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Abstract

The Hirota bilinear method is applied to find an exact shock soliton solution of the system reaction–diffusion equa-

tions for n-component vector order parameter, with the reaction part in form of the third order polynomial, determined

by three distinct constant vectors. The bilinear representation is derived by extracting one of the vector roots (unstable

in general), which allows us reduce the cubic nonlinearity to a quadratic one. The vector shock soliton solution, imple-

menting transition between other two roots, as a fixed points of the potential from continuum set of the values, is con-

structed in a simple way. In our approach, the velocity of soliton is fixed by truncating the Hirota perturbation

expansion and it is found in terms of all three roots. Shock solitons for extensions of the model, by including the second

order time derivative term and the nonlinear transport term are derived. Numerical solutions illustrating generation of

solitary wave from initial step function, depending of the polynomial roots are given.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Solutions of nonlinear evolution equations appearing as travelling waves play an distinctive role in nonlinear phe-

nomena [1,2]. These solutions are connected with genetic waves in biology, vibrations in physics, phase transitions in

material science, so on. Travelling wavefront solutions effect a smooth transition between two, space independent

(homogeneous) steady states of the system. The speed of such waves is an important characteristic for applications,

related with values of these steady states. In mathematics, a number of techniques has been developed to obtain the

travelling wave solution for nonlinear evolution equations [3–5]. One of the most popular classical methods is the

Lie method and its generalizations, as nonclassical method of group-invariant solutions, direct method for finding sym-

metry reductions, etc. [3], based on using the Lie symmetry of a given PDE in order to construct exact solution. On the

other hand, it is known that some non-integrable nonlinear PDEs (for example, the well known Fisher equation) have

poor Lie symmetry, being invariant only under the time and space translations. The Lie method is not efficient for such

PDEs and become cumbersome [4]. The other method, based on travelling wave ansatz [5], reduces nonlinear PDE to a

nonlinear ODE. But in ODE system, the travelling wave speed is an unknown parameter that must be fixed by the anal-

ysis and choosing a special trial trajectory [2]. It appears that if resulting ODE is of the Painleve type, then it can be

solved explicitly, leading to exact solution of the original equation. This way Ablowitz and Zeppetella [6] obtained
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an exact travelling wave solution of Fisher�s equation by finding the special wave speed for which the resulting ODE is

of the Painleve type. However, the method seems does not allow extensions to more than one travelling waves, higher

space dimensions and multi-component order parameter. In the case of a multi-species (phases, cells, reactants, popu-

lations, and so on) system, where reaction term has several steady states, one should expect similar travelling wave solu-

tion that join steady states. The variety of spatial wave phenomena in multi-species reaction–diffusion system and in

space dimensions more than one is very much richer than in single species models [1]. But since the dimension of phase

space for analysis of travelling wavefront solutions increases, such multi-species solutions are more difficult to deter-

mine analytically.

From another site, during the last 30 years the direct method proposed by Hirota becomes a powerful tool for con-

structing multisoliton solutions to integrable nonlinear evolution equations [7]. This, relatively simple and algebraic

rather than analytic method, allows one to avoid many analytic difficulties of more sophisticated the inverse scattering

method. Moreover, it is deeply related with Plücker coordinates of Grassmanians, quantum theory of fermions, s func-
tions and vertex operator representation of infinite-dimensional algebras [8]. The general idea of the method is first to

transform the nonlinear equation under consideration into a bilinear equation or system of equations, and then use the

formal power series expansion to solve it. For integrable systems the series admit exact truncation for an arbitrary num-

ber of solitons. While for periodic solutions it includes an infinite number of terms. We will see below that the trunca-

tion of Hirota�s perturbation series for non-integrable case, similarly to the Painleve reduction [6], fixes the velocity of

soliton.

