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Abstract

Multivariate statistical process monitoring (SPM), and fault detection and diagnosis (FDD) methods are developed to monitor

the critical control points (CCPs) in a continuous food pasteurization process. Multivariate SPM techniques effectively use infor-

mation from all process variables to detect abnormal process behavior. Fault diagnosis techniques isolate the source cause of the

deviation in process variable(s). The methods developed are illustrated by implementing them to monitor the critical control points

and diagnose causes of abnormal operation of a high temperature short time (HTST) pasteurization pilot plant. The detection

power of multivariate SPM and FDD techniques over univariate SPM techniques is shown and their integrated use to ensure the

product safety and quality in food processes is demonstrated.

� 2004 Published by Elsevier Ltd.
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1. Introduction

Preservation of the nutritional value and appeal of

food products often requires minimal treatment. How-

ever, low acid food products are usually subjected to

long heating times at elevated temperatures to assure

food safety. Powerful and reliable safety monitoring
techniques could significantly reduce the processing

times while providing the necessary safety margin. When

unsafe food products are detected, they should be di-

verted and production must be halted until the condi-

tions causing unsafe products are diagnosed and

eliminated. Consequently, fault diagnosis methods that

can quickly identify the source causes of process oper-

ation that yield unsafe products will reduce the process
down time and productivity loss.

In many food processing operations product safety is

controlled by checking only the end product by micro-

biological and chemical methods. A major drawback
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associated with this approach is time delay. Collecting

and examining the samples to determine the safety of the

product takes too much time. It can be a high-cost

solution if any contamination is reported after the pro-

duction is completed. Furthermore, the recall of the

defective product and the collection from retail outlets

add significant cost.When the inadequacies of traditional
food safety control based on end product control have

been noticed, more effective ways to control the safety of

food processing lines have been sought. The systematic

and scientific approach called hazard analysis and critical

control points (HACCP) was first used in 1960s and it has

been developed further in the 30 year period (Khandke &

Mayes, 1998; McAnelly, 1994; Motarjemi, Kaferstein,

Moy, Miyogawa, & Miyagishima, 1996; Savage, 1995).
HACCP is the way of identifying and controlling hazards

during production to ensure that food is safe when it is

consumed and it does not present an unacceptable risk to

health. Instead of checking only the properties of the end

product, the critical control points (CCP) in the process

are monitored continuously to prevent a possible major

hazard in advance. Therefore reliable methods are nee-

ded for on-line monitoring of CCPs.
In food processing plants where HACCP plans are

applied, the critical limits on specific measured variables
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(the CCP) are used to ensure the safety of the product.
Critical control limits are absolute limits. Any mea-

surement outside the critical limit indicates insufficient

treatment. In addition to monitoring these hard limits,

statistical process monitoring (SPM) charts can be set

up on the safe side of the critical control limit and

monitored for detecting trends that may eventually

cause the process to violate a critical control limit (Fig.

1). One of the control limits of the SPM chart is close to
the critical safety limit. A change in critical control

variable values that exceeds the SPM chart limit towards

the critical limit warns the plant personnel. This early

warning provides the opportunity for a timely inter-

vention by plant personnel for corrective action that

may prevent the occurrence of noncompliance. Achiev-

ing compliance to the critical limit within an acceptable

operating range is important for quality maintenance
and profitable operation. Keeping the process within the

SPM chart interval prevents over-processing which

deteriorates the physical properties of the end product

and excessive use of energy.

SPM involves the use of statistical techniques to

monitor the variability of a process. SPM is often

implemented by using monitoring charts that display the

intervals associated with control limits and monitor the
process on-line. The purpose of SPM is the detection of

the out-of-control status and its time of occurrence.

While separate charts for each important variable have

been developed in many practices (the so-called uni-

variate SPM), process monitoring by integrating infor-

mation from all important process variables has better

performance. This multivariate SPM framework is

gaining rapid acceptance in many industries and food
processing industry can benefit from the advantages of

multivariate SPM as well.
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Fig. 1. The CCP safety limit (bold solid line) and SPM upper and lower

control chart limits (UCL, LCL) (solid lines) for a CCP. Points 1 and 2

indicate in-control status, 3 is out-of-control and a warning will be

issued to plant personnel, and 4 is outside the safety limit, necessitating

intervention to divert the product.
Fault diagnosis is a complementary task to SPM that
focuses on the identification of process and equipment

faults that are the source cause of the abnormality ob-

served. While the SPM chart detects abnormal process

operation, fault diagnosis identifies the process vari-

able(s) that caused the system to deviate from its normal

operating conditions and the source cause that created

the significant deviation in these variables. This infor-

mation can help the operator for determining the
appropriate course of action quickly and making the

necessary intervention or repair.

