
PHYSICAL REVIEW D 71, 115005 (2005)
Phenomenological issues in supersymmetry with nonholomorphic soft breaking
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We present a through discussion of motivations for and phenomenological issues in supersymmetric
models with minimal matter content and nonholomorphic soft-breaking terms. Using the unification of the
gauge couplings and assuming SUSY is broken with nonstandard soft terms, we provide semianalytic
solutions of the RGEs for low and high choices of tan� which can be used to study the phenomenology in
detail. We also present a generic form of RGIs in mSUGRA framework which can be used to derive new
relations in addition to those existing in the literature. Our results are mostly presented with respect to the
conventional minimal supersymmetric model for ease of comparison.

DOI: 10.1103/PhysRevD.71.115005 PACS numbers: 11.30.Pb, 12.60.Jv
I. INTRODUCTION

Supersymmetry is an elegant symmetry for stabilizing
the electroweak scale against strong ultraviolet sensitivity
of the Higgs sector induced by quantum fluctuations. This
symmetry, given that no experiment has yet observed any
of the superpartners, cannot be operative at energies below
the Fermi scale. This very constraint is saturated by break-
ing global supersymmetry explicitly via mass parameters
O�TeV� in such a way that the quadratic divergence of the
Higgs sector is not regenerated. In more explicit terms, the
action density of the minimal supersymmetric model
(MSSM) which is based on the superpotential

Ŵ � htt̂RQ̂LĤu � hbb̂RQ̂LĤd � h�
̂RL̂LĤd ��ĤuĤd

(1)

as obtained after discarding all Yukawa couplings except
those of the heaviest fermions, is augmented by additional
terms (see, for instance, [1] for a review)

m2
Hu
Hy
uHu �m2

Hd
Hy
dHd �m2

tL
~Qy
L
~QL �m2

tR
~tyR~tR

�m2
bR
~byR ~bR �m2

�L
~Ly
L
~LL �m2

�R ~

y
R ~
R

�

"
htAt~tR ~QLHu � hbAb

~bR ~QLHd � h�A�~�R ~LLHd

��0BHuHd �
X
a

Ma

2
�a�a � h:c:

#
(2)

which contain massive scalars, gauginos as well as a set of
triscalar couplings among sfermions and Higgs bosons.
The operators in (2) break supersymmetry in such a way
that Higgs scalar sector does not develop any quadratic
sensitivity to the UV scale.

The soft-breaking terms in (2) do not necessarily repre-
sent the most general set of operators. Indeed, one may
address: lsolmaz@balikesir.edu.tr
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consider, for instance, triscalar couplings with ‘‘wrong’’
Higgs as well as bare Higgsino mass terms. Indeed, such
terms have recently been shown to occur among flux-
induced soft terms within intersecting brane models [2].
Historically, such terms have been classified as hard since
they have the potential of regenerating the quadratic diver-
gences [3]. However, this danger occurs only in theories
with pure singlets, and in theories like the MSSM they are
perfectly soft. Hence, the most general soft-breaking sector
must include the operators

�0 ~Hu
~Hd � htAt0~tR ~QLH

y
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~bR ~QLH
y
u

� h�A0
�~�R ~LLH

y
u � h:c: (3)

in addition to those in (2). Clearly, none of these operators
mimics those contained in the superpotential (1): they are
nonholomorphic soft-breaking operators. Note the struc-
ture of the triscalar couplings here; the triscalar couplings
in (2) are modified by including the opposite-hypercharge
Higgs doublet.

In principle, the theory can contain both � and �0

couplings. However, in what follows we will follow the
viewpoint that the � parameter is completely soft, that is,
� in the superpotential vanishes. This indeed can happen if
the theory is invariant under global chiral symmetries [4] at
high scale [5]. What is crucial about vanishing � is that it
automatically solves the � problem; the theory does not
contain a supersymmetric mass parameter with a com-
pletely unknown scale. Indeed, in the MSSM stabilization
of the � parameter to the electroweak scale requires the
introduction of gauge [6]- or nongauge [7] extensions in
which the vacuum expectation value (VEV) of an MSSM
gauge-singlet scalar generates an effective � parameter.
For these reasons, having a nonvanishing �0 in the soft-
breaking sector both solves the � problem and serves as if
there is a � parameter in the superpotential.

The present work is organized as follows. In Appendix A
we give the full list of renormalization group equations
-1  2005 The American Physical Society



M. A. ÇAKIR S. MUTLU, AND L. SOLMAZ PHYSICAL REVIEW D 71, 115005 (2005)
(RGEs) for all rigid and soft parameters of the theory (as
we hereafter call ‘‘nonholomorphic MSSM’’ or NHSSM
for short). In App. we list down solutions of the RGEs of
all model parameters as a function of their boundary values
taken at the scale of gauge coupling unification MGUT �
1016 GeV. An important parameter of the theory is the
ratio of the Higgs vacuum expectation values: tan� �

hH0
ui=hH

0
di. In solving the RGEs we will consider low

( tan� � 5) and high ( tan� � 50) values of tan� sepa-
rately. In Sec. II we analyze the Z boson mass, in particular,
its sensitivity to GUT-scale parameters. Here we will clar-
ify the differences and similarities between the MSSM and
NHSSM. In Sec. III we will discuss sfermion masses in the
MSSM and NHSSM for the purpose of identifying their
sensitivities to GUT-scale parameters, in particular, �0 and
�0
0. Neutralinos and charginos are considered in the same

section. Experimental clues that can give information
about the behaviors of the MSSM and NHSSM is also
discussed at the end of the section. In Sec. IV we will
discuss renormalization group invariants in the MSSM and
NHSSM in a comparative manner so as to know what
remains scale invariant in two distinct structures. In
Sec. V we conclude the model.
II. FINE-TUNING OF THE Z BOSON MASS:
MSSM VS. NHSSM

It is well known that supersymmetry (SUSY) is not an
exact symmerty of nature, and there is no unique mecha-
nism (gravity mediation, gauge mediation, anomaly me-
diation, etc.) for realizing its breakdown. From the
viewpoint of nonstandard soft breaking in the minimal
supersymmetric standard model (NHSSM), on one hand,
its predictions should reproduce the SM agreement with
data, ensure unification of gauge couplings at the grand
unified theory (GUT) scale with minimal particle content,
and on the other, it should preserve naturalness with soft
terms [8].

It is expected that in the near future, thanks to LHC and
its successors, experiments related with superparticle
masses and mixings will yield enough information to dis-
tinguish between various GUT-models and supersymmetry
breaking mechanisms (see e.g. [9]). Taking gravity-
mediation as the mechanism responsible for SUSY break-
ing, it is important to explore how the soft terms are
induced: holomorphic soft terms of the minimal model or
those of the NHSSM with or without R parity violation
[10]. In this work we will concentrate on NHSSM with
exact R parity deferring the effects of R parity violation to
a future work.

Presently, apart from a number of observables in the
flavor-changing neutral current sector, the Z boson mass is
the main parameter that relates precision measurements to
soft masses. In other words, the soft terms must self-
organize so as to reproduce the measured value of the Z
115005
boson mass [8]. Hence, it is profitable to analyze MZ in the
MSSM and NHSSM in a comparative fashion.

A. Evolution of soft terms

For the soft-breaking parameters of the NHSSM [8], we
use one-loop Renormalization Group Equations (RGEs)
[11] and thereby express their weak scale values in terms
of GUT boundary conditions (see Appendix A). Once
weak scale mass values of SUSY particles are known, it
will be possible to make educated guesses as to the GUT
side. Meanwhile, the most general semianalytic solution
set of the RGEs for the NHSSM is too large for practical
purposes to carry out phenomenological analyses which
we present in Appendix . Nevertheless, the number of free
parameters can be considerably reduced if one assumes the
universality of the soft terms at the GUT scale. In this case
solutions are phenomenologically more viable and they
can be found in Appendix for all soft terms. Our choice
for the GUT scale universality condition can be stated
(dropping the contributions of all fermion generations but
the third family) as some prototype structure inspired from
minimal supergravity:

mHu;Hd;tL;tR;bR;lL;lR�0� ! m0; �0�0� ! �0
0;

At;b;��0� ! A0; A
0
t;b;��0� ! A0

0;M1;2;3�0� ! M:
(4)

Clearly, one may relax all or part of these conditions
whereby obtaining a larger parameter space augmenting
the results presented in Appendix . One should note that
even if universal soft masses are assumed at the Planck
scale, consideration of different boundary conditions for all
soft terms including phases is more elegant, but then it gets
difficult to achieve certain clear-cut statements from the
phenomenological side. To evade this cumbersome reality
one needs certain inspirations which can be expected from
string models. In order to use the most general one-loop
solutions presented in this work, one can choose for in-
stance, if the initial value of gauginos are not necessarily
the same, then M30 � M20 � M10 can be implemented,
and this approach can be generalized to all soft-breaking
terms.