In the present paper we demonstrate effectiveness of the Hirota method for constructing shock soliton solution of n-

component reaction–diffusion equation in three space dimensions. We consider equation for the vector order parameter

U(x,y,z) = (U1(x,y,z),U2(x,y,z), . . .,Un(x,y,z)) and cubic nonlinear reaction term
oU

ot
¼ r2U� ðU� a1;U� a2ÞðU� a3Þ; ð1Þ
where aj ¼ ða1j ; a2j ; . . . ; anj Þ 2 Rn, (j = 1,2,3), are three distinct constant vectors, and ðU� a1;U� a2Þ �
Pn

i¼1ðUi � ai1Þ
ðUi � ai2Þ means the Euclidean scalar product of vectors U � a1 and U � a2 and $2 = D = o2/ox2 + o2/oy2 + o2/oz2 is

the Laplace operator. In the scalar case, when n = 1, and in the one space dimension, for different choices of parameters

a1, a2, a3 the model reduces to the well known nonlinear diffusion equations appearing in a different fields sometimes

with different names: the Fitzhugh–Nagumo equation (a1 = 0,a2 = 1,a3 = a) arising in population genetics [9] and mod-

els the transmission of nerve impulse [10,11], autocatalytic chemical reaction model introduced by Schlögl [12], general-

ized Fisher equation [2], Newell–Whitehead equation [14] or Kolmogorov–Petrovsky–Piscounov equation [15]

(a1 = 0,a2 = 1,a3 = �1), Huxley equation (a1 = 0,a2 = 0,a3 = 1).

The method allows us to consider extensions of the above model to nonlinear wave equation with dissipation in three

dimensions
o2U
ot2

þ c
oU
ot

¼ r2U � ðU � a1ÞðU � a2ÞðU � a3Þ ð2Þ
and to the nonlinear wave equation with nonlinear transport term
aU
oU
ox

þ b
o2U
ot2

þ c
oU
ot

¼ o2U
ox2

� ðU � a1ÞðU � a2ÞðU � a3Þ; ð3Þ
where a1, a2, a3 are distinct real numbers and a, b, c are constants. For simplicity, in the last two equations the dimen-

sion for order parameter space is chosen to be one, n = 1. To bilinearize these equations with cubic nonlinearity, we

propose in the Hirota ansatz to extract one of the roots as a background field. Then, a solution of bilinear equations

gives the travelling wave, implementing transition between other two roots and moving with velocity, depending on

values of all three roots. We note that more restrictive ansatz in terms of only one function U = fx/f [13], like for the

KdV equation, does not allow one to find bilinear equations in terms of the Hirota derivatives [16,17] and extend

the approach to the multidimensional case or for the vector order parameter.

The paper is organized as follows. In Section 2, by the Hirota ansatz Eq. (1) is transformed into the bilinear system

of n + 1 differential equations, which we solve exactly using Hirota�s perturbation approach. In Section 3, by adding the

second derivative term with respect to the time, we study multidimensional nonlinear wave equation with dissipation

(2). We show that if the background root of our ansatz is the mean value of the other two roots, the velocity parameter

is vanishing and solitary wave is static. In Section 4, extension of the model by the nonlinear transport term is consid-

ered. We show that even in the mean value case our solution now is not static. Then we present numerical solutions

generating shock soliton from initial step function. In conclusion, we summarize our results and discuss possible exten-

sions to other equations.
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2. Vector reaction–diffusion equation

To reduce Eq. (1) with cubic nonlinearity and three distinct roots a1, a2, a3, to the bilinear form, we have to modify

the standard Hirota ansatz by extracting one of the vector roots. The solution of the problem is assumed to have a form
U ¼ a3 þ
g

f
; ð4Þ
where g(x, t) is a n-component real vector function and f(x, t) is a real function. In the bilinear approach all derivatives

with respect to the dependent variables in Eq. (1) are expressed as
Ut ¼
Dtðg � f Þ

f 2
; ð5aÞ

r2U ¼ D2
xðg � f Þ
f 2

þ
D2

yðg � f Þ
f 2

þ D2
z ðg � f Þ
f 2

� g

f
D2

xðf � f Þ
f 2

� g

f

D2
yðf � f Þ
f 2

� g

f
D2

z ðf � f Þ
f 2

; ð5bÞ
where the Hirota derivative according to xi is defined as
Dn
xi
ða � bÞ ¼ o

oxi
� o

ox0i

� �n

ðaðxÞbðx0ÞÞjx¼x0 : ð6Þ
After substituting Eqs. (5) into Eq. (1), the following expression is obtained:
Dtðg � f Þ
f 2