One contribution of this paper is the introduction of

SPM within the framework of HACCP. Another con-

tribution is the illustration of the integration of multi-

variate SPM and fault diagnosis to generate a powerful

tool for rapid determination of the cause(s) of abnormal

process operation.
The structure of the paper is as follows. Various

HACCP, SPM and FDD applications in food process-

ing industry are summarized in Section 2. Multivariate

SPM and FDD techniques are presented in Section 3.

The HTST pasteurization system and its data acquisi-

tion unit are described in Section 4. The performance of

the multivariate SPM and fault diagnosis techniques are

illustrated by implementing SPM and FD to the HTST
pasteurization system and the results are discussed in

Section 5.
2. HACCP, SPM and FDD practice in food processing

The adoption of HACCP programs by the food

industry is increasing. Today, HACCP plans are being

used in dairy, fish, meat, bakery and beverage industries.

In the USA, Food and Drug Administration (FDA) and
the Food Safety Inspection Service (FSIS) of USDA

have been preparing regulations regarding the use of

HACCP plans in food and meat processing plants

(Bakka, 1998; Bernard, 1998). However, the literature

indicates that the use of powerful multivariate SPM and

FDD techniques and their integration with HACCP are

very limited at the present time in food industry.

In various studies that are listed in the following
sections, mostly univariate SPM charts such as Shewhart

charts (also called x-bar and range charts) are used to

monitor CCPs and these charts are combined with a

FDD tool. Besides monitoring CCPs, there are examples

of using univariate SPM charts for quality characteris-

tics of food products. It is apparent that the multivariate

SPM and FDD methods have not yet found many

application areas in the food industry.

2.1. Univariate SPM in HACCP and in quality control

Monitoring CCPs in the process individually by

univariate SPM charts is suggested in HACCP (Hub-
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bard, 1990; McAnelly, 1994; Ozilgen, 1998b). However,
it is not clear in the literature that this has been practiced

extensively. Use of statistical univariate cumulative sum

(CUSUM) and Shewhart charts to monitor a CCP in a

milk-filling machine has been reported. The purpose of

the study was to establish a trend analysis of CCP

data by treating data with appropriate statistical tools

in order to obtain advanced warning on the status of

the process, not just a pass/fail classification (Hayes,
Scallon, & Wong, 1997).

Univariate SPM charts are being used for quality

control in food industry. In sugar production from beet,

Shewhart charts have been developed for the control of

some product parameters within the manufacturing

process itself after a training period (Sanigar, 1990). The

company that implemented this effort is considered as

one of the pioneers in augmenting, SPM with the quality
management system. It is reported that the product

quality has improved and the annual savings increased

significantly after SPM applications in the plant. An-

other example is the use of univariate moving mean and

range SPM charts in a confectionery industry to over-

come the product inconsistency in texture and size

(Bidder, 1990). Statistical monitoring charts were used

on-line in peanut butter production at a Procter and
Gamble Plant (Miller & Balch, 1991). Pareto charts were

produced to decrease the unscheduled down-time since

product quality was affected negatively after each start-

up. Process capability analysis was used to monitor and

control the peanut butter color by roasting the peanuts

within specifications and with less variability. Also,

mean and range charts were used to regulate the salt

addition into the grinder. It was concluded that the use
of on-line SPM techniques led to significant process

improvement. In another study, the mean and range

charts were used in a brewery industry for quality con-

trol (Ozilgen, 1998a). Charts were constructed for

characteristic quality factors such as total acidity, pH,

alcohol content and carbon dioxide after transforming

non-normally distributed data to normally distributed

data. Another quality control application was reported
on hazelnut sorting and cracking unit (Ozdemir &

Ozilgen, 1997). Control charts based on percent defec-

tive product (p charts) (Hubbard, 1990; Montgomery,

1991) were constructed to monitor and control the

performance of two different sizer-cracker units. Statis-

tical quality control tools for food processing and

application examples are discussed in two recent books

(Hubbard, 1990; Ozilgen, 1998b). However, the contents
of these books are limited to univariate statistical charts.