One of the most important distinctions is that, in the
MSSM none of the soft masses depend on the initial value
of �, whereas in NHSSM both A0 parameters and soft
masses do depend on �0

0. Using the universality conditions
of (4), let us present some of the soft masses in both of the
models for low tan� choice ( tan� � 5). In the MSSM
masses of up and down Higgs at the weak scale can be
expressed using boundary conditions of common gaugino
mass, cubic and soft mass-squared terms,

m2
Hu
�tZ� � �0:087A2

0 � 0:38A0M� 0:16m2
0 � 2:8M2;

m2
Hd
�tZ� � �0:0033A2

0 � 0:011A0M� 0:99m2
0 � 0:49M2;

(5)
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FIG. 1. Scale dependency of gauginos in both of the models.
Notice that here the boundary value of M is assumed to be 1 TeV.
Scale dependency is expressed by dimensionless t such that t0
corresponds to 1:9
 1016 GeV. Here, Bino is at the bottom,
followed by Wino and Gluino. Note that the same figure shows
unification of gauge couplings.
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whereas in the NHSSM also have primed-trilinear cou-
plings,

m2
Hu
�tZ� � �0:087A2

0 � 0:1A02
0 � 0:16m2

0 � 2:8M2

� 0:067A0
0�

0
0 � 0:14�02

0 � 0:38A0M;

m2
Hd
�tZ� � �0:0033A2

0 � 0:37A02
0 � 0:99m2

0 � 0:49M2

� 0:31A0
0�

0
0 � 0:6�02

0 � 0:011A0M: (6)

As it is seen in (5) and (6), at the electroweak scale, the
results are the same except primed-trilinear couplings and
�0; �0

0 terms. As a matter of fact NHSSM predictions
reduces to that of MSSM results under the following trans-
formation:

�0; A0
t; A0

b; A
0
� ! �;m2

Hu;d
! m2

Hu;d
��2; (7)

which declares that NHSSM is a beautiful extension of the
MSSM. In the NHSSM, notice that the contribution of A02

0
terms is not of the same order of A2

0 terms for all soft
masses, hence trilinear and primed-trilinear couplings are
not symmetric (see Appendix ). What is more interesting is
that, for both of the models, all soft masses depend heavily
on the gaugino masses with the exception of leptons m2

lL;R
.

Among others m2
tL is the most sensitive not only for gau-

gino masses but also for the initial value of �0, for the latter
m2

Hd
is the least sensitive in the NHSSM.

At this point it is appropriate to stress that there are also
common model independent predictions like the evolution
of gauiginos (i.e. see Fig. 1), which stems from the insen-
sitiveness of gauge and Yukawa RGEs to both of the
models at one-loop. On the other hand, trilinear couplings
and other soft terms can be seen, in a way, to transformed
into a new set in which � terms are replaced with primed
terms.

B. MZ boundary

For both of the models, as one of the most crucial
constraints for the SM agreement with data, mass of the
Z boson should be considered first, for a successful elec-
troweak symmetry breaking. Notice that in the MSSM, in
order to get the observed value of MZ, a delicate cancella-
tion between the Higgs masses and � is required, which is
the famous � problem (see i.e. [12–14]). Instead of �
parameter of the MSSM, NHSSM bears At0 ; Ab0 ; A�0 and �0

and its interesting effect can be seen by minimizing the
scalar potential of the NHSSM which brings the constraint

M2
Z�tZ�
2

�
m2
Hd
�tZ� � tan2�m2

Hu
�tZ�

tan2�� 1
: (8)

The Z boson mass depends on �0 rather strongly in the
MSSM. As an example for tan� � 5, MSSM constraints
can be expressed under the assumption of universality as
115005
M2
Z�tZ�
2

� 0:09A2
0 � 0:21m2

0 � 3M2 � 0:92�2
0

� 0:39A0M: (9)

However, in NHSSM it does depend on �0 rather weakly
e.g. a 10% change in �02

0 generates only a 0:1% shift in
M2

Z=2. To make a comparison, in the NHSSM for the same
value of tan�:

M2
Z�tZ�
2

� 0:09A2
0 � 0:12A02

0 � 0:21m2
0 � 3M2

� 0:082A0
0�

0
0 � 0:12�02

0 � 0:39A0M: (10)

For the sake of visualization of the NHSSM and MSSM
reactions we define dimensionless quantities �i�tan�� such
that the Z constrain can be expressed as

M2
Z�tZ�
2

� �0
1A

2
0 � �0

2A
02
0 � �0

3m
2
0 � �0

4M
2 � �0

5A
0
0�

0
0

� �0
6�

02
0 � �0

7A0M; (11)

which can be used also for MSSM with obvious modifica-
tions. In the range tan� � [2,60], weights of �’s can be
inferred from Figs. 2– 4.

In addition to relaxing sensitivity on the �0 terms, we
observe that tan� changes the sign of the �0 contribution in
the NHSSM, and this situation has important consequences
on the model building business. Note that in the MSSM
contribution of �2 terms is always destructive (assuming it
is real), whereas by staring the oscillatory behavior of �02

with different choices of tan� (see Fig. 2) one can find a
specific prediction for tan� such that �02 dependency of
the M2

Z completely vanishes in low and high regions, in
addition to destructive or constructive contribution regions.
Such special points can be called as turning points and this
-3
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corresponds to �49:25 for high tan� in the NHSSM under
the assumption of universal terms. Of course relaxing the
universality assumption brings different turning points.

Consequently, supersymmetry breaking with nonstan-
dard soft terms has an important virtue of reducing the
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FIG. 3. Evolution of the �1;3;4;7 terms
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sensitivity of M2
Z to the initial value of the � parameter.

However, in both cases, the MSSM and NHSSM, the Z
boson mass exhibits a strong sensitivity of the gaugino
masses. This follows mainly from the asymptotic freedom
of color gauge group.
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PHENOMENOLOGICAL ISSUES IN SUPERSYMMETRY. . . PHYSICAL REVIEW D 71, 115005 (2005)
III. SPECTRUM OF SPARTICLES IN MINIMAL
SUPERGRAVITY: MSSM VS. NHSSM

From the viewpoint of realistic model building approach
any model should satisfy other collider bounds besides MZ,
however we know from direct searches that no supersym-
metric particle is observed yet, which can not set tight
bounds on the spectrum of masses of SUSY particles
115005
[15]. Meanwhile mass of Higgs boson can be considered
as on the verge of experimental verification if low scale
supersymmetry really exists. We consider particle data
group restrictions on the mass of sparticles and simply
accept the lower bounds of LEP 2 msoft > 100 GeV, for
the lightest chargino and neutralino half of Z boson width
is accepted [16]. For simplicity and clarity, again, in this
section we require all scalars to acquire a common mass
-5
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m0, all gauginos to be mass-degerate with M, all triscalar
couplings to be A0 and all nonholomorphic triscalars to be
A0
0 all fixed at the GUT scale. In fact, suppression of the

flavor-changing neutral currents as well as the absence of
permanent electric dipole moments (EDMs) already imply
that the soft-breaking masses cannot be all independent
and arbitrarily distributed; they must be correlated by some
organizing principle operating at the unification scale or
above. With this assumption one can predict mass of light-
est Higgs boson at tree level using the scalar Higgs poten-
tial of the NHSSM which brings the constraints

m2
Hd

� m2
3 tan�� �M2

Z=2� cos2�; (12)

m2
Hu

� m2
3 cot�� �M2

Z=2� cos2�: (13)

During the numerical investigation, we look for real and
positive soft terms in the range �01000� GeV, which results
in successful electroweak symmetry breaking patterns for
low tan� option. In this case by noting the collider lower
bounds on the mass spectrum, parameter space can be
restricted to a good extend, without additional assumptions
(like no-scale [17], or some other string inspired models).
With the same range proposed for GUT boundaries there is
no succesfull candidate in high tan� region, while the
universality assumption of (4) in charge. When the elec-
troweak symmetry is broken mass eigenstate of the lightest
neutral scalar should satisfy m0

h > 114 GeV with radiative
corrections. By expanding the scalar potential around the
minimum tree-level masses of the fields can be found as
115005
m2
A0 � 2m2

3= sin2�; (14)

m2
H� � m2

A0 �M2
W; (15)

m2
h0;H0 �

1

2
�m2

A0 �m2
Z

�
�����������������������������������������������������������������
�m2

A0 �m2
Z�

2 � 4M2
Zm

2
A0cos22�

q
�; (16)

when one-loop quantum corrections are considered SM
like Higgs boson gets the largest contributions from t and
b squarks. Notice that without quantum corrections mass of
the lightest Higgs boson can not satisfy the experimental
boundary, hence we study this issue in section III C for
NHSSM without CP violation; MSSM results including
CP violation can be found in [18,19]. Analytic forms of
m~t1 and m~t2 is given in the following subsection which will
be needed in correction business.

