Anne Frary • Yimin Xu • Jiping Liu • Sharon Mitchell Eloisa Tedeschi - Steven Tanksley

Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments

Received: 2 February 2005 / Accepted: 23 March 2005 / Published online: 31 May 2005 © Springer-Verlag 2005

Abstract

Tomato and potato expressed sequence tag (EST) sequences contained in the solanaceae genomics network (SGN) database were screened for simple sequence repeat (SSR) motifs. A total of 609 SSRs were identified and assayed on Solanum lycopersicum LA925 (formerly Lycopersicon esculentum) and S. pennellii LA716 (formerly L. pennellii). The SSRs that did not amplify, gave multiple band products, or did not exhibit a polymorphism that could be readily detected on standard agarose gels in either of these species were eliminated. A set of 76 SSRs meeting these criteria was then placed on the S. lycopersicum $($ LA925 $) \times$ S. pennellii (LA716) high-density map. A set of 76 selected cleaved amplified polymorphism (CAP) markers was also developed and mapped onto the same population. These 152 PCR-based anchor markers are uniformly distributed and encompass 95% of the genome with an average spacing of 10.0 cM . These PCRbased markers were further used to characterize S. pennellii introgression lines (Eshed and Zamir, Genetics 141:1147-1162, 1995) and should prove helpful in utilizing these stocks for high-resolution mapping experi-

[^0]ments. The majority of these anchor markers also exhibit polymorphism between S. lycopersicum and two wild species commonly used as parents for mapping experiments, S. pimpinellifolium (formerly L. pimpinellifolium) and S. habrochaites (formerly L. hirsutum), indicating that they will be useful for mapping in other interspecific populations. Sixty of the mapped SSRs plus another 49 microsatellites were tested for polymorphism in seven tomato cultivars, four S. lycopersicum var. cerasiforme accessions and eight accessions of five different wild tomato species. Polymorphism information content values were highest among the wild accessions, with as many as 13 alleles detected per locus over all accessions. Most of the SSRs (90%) had accession-specific alleles, with the most unique alleles and heterozygotes usually found in accessions of selfincompatible species. The markers should be a useful resource for qualitative and quantitative trait mapping, marker-assisted selection, germplasm identification, and genetic diversity studies in tomato. The genetic map and marker information can be found on SGN (http:// www.sgn.cornell.edu).

Introduction

In addition to its worldwide agricultural and economic importance as a crop, tomato (Solanum lycopersicum, formerly Lycopersicon esculentum) is a preeminent model system for genetic studies in plants. Genetic mapping of morphological traits began during the first decades of the last century (Jones 1917) and, by the 1990s, tomato was one of the first plants for which a high-density DNA-based molecular map was available (Bernatzky and Tanksley 1986; Tanksley et al. 1992). This map, consisting primarily of restriction fragment length polymorphisms (RFLPs), facilitated many other "firsts" in the species. Extensive mapping of qualitative traits such as various disease resistances (e.g., Young et al. 1988; Martin et al. 1991) allowed tomato breeders
to be among the first to use powerful marker-assisted selection (MAS) techniques to develop improved plant cultivars. In addition, tomato was the first species in which quantitative trait loci (QTLs) mapping for a complete genome was conducted in a single segregating population (Paterson et al. 1988). Qualitative and quantitative trait mapping was further simplified by the development of a set of genetically fixed, molecularly characterized, overlapping introgression lines (ILs; Eshed and Zamir 1995) that are used as a permanent resource to identify and fine-map genes more rapidly and at less expense than transient populations. Moreover, the first plant disease resistance gene to be cloned by a map-based approach, Pto (Martin et al. 1993), as well as the first plant QTL, fw2.2 (Frary et al. 2000), were both isolated in tomato.

Since publication of the original high-density RFLP map (Tanksley et al. 1992), additional types of molecular markers, including microsatellites (Broun and Tanksley 1996; Grandillo and Tanksley 1996a; Areshchenkova and Ganal 1999, 2002; Suliman-Pollatschek et al. 2002), random amplified polymorphic DNA (RAPDs; Grandillo and Tanksley 1996a), amplified fragment length polymorphisms (AFLPs; Haanstra et al. 1999; Suliman-Pollatschek et al. 2002) and single nucleotide polymorphisms (SNPs; Suliman-Pollatschek et al. 2002) have been utilized in tomato. All of these alternative markers are based on the PCR; as a result, many are considered to be cheaper, faster, less labor intensive, and more widely applicable than RFLPs. However, with the exception of a combined RFLPAFLP map (Haanstra et al. 1999), there has been no PCR-based map that provides complete coverage of the tomato genome. The availability of a map containing highly reproducible, locus-specific, codominant PCRbased markers would facilitate many types of studies in tomato (including gene mapping, QTL analysis, and MAS) particularly in research and breeding programs with limited resources.

The goals of the present study were to develop a set of PCR-based anchor markers for research in tomato genetics and breeding. These markers consist of microsatellite and cleaved amplified polymorphism sequence (CAPs) markers, primarily based on single-copy/coding regions. These markers encompass the entire tomato genome, are placed at regular intervals, and are anchored in the tomato high-density molecular linkage map that currently comprises 1,579 markers (http://www.sgn.cornell.edu). Moreover, a priority was given to markers for which polymorphism could be readily detected on standard agarose gels to facilitate their use in laboratories throughout the world. Microsatellites or simple sequence repeats (SSRs) are short (usually two to four nucleotide), tandemly repeated DNA sequences. Because of their repetitive nature, the length (i.e., the number of repeat units) of SSRs are vulnerable to mutation caused by replication slippage and unequal cross-over during meiosis (Valdes et al. 1993). As a result, SSRs are often highly polymorphic. However, because they represent simple
repeated sequences, SSRs are likely to be located in regions of repetitive DNA, such as centromeres, so that random selection of SSRs from genomic DNA can result in a distorted map in which such markers are clustered around the pericentric heterochromatin (Areshchenkova and Ganal 1999). By screening for SSRs in and around coding regions, it is more likely that a set of markers anchored in the coding (especially euchromatic) portions of the chromosome will be identified and fuller genome coverage will be attained. Full genome coverage of SSRs can be complemented with CAPs assays to allow uniform coverage of the entire coding portion of the genome.

In the SSR technique, primers that are complementary to the conserved regions that flank a microsatellite are used to amplify the repeat. Length polymorphisms are then detected by gel electrophoresis using either standard agarose or sequencing gels (Akkaya et al. 1992). In the CAPs technique, sequence-specific primers are used to amplify a given region of the genome. Amplification products are then cleaved with an appropriate restriction enzyme and separated by electrophoresis to reveal polymorphism among individuals (Konieczny and Ausubel 1993).

The primary disadvantage of both SSRs and CAPs is their dependence on a priori DNA sequence information, however, a considerable amount of sequence information currently exists for tomato and the closely allied species potato. The recent development of an expressed sequence tags (EST) database containing nearly 300,000 tomato and potato sequences (Van der Hoeven et al. 2002; http://www.sgn.cornell.edu) has made it easier to identify and exploit SSRs in the species. In addition, the sequences of most of the tomato RFLP markers, the majority of which correspond to coding regions, are publicly available (http://www.sgn.cornell.edu) and provide an excellent resource for CAPs development. The current high-density molecular map of tomato contains more than 1,500 markers, 576 of which correspond to conserved ortholog set (COS) markers derived from ESTs that are conserved and single or low copy in both the tomato and Arabidopsis genomes as well as a subset of RFLP and other markers from the first high-density map (Tanksley et al. 1992; Fulton et al. 2002; http://www.sgn.cornell.edu). The sequences of these COS markers provide another source for CAPs marker development.