2.2. Multivariate SPM in HACCP and quality control

The importance of multivariate statistical analysis

and control in food industry has been pointed out in the

literature. However, the application of these methods to
a process line was not reported. In an early publication
(Buco, 1990), it is stated that quality control in food

industry requires more than acceptance sampling and

univariate control charts. When there are a number of

quality characteristics, the multivariate Hotelling’s T 2

chart is suggested to monitor the process variables

jointly since multivariate charting techniques are more

powerful for detecting simultaneous changes. More

comprehensive research on multivariate SPM is pre-
sented in Negiz, Ramanauskas, Cinar, Schlesser, and

Armstrong (1998a, 1998b, 1998c) where empirical model

development and multivariate SPM techniques for a

HTST pasteurization process are discussed. An SPM

method based on the state variables of the canonical

variate state space model of the process is used. A T 2

chart of state variables is used to detect the abnormali-

ties in the process variables. Negiz and Cinar (1998)
have also reported statistical monitoring charts for

sensor fault detection that indicate whether there is bias,

drift or increased noise in the measurements of indi-

vidual sensors. T 2 and SPE charts of state variables and

contribution plots of process variables are interfaced

with a knowledge-based system (KBS) to integrate and

automate process monitoring and fault diagnosis (Nor-

vilas, Negiz, DeCicco, & Cinar, 2000). This framework
was used to monitor a sausage cooking unit simulated in

a real-time KBS environment (Norvilas & Cinar, 1997).

Multivariate statistical monitoring of a sausage cooking

line based on plant data is presented in DeCicco, Mar-

tino, Cinar, Verdoorn, and Balasubramaniam (1999).

The external sausage temperature was measured with

infrared thermometer and a linear relationship was

developed between external sausage temperature and
internal sausage temperature which is the CCP for

cooked sausage processing. Temperature readings were

taken across the conveyor belt at each sampling time to

represent the temperature distribution. Multivariate

SPM tools for external sausage temperature across the

conveyor belt are based on the Hotelling’s T 2 chart.

Univariate charts are also used to provide additional

information for diagnosis.

2.3. Automated FDD in food industry

A number of FDD applications in food industry

based on the use of KBS have been reported. Alanso,

Acosta, Prada, and Mira (1994) describe an expert sys-

tem for on-line FDD in a beet sugar plant. Monitored

variables of the process are checked against an interval.

When monitoring indicates a problem with a variable,

diagnosis task is initiated. Similar applications have

been done in the bottling line in a brewery company
(Troupis, Manesis, Koussoulas, & Chronopoulos, 1995)

and in the juice purification unit in a cane sugar

production (Pokkunuri, 1994). In both applications,

univariate SPM charts are used to detect a problem
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and the KBS is used to handle the fault diagnosis
activity.
3. Multivariate SPM and FDD techniques

Industrial processes have many variables. SPM and

FDD techniques that make use of the information

contained in all variables have resulted in faster and

better monitoring and diagnosis. Multivariate SPM and

FDD techniques are presented in this section.
3.1. Multivariate SPM techniques

When more than one process or quality variable is

measured at a time, the univariate charts of individual

variables are not preferred because they ignore the

correlation in data and the additional information pro-

vided by the other variables. Interactions among vari-
ables do not allow individual variables to behave

independently. The collective information from several

variables often indicates a burgeoning trend towards

deviation earlier than any individual variable.

The Hotelling’s T 2 chart is a widely accepted multi-

variate SPM tool. It measures the cumulative deviation

of variables in a data set from their mean values based

on the concept of statistical distance. T 2
k value at time k

is given as

T 2
k ¼ ðyk � lÞTS�1ðyk � lÞ; ð1Þ

where yk is the observation vector at time k, l is the

mean vector or target value and S is the in-control

covariance matrix of the observations y. The superscript

T denotes the transpose of a matrix and S�1 is the in-

verse of matrix S.
When variables are highly cross-correlated and col-

linear, additional mathematical steps must be consid-

ered. The trajectories of collinear variables show strong

similarity and cause numerical difficulties in computing

the inverse of S. These numerical problems in comput-

ing S�1 will yield a T 2 chart that gives too many false

alarms. Hence, the T 2 chart of process variables may not

be a suitable choice for processes with highly cross-
correlated and collinear variables. Principal component