A. Sfermions

For scalar fermions the relation between gauge eigen-
values and mass eigenvalues of the NHSSM particles can
be read from the mass-squared matrices. Following that
aim, we provide explicit expressions for the mass-squared
matrices of squark and sleptons using reference [10]. The
stop matrix is:
m2
tL �m2

t �
1
6 �4M

2
W �M2

Z� cos2� mt�At � At0 cot��
mt�At � At0 cot�� m2

tR �m2
t �

2
3 �M

2
W �M2

Z� cos2�

 !
: (17)

for which we obtain the following eigenvalues

m2
~t1;2

�
1

12
f6�2m2

t �m2
tL �m2

tR� � 3M2
Z cos2�

�
������������������������������������������������������������������������������������������������������������������������������������������������������������������������
$1 cos2��12$2 � $1 cos2�� � 36�4A2

t m2
t � $2

2 � 4At0m2
t cot���2At � A0

t cot���
q

g; (18)

where $1 � 8M2
W � 5M2

Z and $2 � m2
tL �m2

tR. Similarly for the bottom squarks we have:

m2
tL �m2

b �
1
6 �2M

2
W �M2

Z� cos2� mb�Ab � Ab0 tan��
mb�Ab � Ab0 tan�� m2

bR
�m2

b �
1
3 �M

2
W �M2

Z� cos2�

 !
(19)

with eigenvalues

m2
~b1;2

�
1

12

�
6�2m2

b �m2
tL �m2

bR� � 3M2
Z cos2�

�
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������
$3 cos2��12$4 � $3 cos2�� � 36�4A2

bm
2
b � $2

4 � 4Ab0m
2
b tan���2Ab � A0

b tan���
q 	

; (20)

where $3 � 4M2
W �M2

Z and $4 � m2
bR �m2

tL. For the tau sleptons we have:
-6
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m2
lL
�m2

� �
1
2 �2M

2
W �M2

Z� cos2� m��A� � A0
� tan��

m��A� � A0
� tan�� m2

lR
�m2

� � �M2
W �M2

Z� cos2�

 !
: (21)

for which eigenvalues can be written as

m2
~�1;2

�
1

4
f2�2m2

b �m2
lL �m2

lR� �M2
Z cos2�

�
��������������������������������������������������������������������������������������������������������������������������������������������������������������������
$5 cos2��$5 � 4$6 cos2�� � 4�4A2

�m
2
� � $2

6 � 4A0
�m

2
� tan���2A� � A0

� tan���
q

g; (22)
where $5 � 4M2
W � 3M2

Z and $6 � m2
lL �m2

lR. Explicit
expressions related with each of the elements of these
matrices can be extracted from the Appendix of this
work for low and high tan� choices. In the MSSM sfer-
mion masses depend on �0 only via their (1,2) and (2,1)
entires whereas in the NHSSM �0

0 appears in all entires
including (1,1) and (2,2). When all the Yukawa couplings
are set to zero, except ht and h�, it is interesting to observe
SUSY loop effects on the mass-squared terms (see
115005
[20,21]). Scale dependence of these couplings in the non-
holomorphic case is given in Fig. 5.

B. Charginos and Neutralinos

The last step is to compare the mass eigenvalues of
neutralinos and charginos. Neutralino values can be read
from the following matrix, which resembles the mixing of
Higgsinos and neutral gauginos
M1 0 �MZ cos� sin%W MZ sin� sin%W
0 M2 MZ cos� cos%W �MZ sin� cos%W

�MZ cos� sin%W MZ cos� cos%W 0 ��0

MZ sin� sin%W �MZ sin� cos%W ��0 0

0
BBB@

1
CCCA: (23)
Similarly charginos are mixtures of charged Higgsinos and
charged gauginos with the mass matrix

M2

���
2

p
MW sin����

2
p

MW sin� �0

 !
: (24)

Since we assume R-parity conservation LSP is the lightest
neutralino. Explicit form of matrix elements can be found
in Appendices for low and high values of tan�.
C. Higgs boson mass and LEP bounds

In this section we will compute the Higgs boson mass in
NHSSM. The main impact of the nonholomorphic soft
terms on the Higgs boson masses stems from the modifi-
cations in the sfermion mass matrices. Indeed, as one infers
from the forms of the sfermion mass-squared matrices in
Sec. III B, the mixing between the left and right-handed
sfermions are described by the holomorphic triscalar cou-
pling At and the nonholomorphic contribution A0

f. The left-
right mixing thus changes from flavor to flavor in contrast
-7
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to MSSM where A0
f is replaced by flavor-insensitive quan-

tity � parameter.
For a proper understanding of the Higgs sector it is

necessary to implement the loop corrections as otherwise
the tree-level masses turn out to be too low to saturate the
experimental bounds. The radiative corrections to Higgs
boson masses and couplings have already been computed
in [18,19] including the CP-violating effects. Concerning
the neutral Higgs sector, it is useful to use the parametri-
zation

H0
d �

1���
2

p �'1 � i’1�; H0
u �

1���
2

p �'2 � i’2�; (25)

where '1;2 and ’1;2 are real fields. The Higgs potential,
including the Coleman-Weinberg contribution [22], reads
as

VHiggs �
1

2
m2
Hd
jH0

dj
2 �

1

2
m2
Hu
jH0

uj
2

� �m2
3H

0
uH

0
d � c:c:� �

g2 � g02

8
�jH0

dj
2 � jH0

uj
2�2

�
1

64
2 Str
�
M4

�
log

M2

Q2
0

�
3

2

��
; (26)

where g and g0 stand for the SU�2� and U�1�Y gauge
couplings, respectively, (g02 � 3

5 g
2
1). Q0 in (26) is the

renormalization scale, and M is the field-dependent
mass matrix of all modes that couple to the Higgs bosons.
The masses of the quarks are to be taken into consideration
of which the most important contributions come from:

m2
b �

1

2
h2b�'

2
1 � ’2

1�; m2
t �

1

2
h2t �'

2
2 � ’2

2�: (27)

Now, using the eigenvalues of the field-dependent squark
mass matrices (18) and (20) in (26) one can systematically
compute the Higgs boson masses at the minimum of the
potential obtained via the conditions

@VHiggs

@'1
� 0;

@VHiggs

@'2
� 0 (28)

with h’1i � h’2i � 0 and

h'1i
2 � h'2i

2 �
M2

Z

ĝ2
’ �246 GeV�2;

h'2i

h'1i
� tan�; (29)
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where ĝ2 � �g2 � g02�=4. The mass matrix of the neutral
Higgs bosons are computed from the matrix of second
derivatives of the potential (26). Notice that after including
the one-loop corrections to the Higgs potential, the Z mass
becomes dependent on the top- and stop quark masses too
[23]. In this case there will be a correction term

M2
Z�tZ�
2

�
m2
Hd
�tZ� � tan2�m2

Hu
�tZ� �#2

Z�t; b�

tan2�� 1
: (30)

where

#2
Z�t� �

3g2m2
t

32
2M2
W

�
�A2

t � A2
t0cot

2��
f�m2

~t1
� � f�m2

~t2
�

m2
~t1
�m2

~t2

� 2m2
t � f�m2

~t1
� � f�m2

~t2
�

�
(31)

and

f�m2� � 2m2

�
log

m2

Q2
0

� 1
�
: (32)

Similarly #2
Z�b� can be found with the t ! b substitution.

This corrections require a large amount of fine tuning if
the mass splitting between the particles and sparticles is
large [8].

The Goldstone boson G0 � ’1 cos�� ’2 sin� is swal-
lowed by the Z boson. We are then left with a squared mass
matrix M2

H for the three states ’ � ’1 sin��
’2 cos�;'1 and '2. If the theory has CP-violating phases
(via the phases of the triscalar couplings and �0) the ’
mixes with '1 and '2. In the CP-conserving limit, how-
ever, ’ decouples from the rest, and assumes the mass-
squared:

M 2
Hjaa � m2

A

�
2m2

3

sin�2��
�

2

sin�2��
�h2t AtAt0F�m2

~t1
; m2

~t2
�

� h2bAbAb0F�m2
~b1
; m2

~b2
��; (33)

where

F�m2
1; m

2
2� �

3

32
2

f�m2
1� � f�m2

2�

m2
2 �m2

1

: (34)

The remaining real scalars '1 and '2 mix with each
other via the mass-sqaured matrix:
M2
Hj'1'1