In order to be considered for use on the map, the anchor SSR and CAPs markers had to meet certain criteria: detection of polymorphism between the parents of the high-density mapping and IL populations, S. $l y$ copersicum and S. pennellii; visualization of the polymorphism on standard agarose gels to allow use by as many laboratories as possible; and placement of the markers on the map at intervals of less than 20 cM . Additional SSR markers were genotyped in the mapping population with a sequencer and are also included on the map. Moreover, 109 SSR markers were surveyed for polymorphism on a range of tomato germplasm including seven cultivated lines, four S. lycopersicum
var. cerasiforme lines, and eight wild accessions. This information should be of interest for those wishing to use these SSRs for mapping with other parental lines and for genetic diversity studies.

Materials and methods

Plant material
An F_{2} population of 83 individuals from the cross Solanum lycopersicum $(\mathrm{LA} 925) \times S$. pennellii (LA716) was used for map construction. This population was previously used to construct a map containing more than 1,500 markers derived from genes that are conserved and single or low copy in both tomato and Arabidopsis (Fulton et al. 2002). A subset of markers was also mapped on the S. pennellii ILs (Eshed and Zamir 1995). These lines contain defined introgressions of S. pennellii (LA716) in a S. lycopersicum cv. M82 background. Nineteen tomato lines were used for the polymorphism study, including seven cultivated lines (S. lycopersicum var. esculentum), four accessions of the putative progenitor of cultivated tomato (S. lycopersicum var. cerasiforme), and eight accessions of five other wild species. The tomato lines used in the study are described in Table 1. The SSRs were also tested on potato (Solanum tuberosum B11B), eggplant (S. melongena MM738) and pepper (Capiscum annuum R Naky). Wild tomato accessions were provided by the C.M. Rick Tomato Genetics Resources Center, University of California, Davis, Calif., USA. Other lines were obtained from D. Zamir, Hebrew University, Jerusalem, Israel
(TA210); P\& P Seed Co., Collins, N.Y., USA (TA1486); Clause Seed Co., San Juan Bautista, Calif., USA (TA1487); M. Jahn, Cornell University, N.Y., USA (R Naky); M.-C. Daunay, INRA, Montfavet, France (MM738). The DNA from single plants of each cultivated or wild accession was extracted as described by Fulton et al. (1995).

Identification and amplification of microsatellites

In May 2001, tomato and potato EST sequences contained in the Solanaceae Genomics Network (SGN; http://www.sgn.cornell.edu) were screened for SSR motifs of two to six nucleotides with a total repeat length of at least 18 nucleotides using analytical tools developed by Genomics Edge Technologies (St. Louis, Mo.). In addition to perfect SSRs, the program also identified imperfect and compound repeats. Thus, 609 candidate SSRs were selected for further analysis. Primer pairs for each SSR were designed using the PRIMER3 program (Rozen and Skaletsky 1997). Primer sequences and repeat motifs for SSR markers mapped on agarose gels are listed in Table 2 and are available from SGN (http:// www.sgn.cornell.edu). One previously published tomato microsatellite, SSR638, was also used in the analysis (Areshchenkova and Ganal 1999).

The DNA from TA209 and LA716 was tested for amplification from each primer pair using the MJ Research Research Peltier Thermal Cycler (PTC-225; Waltham, Mass.). Each $25-\mu 1$ reaction mixture contained 30-50 ng of template DNA, 1 pmol of each forward and reverse primer, $1 \times$ PCR buffer $(50 \mathrm{~m} \mathrm{M} \mathrm{KCl}$,

Table 1 Description of plant material used and number of accession-specific alleles identified for each line

Species ${ }^{\text {a }}$	Accession	Name	Type/origin	Mating system ${ }^{\text {b }}$	Number of Unique alleles ${ }^{\text {c }}$
S. lycopersicum var. esculentum	TA209	E6203	Processing inbred	Autogamous SC	2
	TA210		Freshmarket inbred		3
	TA491	Sunpear Yellow Pear M82 Monster (Giant Red) Tomato	Freshmarket variety		2
	TA503		Freshmarket variety		0
	TA1143		Processing variety		1
	TA1486		Freshmarket variety		1
	TA1487		Freshmarket inbred		3
S. lycopersicum var. cerasiforme	LA1226		Morona-Santiago, Chile	Autogamous SC	5
	LA1388		Junin, Peru		8
	LA1455		Nuevo Leon, Mexico		7
	LA1574		Lima, Peru		6
S. pimpinellifolium	LA373		Ancash, Peru	Autogamous SC	25
	LA411		Los Rios, Ecuador		28
	LA1246		Loja, Ecuador		22
	LA1589		La Libertad, Peru		19
S. neorickii	LA2133		Azuay, Ecuador	Autogamous SC	34
S. habrochaites	LA1777		Ancash, Peru	Allogamous SI	54
S. pennellii	LA716		Arequipa, Peru	Facultative SC	61
S. peruvianum	LA1708		Cajamarca, Peru	Allogamous SI	30

[^1]Table 2 Description of the agarose gel-based SSR and CAPs markers on the map (NA not applicable)

