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Abstract— In this paper, we consider coded MIMO systems
using suboptimal iterative receivers. We propose to use the list
type breadth first detectors based on M and TM algorithms and
the soft output linear MMSE detectors with a priori information.
We compare these two families of suboptimal iterative receivers
in terms of complexity and bit-error-rate performance.

I. INTRODUCTION

The development of multiple-input multiple-output (MIMO)
communication systems that use multiple transmit and multi-
ple receive antennas provides the ability of designing spec-
trally efficient systems without extra power and bandwidth. It
has been shown that the channel capacity grows linearly as the
number of transmit and receive antennas grow simultaneously
[1]. Many researches on MIMO systems have been performed
to exploit the available capacity. In particular, the Vertical-Bell
Laboratories Layered Space-Time (V-BLAST) can achieve the
theoretically proven linear capacity growth with a simplified
structure [2].

In order to achieve near-capacity performance, MIMO
systems should be concatenated with outer channel codes
such as a convolutional code (CC) or turbo code (TC) [3].
Although the classical detector for the V-BLAST scheme is
based on nulling and canceling (NC) algorithm, for the coded
V-BLAST systems, it is important to use an a posteriori
probability (APP) detector for MIMO detection in an iterative
manner to approach the performance of ideal joint receivers.
It is well known that the computational complexity of a
full APP detector increases with the number of transmit and
receive antennas and the size of constellations. Therefore, the
reduced complexity MIMO detectors, which can extract and/or
exchange soft information required by outer channel decoders
while providing a good approximation of full APP decoding,
are needed [4].

In this paper, we propose to compare two families of
suboptimal APP MIMO detectors: the soft-output minimum
mean square error (MMSE) detector with a priori information
[5], [6] and the list type breadth first M and TM algorithms
[7].

This paper is organized as follows. In section 2, the linear
system model of MIMO channels is described. The two subop-
timal APP detectors for coded MIMO systems are proposed
in section 3. Then, the complexity evaluations of these two

suboptimal detectors are derived in section 4. Finally, the
comparison results are given in terms of performance and
complexity.

II. LINEAR MODEL FOR MIMO CHANNEL

We consider coded V-BLAST over flat fading MIMO chan-
nels with Nt transmit and Nr receive antennas as illustrated
in Figure 1.
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Fig. 1. The linear system model for coded V-BLAST

The vector of information bits b is first encoded with an
error correcting code and then interleaved to obtain the vector
of coded bits. Then, we decompose this vector into blocks
of coded bits of length 2Nt × Mc, u = (u1, . . . ,u2Nt

)T

with up = (up1, . . . , upMc
) where Mc is the number of

bits per real symbol. Each vector u is then mapped to the
vector of real symbols x = (x1, . . . , x2Nt

)T ∈ Λ2Nt×1
r . We

suppose that Λr is the 2Mc -PAM signal set Λr = {−2Mc +
1,−2Mc + 3, . . . , 2Mc − 3, 2Mc − 1} = {λ1, λ2, . . . , λ2Mc }
where λs ∈ R corresponds to the bit pattern bs =
(bs1, bs2, . . . , bsMc

). In other words, the complex symbols are
chosen from a QAM constellation with 22Mc possible signal
points.

Then, we obtain the classical real-valued equation

y = Bx + v (1)

where B is the real channel matrix of dimension 2Nr × 2Nt

built from the complex channel matrix H by replacing its
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elements hij by

[ �(hij) −�(hij)
�(hij) �(hij)

]
. The hij is defined

as the complex channel coefficient between the ith transmit
antenna and the jth receive antenna and is modeled as an
independent realization of complex Gaussian random variable
of unit variance. v is a vector of independent zero mean real
Gaussian noise with variance σ2

n.
x is obtained from the vector of complex symbols s =

(s1, . . . , sNt
)T as x = (x1, x2, x3, x4 . . . , x2Nt−1, x2Nt

)T =
(α1, β1, α2, β2 . . . , αNt

, βNt
)T where αq = �(sq) and βq =

�(sq). We assume that the energy of each real symbol xp

is E‖xp‖2 = σ2
x = 1

2Nt
and consequently the total transmit

power per channel is Es = 1.
At the receiver with perfect channel knowledge, we consider

an iterative system that consists of a MIMO detector and an
outer soft input soft output decoder operating according to the
log-MAP algorithm. The MIMO detector takes both channel
and a priori information and then generates a posteriori in-
formation about the coded bits. After deinterleaving the an
extrinsic information, an outer decoder generates decisions
about the information bits as well as an extrinsic information
about the coded bits. This information is fed back to the
MIMO detector where it is used as a priori information.