� M2
Zcos

2��m2
Asin

2��
3m2

t

8
2

�
g�m2

~t1
; m2

~t2
�Rt�h

2
t Rt � cot�Xt� � ĝ2 cot�Rt log

m2
~t2

m2
~t1

�

�
3m2

b

8
2

�
h2b log

m2
~b1
m2

~b2

m4
b

� ĝ2 log
m2

~b1
m2

~b2

Q4
0

� g�m2
~b1
; m2

~b2
�R0

b�h
2
bR

0
b � Xb� � log

m2
~b2

m2
~b1

�Xb � �2h2b � ĝ2�R0
b�

	
; (35)
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M2
Hj'2'2

� M2
Zsin

2��m2
Acos

2��
3m2

t

8
2

�
h2t log

m2
~t1
m2
~t2

m4
t

� ĝ2 log
m2
~t1
m2
~t2

Q4
0

� g�m2
~t1
; m2

~t2
�R0

t�h2t R0
t � Xt�

� log
m2
~t2

m2
~t1

�Xt � �2h2t � ĝ2�R0
t�

	
�
3m2

b

8
2

�
g�m2

~b1
; m2

~b2
�Rb�h2bRb � tan�Xb� � ĝ2 tan�Rb log

m2
~b2

m2
~b1

�
: (36)

where

g�m2
1; m

2
2� � 2�

m2
1 �m2

2

m2
1 �m2

2

log
m2
1

m2
2

; (37)

and

Xt �
5g02 � 3g2

12
�
m2
tL �m2

tR

m2
~t2
�m2

~t1

; Xb �
g02 � 3g2

12
�
m2
tL �m2

bR

m2
~b2
�m2

~b1

; (38)

Rt �
A2
t0 cot�� AtAt0

m2
~t2
�m2

~t1

; R0
t �

A2
t � AtAt0 cot�

m2
~t2
�m2

~t1

(39)

Rb �
A2
b0 tan�� AbAb0

m2
~b2
�m2

~b1

; R0
b �

A2
b � AbAb0 tan�

m2
~b2
�m2

~b1

: (40)
It is known that the two-loop corrections to Higgs boson
mass are reduced at the renormalization scale Q0 � mt
hence our choice hereon.

To give a concrete example of NHSSM benchmark we
now list mass predictions of the model for low tan� with
the input parameters (see Fig. 6); $mt�tZ� � 170; $mb�tZ� �
2:92 and $m��tZ� � 1:777 GeV and take the GUT boundary
values of soft terms as the following set

M � 160; m0 � 683; �0
0 � 400;

A0 � 800; A0
0 � 1000; m30 � 430

(41)

which brings the following predictions
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m bR (t)

m lR (t)

m lL (t)

t ≡ (4π)− 2 ln(Q/ Q0)

FIG. 6. A sample plot of some of the soft terms versus scale in
the NHSSM with the input parameters given in the text.
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m~t1�tZ� � 291; m~t2�tZ� � 626; m~b1
�tZ� � 600;

m~b2
�tZ� � 791; m�1�tZ� � 683; m�2�tZ� � 695;

m10
1;2;3;4

�tZ� � 63; 120; 392; 407;

m1�
1;2
�tZ� � 119; 407; mA0�tZ� � 289;

mH��tZ� � 300; mH0�tZ� � 291;

mh0�tZ�corrected � 123; (42)

where all masses are given in GeV.
Since NHSSM covers MSSM any prediction of the

classical MSSM results can be reproduced in nonholomor-
phic case with the appropriate boundaries. But the exten-
sion enriches us with more opportunities. What it is
important here is the degree of freedom offered by
NHSSM. As it was stressed in [10] for m0 � M it turns
out that j�j< 0:4M in the MSSM whereas in the NHSSM
this constrained is significantly relaxed. Note that in our
example we assumed all soft terms as if they are real and
positive without considering any specific model, whereas
one can study i.e A0 � �M which arises in certain string
inspired models. Under the light of these observations, it
should be stated that, NH extension of the MSSM not only
covers the classical MSSM but also offers novel features
that can ease the shortcomings of the MSSM, which should
be studied in more detail. Actually, in addition to LEP
limits on the SUSY mass spectrum, one should also deal
with the constraints from b ! s� decay (as we do in next
subsection) and the lower limit on the lifetime of the
universe, which requires the dark matter density from the
LSP not to close the universe on itself [24].
-9
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D. b ! s� Decay

Presently, one of the most accurate observables which
can severely constrain the soft masses is the branching
ratio for the rare radiative inclusive B meson decay, B !
Xs�. The main interest in this decay drives from the
genuine perturbative nature of the problem and also from
the striking agreement between the experiment and the SM
prediction. Indeed, the measurements of the branching
ratio at CLEO, ALEPH and BELLE gave the combined
result [25]

BR �B ! Xs�� � �3:11� 0:42� 0:21� 
 10�4 (43)

whose agreement with the next-to-leading order (NLO)
standard model (SM) prediction [26]

BR �B ! Xs��SM � �3:29� 0:33� 
 10�4 (44)

is manifest though the inclusion of the nonperturbative
effects can modify the result slightly [27]. That the experi-
mental result (43) and the SM prediction (44) are in good
agreement shows that the ‘‘new physics’’ should lie well
above the electroweak scale unless certain cancellations
occur.

The branching ratio for B ! Xs� has been computed up
to NLO precision in the MSSM [28]. The W boson and
charged Higgs contributions are of the same sign and thus
the chargino–stop loop is expected to moderate the
branching ratio so as to respect the experimental bounds.
The recent measurements of BR�B ! Xs‘�‘�� [29] imply
that the sign of the total b ! s� amplitude must be same as
in the SM. This eliminates part of the supersymmetric
parameter space in which the total amplitude approxi-
mately equals negative of the SM prediction. In spite of
these, however, the present experimental results do not
exclude stop masses around a few MZ as long as At and
A0
t are of opposite sign [28].
-0.2 -0.15 -0.1 -0.05 0

-400

-200
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FIG. 7. A sample plot of the scale dependence of the trilinear cou
M � 150 GeV and �0 � 1000 GeV, which show a candidate region
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To accommodate differing signs of trilinear couplings in
the NHSSM we present another example using the follow-
ing input parameter

M � 200; m0 � 787; �0
0 � 400;

A0 � 900; A0
0 � �1500; m30 � 414

(45)

which yields the following predictions

m~t1�tZ� � 362; m~t2�tZ� � 728; m~b1
�tZ� � 711;

m~b2
�tZ� � 930; m�1�tZ� � 787; m�2�tZ� � 801;

m10
1;2;3;4

�tZ� � 79; 150; 392; 409;

m1�
1;2
�tZ� � 149; 408; mA0�tZ� � 299;

mH��tZ� � 310; mH0�tZ� � 301;

mh0�tZ�corrected � 120; (46)

here again all masses are given in GeV. If the initial values
of trilinear couplings are assumed vanishing, appropriate
regions of parameter space can be easily recovered as in
Fig. 7.

E. Experimental Clues

In this part, our main objective is to show that as the data
about the properties of SUSY particles accumulates it will
be possible to differentiate between the MSSM and
NHSSM. In this respect there are a number of channels
to look for. Here we assume that evolution of the sparticles
are known precisely at least up to a few TeV, which is of
course a challenging task. With the assumption in mind one
can look for various Higgs branching fractions into fermi-
ons, where MSSM and NHSSM have potential to differ due
to nonholomorphic terms. Another option is electric dipole
moment measurements of fermions which may be sup-
pressed due to the new structures. Since MSSM allows
for several CP violating phases, null experimental EDM
-0.2 -0.15 -0.1 -0.05 0
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-100
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t
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plings for tan� � 5 (left), tan� � 50 (right) with A0 � A0
0 � 0,

where At and A0
t are of opposite sign.
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measurements show that masses of superpartners can not
be around electroweak scale unless there are cancellation
among different contributions or very small CP violating
phases. In the NH case the situation is more complicated
due to new terms which is beyond the scope of this work. It
seems that the easiest way to attack the problem is to
measure the masses of squarks. This can be seen from
Fig. 8 where the evolution of the mtL , mtR and mbR are
given in the mSUGRA framework for the same input
values except different nonholomorphic terms. As it can
be deduced from the figure reaction of the mbR to non-
holomorphic soft terms is very soft, even it can be called
immune to nonholomorphic terms and we observe that the
situation is similar up to a large angles ( tan�� 40). For
higher values of tan� there will again be profound differ-
ences, but the analysis would not be as trustable as in the
case of small angles due to uncertainties.

