threads with precedence
relations and strict deadlines. The coarsening phase then needed to be modified
as follows. When we want to choose a neighbor to collapse around the fixed
centers, we first look for any predecessors not assigned to a group yet. If there is
more than one predecessor, we apply a combination heuristic H = W1 ∗EDF +
W2 ∗ HEM where HEM is the Heaviest Edge Matching. In other words, we
consider communication costs as well as the earliest deadlines when collapsing.
W1 and W2 are the weights that can be adjusted. If there are no predecessors,
the same process is repeated for the sucessors until the number of vertices in
the coarsened graph equals the number of procesors n. Finally, we uncoarsen
the coarsened vertices back to get the original graph. This algorithm is depicted
in Fig. 1.

1. Procedure Task_Graph_Partition (TTG:Graph(V,E), n:number of processors);

2. Begin

3. Mark n nodes of the graph as fixed centers;

4. While there are nodes to be collapsed

5. Apply H to neighbors of centers;

6. Add the executon time of neighbors to centers;

7. Collapse the chosen neighbors to the centers;

8. Partition the coarsened TTG;

9. Uncoarsen TTG back to original;

10. End.

Fig. 1. Task Graph Partitioning Algorithm (TGPA)

Theorem 1. TGPA performs partitioning of G(V,E) in O(�N/n�) steps for
each task where |V | = N is an upperbound on the number of task threads and n
is the number of processors. The time complexity of the total collapsing of TGPA
is O(mN) where m is the number of tasks.

Proof. The TGPA collapses n nodes using H at each step for each task for
O(�N/n�) steps which would be O(N) operations in total for one task. Total
number of collapsing for all of the tasks is then O(mN).

Multilevel Static Real-Time Scheduling Algorithms Using Graph Partitioning 199

3 Thread Sequencing Algorithm

The information from the partitioning phase yields the coarse order of the task
threads to be executed in one processor such that if tij and tik are assigned
to the same processor by the partitioning algorithm and tij ≺ tik, then tij has
to be executed before tik. If these two threads have no precedence constraints,
that is tij ‖ tik, they can be assigned arbitrarily after their release times. The
Task Thread Sequencing Algorithm (TTSA) that is employed to provide the final
schedule for task threads on the processor is shown in Fig.2 where any thread
that does not have any predecessors becomes ready to be scheduled.

1. Procedure Thread_Sequence (TTG:Graph(V,E), n:Number of processors);

2. Begin

3. Task_type=READY for all t_{ik} where n_{ik} = 0; {no predecessors}

4. Insert READY tasks into Sched_list;

5. While Sched_list is not empty

6. Get a task thread t_{ik} from the Sched_list;

7. Switch (Event_type)

8. case READY :

9. Event_type = FINISHED;

10. time = time + Finish_time of t_{ik};

11. Insert_event into Sched_list;

12. case FINISHED :

13. For each immediate successor t_{ip} of t_{ik};

14. n_{ip} = n_{ip} - 1;

15. if n_{ip} = 0

16. Event_type = READY;

17. time=time+finish_time of t_{ik} ;

18. Insert event into Sched_list;

19. End.

Fig. 2. Thread Sequencing Algorithm (TSA)

4 Exact Analysis and Refinement

In the second phase, we take the partial execution times of tasks per processor
as inputs which is the sum of the execution times of all the task threads on the
same processor, assuming interprocess communication costs are zero. We then
calculate the worst blocking times for these threads as follows. For each thread,
we look at the lower priority threads of the same tasks, that is threads that are
prior in execution, and all threads of higher priority tasks. From those, we find
the semaphores they are using, and choose the semaphores that have a higher or
equal ceiling than the task thread under consideration. The maximum critical
section time for these semaphores is the blocking time bik for thread tik. In this

200 K. Erciyes and Z. Soysert

on these assumptions, a worst case response time Rij , that is, the response time
of task component tij on processor j can be calculated as follows:

Rn+1
ij = bij + cij +

∑

∀l∈hp(i)

(
Rn
ij

Tl
� ∗ clj)

where hp(i) is the set of tasks that have higher priorities than ti, clj is the
computation time of a task component tlj on processor j. We then find max(Rij)
for j = 1..Ni. If this is greater than deadline di of task ti then our allocation
has failed. In this case, we go into refinement phase where we change the weights
of the EDF and HEM heuristics to get different partitionings. This procedure is
repeated until a feasible schedule is obtained.

5 An Example of Operation

As an example, consider the task set (TA, TB , TC) with the static properties as
shown in Table 1. First, a schedulability analysis shows us that this task set
is unschedulable in one processor as U = Σ(Ci/Pi) = 1.60. Our aim is to see
whether this set can be scheduled on two processors using our approach.

Table 1. An Example Task Set

Ti Ci Di Pi

A 16 30 30
B 24 40 40
C 33 60 60

Assume the threads for each task are as shown in Fig 3 with unity com-
munication costs. The graph partitioning algorithm produces the partitions as
shown in Table 2 with weights set equal. The initial centers are chosen ran-
domly as 3 and 4 for Task A; 2 and 7 for Task B; and 3 and 6 for Task C.
At each iteration, the combination heuristic H = W1 ∗ EDF + W2 ∗ HEM is
applied around these centers for the collapse operation. We then input these
data which represents the rough schedule to the task thread sequencing algo-
rithm (TSA) of Fig. 2 which produces the output depicted in Table 3. We can
now calculate the worst case response times for each task component as shown
and conclude that this task thread sets are schedulable as Rij ≤ di, ∀i. We
have assumed that the blocking times for threads and the network delays are
negligible.