analysis (PCA) can be used to remedy this problem. In

addition, data may have strong autocorrelation. In re-

cent works, SPM based on state variables of a dynamic

stochastic model of the process were developed from

process data collected under normal operating condi-

tions to deal with high autocorrelation and cross-cor-

relation in process data (Negiz & Cinar, 1997; Norvilas
et al., 2000). SPM of processes generating highly auto-

correlated and cross-correlated data can be implemented

by using the T 2 chart of canonical variate state space

variables and the squared prediction error (SPE) chart.
The multivariate T 2 chart of state variables is used in
detecting the abnormal process behavior. The T 2 sta-

tistic for state variables at each time k is distributed as F
distribution and is computed as

T 2
k ¼ xT

k S
�1
st xk �

nðN 2 � 1Þ
NðN � nÞ Fa;n;N�n; ð2Þ

where x is the state variables vector, Sst is the covariance

matrix of state variables, N is the number of observa-

tions, n is the number of state variables. F denotes F
distribution and a is the confidence limit.

If the dynamic model cannot explain the data col-

lected at measurement time k, the statistics of the new

observations will move away from the space defined by
the in-control historical data and dynamic process

model. In other words, the existing process model can-

not explain the particular observation vector ade-

quately. The residual vector ek computed by using

process data yk and its estimates from the state variables

model ŷk, shows the goodness of the fit of the model to

data

ek ¼ yk � ŷk: ð3Þ

The residuals are monitored by the normalized SPE

chart (SPEN ). At time k, the SPENk value and its distri-

bution are

SPENk ¼ ðek � �eÞTS�1
e ðek � �eÞ;

SPEN � pðN 2 � 1Þ
NðN � pÞ Fa;p;N�p;

ð4Þ

Se and �e are the covariance matrix and the mean vector

of residual matrix respectively, which are determined

from the in-control data. The in-control residual mean

vector �e is almost zero and in-control residual covari-
ance matrix Se is diagonal (uncorrelated residuals).

The multivariate SPM techniques monitor two sta-

tistics (T 2
k and SPENk ) at each measurement time k by

using all the process variables. They signal that the

process is out-of-control when either statistic exceeds its

upper limit. The multivariate SPM charts do not provide

information on which variables are out-of-control. After

detecting the out-of-control status, fault diagnosis
methods are used to identify the variable(s) that signals

the deviation from normal behavior.
3.2. Multivariate FDD techniques

FDD techniques isolate and diagnose the source of

abnormality detected by the multivariate monitoring

charts. There are different ways of implementing FDD.

The methods may be collected under two main titles:
model-free and model-based methods. The model-free

methods do not require a mathematical model of the

system. FDD with model-free methods can be per-

formed through simple limit checking of plant mea-
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surements, comparison of the same physical quantity
from different sensors (physical redundancy) or spec-

trum analysis of plant measurements (Gertler, 1998).

The model-based methods are also named as analytical

redundancy or quantitative FDD. These methods are

based on a mathematical model of the system that

provides estimates of process data. The idea is, to

compare the measurements with analytically computed

values and infer from significant differences the variables
that have affected the statistics that indicated the devi-

ation. Either by using process knowledge or additional

diagnosis methods, these variables are, then linked to

specific process equipment whose malfunction would

cause the effects observed on these variables.

The fault diagnosis technique used in this study is

called the parity space technique, which is a model-based

FDD method (Peng, Youssouf, Arte, & Kinnaert, 1997).
The technique utilizes parity residuals that are computed

by using ‘balance equations’ based on input and output

data of the process and parity relations. The first step is

the development of the dynamic process model between

process inputs and outputs. In the second step, the

parity relations are developed and the procedures are

formulated to monitor parity residuals that indicate

whether the parity relations are satisfied or not. In this
work, parity residuals are tested with the generalized

likelihood ratio (GLR) test (Johnson & Wichern, 1998;

Willsky & Jones, 1976).