With the help of RGEs, evolution of sparticles can be
extracted in accordance with the experiments. Meanwhile,
given experimental results in the future, both models can
explain them by taking appropriate values for input pa-
rameters. But the evolution lines (or SUSY masses at
different energy scales) are unique which is surely formi-
dable and demands very precise measurements. In this
sense strict measurements is a must to differentiate be-
tween different SUSY breaking mechanisms. Now assume
that experimental results related with the mass of squarks
are well known, then this information can be used to to
predict say tan� � 5, M � 250, m0 � 100 and A0 �
�100 for GUT boundaries. Here mbR can be used as back-
bone because it is not sensitive to nonholomorphic terms
whereas others have a tendency to largely deviate from the
MSSM predictions as the effects of primed terms emerge.
The proposed scenario is illustrated in Fig. 8 for the
assumed GUT scale values in mSUGRA framework which
can be useful if data and the MSSM predictions are incon-
sistent. As it can be observed from the figure that if the
primed trilinear coupling A0

0 deviates from the MSSM
value (�0 � A0

0 case) then mtL and mtR should be larger
while mbR is unaffected. Indeed mbR occupies a special
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FIG. 8. Some of the squarks versus scale. Here solid line shows M
for the choice A0

0 � 700 (A0
0 � 0) GeV. See text for details.
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place in this analysis. Concrete examples as to the effects
of nonholomorphic terms on the mass eigenstates of
squarks can be read of the mass matrices provided in this
section using the results of the figure. Notice that the most
important difference between the MSSM and the NHSSM
could be observed using the left-right mixing of squarks
which is modified by new nonholomorphic terms, for
fermions, in general, variations of left-right mixings
changes sfermion mass eigenstates, which can be detected
whether they are at the right place preposed by the MSSM
or not in the future thanks to new measurements. Actually,
a very practical way to deal with the experimental issues is
to construct Renormalization Group Invariants that can
help to differentiate whether which mechanism of SUSY
breaking is in charge, which we present in the following
section.

IV. RENORMALIZATION GROUP INVARIANTS IN
THE MSSM AND NHSSM: A COMPARATIVE

ANALYSIS

Renormalization Group Invariants (RGIs), which can be
used to relate measurements at the electroweak scale to
physics at ultra high energies provide important informa-
tion about high scale physics due to the scale invariance of
the quantities under concern [30,31]. Since the coupled
nature of the RGEs disturbs analytical solutions it would be
beneficial to know if one can construct certain invariants
that give relations among the spectrum of supersymmetric
particles. Indeed, RG invariants may provide a direct,
accurate way of testing the internal consistency of the
model and determine the mechanism which breaks the
supersymmetry. Such quantities prove highly useful not
only for projecting the experimental data to high energies
but also for deriving certain sum rules which enable fast
consistency checks of the model. Assume there is a mea-
surement which tells a specific relation between some of
the soft masses, then, it can be easily probed whether this
relation survives at different scales or not, with the help of
scale independent relations, which in turn shows the way
how SUSY is broken.
0.1 -0.05 0 -0.2 -0.15 -0.1 -0.05 0
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SSM prediction, dotted (dashed) line shows NHSSM predictions
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In this part we will discuss RG-invariant observables in
supersymmetry with nonholomorphic soft terms and com-
pare with existing MSSM results with the assumption that
there is no flavor mixing and soft terms obey the universal-
ity condition mentioned previously. Nevertheless, it should
be kept in mind that we study one-loop RGIs which differs
when R parity or higher loop effects are taken into account.

To begin with, note that Lagrangian of the NHSSM (2)
has parameters defined at a specific mass scale Q which
can physically range from the electroweak scale Q � MZ
(the IR end) up to some high energy scale Q � Q0 (the UV
end). For determining the scale dependencies of the pa-
rameters the RGEs are to be solved with proposed bound-
ary conditions either at IR or UV. In what follows we will
write them in terms of the dimensionless variable t �
�4
��2 ln�Q=Q0�, and solve for the parameters in terms
of their UV scale values by taking into account the fact that
the gauge and Yukawa (at a given tan�) couplings are
already known at IR end.

We should deal with the rigid parameters in both of the
models as a first step. The RGEs for gauge and Yukawa
couplings form a coupled set of first order differential
equations and can be found elsewhere (i.e. see [11]).
Now one can solve them at any scale at one-loop order
without resorting to other model parameters. However,
expanding this set of equations by including the RGE of
the �0 parameter one finds that

I1 � �0

�
g92g

256=3
3

h27t h21b h
10
� g

73=33
1

�
1=61

(47)

is a one-loop RG-invariant. For the classical MSSM in-
variant �0 ! � substitution suffices (MSSM was also
mentioned in [30]). Here the powers of the Yukawa and
gauge couplings follow from group-theoretic factors ap-
pearing in their RGEs. This invariant provides an explicit
solution for the �0 parameter

�0�t� � �0�0�
�
ht�t�
ht�0�

�
27=61

�
hb�t�
hb�0�

�
21=61

�
h��t�
h��0�

�
10=61




�
g3�0�
g3�t�

�
256=183

�
g2�0�
g2�t�

�
9=61

�
g1�t�
g1�0�

�
73=2013

(48)

once the scale dependencies of gauge and Yukawa cou-
plings are known either via direct integration or via ap-
proximate solutions the RGE of the �0 parameter involves
only the Yukawa couplings, g2 and g1 though this explicit
solution bears an explicit dependence on g3. This follows
from the RGEs of the Yukawa couplings. One of the most
interesting sides of this invariant is that weights of all
gauge and Yukawa couplings is made obvious. With this
equation one can determine the amount of fine tuning to
satisfy Z mass boundary (see Ref. [18] for a detailed
discussion on this issue). Another by-product of the invari-
115005
ant I1 is that the phase of the � parameter is an RG
invariant. Since the contribution of higher order loop ef-
fects affect invariance relation of (47) �2� 3%; an effect
likely to get embodied in the experimental errors encour-
ages us to work at one-loop order. On the other hand, once
the flavor mixings in Yukawa matrices are switched on
there is no obvious invariant like (47) even at one-loop
order.

We continue our analysis with the construction of the
RG invariants of the soft parameters of the theory. Of this
sector, a well-known RG invariant is the ratio of the
gaugino masses to fine structure constants

I2 �
Ma

g2a
(49)

with one-loop accuracy. This very invariant guarantees that

Ma�t� � Ma�0�
�
ga�t�
ga�0�

�
2

(50)

so that knowing two of the gaugino masses at Q � MZ
suffices to know the third—an important aspect to check
directly the minimality of the gauge structure using the
experimental data. Related with this invariant it is useful to
state the well-known mass ratios M3�tZ�=M2�tZ� � 3:46
and M2�tZ�=M1�tZ� � 1:99 at one-loop order. The invari-
ant (49) pertains solely to the gauge sector of the theory; it
is completely immune to nongauge parameters. At two
loops I2 is no longer an invariant; it is determined by a
linear combination of gaugino masses and trilinear cou-
plings. Combining (48) and (50) one concludes that the
chargino and neutralino sectors of the theory are connected
to the UV scale via the gauge and Yukawa couplings alone.
Equation (50) suggests that M3�tZ�=M3�0� is much larger
M1;2�tZ�=M1;2�0� due to asymptotic freedom, and these
coefficients stand still whatever happens in the sfermion
and Higgs sectors of the theory.

A by-product of the invariant (49) is that the phases of
the gaugino masses are RG invariants (like that of the �
parameter). However, this is correct only at one-loop level;
at two loops the phases of the trilinear couplings disturb the
relation between IR and UV phases of the gaugino masses.

Another invariant of mass dim-1 is related with the B
parameter for which we obtain:

I3 � B�
27

61
At �

21

61
Ab �

10

61
A� �

256

183
M3 �

9

61
M2

�
73

2013
M1 � c1A

0
t � c2A

0
b � c3A

0
�

� �c1 � c2 � c3��0; (51)

with arbitrary coefficients ci such that in the limit
A0
t;b;�; �

0 ! � it reproduces the well-known MSSM
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invariant which can be expressed in terms of other parameters

B�t� � B�0� �
27

61
�At�t� � At�0�� �

21

61
�Ab�t� � Ab�0�� �

10

61
�A��t� � A��0�� �

256

183
M3�0�

�
g3�t�2

g3�0�
2 � 1

�

�
9

61
M2�0�

�
g2�t�2

g2�0�
2 � 1

�
�

73

2013
M1�0�

�
g1�t�2

g1�0�
2 � 1

�
: (52)

Concerning mass dimension-2 terms we obtain a general invariant relation in the NHSSM by brute force as follows

I4 �
�
c1
6
�
9c2
16

�
c3
2
�
c4
2

�
m2
Hu
�t� �

�
�c1
6

�
3c2
16

�
c3
2
�
c4
2

�
m2
Hd
�t� �

�
c1
2
�
9c2
16

�
c3
2
�
3c4
2

�
m2
tL�t�

�

�
�c1
2

�
9c2
16

�
c3
2
�
3c4
2

�
m2
tR�t� �

�
c1
6
�
3c2
16

�
c3
2
�
3c4
2

�
m2
lL
�t� � c3m

2
bR
�t� � c4m

2
lR
�t� �

�
c1
33

�
c2
44

�
M2

1�t�

� c1M2
2�t� � c2M2

3�t� � c5A02
t �t� � c6A02

b �t� � c7A02
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where ci are arbitrary constants. To visualize our results lets set all coefficient to zero but c5;6;7 we then obtain

c5A
02
t �t� � c6A

02
b �t� � c7A

02
� �t� � �c5 � c6 � c7��

02�t�; (54)

which is obviously invariant in the limit A0
t;b;�; �

0 ! �. Note that using this limiting case one can obtain another invariant,
when supplemented with m2

Hu;d
�t� ! m2

Hu;d
�t� ��2�t� brings the most general form of MSSM invariant mass of dim-2. In

the cases when we relax these substitutions we obtain more general structures. Now we vary the coefficients of various soft
masses for constructing invariants in terms of Mi and � parameters. Using this freedom, when we set c1 � �3; c4 � 1 and
all other coefficients to zero, we get

I5 � �2m2
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2 �

1

11
jM1�t�j

2 (55)

and similarly various patterns of the coefficients give rise to
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(56)
which should be compared with the results of (see [31]).
Clearly, one can construct new invariants by combining the
ones presented here or by varying the coefficients ex-
pressed as ci. Although the results presented here and the
results of [31] coincide a term is observed to be missing in
some of the invariant equations. This stems from the
definitions and frameworks i.e. we work within minimal
supergravity (with nonholomorphic soft terms). Here we
confirm the results of [30,31] in certain limits and we also
generate new invariants.