� D2
xðg � f Þ
f 2

�
D2

yðg � f Þ
f 2

� D2
z ðg � f Þ
f 2

þ g

f
D2

xðf � f Þ
f 2

þ g

f

D2
yðf � f Þ
f 2

þ g

f
D2

z ðf � f Þ
f 2

þ g

f
g

f
� ða1 � a3Þ

� �
;

g

f
� ða2 � a3Þ

� �� �
¼ 0: ð7Þ
Since by Eq. (4) instead of one n-dimensional vector function U we introduced n-dimensional vector function g and

one more scalar function f, we have freedom to decouple this system of n-equations as the bilinear system of n + 1

equations
ðDt � D2
x � D2

y � D2
z Þðg � f Þ ¼ 0; ð8aÞ

ðD2
x þ D2

y þ D2
z þ ð~a1; ~a2ÞÞðf � f Þ ¼ �ðg; gÞ þ ðð~a1 þ ~a2Þ; gÞf ; ð8bÞ
where ~a1 � a1 � a3 and ~a2 � a2 � a3. To solve this system in the Hirota method, the functions f and vector function g

suppose to have form of the formal perturbation series in a parameter �
f ¼ 1þ �f1 þ �2f2 þ � � � ; ð9aÞ

g ¼ g0 þ �g1 þ �2g2 þ � � � ð9bÞ

Substituting (9) into the system (8) and equating coefficients of the same powers of � converts (8) into a sequence of

the zeroth, first, second and higher order, bilinear equations
ðDt � D2
x � D2

y � D2
z Þðg0 � 1Þ ¼ 0; ð10aÞ

ðD2
x þ D2

y þ D2
z þ ð~a1; ~a2ÞÞð1 � 1Þ ¼ �ðg0; g0Þ þ ð~a1 þ ~a2; g0Þ; ð10bÞ

ðDt � D2
x � D2

y � D2
z Þðg0 � f1 þ g1 � 1Þ ¼ 0; ð11aÞ

ðD2
x þ D2

y þ D2
z þ ð~a1; ~a2ÞÞð2 � f1Þ ¼ �2ðg0; g1Þ þ ð~a1 þ ~a2; g0f1 þ g1Þ; ð11bÞ

ðDt � D2
x � D2

y � D2
z Þðg0 � f2 þ g1 � f1 þ g2 � 1Þ ¼ 0; ð12aÞ

ðD2
x þ D2

y þ D2
z þ ð~a1; ~a2ÞÞð2 � f2 þ f1 � f1Þ ¼ �2ðg0; g2Þ � ðg1; g1Þ

þð~a1 þ ~a2; g0f2 þ g1f1 þ g2Þ; ð12bÞ

� � �
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We assume that all components of vector g0 are constants, then the first equation (10a) is satisfied automatically.

From the second equation we get
ðg0; g0Þ � ð~a1 þ ~a2; g0Þ þ ð~a1; ~a2Þ ¼ ðg0 � ~a1; g0 � ~a2Þ ¼ 0: ð13Þ
Solutions of the last equation can be found as: (1) g0 ¼ ~a1, (2) g0 ¼ ~a2 and (3) ðg0 � ~a1Þ ? ðg0 � ~a2Þ. For simplicity

we assume that g0 ¼ ~a1. As a next step we are going to find the first order solutions, g1 and f1. Then Eqs. (11) reduce to