Parity residuals are generated from input and output

measurements by using a dynamic, discrete time state

space model of the system:

xkþ1 ¼ Axk þ Buk þ Jdk þ Efk;

yk ¼ Cxk þDuk þ Pdk þ Ffk;
ð5Þ

where xk denotes the state variables vector, uk is the

actuator command vector, yk is the output variables

vector, dk is the white noise vector, and fk is the fault

modes vector. A, B, C, D, E, F, J, and P are constant

system matrices.

The fault modes in the parity space technique are
classified as sensor faults and actuator faults. Different

parity relations for sensor faults and actuator faults are

defined by using the dynamic process model (Eq. (5)).

Parity residuals for sensor faults are

rik ¼ HðzÞyik þ KðzÞuk; ð6Þ

where rik denotes the parity residual vector for the ith
sensor at time k, HðzÞ is the transfer function between

output measurements and residuals, and KðzÞ is the

transfer function between input measurements and
residuals. The argument (z) indicates that the transfer

functions are in z domain.

Parity residuals for actuator faults are generated

similar to Eq. (6):
rik ¼ PðzÞyk þ RðzÞuik ; ð7Þ

where rik denotes the parity residual vector for the ith
actuator at time k, PðzÞ is the transfer function between
output measurements and residuals, and RðzÞ is the

transfer function between input measurements and

residuals.

For each process variable, a parity relation is gener-

ated and the parity residuals are tested with the GLR

test to detect the change in that particular variable (Peng

et al., 1997; Willsky & Jones, 1976). Parity residuals are

noise series in the absence of fault. When a fault occurs
in a particular variable, its parity residual gets a signif-

icantly higher value than the noise series. The GLR test

is needed to differentiate a fault mode from the noise

series more effectively.

The appeal of the parity space approach is its ability

to diagnose each fault that has its parity relation.

However, faults that do not have parity relations cannot

be identified. Often a subset of all possible faults is se-
lected based on the importance of the fault and its parity

relations are defined to diagnose them. An alternative is

to use the contribution plots that indicate the process

variables that have contributed to the out-of-control

signal (by inflating T 2 or SPE statistics). Then, process

knowledge is used to identify process equipment that

will affect these variables when they malfunction in or-

der to deduce the source causes. This approach and its
implementation to the HTST pasteurization process are

discussed in detail in Kosebalaban (2000). The reasoning

(inferencing) to relate process variables with significant

variation to process equipment can be automated by

using KBSs.
4. HTST pasteurization system

The multivariate process monitoring and diagnosis

techniques are illustrated by implementing them on the

operation of a HTST pasteurization pilot plant. The

HTST pasteurization system is located at the National

Center for Food Safety and Technology (NCFST) of

Illinois Institute of Technology. A process flow and

instrument diagram is given in Fig. 2. The pilot pas-
teurization plant consists of a plate heat exchanger, a

centrifugal pump, a flow diversion valve (FDV), a boiler

and a homogenizer. The heat exchanger is a multipass,

plate heat exchanger by APV Company. The homoge-

nizer (APV) has an adjustable flowrate between 56.78

and 189.27 l/h (15–50 gal/h). There are two regulatory

valves, the steam injection valve (steam valve) to the

boiler and the hot water flow valve in preheater section
(preheater valve).

The product is heated by hot water. The hot water is

heated by direct steam injection in the hot water heater.

Three PID control loops are used to control product
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temperature. The first control loop regulates the raw
product temperature leaving the preheater. The second

loop controls product temperature entering the holding

tube. The last loop controls the temperature of the

pasteurized product leaving the cooler. The raw product

temperature at the exit of the preheater is controlled by

manipulating the flow of hot water through the preheat

heater exchanger. The product temperature at the

holding tube inlet is controlled by manipulating the
steam flow rate into the hot water heater. The product

temperature at the exit of the cooler is controlled by

manipulating the flow rate of cold water flowing

through the cooler heat exchanger. This control loop is

not indicated in Fig. 2 or used in our studies since it has

no effect on the pasteurization process. The flow diver-

sion valve is controlled by pasteurized milk temperature

at the holding tube exit. The measured variables are hot
water, holding tube inlet, holding tube outlet and pre-

heater exit temperatures, and the steam valve and the

preheater valve signals. The controlled variables are the

holding tube-inlet temperature and the preheater tem-

perature. The manipulated variables are the steam flow

rate by steam control valve and the preheater hot water

flow rate by preheater control valve.