The general form (53) and the invariants that follow
could be very useful for sparticle spectroscopy [15] in
that they provide scale-invariant correlations among vari-
ous sparticle masses.
115005
All the invariants presented here show nonanomalous
behaviors unless they bear �0 terms. As an example lets
take I9 Fig. 9, which demonstrates the fixed behavior.
Notice that while it is scale-dependent, it is still very useful
since its dependency is very soft. However, notice that they
are obtained without noting flavor mixing and in the
mSUGRA framework. Nevertheless, using them one can
(i) test the internal consistency of the model while fitting to
the experimental data; (ii) rehabilitate poorly known pa-
rameters supplementing the well-measured ones; (iii) de-
termine what kind of supersymmetry breaking mechanism
is realized in Nature; and finally (iv) separately examine
the UV scale configurations of the trilinear couplings as
they do not explicitly contribute to the invariants.
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FIG. 9. Fixed point behavior of the anomal I9 against scale.
Here we assume same weight for all soft terms ( � 40 GeV) and
re-scale the figure (initial value of this invariant is �32 TeV2).
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Consequently, if one single invariant is measured then
all are done, and in case the experimental data prefer a
certain correlation pattern among the invariants then the
corresponding UV scale model is preferred. In this sense,
rendering unnecessary the RG running of individual spar-
ticle masses up to the messenger scale, the invariants speed
up the determination of what kind of supersymmetry
breaking mechanism is realized in Nature.

V. CONCLUSION

It is important to explore the features of MSSM and its
extensions as general as possible. This will be clear as
experimental data accumulates about the masses of all
predicted particles, and for the time being it should be
calculated at low energies using the RGEs. For that aim
NHSSM offers novel opportunities which should be
studied in more detail. Compared with its enrichments,
there are not enough papers in the literature about the
phenomenological consequences of the NHSSM. So we
try to cover this issue from many sides. Because we do not
know the mechanism of supersymmetry breaking, exten-
sions of the MSSM should be taken seriously to ease the
shortcomings of the MSSM. In this paper we explored the
main features of NHSSM with minimal particle content
and observe that, in addition to mimic the reactions of the
MSSM (like gauginos or Yukawa couplings), NHSSM
offers interesting opportunities. Even, under certain as-
sumptions, it is possible to completely get rid of famous
� problem in the NHSSM, and this corresponds to two
special turning points in low and high tan� regimes, which
is not possible in classical MSSM. The price that must be
paid is, facing additional primed-trilinear coupling and fine
tuning of parameters for GUT boundaries.

One of the main results of this work is to present semi-
analytic solutions of RGEs of NHSSM which enables one
to study the phenomenology in detail. Using the solutions
presented here one can investigate the reaction of the
115005
NHSSM deeper. Notice that the solutions presented in
the Appendices have nonzero phases which should be
used to go deeper in the phenomenology.

Another result is to present a general form of RGIs
which can be used to derive new relations in addition to
those existing in the literature. We observed that by using
existing RGEs one can construct RGIs with a simple com-
puter code which indeed offers a very practical way of
handling the equations. These invariants turn out to be
highly useful in making otherwise indirect relations among
the parameters manifest. Moreover, they serve as efficient
tools for performing fast consistency checks for deriving
poorly known parameters from known ones in course of
fitting the model to experimental data, and for probing the
mechanism that breaks the supersymmetry.
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APPENDIX A: EXPLICIT FORM OF RGES OF THE
NHSSM

For the NHSSM one-loop renormalization group equa-
tions can be found in [10] we also present here for the sake
of completeness.
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here b1;2;3 � �335 ; 1;�3�, g02 � 3
5g

2
1, CH � 3
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2
2 �
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2
1,

MGUT � 1:4
 1016 GeV and MZ � Q � MGUT . By as-
suming that the SUSY is broken with nonstandard soft
terms; we obtained semianalytic solutions for all soft terms
through the one-loop RGEs given above and express our
results at the electro-weak scale in terms of GUT scale
parameters. Our results are presented for moderate
( tan� � 5) and large ( tan� � 50) choices.

APPENDIX B: SOLUTIONS OF MASS-SQUARED
AND TRILINEAR TERMS IN THE NHSSM

Using low ( tan� � 5) and high ( tan� � 50) values of
tan�, the most general form of the mass-squared and tri-
linear terms can be written in terms of boundary conditions
of gauge coupling unification scale which is roughly
MGUT � 1017 GeV. Notice that our phase convention is
to assign 1; 2; 3 and 4 for M1;M2;M3 and �0; for other
quantities it is obvious and can be inferred from the
multipliers.
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Ab0 cos'�0b � 1:2
 10�7A�00
At0 cos'�0t � 0:00052A�00

A�0 cos'�0�

� 0:000054A�00
M10 cos'�01 � 0:00015A�00

M20 cos'�02 � 2:4
 10�6A�00
M30 cos'�03 � 0:00017At00

Ab0 cos't0b

� 0:27At00
At0 cos't0t � 1:9
 10�7At00

A�0 cos't0� � 0:015At00
M10 cos't01 � 0:092At00

M20 cos't02

� 0:39At00
M30 cos't03 � 0:051M2

10 � 0:51M2
20 � 0:96m2

30 � 0:00044�0
0Ab0 cos'4b � 0:098�0

0At0 cos'4t

� 0:00024�0
0A�0 cos'4� � 0:0079�0

0M10 cos'41 � 0:052�0
0M20 cos'42 � 0:26�0

0M30 cos'43; (B8)

2. High tan� regime

m2
Hu
�tZ� � 0:014A2

b0
� 0:0012Ab0A�0 cos'b� � 0:0017Ab0M10 cos'b1 � 0:014Ab0M20 cos'b2 � 0:065Ab0M30 cos'b3

� 0:18A2
b00
� 0:044Ab00

A�00
cos'b0�0 � 0:035Ab00

�0
0 cos'b04 � 0:083A2

t0 � 0:01At0Ab0 cos'tb

� 0:00053At0A�0 cos't� � 0:01At0M10 cos't1 � 0:06At0M20 cos't2 � 0:27At0M30 cos't3 � 0:0011A2
�0

� 0:00028A�0M10 cos'�1 � 0:0014A�0M20 cos'�2 � 0:0049A�0M30 cos'�3 � 0:056A2
�00

� 0:031A�00
�0
0 cos'�0;4 � 0:096A2

t00
� 0:032At00

Ab00
cos't0b0 � 0:0049At00

A�00
cos't0�0 � 0:03At00

�0
0 cos't04

� 0:0013M2
10 � 0:005M10M20 cos'12 � 0:025M10M30 cos'13 � 0:2M2

20 � 0:17M20M30 cos'23 � 2:6M2
30

� 0:029m2
bR0

� 0:028m2
Hd0

� 0:6m2
Hu0

� 0:0016m2
lL0

� 0:0016m2
lR0

� 0:37m2
tL0

� 0:4m2
tR0

� 0:0083�02
0 ;

(B9)
m2
Hd
�tZ� � �0:11A2

b0
� 0:033Ab0A�0 cos'b� � 0:0025Ab0M10 cos'b1 � 0:069Ab0M20 cos'b2 � 0:36Ab0M30 cos'b3

� 0:051A2
b00
� 0:0074Ab00

A�00
cos'b0�0 � 0:00043Ab00

�0
0 cos'b04 � 0:009A2

t0 � 0:021At0Ab0 cos'tb

� 0:0032At0A�0 cos't� � 0:0013At0M10 cos't1 � 0:014At0M20 cos't2 � 0:069At0M30 cos't3

� 0:046A2
�0 � 0:0096A�0M10 cos'�1 � 0:018A�0M20 cos'�2 � 0:053A�0M30 cos'�3 � 0:011A2