a linear system
~a1ð�ot � DÞf1 þ ðot � DÞg1 ¼ 0; ð14aÞ

2Df1 þ 2ð~a1; ~a2Þf1 þ 2ð~a1; g1Þ � ð~a1 þ ~a2; ~a1f1 þ g1Þ ¼ 0; ð14bÞ
where D denotes the three dimensional Laplace operator. Nontrivial solution of this system suppose to have the form
g1 ¼ aeg1 ; f 1 ¼ beg1 ; ð15Þ
where a = (a1,a2, . . .,an) and b are n + 1 constants, g1 = kx + xt + d0. Here kx = kxx + kyy + kzz means the three dimen-

sional scalar product. Unknown constants, the wave vector k and frequency x are fixed by a dispersion relation, while n

constants (a1,a2, . . .,an) are fixed by Eqs. (14a). After substituting (15) into the system (14) for variables (a1,a2, . . .,an)
and b we have (n + 1) · (n + 1) homogeneous linear algebraic system:
An ¼

ðx� k2Þ 0 0 : ~a1
1ð�x� k2Þ

0 ðx� k2Þ 0 : ~a1
2ð�x� k2Þ

: : : : : :

0 0 : ðx� k2Þ ~a1
nð�x� k2Þ

ð ~a11 � ~a2
1Þ : : ð ~a1n � ~a2

nÞ 2k2 þ ð~a1; ~a2 � ~a1Þ

2
666666664

3
777777775

a1

a2

..

.

an

b

2
6666666664

3
7777777775
¼

0

0

..

.

0

0

2
6666666664

3
7777777775
:

Nontrivial solution of this system of equations exists only if Det(A) = 0. This determinant can be evaluated by

expansion along the last row, so that we have expression
DetðAÞ ¼ ðx� k2Þn�1 ðx� k2Þð2k2 þ ð~a1; ~a2 � ~a1ÞÞ � ð�x� k2Þ
Xn

i¼1

~ai1ð~a1 � ~a2Þi
" #

: ð16Þ
It gives us the following dispersion relations:
x ¼ k2 ð17Þ
and
x ¼ k2 þ ð~a1; ~a2 � ~a1Þ: ð18Þ
The dispersion relation (17) gives us a constant solution, thus we use dispersion (18) for the further calculations.

Solving the first n equations in the above (n + 1) · (n + 1) linear algebraic system we have:
a ¼ bc1~a1; ð19Þ
where
c1 ¼
2k2 þ ð~a1; ~a2 � ~a1Þ

ð~a1; ~a2 � ~a1Þ
; ð20Þ
so that
g1 ¼ bc1~a1e
g1 ; f 1 ¼ beg1 : ð21Þ
Substituting g1, f1 to the first system of Eqs. (12a) and using property of bilinear Hirota operators [7]
ðDt � D2
xÞðg1 � f1Þ ¼ b2c1~a1ðDt � D2

xÞðeg1 � eg1Þ ¼ 0 ð22Þ
for g2, f2 we find the following set of equations
~a1ð�ot � DÞf2 þ ðot � DÞg2 ¼ 0; ð23Þ
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similar to the first system (14a). Simplest solution for these equations is the trivial one g2 = 0 and f2 = 0. Then, from the

last Eq. (12a) we find additional constraint on g1, f1:
ð~a1; ~a2Þf 2
1 ¼ �ðg1; g1Þ þ ð~a1 þ ~a2; g1Þf1: ð24Þ
Substituting solution (21) into Eq. (24) results in the following relation:
ð~a1; ~a2Þ ¼ �ð~a1; ~a1Þc21 þ ð~a1 þ ~a2; ~a1Þc1; ð25Þ
which can be written in the form:
ðc1 � 1Þð~a1; ðc1~a1 � ~a2ÞÞ ¼ 0: ð26Þ
Assuming c1 = 1, leads to the trivial result k = 0. Thus, if c1 5 1 from Eq. (26) the following nontrivial solution can

be found:
c1 ¼
ð~a1; ~a2Þ
ð~a1; ~a1Þ

: ð27Þ
Combining this equation with Eq. (20), we find restrictions on allowed values of the length for the wave vector k
k2 ¼ ð~a1; ~a2 � ~a1Þ2