III. SUBOPTIMAL APP MIMO DETECTORS

Considering the system model given in (1), the APP of the
transmitted bit upm given the received vector y is usually
expressed as a log-likelihood ratio (LLR) by

L(upm|y) = ln
P(upm = +1)
P(upm = −1)

+ln

∑
u∈Upm,+1

p(y|u)P(u|upm)
∑

u∈Upm,−1

p(y|u)P(u|upm)

(2)
where p = 1, . . . , 2Nt, m = 1, . . . ,Mc and Upm,+1 is the set
of 2(2NtMc−1) vectors u with upm = +1. The first term is
the a priori L-value, LA, and the second term is the extrinsic
L-value, LE , that will be passed to the next decoder.

Using the max-log approximation and assuming the inde-
pendence of bits, the LLR can be expressed as

L(upm|y) = max
u∈Upm,+1

{
− ||y − Bx(u)||2

2σ2
n

+ Px

}

− max
u∈Upm,−1

{
− ||y − Bx(u)||2

2σ2
n

+ Px

}
(3)

with Px =
∑

(ab) ln P(uab) where ln P(uab) can be calculated
from the a priori information.

The output of the APP MIMO detector is obtained as
an extrinsic L-value which is calculated by LE(upm|y) =
L(upm|y) − LA(upm).

Computing of LE(upm|y) is exponential in the length of the
symbol vector x and the number of bits in the constellation. In
order to find the maximum value of (3) for each bit, there are
22NtMc−1 possibilities to search over in each of the two terms.
For example, if we calculate the LLR for (8, 8) V-BLAST with
16QAM constellation, we have 22×8×2−1 = 231 ≈ 2 × 109

possibilities.

A. Breadth first M and TM algorithms

Since the computing of (3) is of prohibitive complexity, a
list of Mb points that makes ‖y − Bx(u)‖2 smallest is used
[4]. Therefore, the list contains only the sequences x for which
the metric

M(x(u)) = ‖Y − Bx(u)‖2 − 2σ2
n

2Nt∑
p=1

ln P (xp) (4)

is small.
In [4], the authors have shown that ‖y − Bx(u)‖2 can be

written in the following way

‖y − Bx(u)‖2 = (x − x̂)T BT B(x − x̂) + M′ (5)

where M′ = yT (I − B(BT B)−1BT )y and x̂ =
(BT B)−1BT y is the unconstrained least squares (LS) esti-
mate.

Assuming 2Nt ≤ 2Nr and rank(B) = 2Nt and using (5),
the metric in (4) is calculated for APP detection as

M(x(u)) = zT PT Pz − 2σ2
n

2Nt∑
p=1

ln P(xp) + M′ (6)

where x = x̂ + z is a candidate vector and P is the upper
triangular matrix with BT B = PT P obtained using the
Cholesky factorization.

Let Pps be an element of the matrix P with p, s ≤ 2Nt and
z = (z1, z2, . . . , z2Nt

)T .
Using the exact expression and substituting qpp = P 2

pp and
qps = Pps/Ppp for p = 1, . . . , 2Nt, s = p + 1, . . . , 2Nt, we
can write

M(x(u)) =
2Nt∑
p=1

(qpp(zp+
2Nt∑

s=p+1

qpszs)2−2σ2
n ln P(xp))+M′

(7)
Since these algorithms can be seen as tree search algorithms,

each path in the tree corresponds to a vector x and each branch
of the tree can be labeled with a branch metric. For a branch
at depth p, the branch metric w(x2Nt

p ) is given by

w(x2Nt
p ) = qpp(zp +

2Nt∑
s=p+1

qpszs)2 − 2σ2
n ln P(xp) (8)

where x2Nt
p = (xp, xp+1 . . . , x2Nt

)T is the vector associated
with the path from the root of the tree to the branch. Then
we may write the accumulated metric corresponding to this
partial path in the form as