Marker ${ }^{\text {a }}$	Chromosome	Repeat type and length	$\begin{aligned} & \text { SGN ID } \\ & \text { no. }{ }^{\text {b }} \end{aligned}$	Forward primer (5'-3')	Reverse primer ($5^{\prime}-3^{\prime}$)	Product size ${ }^{\text {c }}$ (bp)	Polymorphic band sizes ${ }^{\text {c }}$ (in bp)		Amplification$\underset{\mathrm{Ca}^{\mathrm{d}}}{\mathrm{St} / \mathrm{Sm} /}$
							LA716/E6203 (enzyme)	$\begin{aligned} & \text { LA1589/ } \\ & \text { E6203 } \\ & \text { (enzyme) } \end{aligned}$	
SSR478	1	$\begin{aligned} & (\mathrm{GGTG})_{2} \\ & (\mathrm{CT})_{16} \end{aligned}$	SGN-E226034	GCAGCATAT ATCACCTTGGCT	CGTGCTCTC CAATAGTTCACC	450	$450 / 450+400$	NA	ND
TG58	1	NA	NA	TGTGATACGGA ACTTTGAACCTCC	CCTGGATTTG GTCAGCTCCTTAG	900	900/600 (DraI)	NA	NA
TG184*	1	NA	NA	TTGTTGGGAT AACGAGTCCA	ATTTGTCA TGCCCGAGCTTA	1100	500/600 (AluI)	$\begin{gathered} 300 / 330 \\ (S s p \mathrm{I}) \end{gathered}$	NA
SSR192	1	(ATC) ${ }_{6}$	SGN-E288219	ACAACATGG GAAGCACTTGA	ATTAAATT GGGCCATGGTGA	169	169/165	NA	$\mathrm{y} / \mathrm{n} / \mathrm{n}$
SSR51	1	(ACAA) ${ }_{6}$	SGN-E360433	CTACCCTGGTC TTGGTGGAA	AAAGGATGCTC TAGCTTCTCCA	148	148/128	NA	y/y/y
SSR270	1	$\begin{aligned} & (\mathrm{GAA})_{5} \\ & (\mathrm{GGAGAA})_{7} \end{aligned}$	None	AGCTCAAGGC TTCTGTTGGA	AACCACCTCA GGCACTTCAT	244	255/244	NA	$y / y / n$
SSR316	1	$\begin{aligned} & (\mathrm{AG})_{6} \\ & (\mathrm{TTGCAG})_{2} \end{aligned}$	None	CCACCGCAACA AACCTTATT	GGGTGGTGA GAAGGATCTGA	217	234/217	NA	$\mathrm{y} / \mathrm{n} / \mathrm{n}$
SSR135	1	(ATT) ${ }_{6}$	SGN-E210325	TGATCGCTTG TGTCCACCTA	AAAGGAAGTGA TGGAAAGCG	133	128/133	NA	y/y/y
T1409	1	NA	NA	ATGTGATACC TCCGCCGTTA	TTTCTTCCATTTC CCAACCA	500	250/500 (SacI)	NA	NA
$\underline{\text { SSR222 }}$	1	$(\mathrm{TCT})_{7}$	None	TCTCATCTG GTGCTGCTGTT	TTCTTGGAG GACCCAGAAAC	163	175/163	160/163	$\mathrm{y} / \mathrm{n} / \mathrm{n}$
TG83	1	NA	NA	TTATGGCACTC AGGATGGTG	AGGCATGAAA ACCACAAAGG	1500	$\begin{aligned} & 800+700 / 900 \\ & +600(\text { HpaII }) \end{aligned}$	NA	NA
CT267	1	NA	NA	$\begin{aligned} & \text { TGGGTATCCT } \\ & \text { AGAAGGCCAGT } \end{aligned}$	ATGGTAGCCC TTGGTTGGAT	900/800	900/800	NA	NA
SSR150	1	$(\mathrm{CTT})_{7}$	SGN-E338056	ATGCCTCGCT AССТССТСТТ	AATCGTTCG TTCACAAACCC	217	211/217	NA	y/y/y
SSR308	1	(TA) ${ }_{12}$	None	$\begin{aligned} & \text { TTTCCCTGTTT } \\ & \text { CAGCCTTTG } \end{aligned}$	GGCACGAGAAT TTAGCCACT	293	293/300	NA	$y / n / n$
SSR117	1	$(\mathrm{TC})_{11}$	None	AATTCACCTT TCTTCCGTCG	GCCCTCGAA TCTGGTAGCTT	241	249/243	NA	$\mathrm{y} / \mathrm{y} / \mathrm{y}$
SSR156	1	(TCT) ${ }_{7}$	None	CACGCCTATG CACCTTTCTT	CTTCAAGGCT AAACCTCCGA	167	150/167	NA	$\mathrm{y} / \mathrm{y} / \mathrm{n}$
TG27	1	NA	NA	GCCGAGTTCTC САТСТТСТСТ	GCGGTTTTCA ACAACCAAAA	2500/2100	2500/2100	$\begin{gathered} 1300+1100 / \\ 2200(A c c \mathrm{I}) \end{gathered}$	NA
cLEC7P21	2	NA	NA	TGAACAGAAA GCACGAGTGG	GACAGTTCTTC GAAGCGTTTG	350	$\begin{gathered} 300+50 / 350 \\ (\text { HaeIII }) \end{gathered}$	NA	NA
T1616	2	NA	NA	TTGGAAGAAGA GGAGGACGA	CCCAGAAAGATC CAAGTCCA	1500	$\begin{aligned} & 900+600 / 1500 \\ & \text { (HaeIII) } \end{aligned}$	NA	NA
SSR 586	2	$(\mathrm{AAC}) 6$	SGN-E362741	TCCATCTAAG GTCTTTGCCG	ACAAAGGAA GTGGGAGAGCA	120	124/120	NA	$y / y / n$
SSR40	2	$(\mathrm{AC})_{7}(\mathrm{GC})_{7}$	SGN-E282208	TGCAGGTATG TCTCACACCA	TTGCAAGAAC ACCTCCCTTT	146	180/146	NA	y/y/y
SSR66	2	$(\mathrm{ATA}){ }_{8}$	SGN-E235275	TGCAACAACTG GATAGGTCG	TGGATGAAACG GATGTTGAA	185	174/185	183/186	y/y/y

$$
\begin{aligned}
& \mathrm{y} / \mathrm{y} / \mathrm{y} \\
& \mathrm{y} / \mathrm{y} / \mathrm{n} \\
& \mathrm{y} / \mathrm{y} / \mathrm{n} \\
& \mathrm{y} / \mathrm{n} / \mathrm{n} \\
& \mathrm{NA} \\
& \mathrm{y} / \mathrm{y} / \mathrm{y} \\
& \mathrm{y} / \mathrm{y} / \mathrm{n} \\
& \mathrm{NA} \\
& \text { NA } \\
& \mathrm{n} / \mathrm{n} / \mathrm{n} \\
& \mathrm{y} / \mathrm{y} / \mathrm{y} \\
& \mathrm{y} / \mathrm{n} / \mathrm{y} \\
& \text { NA }
\end{aligned}
$$

$$
\begin{array}{ll}
2 & (\mathrm{AT})_{12} \\
2 & (\mathrm{AT})_{20} \\
2 & (\mathrm{ATAAAA})_{2}(\mathrm{TA})_{11} \\
2 & (\mathrm{CAA})_{6} \\
2 & \mathrm{NA} \\
2 & (\mathrm{CGG})_{6} \\
2 & (\mathrm{TTC})_{7} \\
2 & \mathrm{NA} \\
3 & (\mathrm{TA})_{10} \\
3 & (\mathrm{TC})_{6}(\mathrm{TCTG})_{6} \\
3 & (\mathrm{AT})_{11} \\
3 & \mathrm{NA} \\
\hline
\end{array}
$$

Table 2 (Contd.)