�00

� 0:0045A�00
�0
0 cos'�04 � 0:24A2

t00
� 0:025At00

Ab00
cos't0b0 � 0:001At00

A�00
cos't0�0 � 0:11At00

�0
0 cos't04

� 0:011M2
10 � 0:005M10M20 cos'12 � 0:0055M10M30 cos'13 � 0:22M2

20 � 0:16M20M30 cos'23 � 2:1M2
30

� 0:31m2
bR0

� 0:61m2
Hd0

� 0:03m2
Hu0

� 0:077m2
lL0

� 0:077m2
lR0

� 0:28m2
tL0

� 0:03m2
tR0

� 0:13�02
0 ; (B10)
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m2
tL�tZ� � �0:036A2

b0
� 0:004Ab0A�0 cos'b� � 0:0013Ab0M10 cos'b1 � 0:022Ab0M20 cos'b2 � 0:1Ab0M30 cos'b3

� 0:041A2
b00
� 0:0048Ab00

A�00
cos'b0�0 � 0:015Ab00

�0
0 cos'b04 � 0:024A2

t0 � 0:011At0Ab0 cos'tb

� 0:00083At0A�0 cos't� � 0:0028At0M10 cos't1 � 0:015At0M20 cos't2 � 0:067At0M30 cos't3 � 0:0046A2
�0

� 0:00095A�0M10 cos'�1 � 0:0042A�0M20 cos'�2 � 0:011A�0M30 cos'�3 � 0:0065A2
�00

� 0:0046A�00
�0
0 cos'�04 � 0:052A2

t00
� 0:019At00

Ab00
cos't0b0 � 0:0014At00

A�00
cos't0�0 � 0:029At00

�0
0 cos't04

� 0:011M2
10 � 0:0019M10M20 cos'12 � 0:011M10M30 cos'13 � 0:32M2

20 � 0:11M20M30 cos'23 � 4:7M2
30

� 0:098m2
bR0

� 0:091m2
Hd0

� 0:12m2
Hu0

� 0:0072m2
lL0

� 0:0072m2
lR0

� 0:78m2
tL0

� 0:12m2
tR0

� 0:35�02
0 ;

(B11)

m2
tR�tZ� � 0:0094A2

b0
� 0:00082Ab0A�0 cos'b� � 0:0011Ab0M10 cos'b1 � 0:0095Ab0M20 cos'b2

� 0:043Ab0M30 cos'b3 � 0:064A2
b00
� 0:01Ab00

A�00
cos'b0�0 � 0:0051Ab00

�0
0 cos'b04 � 0:055A2

t0

� 0:0067At0Ab0 cos'tb � 0:00035At0A�0 cos't� � 0:0066At0M10 cos't1 � 0:04At0M20 cos't2

� 0:18At0M30 cos't3 � 0:00076A2
�0 � 0:00019A�0M10 cos'�1 � 0:00094A�0M20 cos'�2

� 0:0033A�0M30 cos'�3 � 0:017A2
�00
� 0:0073A�00

�0
0 cos'�04 � 0:17A2

t00
� 0:013At00

Ab00
cos't0b0

� 0:00024At00
A�00

cos't0�0 � 0:078At00
�0
0 cos't04 � 0:043M2

10 � 0:0033M10M20 cos'12

� 0:017M10M30 cos'13 � 0:19M2
20 � 0:11M20M30 cos'23 � 4:6M2

30 � 0:02m2
bR0

� 0:018m2
Hd0

� 0:27m2
Hu0

� 0:0011m2
lL0

� 0:0011m2
lR0

� 0:25m2
tL0

� 0:73m2
tR0

� 0:43�02
0 ; (B12)

m2
bR
�tZ� � �0:081A2

b0
� 0:0089Ab0A�0 cos'b� � 0:0038Ab0M10 cos'b1 � 0:053Ab0M20 cos'b2 � 0:25Ab0M30 cos'b3

� 0:15A2
b00
� 0:02Ab00

A�00
cos'b0�0 � 0:036Ab00

�0
0 cos'b04 � 0:0064A2

t0 � 0:015At0Ab0 cos'tb

� 0:0013At0A�0 cos't� � 0:0011At0M10 cos't1 � 0:01At0M20 cos't2 � 0:047At0M30 cos't3 � 0:01A2
�0

� 0:0021A�0M10 cos'�1 � 0:0093A�0M20 cos'�2 � 0:025A�0M30 cos'�3 � 0:0037A2
�00

� 0:0019A�00
�0
0 cos'�04 � 0:066A2

t00
� 0:025At00

Ab00
cos't0b0 � 0:0026At00

A�00
cos't0�0 � 0:02At00

�0
0 cos't04

� 0:01M2
10 � 0:00056M10M20 cos'12 � 0:0055M10M30 cos'13 � 0:14M2

20 � 0:11M20M30 cos'23

� 4:9M2
30 � 0:78m2

bR0
� 0:2m2

Hd0
� 0:021m2

Hu0
� 0:015m2

lL0
� 0:015m2

lR0
� 0:2m2

tL0
� 0:021m2

tR0
� 0:28�02

0 ;

(B13)

m2
lL
�tZ� � 0:007A2

b0
� 0:02Ab0A�0 cos'b� � 0:0032Ab0M10 cos'b1 � 0:011Ab0M20 cos'b2 � 0:0082Ab0M30 cos'b3

� 0:0049A2
b00
� 0:023Ab00

A�00
cos'b0�0 � 0:01Ab00

�0
0 cos'b04 � 0:0005A2

t0 � 0:00072At0Ab0 cos'tb

� 0:0013At0A�0 cos't� � 0:00027At0M10 cos't1 � 0:0011At0M20 cos't2 � 0:0015At0M30 cos't3 � 0:062A2
�0

� 0:013A�0M10 cos'�1 � 0:032A�0M20 cos'�2 � 0:015A�0M30 cos'�3 � 0:064A2
�00
� 0:04A�00

�0
0 cos'�04

� 0:018A2
t00
� 0:00067At00

Ab00
cos't0b0 � 0:0016At00

A�00
cos't0�0 � 0:0065At00

�0
0 cos't04 � 0:021M2

10

� 0:0042M10M20 cos'12 � 0:0028M10M30 cos'13 � 0:43M2
20 � 0:011M20M30 cos'23 � 0:043M2

30

� 0:017m2
bR0

� 0:084m2
Hd0

� 0:0011m2
Hu0

� 0:9m2
lL0

� 0:1m2
lR0

� 0:016m2
tL0

� 0:0011m2
tR0

� 0:14�02
0 ; (B14)
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m2
lR
�tZ� � 0:014A2

b0
� 0:039Ab0A�0 cos'b� � 0:0063Ab0M10 cos'b1 � 0:023Ab0M20 cos'b2 � 0:016Ab0M30 cos'b3

� 0:0097A2
b00
� 0:045Ab00

A�00
cos'b0�0 � 0:021Ab00

�0
0 cos'b04 � 0:001A2

t0 � 0:0014At0Ab0 cos'tb

� 0:0025At0A�0 cos't� � 0:00053At0M10 cos't1 � 0:0022At0M20 cos't2 � 0:0029At0M30 cos't3 � 0:12A2
�0

� 0:025A�0M10 cos'�1 � 0:064A�0M20 cos'�2 � 0:03A�0M30 cos'�3 � 0:13A2
�00
� 0:081A�00

�0
0 cos'�04

� 0:035A2
t00
� 0:0013At00

Ab00
cos't0b0 � 0:0032At00

A�00
cos't0�0 � 0:013At00

�0
0 cos't04 � 0:12M2

10

� 0:0083M10M20 cos'12 � 0:0056M10M30 cos'13 � 0:11M2
20 � 0:023M20M30 cos'23 � 0:08M2

30

� 0:034m2
bR0

� 0:17m2
Hd0

� 0:0022m2
Hu0

� 0:2m2
lL0

� 0:8m2
lR0

� 0:031m2
tL0

� 0:0022m2
tR0

� 0:27�02
0 ; (B15)

m2
3�tZ� � 0:0052Ab00

At0 cos'b0t � 0:024Ab00
A�0 cos'b0� � 0:0035Ab00

M10 cos'b01 � 0:062Ab00
M20 cos'b02

� 0:31Ab00
M30 cos'b03 � 0:022A�00

Ab0 cos'�0b � 0:0016A�00
At0 cos'�0t � 0:062A�00

A�0 cos'�0�

� 0:0058A�00
M10 cos'�01 � 0:0098A�00

M20 cos'�02 � 0:037A�00
M30 cos'�03 � 0:0057At00

Ab0 cos't0b

� 0:21At00
At0 cos't0t � 0:0019At00

A�0 cos't0� � 0:012At00
M10 cos't01 � 0:078At00

M20 cos't02

� 0:35At00
M30 cos't03 � 0:036M2

10 � 0:36M2
20 � 0:68m2

30 � 0:015�0
0Ab0 cos'4b � 0:042�0

0At0 cos'4t

� 0:017�0
0A�0 cos'4� � 0:0065�0

0M10 cos'41 � 0:037�0
0M20 cos'42 � 0:14�0

0M30 cos'43: (B16)