2ð~a1; ~a1Þ
; ð28Þ
or
jkj ¼ jð~a1; ~a2 � ~a1Þjffiffiffi
2

p
j~a1j

: ð29Þ
This equation shows that comparing with the one dimensional case the wave vector now belongs to the three dimen-

sional sphere with fixed radius. Next, after substituting Eq. (28) into Eq. (18), the following explicit form for the fre-

quency is obtained
x ¼ ð~a1; ~a2 � ~a1Þð~a1; ~a2 þ ~a1Þ
2ð~a1; ~a1Þ

: ð30Þ
Finally, the velocity vector is given by formula:
v ¼ �x
k

jkj2
: ð31Þ
With the wave vector k given by Eq. (29) and frequency x given by Eq. (30) for the speed of solitary wave we have

the expression in terms of three vectors a1, a2, a3 as
jvj ¼ ða1 � a3; a1 þ a2 � 2a3Þffiffiffi
2

p
ja1 � a3j

: ð32Þ
It is easy to show that each bilinear equation, which has order greater than 2, has simple solution as, gi = 0 and fi = 0,

for i > 2. Therefore, we have only finite number of terms in the expansion (9). After substituting f and g in Eq. (4), we

find the following exact solution of our problem
U ¼ a3 þ ða1 � a3Þ
1þ c1e

g1

1þ eg1
; ð33Þ
where c1 ¼ ð~a1; ~a2Þ=ð~a1; ~a1Þ. We note that the constant b appearing only in front of exponential terms can be absorbed

by the arbitrary constant d0 in Eq. (15) and leads just to shift of the soliton�s origin. In terms of original vectors a1, a2, a3
solution acquires the final form
U ¼ a3 þ
a1 � a3

ja1 � a3j2
ðða1 � a3Þ; ða1 � a3 þ ða2 � a3Þeg1ÞÞ

1þ eg1
: ð34Þ
This solution is the shock-solitary wave with asymptotics U ! a1, for g1 !�1 and U! (1 � c1)a3 + c1a1, for
g1 ! +1, at a fixed time. As easy to see, these asymptotic solutions are the stationary (Ut = 0) homogeneous (Ux =

Uy = Uz = 0) solutions of Eq. (1). The parameter c1 in this solution has meaning of the ratio c1 ¼ ðj~a2j=j~a1jÞ cos a, where
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0 6 a 6 p is the angle between vectors ~a1; ~a2. Since Eq. (26) has infinite number of solutions, our shock soliton inter-

polates between the ‘‘vacuum’’ solution determined by vector a1 and the solution with vector a3 þ ð~a1; ~a2Þ~a1=j~a1j2 which
is valued in the continuum set.

If in Eq. (13) for g0 we choose another root g0 ¼ ~a2, then we have another shock soliton solution of Eq. (1)
U ¼ a3 þ ða2 � a3Þ
1þ c2e

g1

1þ eg1
; ð35Þ
where c2 ¼ ð~a1; ~a2Þ=ð~a2; ~a2Þ. Solution (35) has asymptotics U ! a2, for g1 ! �1 and U ! (1 � c2)a3 + c2a2, for

g1 ! +1, at a fixed time. The parameter c2 has meaning of the ratio c2 ¼ ðj~a1j=j~a2jÞ cos a, where a as above for the

c1, is the angle between vectors ~a1; ~a2.
In the scalar case, when n = 1, the wave number (29), frequency (30) and velocity (31) (as well as the form of our