Marker ${ }^{\text {a }}$	Chromosome	Repeat type and length	SGN ID$\text { no. }{ }^{\text {b }}$	Forward primer ($5^{\prime}-3^{\prime}$)	Reverse primer ($5^{\prime}-3^{\prime}$)	Product size ${ }^{\mathrm{c}}$ (bp)	Polymorphic band sizes ${ }^{\text {c (in bp) }}$		Amplification$\underset{\mathrm{Ca}^{\mathrm{d}}}{\mathrm{St} / \mathrm{Sm} /}$
							LA716/E6203 (enzyme)	$\begin{aligned} & \text { LA1589/ } \\ & \text { E6203 } \\ & \text { (enzyme) } \end{aligned}$	
T1621	3	NA	NA	GACTGGTGAGG ACGATGATG	CGGCAATC TCTTCGTCAAA	1300	600/550 (HinfI)	$\begin{array}{r} 600 / 550 \\ (\text { HinfI }) \end{array}$	NA
SSR320	3	$(\mathrm{AT})_{12}$	None	ATGAGGCAATC	TTCAGCTGAT	172	179/172	165/173	$\mathrm{y} / \mathrm{n} / \mathrm{n}$
SSR14	3	$(\mathrm{ATA}){ }_{9}$		TTCACCTGG	AGTTCCTGCG	166	158/166	160/166	
			SGN-E307729	TGAAGCAAG	TGGTTGATTT				y/y/y
SSR11	3	$(\mathrm{CAG})_{6}$	SGN-E305953	CCTTCAATTGA	GCATCTGGAAAT	235	228/235	NA	y/y/y
				CCTCCCTCA	TAGAGGCG				
SSR300	3	$(\mathrm{TTC})_{10}$	None	AATGGCAGCT	ACCCGACTTC	650	590/650	NA	$\mathrm{y} / \mathrm{y} / \mathrm{n}$
				ATGATGAGCC	ATTTCACCTG				
SSR27	3	$(\mathrm{TC})_{6}(\mathrm{ATGT})_{2}$	None	CCCAAATCA	TCAGATGCCAC	149	161/149	NA	y/y/y
TG244	3	NA	NA	AGGTTTGTGGT	CACTCTCAG	450	$\begin{aligned} & 250+200 / 325 \\ & +125(\text { EcoRV }) \end{aligned}$	NA	NA
				AAGGCCATTCT	GCCCACCAAAG				
T707	4	NA	NA	TCGTGGATTA	GGTAAGGCTG	458	400/460 (Apol)	NA	NA
				TGGGCTTCTT					
SSR43	4	$(\mathrm{TAC})_{7}$	SGN-E284323	CTCCAAATTGG GCAATAACA	TTAGGAAGTT GCATTAGGCCA	237	228/237	NA	y/y/y
SSR593	4	$(\mathrm{TAC})_{7}$	SGN-E284323	TGGCATGAACA ACAACCAAT	AGGAAGTTG CATTAGGCCAT	295	285/295	$\begin{gathered} 296+160 / 294 \\ +163 \end{gathered}$	$\mathrm{y} / \mathrm{y} / \mathrm{n}$
SSR603									
	4	$(\mathrm{GAA})_{8}$	SGN-E307794	GAAGGGACAATT CACAGAGTTTG	CCTTCAACTT CACCACCACC	251	Null/251	173/251 + 179	ND
	4								
SSR450		$(\mathrm{AAT})_{7}$	SGN-E226350	AATGAAGAACCA TTCCGCAC	ACATGAGCCCA ATGAACCTC	265	255/265	NA	$y / n / n$
SSR 306	4	$(\mathrm{ATT})_{7}$	None	ACATGAGCCCA ATGAACCTC	AACCATTCCG CACGTACATA	258	248/258	NA	$y / n / n$
SSR310	4	$(\mathrm{TGA}){ }_{9}$	None	GCGATGAGG ATGACATTGAG	$\begin{aligned} & \text { TTTACAGGC } \\ & \text { TGTCGCTTCCT } \end{aligned}$	149	139/149	NA	$\mathrm{n} / \mathrm{n} / \mathrm{n}$
SSR638	4	$(\mathrm{GT})_{9}(\mathrm{AT})_{8}(\mathrm{AC})_{13}(\mathrm{GA})_{12}$	None	TGTTGGTTGGAG AAACTCCC	AGGCATTTAAA CCAATAGGTAGC	180	180/240	NA	$y / n / n$
T1405	4	NA	NA	CACCAACAAC TAGCCCTTGA	AAGCAATTC CTCCAGCTTCA	535	$\begin{aligned} & 535 / 375 \\ & +160(A p o \mathrm{I}) \end{aligned}$	NA	NA
cLEC7B23	4	NA	NA	GGAGAACACG GCTACCTCAG	AGCTGGAAA TGAGGTTTTGC	600	600/520 (CfoI)	NA	NA
SSR 146	4	$(\mathrm{AT})_{7}(\mathrm{CAT})_{5}$	SGN-E252704	TATGGCCATG	CGAACGCCA	243	239/243	NA	$y / n / n$
				GCTGAACC	CCACTATACCT				
SSR 188	4	$(\mathrm{AT})_{11}$	None	TGCAGTGAGTC	GGTCTCATTGC	140	148/140	138/140	$\mathrm{y} / \mathrm{n} / \mathrm{n}$
				TCGATTTGC	AGATAGGGC				
cLEX13I3*	5	NA	NA	TGAAGAAGCTA	TCATCCACGATC	800	$450+350 / 600$	400/430 (RsaI)	NA
				GTCATGGCAAC	TCGATTACC		(TaqI)		
SSR13	5	$(\mathrm{AAG})_{6}$	SGN-E307674	GGGTCACATACA	CAAATCGCGAC	102	97/102	NA	y/y/y
				CTCATACTAAGGA	ATGTGTAAGA				
$\underline{\text { SSR115 }}$	5	$(\mathrm{AT})_{16}$	SGN-E331883	CACCCTTTATT	ATTGAGGGTA	211	211/223	197/213	$\mathrm{y} / \mathrm{n} / \mathrm{n}$

$$
\begin{aligned}
& \text { TTCCGACTGGGA } \\
& \text { AAAGAAGA } \\
& \text { GCATATTTACG } \\
& \text { AGCCGCATC } \\
& \text { TTCTCAGTGG } \\
& \text { ATCGTGATGG } \\
& \text { AAAGTGTTGGGG } \\
& \text { TAACGCAC } \\
& \\
& \text { GGAAGAGAAA } \\
& \text { CGCGGACATA } \\
& \text { ACATCCCCAATG } \\
& \text { TTGTTGTG } \\
& \text { CCTTGGAGATAA } \\
& \text { CAACCACAA } \\
& \text { AGCACCTTCT } \\
& \text { GCGTTCATCT } \\
& \text { TCTGTCCACT } \\
& \text { CACATGGATCA } \\
& \text { TGAAGTCGTCT } \\
& \text { CATGGTTCG } \\
& \text { GTTGGTGGATG } \\
& \text { AAATTTGTG } \\
& \text { ATCAGCTCAA } \\
& \text { TGCTGCAAGT } \\
& \text { TATGTCCACGAA } \\
& \text { GTCGGTGA } \\
& \text { GCAACCACATC } \\
& \text { TTCCTCCTC } \\
& \text { CGATGCCTTCA } \\
& \text { TTTGGACTT } \\
& \text { TCCTCGGTAATTG } \\
& \text { ATCCACC } \\
& \text { CAATTCTCAG } \\
& \text { GCATGAAACG } \\
& \text { GGTGCGAAGG } \\
& \text { GATTTACAGA } \\
& \text { GGATCCTAAA } \\
& \text { AGAATGTGCAGT } \\
& \text { GCTCCGTCTGA } \\
& \text { CCTATCTCG } \\
& \text { CTGTTGCGGA } \\
& \text { TGTGATCATT } \\
& \text { AGCTAGTGATG } \\
& \text { ATCCTGGCG } \\
& \text { TACGCGCACG } \\
& \text { TGCATAAATA } \\
& \text { TCCAAGTATC } \\
& \text { AGGCACACCA } \\
& \text { CGGCTTCCACCA } \\
& \text { GTGATATT }
\end{aligned}
$$

$$
\left.\begin{array}{ll}
\begin{array}{l}
2000 / 1300 \\
+700(\text { KpnI) } \\
800 / 700 \text { (HaeIII) }
\end{array} & \text { NA } \\
420 / 300 \\
+120(\text { EcoRI })
\end{array}\right)
$$

Table 2 (Contd.)