The HTST system was connected to a computer
system equipped with a data acquisition system (DAS)

wired to HTST system sensors and actuators. The real-

time data acquisition computer system consists of a

Hewlett-Packard HP 75000 System with a HP 75000

card cage and a Compaq Presario 7222 personal com-
puter. The measurement card on HP 75000 includes a
5.5 digit multimeter, two 16-channel thermocouple relay

multiplexers, a quad 8-bit digital input–output card and

a 4-channel digital to analog (D/A) converter. The

software used for data acquisition, display, storage and

process control is HPVEE 3.12. The control signals

which are signals to pneumatic steam valve in main

heating loop and preheater valve are generated by pro-

portional–integral–derivative (PID) controllers devel-
oped in HPVEE software. Their values are sent to the

control valves of the HTST system after the digital sig-

nals are first converted to 4–20 mA current signals by D/

A converters, then converted to 0.204–1.020 atm (3–15

psig) pneumatic signals by current-to-pneumatic (I/P)

transducers.
5. Case study: Sensor fault detection and diagnosis
in a continuous food pasteurization process

Detection and diagnosis of sensor faults, actuator

faults, or a combination of such faults were imple-

mented and investigated by Kosebalaban (2000). In this

study, only sensor faults will be discussed to illustrate

the performance of the multivariate SPM and FD

techniques presented and to compare them with uni-
variate SPM techniques.

Sensor Faults: Sensor faults are introduced to the

system by modifying sensor data values received by the

process control computer. To generate a sensor fault for



F. (Kosebalaban) Tokatli et al. / Food Control 16 (2005) 411–422 417
a specific time period, a real number is added to the
actual sensor reading, which is transmitted to the com-

puter from the process sensors. Instead of the actual

reading of the sensor, the modified sensor ‘reading’ is

sent to the PID controllers. The controllers computed

the manipulated variable settings based on the faulty

sensor reading. Therefore, the system received a false

action command from the controllers even though there

was no need for any adjustments in the flow rates of
steam and hot water, and the fault ‘implemented’ on the

sensors was propagated through the system.

The magnitudes of faults implemented to the holding

tube-inlet temperature sensor, were +0.39 and +0.83 �C
(+0.7 and +1.5 �F). The fault duration was between 2

and 8 s. The details of each fault (times, magnitudes and

durations) are given in Table 1. Only positive deviations

are considered as faults because they represent the more
dangerous type of deviation, the temperature sensor

reporting values higher than the actual product tem-

perature. This may indicate a safe temperature for pas-

teurization when in reality the temperature is lower.
5.1. Discussion of detection and diagnosis of sensor

faults

The performance of monitoring charts and GLR tests

of parity relations are given in Table 2. In this table,
abbreviations HW, HT-in, Pht.T., HT-out, St.V. and

Pht.V. stand for the hot water, holding tube-inlet, pre-

heater product and holding tube-outlet temperatures

and steam valve and preheater valve signals, respec-
Table 1

Holding tube-inlet temperature sensor fault: times and magnitudes of

faults

Fault Fault time (s) Fault magnitude (F) Duration (s)

1 150 +0.7 2

2 302 +1.5 2

3 454 +0.7 4

4 608 +1.5 4

5 762 +0.7 8

6 920 +1.5 8

Table 2

Holding tube-inlet temperature sensor fault: results of SPM charts and GLR

the detection

Fault (time) SPM Results GLR Results

T 2 SPEN HW HT-in

1 (150) 1 1 NA 1

2 (302) 1 1 NA 1

3 (454) 1 1 NA 1

4 (608) 1 1 8 1

5 (762) 1 1 NA 1

6 (920) 1 1 16 1

NA: no alarm generated.
tively. The Hotelling’s T 2 chart and SPEN chart detected
all faults one sampling time after the faults were initi-

ated in the system (Fig. 3). The instants when faults were

implemented are shown by downward arrows in the

figures. Shewhart charts and the GLR tests of parity

residuals for each variable are given in Figs. 4–9. In

these figures, the upper graph shows the observations of

the process variables and the univariate SPM chart

control limits (2 standard deviation in dashed lines, 3
standard deviation in solid lines). The second graph in