case, a thread cannot be prempted by a lower priority thread of the same task,
it can however be preempted by any thread of the higher priority tasks. Based

Multilevel Static Real-Time Scheduling Algorithms Using Graph Partitioning 201

2

2

5

3

1

3

3

6 6

4

4

5

4

5

8

5

8

7

6

6

3

1

2
2

3

3
1

4

4 5

3

6

2

6

7

8

2

7

23

5

3

5

1

4

(a)

8
6

2 3

5

8

4

4

6

5

2

5

6

7

7

6

8

8

2

10

5

3

1

5

t

c

d

computation time

deadline

task id

(c)

(b)

Fig. 3. Tasks: a) Task A b) Task B c) Task C

Table 2. TGPA Iterations

Tasks Processor Initial iter1 iter2 iter3

A P1 3 3-1 3-1-7 3-1-7-6
P2 4 4-2 4-2-5 4-2-5-8

B P1 2 2-1 2-1-3 2-1-3-5
P2 7 7-6 7-6-4 7-6-4

C P1 3 3-1 3-1-2 3-1-2-5
P2 6 6-4 6-4-7 6-4-7-8

202 K. Erciyes and Z. Soysert

Table 3. TSA Output

Tasks Processor TSA Output Σcij Rij Pi

A P1 1≺3≺6≺7 7 7 30
P2 2≺5≺4≺8 9 9 30

B P1 1≺2≺3≺5 12 19 40
P2 4≺6≺7 12 21 40

C P1 1≺3≺2≺5 16 42 60
P2 4≺7≺6≺8 16 46 60

P1

P2

P1

P2

time

30

7

9

19

21

37

39

42

46

54

58 60

90

0

60 120

67

69 80 99

99

106

10297

101

A1

A2

B1

B2

C1

C2

A1

A2

C1

C2

B1

B2

A1 C1 B1 A1 B1 C1

A2 C2 B2 A2 B2 C2

Fig. 4. The Allocation

6 Conclusions

We have presented algorithms based on graph partitioning to yield feasible sched-
ules of real-time tasks to distributed processors. To our knowledge, there is not a
significant research effort to accomplish this task using graph partitioning meth-
ods. For tasks allocated to different processors, the bounded message delays
need to be considered for this model to yield effective results. Also, we need to
determine relative weights of the EDF and HEM heuristics to give attainable
schedules per processor while partitioning the task graph. Further experimental
studies are neceessary to evaluate the proposed algorithms and also different sce-
narios including threads of different tasks accessing shared resources are needed.
It is possible to perform TGPA in parallel for all tasks independently and also
for each fixed center collapses within the threads.

The final schedule is given in Fig. 4. The allocation that meets the deadlines
of every thread of every task will repeat every 120 units which is the hyperperiod
(lowest common multiple of the three task periods).

Multilevel Static Real-Time Scheduling Algorithms Using Graph Partitioning 203

3. Erciyes, K, Marshall, G., A Cluster Based Hierarchical Routing Protocol for Mobile
Networks, Springer Verlag, Lecture Notes in Computer Science, ICCSA(3), (2004),
528-537

4. Karypis G., J., Kumar J., Analysis of Multilevel Graph Partitioning, University of
Minnesota, Dept. of Computer Science, Tech. Report 95-037

5. Liu J., Layland J.: Scheduling Algorithms for Multiprogramming in a Hard Real-
time Environment, Journal of the ACM, 20(1), (1973), 40-61

6. Lehoczky, J.P., Sha, L., Ding, Y.: The Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behaviour, Procs. of IEEE Real-Time
Systems Symposium, (1989), 166-171

7. Lin, M., Yang, L.T.: Hybrid Genetic Algorithms for Scheduling Partially Ordered
Tasks in a Multi-processor Environment, Procs. of 6th International Conference
on Real-Time Computer Systems and Applications. (1999), 382-387

8. Lui, S., Rajkumar R., Lehoczky, J. P.: Priority Inheritance Protocols: An Approach
to Real-Time Synchronization, IEEE Transactions on Computers, 39(9), (1990),
1175-1185

9. Lui S., Rajkumar R., Shrish S.: Generalized Rate-Monotonic Scheduling Theory: A
Framework for Developing Real-Time Systems, Procs. of the IEEE, 82(1), (1994),
68-82

10. Natale, M.D., Stankovic, J.A.: Scheduling Distributed Real-time Tasks with Min-
imum Jitter, IEEE Transactions on Computers 49(4), (2000), 303-316

11. Oh, J, Wu, C.: Genetic-algorithm-based real-time task scheduling with multiple
goals, Journal of Systems and Software, 71(3), (2004), 245-258

12. Chu, C.: Parallel Machine Scheduling to Minimize Total Tardiness. International
Journal of Production Economics, 76(3), (2002), 265-279

13. Xu. J., Parnas, D.: Scheduling Processes with Release Times, Deadlines, Prece-
dence, and Exclusion Relations, IEEE Trans. On Software Engineering, 16(3),
(1990), 360-369

References

1. Audsley, N.C., Burns, A., Richardson, M., Wellings, A.: Hard Real-time Schedul-
ing: The Deadline Monotonic Approach, Procs. of IEEE Workshop on Real-Time
Operating Systems and Software, (1991), 133-137

2. Dipippo, L. C. et al.: Scheduling and Priority Mapping for Static Real-Time Mid-
dleware, Real-time Systems, 20(2), (2001), 155-182

	Introduction
	Task Graph Partitioning Algorithm
	Thread Sequencing Algorithm
	Exact Analysis and Refinement
	An Example of Operation
	Conclusions