M(x2Nt
p ) =

2Nt∑
s=p

w(x2Nt
s ) + M(x2Nt

2Nt+1) (9)

= w(x2Nt
p ) + M(x2Nt

p+1) (10)

with M′ = M(x2Nt

2Nt+1) is the initial value and w(x2Nt
s ) is

the sth branch metric.
We use the breadth first M algorithm in order to obtain

the list of candidates as proposed in [7]. The main idea is
that the survivors with small weight can be omitted with a



negligible probability of discarding the most likelihood paths.
At each depth while the M algorithm keeps a fixed number
of paths (Mb), the TM algorithm keeps a variable number
of survivor paths depending on a chosen threshold parameter.
This number is limited to Mb in order to limit the memory
size and the computational complexity.

Depending on the chosen center of the search such as the
received point y, the maximum likelihood (ML) point or the
Babai (NC) point, we can derive different versions of the TM
algorithm. In this paper, we only consider the last version since
it gives better performance than using the received point and
avoids a precomputation of the center like for the ML point
case. This metric condition is given by

M(x2Nt
p ) −M(x2Nt

p )min ≤ C1 (11)

where M(x2Nt
p )min corresponds to the path obtained using the

NC algorithm. Then, the NC point is selected as the reference
point in lattice for starting the search.

In comparison with the list sphere decoder (LSD) algorithm,
the breadth first algorithms are performed from the root to the
leaves of the tree. In a hardware realization, the memory size
of the decoder for the list is limited. In this case, LSD requires
to perform the sorting and enumeration operations and then
eliminates the worse candidate at each visited point. However,
TM detector does the sorting and enumeration at each depth.
This decreases the complexity of TM detector significantly
compared to LSD.

For the breadth first M and TM algorithms using only the
selected paths according to their metrics, the LLR in (3) can
be written as

L(upm|y) = max
u∈Vpm,+1

{
− 1

2σ2
n

M(x(u))

}
(12)

− max
u∈Vpm,−1

{
− 1

2σ2
n

M(x(u))

}

where Vpm,+1 is the set of Mb selected vectors u with upm =
+1.

B. Soft output MMSE detector with a priori information

A suboptimal soft input soft output receiver based on soft
interference cancellation and linear MMSE filtering have been
proposed in [5]. The MMSE equalization techniques using
a priori information which enables significant reduction in
computational complexity of turbo equalization methods have
been discussed in [8]. The soft output MMSE detector using
a priori information for MIMO systems has been proposed in
[6].

Instead of computing (2), soft input soft output MMSE de-
tector first computes an affine estimate x̂ from the observation
y in (1)

x̂ = Ay + b (13)

where A = cov(x,y)cov(y,y)−1 and b = E(x) −ABE(x)
which are obtained by minimizing the mean square error
(MSE) between x and x̂ (‖x − x̂‖2).

Since cov(y,y) = (Bcov(x,x)BT + σ2
nI)−1 and

cov(x,y) = cov(x,x)BT , finally we get the MMSE solution
as

x̂ = E(x) + cov(x,x)BT (Bcov(x,x)BT + σ2
nI)−1(y − BE(x))

(14)

E(x) and cov(x,x) are estimated using the a priori infor-
mation LA(upm) on the bits forming the symbols of x. As
given in [8], the expectation of xp is

E(xp) =
∑

λs∈Λr

λsP(xp = λs) (15)

Since the bits are independent, cov(xp, xs) = 0 for all p
and s where p �= s. Then, as given in [8], the diagonal terms
are

cov(xp, xp) = (
∑

λs∈Λr

|λs|2P(xp = λs)) − |E(xp)|2 (16)

Then, the extrinsic information on the bits of the symbol xp

can be produced from the soft estimate of symbol. For iterative
process, it is known that a priori information on these bits
should not be used to produce the soft estimate of a symbol.
Therefore, (14) should be separated into 2Nt equations, one
per real dimension, where the estimate on each real dimension
does not use the a priori statistics of the associated symbol.
We denote Ep(x) as the expectation with respect to the input
symbols’ statistics not using the a priori information on the
bits of xp. Similarly, covp(x,x) is the covariance of x not
using the a priori information on the bits of xp. Then, for
q = 1, 2, ..., Nt, (14) can be written as