solution (33)) reduces to the known ones
k ¼ � a2 � a1ffiffiffi
2

p ; x ¼ ða2 � a3Þ2 � ða1 � a3Þ2

2
; v ¼ � a1 þ a2 � 2a3ffiffiffi

2
p : ð36Þ
3. Dissipative nonlinear wave equation

In this section, we consider the nonlinear wave equation with dissipation (2), which can be considered as an exten-

sion of the reaction–diffusion equation (1) by adding the second order time derivative term. For simplicity we restrict

here the analysis by the scalar equation with n = 1. To apply the Hirota bilinearization we use the ansatz
U ¼ a3 þ
g
f
; ð37Þ
the same as in the scalar case of Eq. (4). In terms of Hirota derivatives (5) we have the following bilinear system of

equations
ðD2
t þ cDt � D2

x � D2
y � D2

z Þðg � f Þ ¼ 0; ð38aÞ

ð�D2
t þ D2

x þ D2
y þ D2

z þ ~a1 ~a2Þðf � f Þ ¼ �g2 þ ð ~a1 þ ~a2Þgf : ð38bÞ
Dividing the last equation on f2 and using Eq. (37) we have quadratic algebraic equation on U(x, t)
U 2 � ða1 þ a2ÞU þ a1a2 � 2ðo2t � DÞ ln f ¼ 0; ð39Þ
where expression in the last parenthesis is the d�Alembert wave operator. Solution of this equation is given in terms of

function f(x, t) only
Uðx; tÞ ¼ a1 þ a2
2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 � a2Þ2

4
þ 2ðo2t � DÞ ln f ðx; tÞ

s
: ð40Þ
After substituting the perturbative expansion (9) for f and g, we obtain the zeroth, first and second order bilinear

equations. The zeroth order equation has exactly the same (scalar) form with Eq. (13): ðg0 � ~a1Þðg0 � ~a2Þ ¼ 0 . We

choose solution as g0 ¼ ~a1. For the first order solution we assume g1 ¼ aeg1 , f1 ¼ beg1 , where g1 = kx + xt + d0. Substi-
tuting into Eqs. (38a), we obtain the following dispersions, relating parameters k and x
x2
1 þ cx1 � k2

1 � ~a1ð~a2 � ~a1Þ ¼ 0 ð41Þ
and
x1 ¼ �jk1j: ð42Þ
We are not interested in the linear dispersion relation (42) since it leads to the constant solution. Thus, for the further

calculations we use only relation (41). Eq. (41) has two roots:
xðI;IIÞ
1 ¼ � c

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
þ k2

1 þ ~a1ð ~a2 � ~a1Þ
r

: ð43Þ
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Then, the ratio of parameters a and b is fixed as
b
a
¼ ð ~a2 � ~a1Þ

2k2
1 þ 2x2

1 þ ~a1ð~a2 � ~a1Þ
: ð44Þ
From the second order calculation, nonconstant solution exists only if this ratio is equal a=b ¼ ~a2. Substituting this

value to Eq. (44) we find that wave vector k1 belongs to three dimensional sphere with fixed radius,
k2
1 ¼

ð~a2 � ~a1Þ2

2
1þ ð~a2 þ ~a1Þ2

2c2

" #
; ð45Þ
while for the frequency we have only one value
x1 ¼
~a22 � ~a21

2c
: ð46Þ
In the limit of strong dissipation, when c� 1 the wave number (but not frequency) reduces to (36). In this limiting

case the second time derivative term in Eq. (2) can be neglected and the equation reduces to the reaction–diffusion one.