Marker ${ }^{\text {a }}$	Chromosome	Repeat type and length	$\underset{\mathrm{n}_{\mathrm{ob}}^{\text {b }}}{\text { SGN ID }}$	Forward primer ($5^{\prime}-3^{\prime}$)	Reverse primer ($5^{\prime}-3^{\prime}$)	Product size ${ }^{\mathrm{c}}$ (bp)	Polymorphic band sizes ${ }^{\text {c }}$ (in bp)		Amplification$\underset{\mathrm{Ca}^{\mathrm{d}}}{\mathrm{St} / \mathrm{Sm} /}$
							LA716/E6203 (enzyme)	LA1589 E6203 (enzyme)	
T1255	7	NA	NA	TTTGCTTTGCT TCTCCTTCA	ATTCAACTCGA GCAACGTCA	400	$\begin{array}{r} 350+220 / 320 \\ +200(\text { AluI) } \end{array}$	NA	NA
CT114	7	NA	NA	ATTGAAGAAT GGCGGTGAAG	ATGCCAACTTCT TGGCAAAC	1125	$\begin{array}{r} 800+325 / 800 \\ +300(\text { Dra }) \end{array}$	NA	NA
SSR344	8	$(\mathrm{AT})_{12}$	None	TGTTGCTCGAA CTCTCCAAA	CATAGGAGAG GTAACCCGCA	275	245/275	NA	$\mathrm{n} / \mathrm{n} / \mathrm{n}$
SSR244	8	(TA) ${ }_{14}$	SGN-E85210	GCGATGGTCTGA GACACTGA	CAGCTGGTGA TCCTCCTCTT	193	Null/193	NA	ND
SSR327	8	$(\mathrm{AAT})_{7}$	None	TCAGGATCAGG AGCAGGAGT	TGGACTTGTTC CATGAACCC	195	180/195	NA	$\mathrm{y} / \mathrm{n} / \mathrm{n}$
TG302	8	NA	NA	CTCTCCGGGTG	TCTTGGGACT	750	$600+150 / 350$	$600+150 / 400$	NA
				GCTATTACA	CCTCCTTTTCT		+250+150 (AluI)	+150 (AluI)	
SSR38	8	$(\mathrm{TCT})_{8}$	SGN-E285849	GTTTCTATAGCTG AAACTCAACCTG	GGGTTCATCAAA TCTACCATCA	237	215/237	NA	$\mathrm{y} / \mathrm{y} / \mathrm{n}$
SSR594	8	$(\mathrm{TCT})_{8}$	SGN-E285849	TTCGTTGAAGAAG	CAAAGAGAAC	293	273/293	288/294	$y / y / n$
				ATGATGGTC	AAGCATCCAAGA				
TG510	8	NA	NA	ATGGTGATGC TCGCTAATCC	CTCTTGCGTGA TTGCAGGTA	1800	$\begin{array}{r} 900+400 / 1100 \\ +380(D p n \mathrm{II}) \end{array}$	$\begin{aligned} & 1,500+1,400+1,100 \\ & +420+200 / 1500 \\ & +1,100+420 \\ & +100(\text { RsaI }) \end{aligned}$	NA
T1359	8	NA	NA	TTTGAGAG GCATGA TGGTCA	TCCCACCGGT TAAACTCATC	850	$515+335 / 400+335$ (AciI)	NA	NA
CT68	8	NA	NA	CAGACGATTG TCCGAGATCA	TGTTGAGCGCA TTTGAAGAG	550	$375+425 / 550$ (ApoI)	NA	NA
TG294	8	NA	NA	ATTGGCTGC AATGATGGATT	CTAAGCAGG ACGGCCATCTA	900/800	900/800 (AluI)	NA	NA
TG254*	9	NA	NA	GACTTCGGGGC AATTATCTG	AAACGAGCACT GCATTCATG	1700	1700/1200 (DraI)	400/430 (EcoRI)	NA
TG18*	9	NA	NA	AAGGGTTGTT GATTCCGTCA	GCACCAGGTT TTCCATCTGT	468	200/468 (RsaI)	270/300 (RsaI)	NA
SSR73	9	$\begin{aligned} & (\mathrm{AG})_{2}(\mathrm{AGA})_{7} \\ & (\mathrm{TAGTGA})_{2} \end{aligned}$	SGN- E344864	TGGGAAGATCC TGATGATGG	TTCCCTTTC CTCTGGACTCA	700	1300/700	NA	$\mathrm{y} / \mathrm{n} / \mathrm{n}$
TG223	9	NA	NA	CAAGAAAATAT TGTGTAGTGT TCTCCA	TCCCCCTCT TCATCAAATTC	700/800	700/800	NA	NA
SSR69	9	$(\mathrm{TAT})_{7}$	SGN-E226973	TTGGCTGGA TTATTCCTGTTG	GCATTTGA TAGAAGG CCAGC	127	Null/127	NA	ND
SSR70	9	$(\mathrm{AT})_{20}$	SGN-E346864	tTTAGGGTGT CTGTGGGTCC	GGAGTGCGCAG AGGATAGAG	120	93/120	NA	y/y/y
SSR237	9	$(\mathrm{AT})_{11}$	None	GTGGTAACGG CAAAGGGACT	CTTATGGCCTT AGCAGCCAG	191	160/191	NA	$\mathrm{y} / \mathrm{n} / \mathrm{n}$
$\underline{\text { SSR19 }}$	9	(AT) ${ }_{16}$	SGN-E304225	CCGTTACCTTGG TCCATCAC	GGGAGATGCC ACATCACATA	186	174/186	178/186	$\mathrm{y} / \mathrm{n} / \mathrm{n}$

Table 2 (Contd.)

Marker ${ }^{\text {a }}$	Chromosome	Repeat type and length	$\begin{aligned} & \text { SGN ID } \\ & \text { no. }{ }^{\text {b }} \end{aligned}$	Forward primer (5'-3')	Reverse primer ($5^{\prime}-3^{\prime}$)	Product size ${ }^{\text {c }}$ (bp)	Polymorphic band sizes ${ }^{\text {c }}$ (in bp)		Amplification$\underset{\mathrm{Ca}^{\mathrm{d}}}{\mathrm{St} / \mathrm{Sm} /}$
							$\begin{aligned} & \text { LA716/E6203 } \\ & \text { (enzyme) } \end{aligned}$	$\begin{aligned} & \text { LA1589/ } \\ & \text { E6203 } \\ & \text { (enzyme) } \end{aligned}$	
TG400*	11	NA	NA	TCCAAATCCAC	AGCATTGCT	404	404/300	220/250 (Bg/II)	NA
				CACCTATCC	CCCTGCTAAAG		+104 (HinfI)		
CLEC24C3	11	NA	NA	AGATCGGCAAA	ACTTGTGGC	1250	1250/950 (EcoRI)	NA	NA
				TGATCCAAG	GAAAAATGAGG				
$\underline{\mathrm{T} 302}$	11	NA	NA	TGGCTCATC	AGTGTACATCC	950/850	950/850	$600+300 / 600$	NA
				CTGA	TTGCCATTGACT			$+200(M s p \mathrm{I})$	
				AGCTGATA GCGC					
CLET24J2	11	NA	NA	$\begin{aligned} & \text { CAACCATCCT } \\ & \text { AGC } \\ & \text { AATGAAATCT } \end{aligned}$	GAGGCATTCA CTCTCTTCGATAC	400	$\begin{aligned} & 400 / 220 \\ & +180(\text { KpnI) } \end{aligned}$	NA	NA
TG393	11	NA	NA	TGGATTTGAT	CCAAGAA	750	325/400	$500+350 / 500$	NA
				TAGCCGAAGG	TCCCAGAAGGAGA		(DpnII)	+400 (DpnII)	
TG180	12	NA	NA	TCTCAGTGGA	TCACAGCAG	1000	1000/900 (DraI)	1000/900 (DraI)	NA
				CTAAGGGGTCA	ACATGTCGGACTGCCAAGGATA				
T659	12	NA	NA	AATGGTCATG GAATGGGAAA		1100	900/1100 (AccI)	NA	NA
					AAGGAGCAG				
TG68	12	NA	NA	TCCACCTAGG	CATGTCAAGG	440	200/440 (DpnII)	200/440 (DpnII)	NA
				ATGAGTTTGGA	GGATTGAACA				
cLET8K4	12	NA	NA	CACTTTGTG	TGCCTTATGC	1100	900/1000 (DpnII)	$800+500 / 500$	NA
				GCAATCGACAT	CAAACAGAAA			+350 (TaqI)	
T1736	12	NA	NA	ATTCTCGATCA ACGGACCAC	ACACTGAGC	1050/1200	1050/1200	NA	NA
					AATGCGAATCA				
SSR20	12	$(\mathrm{GAA})_{8}$	SGN-E303929	GAGGACGACAA CAACAACGA	GACATGCCACT TAGATCCACAA	157	148/157	NA	y/y/y
SSR124	12	$(\mathrm{CACC})_{2}(\mathrm{GA})_{7}$	SGN-E323915	TCAATCCATCA CACCTTGGA	GAGGAAGAA GACCACGCAAA	1300	1270/1300	NA	$\mathrm{y} / \mathrm{n} / \mathrm{n}$
SSR44	12	$(\mathrm{GA})_{54}$	None	TCATCTGCAAT TCATGGCTC	AGGTCAAGGA TGTGCTTCCC	238	238/180	NA	ND
T801	12	NA	NA	GAGCCGGAA GGTATGATTGA	$\begin{aligned} & \text { GACCTTGT } \\ & \text { GGTAGGGCATGT } \end{aligned}$	589	600/400 (AccI)	NA	NA
T1305*	12	NA	NA	CCTTGTACCC	CCTGAATTTT	1250	1250/1050+200	230/200	NA
T800				CCAAATCTGA GCCTCGAAAAT TGCAGAAGA	GGCTCCAGAC GCGTGTCTTGC AATCACATT		(EcoRI)	(HaeIII)	
	12	NA	NA			600	$420+180 / 600$ (EcoRV)	NA	NA