α̂q =
σ2

x

2
BT

2q−1cov−1
q (y − BEq(x)) (17)

β̂q =
σ2

x

2
BT

2qcov−1
q (y − BEq(x)) (18)

where Bq is the qth column of B,

covq = Bcovq(x,x)BT + σ2
nI2Nt

(19)

and

Eq(x) = (E(α̂1), E(β̂1), . . . , E(β̂q−1), (20)

0, 0, E(α̂q+1), . . . , E(α̂Nt), E(β̂Nt))
T

covq(x,x) = diag(cov(α̂1), cov(β̂1), . . . , cov(β̂q−1), (21)

σ2
x

2
,
σ2

x

2
, cov(α̂q+1), . . . , cov(α̂Nt), cov(β̂Nt))

T

Following [5], we assume that α̂q and β̂q are the outputs of
equivalent Gaussian channels and we can write

α̂q = µ2q−1αq + η2q−1 (22)

β̂q = µ2qβq + η2q

where µ2q−1 is the gain of the equivalent Gaussian channels
and η2q−1 is the associated noise with variance ν2

2q−1. These
values are calculated as

µ2q−1 =
σ2

x

2
BT

2q−1cov−1
q B2q−1 (23)

ν2
2q−1 =

σ2
x

2
(µ2q−1 − (µ2q−1)

2) (24)



and similarly the equations are also written for µ2q and ν2
2q.

This assumption allows us to calculate the a posteriori and
extrinsic information easily. As a result, the soft output MMSE
detector with a priori information finds the estimated symbols
ŝq = α̂q + jβ̂q to compute the a posteriori L-values as

L(uqr|ŝq) = ln
P(uqr = +1)
P(uqr = −1)

+ ln

∑
uq∈Lqr,+1

p(ŝq|u)P(u|uqr)∑
uq∈Lqr,−1

p(ŝq|u)P(u|uqr)

(25)
for q = 1, 2, ..., Nt and r = 1, 2, ..., 2Mc where Lqr,+1 is the
set of 22Mc−1 vectors uq with uqr = +1.

Then similar to (3), the a posteriori L-value is written as

L(uqr|sq) ≈ max
uq∈Lqr,+1

{
− �q +

2M ′
c∑

r=1

ln P(uqr)

}
(26)

− max
uq∈Lqr,−1

{
− �q +

2M ′
c∑

r=1

ln P(uqr)

}

with

�q =
(α̂q − µ2q−1λ(u))2

2ν2
2q−1

+
(β̂q − µ2qλ(u))2

2ν2
2q

(27)

IV. COMPLEXITY EVALUATION

In this section, using the definition of the expected com-
plexity exponent ce, we evaluate the complexity evaluation for
the breadth first M and TM algorithms and the soft output
MMSE detector with a priori information. While evaluating
the complexity of suboptimal detectors, we only count the
flops of the main algorithm for the soft output MMSE detector
without calculation cost of a priori information. For the breadth
first detectors, we count the flops of both precomputing and
main algorithm without taking into account for the cost of a
priori information.

The expected complexity exponent ce of the algorithm is
defined as

ce =
log Cc

log Nt
(28)

where Cc is the expected complexity (average number of
flops) per Nt symbols and is calculated by counting the
total number of elementary operations (addition, substraction,
multiplication) [10].

Complexity exponent of M and TM detectors:
In [9], the complexity exponent ce of the sphere decoding

has been derived as

ce =
log Cc(2Nt, C

2
0 )

log Nt
(29)

with the expected complexity

Cc =
2Nt∑
p=1

Ec(p,C2
0 )fc(p) (30)

where Ec is the average number of visited points at depth p
in p dimensional sphere of radius C0 and fc(p) = 2(2Nt −

p + 1) + 17 is the number of operations that the Fincke-
Pohst algorithm performs per each visited point at depth
p. Therefore, the expected complexity is proportional to the
number of visited points in the sphere of radius C0.

For the M algorithm, the average number of visited points
at each depth is Ec = 2McMb. Then, (30) becomes,

Cc = 2McMb

Nd∑
p=1

(2(2Nt−p+1)+17) = 2McMb(4N2
t +36Nt)

(31)
The complexity exponent of M algorithm for (4, 4) V-

BLAST considering different values of Mb is listed in Table I.