3. Trilinear terms in the NHSSM

At the low values of tan�:
At�tZ� � �0:00063Ab0 � 0:22At0 � 3:6
 10�7A�0 � 0:029M10 � 0:23M20 � 1:9M30

Ab�tZ� � 0:99Ab0 � 0:13At0 � 0:00079A�0 � 0:033M10 � 0:48M20 � 3M30

A��tZ� � �0:0032Ab0 � 0:00029At0 � A�0 � 0:16M10 � 0:53M20 � 0:005M30

At0 �tZ� � 0:00061Ab00
� 2:8
 10�7A�00

� 0:49At00
� 0:46�0

0

Ab0 �tZ� � 0:63Ab00
� 0:00044A�00

� 0:14At00
� 0:19�0

0

A�0 �tZ� � �0:0018Ab00
� 0:49A�00

� 0:00026At00
� 0:47�0

0:

(B17)

When tan� is high:

At�tZ� � �0:05Ab0 � 0:21At0 � 0:0045A�0 � 0:027M10 � 0:21M20 � 1:8M30

Ab�tZ� � 0:38Ab0 � 0:072At0 � 0:055A�0 � 0:0092M10 � 0:25M20 � 2:1M30

A��tZ� � �0:26Ab0 � 0:027At0 � 0:62A�0 � 0:11M10 � 0:32M20 � 0:44M30

At0 �tZ� � 0:082Ab00
� 0:0065A�00

� 0:42At00
� 0:18�0

0

Ab0 �tZ� � 0:54Ab00
� 0:069A�00

� 0:12At00
� 0:083�0

0

A�0 �tZ� � �0:29Ab00
� 0:6A�00

� 0:036At00
� 0:4�0

0:

(B18)

Note that for the same values of tan� one-loop MSSM results can be obtained from the NHSSM solutions via the
appropriate transformations (see text for details).

APPENDIX C: MSSM AND NHSSM UNDER UNIVERSALITY ASSUMPTION

For the sake of simplicity and completeness, we also provide the solutions using (4), both in the MSSM and NHSSM;
mass2 and trilinear terms are presented in the following subsections.
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M. A. ÇAKIR S. MUTLU, AND L. SOLMAZ PHYSICAL REVIEW D 71, 115005 (2005)
1. MSSM under universal terms

With the help of (4) for low tan� MSSM results are
m2
Hu
�tZ� � �0:087A2

0 � 0:38A0M� 2:8M2 � 0:16m2
0; m2

Hd
�tZ� � �0:0033A2

0 � 0:011A0M� 0:49M2 � 0:99m2
0;

m2
tL�tZ� � �0:03A2

0 � 0:13A0M� 5:7M2 � 0:61m2
0; m2

tR�tZ� � �0:058A2
0 � 0:25A0M� 4:1M2 � 0:22m2

0;

m2
bR
�tZ� � �0:0017A2

0 � 0:0072A0M� 6:3M2 � 0:99m2
0; m2

lL
�tZ� � �0:00078A2

0 � 0:00067A0M� 0:52M2 �m2
0;

m2
lR
�tZ� � �0:0016A2

0 � 0:0013A0M� 0:15M2 �m2
0; m2

3�tZ� � �0:38A0�0 � 0:96m2
30 � 0:26M�0;

At�tZ� � 0:22A0 � 2:2M; Ab�tZ� � 0:074A0 � 0:3M; A��tZ� � 0:052A0 � 0:036M; (C1)

for high tan� MSSM results can be written as

m2
Hu
�tZ� � �0:061A2

0 � 0:27A0M� 2:6M2 � 0:12m2
0; m2

Hd
�tZ� � �0:1A2

0 � 0:32A0M� 2:M2 � 0:066m2
0;

m2
tL�tZ� � �0:041A2

0 � 0:19A0M� 4:9M2 � 0:36m2
0; m2

tR�tZ� � �0:041A2
0 � 0:18A0M� 4:3M2 � 0:25m2

0;

m2
bR
�tZ� � �0:042A2

0 � 0:21A0M� 4:7M2 � 0:46m2
0; m2

lL
�tZ� � �0:037A2

0 � 0:0099A0M� 0:51M2 � 0:75m2
0;

m2
lR
�tZ� � �0:075A2

0 � 0:02A0M� 0:12M2 � 0:49m2
0; m2

3�tZ� � �0:5A0�0 � 0:68m2
30 � 0:59M�0;

At�tZ� � 0:16A0 � 2M; Ab�tZ� � 0:21A0 � 2M; A��tZ� � 0:2A0 � 0:0041M: (C2)

2. NHSSM under universal terms

with the help of (4) again for low tan� mass2 terms:

m2
Hu
�tZ� � �0:087A2

0 � 0:10A02
0 � 0:16m2

0 � 2:84M2 � 0:067A0
0�

0
0 � 0:14�02

0 � 0:38A0M;

m2
Hd
�tZ� � �0:0033A2

0 � 0:37A02
0 � 0:99m2

0 � 0:49M2 � 0:31A0
0�

0
0 � 0:6�02

0 � 0:011A0M;

m2
tL�tZ� � �0:03A2

0 � 0:089A02
0 � 0:61m2

0 � 5:7M2 � 0:08A0
0�

0
0 � 0:3�02

0 � 0:13A0M;

m2
tR�tZ� � �0:058A2

0 � 0:18A02
0 � 0:22m2

0 � 4:1M2 � 0:16A0
0�

0
0 � 0:6�02

0 � 0:25A0M;

m2
bR
�tZ� � �0:0017A2

0 � 0:00079A02
0 � 0:99m2

0 � 6:3M2 � 0:00015A0
0�

0
0 � 0:0029�02

0 � 0:0072A0M;

m2
lL
�tZ� � �0:00078A2

0 � 0:00023A02
0 �m2

0 � 0:52M2 � 0:00022A0
0�

0
0 � 0:0012�02

0 � 0:00067A0M;

m2
lR
�tZ� � �0:0016A2

0 � 0:00045A02
0 �m2

0 � 0:15M2 � 0:00044A0
0�

0
0 � 0:0025�02

0 � 0:0013A0M;

m2
3�tZ� � �0:27A0A

0
0 � 0:56M2 � 0:96m2

30 � 0:099A0�
0
0 � 0:5A0

0M� 0:32�0
0M; At�tZ� � 0:22A0 � 2:2M;

Ab�tZ� � 0:86A0 � 3:6M; A��tZ� � 0:99A0 � 0:68M; At0 �tZ� � 0:49A0
0 � 0:46�0

0;

Ab0 �tZ� � 0:77A0
0 � 0:19�0

0; A�0 �tZ� � 0:49A0
0 � 0:47�0

0: (C3)

For high tan�:

m2
Hu
�tZ� � �0:061A2

0 � 0:12A02
0 � 0:12m2

0 � 2:6M2 � 0:036A0
0�

0
0 � 0:0083�02

0 � 0:27A0M;

m2
Hd
�tZ� � �0:1A2

0 � 0:21A02
0 � 0:066m2

0 � 2:M2 � 0:11A0
0�

0
0 � 0:13�02

0 � 0:32A0M;

m2
tL�tZ� � �0:041A2

0 � 0:1A02
0 � 0:36m2

0 � 4:9M2 � 0:04A0
0�

0
0 � 0:35�02

0 � 0:19A0M;

m2
tR�tZ� � �0:041A2

0 � 0:11A02
0 � 0:25m2

0 � 4:3M2 � 0:065A0
0�

0
0 � 0:43�02

0 � 0:18A0M;

m2
bR
�tZ� � �0:042A2

0 � 0:086A02
0 � 0:46m2

0 � 4:7M2 � 0:014A0
0�

0
0 � 0:28�02

0 � 0:21A0M;

m2
lL
�tZ� � �0:037A2

0 � 0:027A02
0 � 0:75m2

0 � 0:51M2 � 0:023A0
0�

0
0 � 0:14�02

0 � 0:0099A0M;

m2
lR
�tZ� � �0:075A2

0 � 0:054A02
0 � 0:49m2

0 � 0:11M2 � 0:047A0
0�

0
0 � 0:27�02

0 � 0:02A0M;

m2
3�tZ� � �0:23A0A0

0 � 0:4M2 � 0:68m2
30 � 0:074A0�0

0 � 0:8A0
0M� 0:19�0

0M; At�tZ� � 0:16A0 � 2:1M;

Ab�tZ� � 0:25A0 � 2:3MA��tZ� � 0:39A0 � 0:0081M; At0 �tZ� � 0:5A0
0 � 0:18�0

0;

Ab0 �tZ� � 0:6A0
0 � 0:083�0

0; A�0 �tZ� � 0:28A0
0 � 0:4�0

0: (C4)
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