each figure (Figs. 4–9) shows the result of FDD with its

GLR control limit. The parity relation of the faulty

sensor detected the fault at the same time as the multi-

variate monitoring charts (Fig. 5). Therefore, the alarms

in the multivariate SPM charts are diagnosed as the

faults in the sensors whose parity relation issues alarms

at the same time instant. The univariate Shewhart charts
did not alarm many faults either because the fault was of

small magnitude (even if it persisted for some time) or

the fault was within the in-control variation of the

variable and disappeared after certain time. Faults with

magnitude of +0.39 �C (+0.7 �F) cannot be detected in

any Shewhart chart. Both the multivariate statistics (T 2

and SPE) and GLR tests are much better than the

univariate charts in detecting sensor faults with small
bias shifts.

The signals of the GLR tests for the actuators indi-

cated the faults a number of sampling times after the

GLR signals of the holding tube-inlet temperature

measurements. This was an indication that the failure

originates from the holding tube-inlet temperature sen-

sor. In case of faults with a magnitude of +0.7 �F in the

holding tube-inlet temperature sensor, the GLR chart of
the steam valve signal did not give out-of-control alarms

because of the small fault magnitude (Fig. 8). The GLR

chart of the hot water temperature sensor did not alarm

these small magnitude faults either (Fig. 4) since the

steam valve did not cause big disturbances in the pro-

cess.

Sensor faults with positive deviations were used in

fault tests of the holding tube-inlet temperature sensor
to illustrate the synergy between monitoring CCP limit
test of parity relations in terms of the number of measurements before

Pht.T. HT-out St.V. Pht.V.

NA NA NA 13

NA 77 27 13

NA NA NA NA

NA 76 22 12

NA 26 36 23

NA NA 8 13
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and GLR test results.
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violation and SPM. In case of positive bias in the sensor,

the steam valve reduced the steam flow into the system

because of the temperature increase. This can cause the

hot product temperature to decrease below the critical

control limit. Therefore, for proper pasteurization, the

diagnosis of the erroneous increase in the holding tube-

inlet temperature signal is important. Erroneous reduc-

tions in holding tube-inlet temperature readings caused
an increase in the steam flow into the system. Therefore,

a negative bias in this particular sensor is not a serious

threat to product safety.
The time of occurrence of the sensor fault is first

depicted in the residuals of that sensor as expected (Figs.

4–9). Since the effect of sensor fault in the controlled

variables is propagated in the system through control-

lers, GLR tests of the actuators eventually showed that

there was an abnormality in the system as well. There-

fore, if the out-of-control signal is given first in the

residuals of controlled variables, it can be deduced that
the fault is caused by the corresponding sensors. When

the holding tube-inlet temperature and preheater tem-

perature sensors become faulty, inflation in their parity
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relations is seen first. Then, the false information is

carried to controllers, and through the controller re-

sponses to the actuators of the system. The actuators

change their status, which may lead to deviations in the

remaining process variables and eventually to the gen-
eration of actuator alarms.

The monitoring and diagnosis charts showed that any

deviation in the holding tube-outlet temperature mea-

surements can be detected and used to prevent further
process variation by monitoring and regulating the

other process variables as well. Since the fluctuations in

the product temperature at the exit of the holding tube

are caused by the variations or disturbances in the

holding tube-inlet temperature sensor, preheater tem-
perature sensor and in the steam valve of the plant, the

corrective action can be taken before the fault caused

adverse affects on the pasteurized product temperature

that will violate the CCP safety limits.
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results.
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6. Conclusions

Multivariate monitoring and diagnosis techniques

have the power to detect unusual events while their

impact is too small to cause a significant deviation in

any single process variable. This is an important

advantage because this trend towards abnormal opera-

tion may be the start of a serious failure in the system

that may cause failure to properly pasteurize the prod-
uct or lead to equipment damage. The multivariate SPM

and diagnosis in food processing operations can play a
dual role of quality control and safety assurance by

integrating CCP concepts with SPM and FD. Rapid

detection of drift towards CCP safety limits by SPM and

efficient FD to identify the root cause behind the mal-

function in the system saves valuable time. This enables

plant operators to take corrective actions quickly when

needed before the variation affects significantly the
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CCPs of the plant (causing diversion) and trigger drastic

interventions that result in production cost increases by

stopping process operation or requiring reprocessing of

the product.
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