TABLE I

THE COMPLEXITY EXPONENT OF (4, 4) V-BLAST USING M ALGORITHM

FOR THE DIFFERENT NUMBER OF CANDIDATES

Mb 1 2 4 8 16 32

ce(dB) (16QAM) 4.85 5.35 5.85 6.35 6.85 7.35

ce(dB) (QPSK) 4.35 4.85 5.35 5.85 6.35 6.85

As a result, the complexity of main algorithm of the M
detector depends on the constellation size and the number
of candidates and does not change according to noise vari-
ance. For the complexity of precomputing, we should add
2(2Nt)3 for the QR decomposition. Thus, for example, the
total expected complexity exponent of (4, 4) V-BLAST using
M algorithm with Mb = 16 and 16QAM is 6.9.

For the TM algorithm, the number of visited points at each
depth is not fixed as M algorithm. Using the TM algorithm
with C1 = 15 and Mb = 128, for (4, 4) V-BLAST with QPSK,
the complexity exponent is evaluated as ec = 6.66 considering
precomputing process.

Moreover, the marginalization complexity of M and TM
algorithms can be calculated as the number of maximization
operations over 2NtMcMb possibilities.

Complexity exponent of the soft output MMSE detector:
In order to evaluate the overall complexity of the soft

output MMSE detectors, the floating point operations (flops)
are counted.

First, we evaluate the complexity of (19) as N3
d +2N2

d +Nd

where Nd = 2Nt. In order to get the inversion of (19), we
use the QR decomposition and we count it as 3N3

d + N2
d +

Nd/3. The recursive methods as described in [5] could be
used to reduce this complexity. Then, using (19), we calculate
the complexity of (17) and (18). While equation (17) requires
N2

d +3Nd, equation (18) needs only 2Nd. In totally, we obtain
N2

d + 5Nd flops for them. The last part is the calculation
of the complexity of mean and variances given by (23) and
(24) which require 4Nd + 6. As a result, the total complexity
evaluation for the soft output MMSE detector considering all
2McNt bits is evaluated as (4N3

d +4N2
d +10Nd+Nd/3+6)Nt

flops.
For (4, 4) V-BLAST using MMSE detector, the expected

complexity exponent is calculated as 6.61.



Moreover, the marginalization complexity of the soft output
MMSE detector is calculated as the number of maximization
operations over 2NtMc22Mc possibilities.

When the number of constellation points (22Mc) is equal to
the number of candidates (Mb), the marginalization complexity
of the breadth first M and TM algorithms is almost the same
as the soft output MMSE detector.

V. SIMULATION RESULTS

In this section, we give the simulation results for (4, 4) V-
BLAST for independent Rayleigh fading channels assuming
the channel state information is available at the receiver. We
use a simple rate 1/2 (7, 5) CC as outer code with 16QAM
(Mc = 2) and QPSK (Mc = 1) which provide us the rate of
8bps/Hz and 4bps/Hz respectively.

Figure 2 compares the bit-error-rate (BER) performance of
the list M detector with Mb = 16 and the soft output MMSE
detector using 16QAM and 4 iterations. For almost the same
complexity, both detectors give almost the same performance
for the first and second iterations at 8bps/Hz. However, for
the third and fourth iterations, the soft output MMSE receiver
gives better performance than list M detector with Mb = 16 at
8bps/Hz. In order to obtain the same performance, we should
increase the number of candidates for the M algorithm which
causes an increase in the complexity.

In Figure 3, the comparison results for the soft output
MMSE detector and the list TM detector with C1 = 15 and
Mb = 128 using QPSK and 4 iterations are illustrated. For
almost the same complexity, the breadth first TM algorithm
gives better performance for first two iterations at 4bps/Hz.

VI. CONCLUSION

In this paper, we have compared the soft output MMSE
detector with a priori information and the breadth first M and
TM algorithms. We have shown that at almost the same com-
plexity, the soft output MMSE gives better performance than
the M detector at 8bps/Hz. Furthermore, we have shown that
for almost the same complexity, the TM detector converges
faster than the soft output MMSE detector at 4bps/Hz. The
complexity analysis just gives order of complexity and should
be completed by taking into account the hardware constraints.
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