Using explicit form for f ¼ 1þ beg1 and Eq. (40) we have solution in the form
U ¼ a1 þ a2
2

� a1 � a2
2

tanh
~g1
2
; ð47Þ
where ~g1 ¼ k1xþ x1t þ d0 þ ln b. The velocity of our solution v = �xk/jkj2 is fixed by modulus
jvj ¼
a1þa2�2a3ffiffi

2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða1þa2�2a3ffiffi
2

p Þ2 þ c2
q : ð48Þ
We note, that similarly to the pure diffusion case (36), when the root a3 is equal to the mean value of other two roots

a3 = (a1 + a2)/2, the velocity vanishes and the soliton becomes static. By cyclic permutation of indices 1,2,3 in Eq. (47)

we find other two solitons of our problem. But only one of them, which implement transition between stable vacuum

states, could be stable.
4. Nonlinear wave equation with transport term

In this section, we consider nonlinear wave equation (3) with dissipation and nonlinear transport term. For simplic-

ity we restrict here the analysis by the scalar equation with n = 1. To apply the Hirota bilinearization we use the same as

in previous section ansatz (37), and perturbation series expansion of f and g. In terms of Hirota derivatives (5) we have

the following bilinear system of equations
ðaa3Dx þ bD2
t þ cDt � D2

xÞðg � f Þ ¼ 0; ð49aÞ

ðD2
x � bD2

t þ ~a1 ~a2Þðf � f Þ ¼ �g2 þ ð ~a1 þ ~a2 � aDxÞðg � f Þ: ð49bÞ
After applying the same procedure as before, we found the following dispersion relation:
bx2
1 þ cx1 þ aa1k1 � k21 þ ða1 � a3Þða1 � a2Þ ¼ 0: ð50Þ
For the ratio of constants we obtain:
b
a
¼ �ak1 � ða1 � a2Þ

ak1ða1 þ a3Þ þ 2cx1 þ ða1 � a3Þða1 � a2Þ
: ð51Þ
By equating this to 1/(a2 � a3) (to truncate the series), we get relation
x1 ¼
~a22 � ~a21

2c
� aða1 þ a2Þ

2c
k1: ð52Þ
Combining this equation with dispersion formula (50), we find quadratic equation fixing the wave number k1:
Ak21 þ Bk1 þ C ¼ 0; ð53Þ
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where
A ¼ a2bða1 þ a2Þ2 � 4c2; B ¼ 2aða1 � a2Þ½c2 þ bða1 þ a2Þða1 þ a2 � 2a3Þ�;
C ¼ ða1 � a2Þ2½2c2 þ bða1 þ a2 � 2a3Þ2�:
Substituting solution of this equation to (52), we find expression for x1. The soliton solution is the shock wave
U ¼ a3 þ
ða1 � a3Þ þ ða2 � a3Þe~g1

1þ e~g1
ð54Þ
implementing transition between a1 and a2 constant steady states. Since expressions are too long we are not presenting it

in an explicit form. Instead of this in the next subsections, we reproduce x1 and k1, explicitly, for some special cases and

calculate corresponding velocities of the soliton.

4.1. Reaction–diffusion limit

For a = 0, b = 0, c = 1, Eq. (3) becomes of the nonlinear reaction–diffusion form
oU
ot

¼ o2U
ox2

� ðU � a1ÞðU � a2ÞðU � a3Þ; ð55Þ
which corresponds also to the one dimensional (d = 1), scalar (n = 1) limit of the system (1). In this limiting case, from

Eqs. (50), (51) and (53) for the wave scalar, the frequency and the velocity respectively, we have
k ¼ � a2 � a1ffiffiffi
2

p ; x ¼ ða2 � a3Þ2 � ða1 � a3Þ2

2
; v ¼ � a1 þ a2 � 2a3ffiffiffi

2
p : ð56Þ
As easy to see, these formulas represent the one space dimensional reduction of Eqs. (36). When root a3 is equal to

the mean value of two other roots a3 = (a1 + a2)/2, the velocity vanishes and soliton is static. By cyclic permutation of

indices 1,2,3 in Eqs. (54), we have another couple of kink solitons of our problem. If we order the real roots as

a1 < a3 < a2, then only two of the static homogeneous states a1 and a2 are stable and the corresponding kink (54) is

stable.