${ }^{a}$ Underlined markers are also polymorphic for Solanum lycopersicum (E6203) and S. pimpinellifolium (LA1589). Markers followed by an asterisk require different primers to detect the ${ }^{\text {b }}$ SGN ID no., Sequence identity number from the Solanaceae Genomics Network
${ }^{c}$ The PCR product sizes for the listed primers, polymorphic band sizes and restriction enzymes for each comparison (S. pennellii (LA716)/E6203 and LA1589/E6203) are also included ${ }^{\mathrm{d}}$ Amplification results in potato (St), eggplant (Sm), and pepper (Ca). NA, Not applicable; ND, not done; y, amplification; n, no amplification
$10 \mathrm{~m} M$ Tris- $\mathrm{HCl}, \mathrm{pH} 8.3,1.5 \mathrm{~m} M \mathrm{MgCl}_{2}$), $0.2 \mathrm{~m} M$ dNTPs, and 0.5 U Taq polymerase. Amplification consisted of an initial denaturation for 5 min at $94^{\circ} \mathrm{C}$, followed by 35 cycles of amplification with denaturation at $94^{\circ} \mathrm{C}$ for 30 s , annealing at $50^{\circ} \mathrm{C}$ or $55^{\circ} \mathrm{C}$ for 45 s , and extension at $72^{\circ} \mathrm{C}$ for 45 s , with a final cycle of $72^{\circ} \mathrm{C}$ for 5 min . Following amplification, products were separated on $2-3 \%$ agarose gels in $1 \times$ TAE buffer for $3-5 \mathrm{~h}$ at 100 V and $4^{\circ} \mathrm{C}$.

Mapping of microsatellites

The 89 SSRs showing single-band polymorphism between TA209 and LA716 on regular agarose gels were then mapped on the 83 individuals of the F_{2} mapping population. The same population was also used to map an additional 51 SSRs that could only be discriminated on the sequencer. The methods used for amplification, separation, and data analysis of these SSRs are described below. Sequence, polymorphism and other information for these markers can be found on the SGN website (http://www.sgn.cornell.edu). Linkage analysis was performed using MAPMAKER ver. 2.0 software (Lander et al. 1987). The GROUP and ORDER commands were used to define linkage groups and the linear order of markers within groups. The RIPPLE command was used to confirm marker orders at $\mathrm{LOD} \geq 3.0$. Genetic distances were calculated using the Kosambi mapping function (Kosambi 1944).

Development and mapping of CAPs markers

Newly developed CAPs and CAPs for a known QTL and its homolog ($f w 2.2$, Nesbitt and Tanksley 2002; $f w 7$, unpublished) were used to fill the gaps between SSRs. Thus, previously mapped tomato RFLP and EST markers (Fulton et al. 2002) were selected at intervals of 20 cM or less between SSRs to be converted into CAPs assays. Primers for the markers were designed using primer3 (Rozen and Skaletsky 1997) and synthesized by Integrated DNA Technologies (Coralville, Iowa). The PCR of each marker was performed on both parents (TA209 and LA716) in 100- $\mu \mathrm{l}$ reactions containing 100 ng DNA, 10 pmol of each forward and reverse primer, $1 \times$ PCR buffer $(50 \mathrm{~m} M$ $\mathrm{KCl}, 10 \mathrm{~m} M$ Tris- $\mathrm{HCl}, \mathrm{pH} 8.3,1.5 \mathrm{~m} M \mathrm{MgCl}_{2}$), $0.2 \mathrm{~m} M$ dNTPs, and 1 U Taq polymerase. Thermocycling was as described for the microsatellites. The PCR products of the parent lines were digested with different restriction enzymes including $A l u \mathrm{I}$, EcoRI, EcoRV, DraI, HaeIII, RsaI, HinfI, MspI, KpnI, TaqI, DpnII, and Tsp509I and electrophoresed through 2% agarose to identify polymorphisms. The CAPs markers were then assayed on the mapping population as described for the SSRs. Sequences of the primers used for the CAPs assays are listed in Table 2 and are
available on the SGN website (http://www.sgn.cornell.edu).

Survey of SSR polymorphism in tomato and wild relatives

The SSRs that amplified single bands for both TA209 and LA716, including all of the loci mapped on agarose gels, were surveyed for polymorphism on the 19 cultivated and wild tomato accessions as described by Matsuoka et al. (2002). Forward primers were labeled with HEX, FAM, or TET fluorescent tags (ABI Biosystems, Foster City, Calif.). After amplification, $0.5-\mu \mathrm{l}$ samples of PCR product were mixed with 0.1μ GeneScan 500XL size standard (PE Biosystems, Foster City, Calif.) and 1.0μ l loading buffer, heated at $92^{\circ} \mathrm{C}$ for 5 min , then placed on ice. The denatured samples $(0.6 \mu \mathrm{l})$ were loaded on 5% denaturing (6 M urea) $36-\mathrm{cm}$ LongRanger (FMC BioProducts, Rockland, Me.) gels in $1 \times$ TBE buffer and electrophoresed for 3 h at $3,000 \mathrm{~V}$ on an automated PE Biosystems, model 377 DNA Sequencer. Fragment sizes were determined based on migration relative to the size standards using geneSCAN ver. 2.1 software. Data were scored and compiled using Genotyper ver. 3.0 (PE Biosystems). For each SSR marker, fragments were classified into bins representing different alleles using the method of Matsuoka et al. (2002). In general, fragments differing by 1 bp or more in length were considered to be distinct alleles. Heterozygous individuals were characterized by the presence of two distinct amplification products. The polymorphism information content (PIC) value for each marker was determined for the cultivars (S. lycopersicum var. esculentum), for the S. lycopersicum var. cerasiforme accessions, for the wild species, and for all 19 accessions combined. These values were calculated as previously described (Saal and Wricke 1999):
$\mathrm{PIC}=1-\sum_{i=1}^{k} p_{i}^{2}$
where p_{I} is the frequency of the Ith allele, and k is the total number of different alleles for the locus. Statistical analyses were performed with statview software for MacIntosh (SAS Institute, Raleigh, N.C.).

Results

Genetic map
A total of 152 PCR-based markers were mapped on $83 \mathrm{~F}_{2}$ individuals from the cross S. lycopersicum LA925 $\times S$. pennelli LA716 using standard agarose gels. An additional 51 SSRs were also mapped in the population using the sequencer. These markers are shown in Fig. 1, which also includes a framework of markers from the high-density map developed from
the same population (http://www.sgn.cornell.edu). Included among the agarose gel-based PCR markers were 76 SSRs and 76 CAPs. Sixty-nine of these SSRs were identified from tomato ESTs and seven from potato. Forty-two of the CAPs were based on EST markers, 32 were derived from RFLP markers (29 derived from genomic DNA and three from cDNAs), and two were for a known QTL and its homolog: $f w 2.2$ on chromosome 2 and $f w 7$ on chromosome 7. Most of the mapped SSRs were trinucleotide repeats (47%), with fewer dinucleotide (26%) and compound (24%) repeats and only two tetranucleotide repeats. All but two of the dinucleotide repeats (90%) had the AT motif, whereas both ATT (33%) and CTT (30%) motifs comprised the majority of the trinucleotide repeats. Different repeat motifs appeared to be randomly distributed across chromosomes with no obvious clustering of particular motifs.

The resulting map covered $1,397 \mathrm{cM}$, which corresponds to 95% of the total distance encompassed by the high-density map (Fulton et al. 2002). When compared with this previous map, marker coverage on each chromosome ranged from 86% for chromosome 7 to 100% for chromosomes 1,4 , and 10 . Each chromosome contained from 9 (chromosomes 5 and 6) to 18 (chromosome 3) agarose gel-based PCR markers, with an average genetic distance of 10.0 cM between these markers. Overall, 84% (128) of the markers were 20 cM or less apart, and 70% (106) were 15 cM or less apart. The largest gap between markers was the 33.5 cM between SSR146 and SSR188 on chromosome 4. A total of 122 of the agarose gel-based PCR markers were also mapped on the S. pennelli ILs (Eshed and Zamir 1995; Fig. 1).

With the exception of 13 SSRs that gave unclear results on the polymorphism survey, all of the mapped markers were also checked for polymorphism between S. lycopersicum E6203 and the closely related species S. pimpinellifolium LA1589. S. lycopersicum \times S. pimpinellifolium LA1589 is a common cross used for mapping of both major genes and QTLs (Grandillo and Tanksley 1996b; Tanksley et al. 1996; Bernacchi et al. 1998b; Ku et al. 1999; van der Knapp and Tanksley 2001; Doganlar et al. 2002; van der Knapp et al. 2002). In all, 46 (73\%) of the SSRs and $28(37 \%)$ of the CAPs showed polymorphism for this species combination (includes the underlined markers in Fig. 1). Of the 46 polymorphic SSR markers, ten had null genotypes in LA1589 and one had a null phenotype in E6203. The SSR markers were also examined for polymorphism between E6203 and S. habrochaites LA1777, another wild species that has been the subject of many mapping and QTL studies (Bernacchi et al. 1998a, b; Monforte and Tanksley 2000a, b). Fifty-nine (94%) of the markers were polymorphic, including nine markers with null genotypes in LA1777 and one with a null genotype in E6203. In addition, 57 of the CAPs markers were surveyed on S. lycopersicum and S. habrochaites LA1721, and 48 (84%) were polymorphic.

Fig. 1 Molecular linkage map of the tomato genome showing the positions of the PCR-based markers in bold within the framework of the high-density map (http://www.sgn.cornell.edu). The PCRbased markers to the right of each chromosome were distinguished on agarose gels, those to the left were distinguished on a sequencer. Underlined markers are polymorphic between Solanum lycopersicum and S. pimpinellifolium. Underlined markers that are not in bold are PCR markers developed especially for mapping in S. lycopersicum \times S. pimpinellifolium (LA1589) populations and were not mapped in the S. pennelli F_{2} population. (Primer sequences and other information for these markers can be found on the SGN website.) Vertical lines drawn to the right of each chromosome show the positions of introgressions contained in the S. pennelli introgression lines (IL). Dashed horizontal lines indicate which markers were mapped in the ILs. Microsatellite markers are prefixed SSR. The CAPs markers are named according to the RFLP marker or gene from which they were derived. Map scale is in centiMorgans (cM), and approximate positions of the centromeres are indicated by gray bars

Characterization of SSRs

A total of 122 microsatellites were surveyed for polymorphism on seven tomato cultivars and 12 accessions of six different wild species using the automated sequencer (Table 1). This set of SSRs included the 76 markers mapped on agarose gels, 22 of the markers mapped using the sequencer, and an additional 24 unmapped markers. As indicated above, 13 of the mapped SSRs gave unclear results in the polymorphism study and were eliminated from the analysis. Of the 109 microsatellites that were analyzed, most (46\%) were trinucleotide repeats, with nearly equal numbers of dinucleotide repeats (27%) and repeats containing more than one motif (compound repeats, 25%). Less than 3% of the SSRs were tetranucleotide repeats. The majority (83%) of dinucleotide microsatellites consisted of the TA/AT motif, with the remainder as TC/CT repeats. Similarly, among the loci with trinucleotide repeats, $\mathrm{AAT} / \mathrm{ATA}$ and $\mathrm{CTT} / \mathrm{TCT}$ were the most common motifs (24 and 26%, respectively), followed by TTG/TGT repeats (16%). The remaining trinucleotide motifs each comprised less than 8% of the total.

The total length of the SSR repeats ranged from 18 to 84 nucleotides, with an average length of 27 nucleotides. Most of the longest repeats were compound or AT repeats. For example, the longest locus used in the polymorphism study, SSR638, had the motif $(\mathrm{GT})_{9}(\mathrm{AT})_{8}(\mathrm{AC})_{13}(\mathrm{GA})_{12}$ (Areshchenkova and Ganal 1999). The longest dinucleotide repeat, $(\mathrm{AT})_{39}$, was 78 nucleotides long (SSR63), while the longest trinucleotide repeat, $(\mathrm{AAT})_{14}$, was 42 nucleotides long (SSR45).

SSR polymorphism and allelic variation among tomato accessions

Mean PIC values and number of alleles were calculated for the cultivars, cerasiforme lines, wild species

Chrom. 2

Chrom. 6

Fig. 1 (Contd.)