Below we solve numerically the initial value problem for Eq. (55) with initial configuration in form of the step func-

tion determined by roots a1 and a2. We are using the explicit finite difference method and the Dirichlet boundary con-

ditions. In a quite short time it leads to creation of one shock soliton. Depending on values of the roots a3, the soliton is

static or moving with fixed velocity.
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Fig. 1. Evolution of the travelling wave with v = 0. The parameters a1 = 0, a2 = 1, a3 = 0.5.
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In Fig. 1 the roots are considered as a1 = 0, a2 = 1, a3 = 0.5. For those choice of parameters, the velocity calculated

according Eq. (56) is vanishing v = 0. As it can be seen in this figure, with such choice of parameters after 30 s there is no

movement and generated shock soliton becomes static.

On the other hand, when we consider the roots as a1 = 0, a2 = 1, a3 = 0.4, the velocity of the travelling wave in Eq.

(56) is different from zero. In this case, the wave solution exhibited in Fig. 2 starting from time 25 s is moving with fixed

shape and fixed velocity v ¼
ffiffi
2

p

10
.

It is worth to note here that in contrast to the Burgers� equation, where velocity of shock soliton v = (a1 + a2)/2 is

determined completely by parameters of the original step function a1, a2, in the present case the velocity includes the

value a3 (which is absent in the step function), so that for the same initial configuration we can have static or moving

soliton, depending on that value.

4.2. Burgers equation with cubic nonlinearity

For b = 0 and c = 1, Eq. (3) becomes of the Burgers form with cubic nonlinear term
oU
ot

þ aU
oU
ox

¼ o2U
ox2

� ðU � a1ÞðU � a2ÞðU � a3Þ: ð57Þ
In this case the dispersion relation (50) is reduced to
x1 ¼ k21 þ ~a1ð ~a2 � ~a1Þ � ð ~a1 þ a3Þak1; ð58Þ
where k1 5 0, and the wave number is fixed as
k1 ¼
ð~a2 � ~a1Þð�a� �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 8

p
Þ

4
; ð59Þ
where
� ¼
1 a2 > a1;

�1 a2 < a1:

�

The corresponding velocity of travelling wave is
v ¼ 2ða1 þ a2 � 2a3Þ
b

� a2 þ a1
2

� �
a; ð60Þ
where b ¼ �a� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 8

p
. This formula shows that for b ¼

ffiffiffi
2

p
amazingly, the velocity of shock is just sum of velocities

for pure reaction–diffusion equation (56) and for the pure Burgers� equation. From the last equation one can see that

even for the mean value condition a3 = (a1 + a2)/2 the solitary wave is not static. The static solitary wave arises for fixed
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value of a in terms of a1, a2, a3 in Eq. (60), such that v = 0. Therefore by adding the nonlinear transport term to Eq. (55),

we shifted the restriction on the roots of the polynomial to obtain moving solitary waves. By numerical solutions, sim-

ilar to the previous static case, we consider one root of the third order polynomial as the mean of the other two, a1 = 0,

a2 = 1, a3 = 0.5. Fig. 3 shows that after time 25–30 s the shock soliton configuration is created with fixed shape and

velocity, as expected from Eq. (60).
5. Conclusion and discussion

In the present paper, the Hirota method is applied to find exact analytic soliton solution of the nonlinear reaction–

diffusion systems with multiple order parameter and with reaction part as the third order polynomial, in more then one

space dimensions. To write equations in the bilinear form, we proposed to extract one of the background constant

(unstable) solution (root) from Hirota�s substitution. Truncation of the perturbation series in our second order calcu-

lations, restricts value of wave number and velocity of the travelling wave. In this sense, this truncation works similarly

to the way Ablowitz and Zeppetella [6] obtained an exact travelling wave solution of Fisher�s equation by finding the

special wave speed for which the resulting ODE is of the Painleve type. Since bilinear form is written for equations in

more than one space dimensions we expect to construct nonlinear wave configurations of amazing complexity, like cir-

cular or curved solitons, scroll-waves and vortex tubes. These questions are under our study now.
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