Fig. 1 (Contd.)
accessions, and for all 19 lines combined (Tables 1, 3). The PIC values were lowest when comparisons were limited to S. lycopersicum var. esculentum or var. cerasiforme lines (0.17 and 0.25 , respectively) and highest for the wild species (0.64). In fact, only 44% (61) of the SSRs were polymorphic among cultivars, whereas 99% of the loci were polymorphic among the wild species. Because many of the markers used for the polymorphism study were chosen for mapping, most (92%) exhibited polymorphism between S. pennellii and two standard S. lycopersicum var. esculentum lines, TA209 and TA1143. In addition, 88% of the SSRs exhibited polymorphism between the S. lycopersicum lines and S. pimpinellifolium LA1589 and between S. lycopersicum and S. habrochaites LA1777.

Overall, the 109 SSRs identified 172 different alleles in the cultivated species, thus giving an average of 1.6 alleles per locus with most SSRs having only one allele per locus (the mode; Table 3). Similarly, 186 alleles were identified in the cerasiforme accessions, with an average of 1.7 alleles per locus (mode $=1$). In contrast, 501 alleles were detected in the wild accessions, which is an average of 4.6 alleles per locus (mode $=4$); and 602 alleles were identified in all accessions combined, with an average of 5.5 alleles per locus (mode $=6$). Within the cultivars, between one and four alleles were detected per locus, while as many as 13 alleles were detected for the comparisons across all species (Table 3). Forty-three (39%) of the loci had null alleles (i.e., no amplification in at least one accession), with a combined total of 92 null alleles in the 19 lines, representing 15% of the total number of alleles.

Most of the SSR loci (90%) had at least one accession-specific allele for the tested lines, with a total of 310 unique alleles identified for the 109 loci. This value corresponds to 16% of the total number of alleles sampled in the study and 51% of the different alleles identified in the 19 lines. In general, the wild species' accessions had the greatest number of unique alleles. Only 2% of the alleles detected in the cultivars (12 of 602 alleles in total) were unique, while 45% of those detected in the wild species (273 of 602) were unique. A portion of this difference may be attributed to the fact that fewer cultivars than wild accessions were sampled in the study. The S. pennellii accession had the greatest number of unique alleles- 61 (Table 1). Overall, 59% of the alleles identified in this species were accession-specific (Fig. 2a) with S. pennellii accounting for 20% of the unique alleles identified in this study (Fig. 2b). S. habrochaites LA1777 had 54 accession-specific alleles, corresponding to 47% of the alleles identified in this species and 17% of the total number of unique alleles identified in all 19 accessions. S. neorickii and S. peruvianum had similar numbers of accession-specific alleles, with each accounting for approximately 23% of the alleles identified in each species and approximately 9% of the total number of unique alleles. Cultivars such as Yellow Pear, M82, and Monster (Giant Red) Tomato had

Table 3 Mean PIC values and numbers of alleles per locus (\pm standard error) for each of the comparisons

Sample	Mean PIC ${ }^{\text {a }}$ (range)	Mean no. alleles ${ }^{\text {a }}$ (range; mode)
Cultivars	$0.17 \pm 0.02 \mathrm{a}(0-0.72)$	$1.6 \pm 0.1 \mathrm{a}(1-4 ; 1)$
cerasiforme	$0.25 \pm 0.03 \mathrm{~b}(0-0.75)$	$1.7 \pm 0.1 \mathrm{a}(1-4 ; 1)$
Wild accessions	$0.64 \pm 0.02 \mathrm{c}(0-0.91)$	$4.6 \pm 0.2 \mathrm{~b}(1-10 ; 4)$
All lines	$0.54 \pm 0.02 \mathrm{~d}(0.05-0.90)$	$5.5 \pm 0.2 \mathrm{c}(2-13 ; 6)$

${ }^{\text {a}}$ Values that are followed by a different letter are significantly different at $P \leq 0.05$ as determined by Fisher's least significant difference procedure
very few unique alleles. Only 2% of the alleles identified in the cultivars were unique, with the cultivars contributing only 1% of the unique alleles identified in the study.

Most individuals were homozygous for SSR alleles, however, there were some exceptions. For example, the S. habrochaites accession was heterozygous for 22 SSRs (20%), and S. peruvianum LA1708 was heterozygous for 17 loci (16%) (data not shown). In all, 41 (38%) of the SSRs displayed heterozygous genotypes in at least one accession.

Predictors of SSR polymorphism

Based on anova analysis, it was found that the number of nucleotides in the SSR repeat motif had a significant effect on PIC value (Table 4). Thus, loci with dinucleotide repeats had significantly higher PIC values than the trinucleotide SSRs for all four comparisons. However, the decrease in PIC value between the trinucleotide and tetranucleotide repeats (e.g., from 0.50 to 0.30 from the comparison across all lines) was not significant, perhaps because only three tetranucleotide SSRs were assayed. There was a significant negative correlation $(P<0.0001, r=-0.42$ to -0.55$)$ between the number of nucleotides per repeat unit and PIC value. The number of repeats and total length of the SSRs also had significant effects on PIC values. A greater number of repeat units was positively correlated with higher PIC values $(P<0.0001, r=0.42$ 0.52). Similarly, longer SSRs tended to have higher PIC values for all three comparisons $(P=0.001$, $r=0.30-0.38$). No significant differences among PIC values were identified when SSRs were categorized based on motif (AT- or CT-based) or between PIC values for simple versus compound repeats (data not shown).

In addition to PIC value, the number of nucleotides in the repeat motif also had a significant effect on the number of alleles for a given locus. For all comparisons, dinucleotide SSRs had significantly more alleles than trinucleotide and tetranucleotide repeats (Table 5). The number of repeats and total length of the SSRs also had significant effects on the number of alleles identified.

Fig. 2 Allelic variation of the 109 surveyed SSRs. a Percentage of the alleles identified for each species that were unique (accessionspecific). Values were averaged across accessions for species that had multiple accessions sampled. b Contribution of each species to the total number of unique (accession-specific) alleles detected in this study. Values were averaged for species that had multiple accessions sampled

Thus, there were strong positive correlations between the number of alleles and the number of repeat units per locus ($P<0.0001, r=0.39-0.54$) and total length of the

SSR ($P \leq 0.001, r=0.31-0.35$). No significant differences among numbers of alleles were identified when SSRs were classed by motif or for simple versus compound repeats (data not shown).

Regression analysis indicated a highly significant, positive $(P<0.0001, r=0.44)$ correlation between the PIC values for the cultivated and cerasiforme lines. However, there was no significant correlation between PIC values for the cultivated and wild accessions. The mapped markers were also classified based on genomic

Table 4 Relationship between number of nucleotides per repeat motif and PIC values

Repeat	PIC values $^{\mathrm{a}}$			
	Cultivars	cerasiforme	Wild accessions	All accessions
Dinucleotide	$0.30 \pm 0.04 \mathrm{a}$	$0.38 \pm 0.05 \mathrm{a}$	$0.74 \pm 0.03 \mathrm{a}$	$0.68 \pm 0.03 \mathrm{a}$
Trinucleotide	$0.12 \pm 0.03 \mathrm{~b}$	$0.19 \pm 0.03 \mathrm{~b}$	$0.59 \pm 0.03 \mathrm{~b}$	$0.50 \pm 0.03 \mathrm{~b}$
Tetranucleotide	$0 \pm 0 \mathrm{~b}$	$0 \pm 0 \mathrm{~b}$	$0.53 \pm 0.16 \mathrm{a}, \mathrm{b}$	$0.30 \pm 0.10 \mathrm{~b}$

${ }^{\text {a }}$ Within comparisons, PIC values (\pm standard error) that are followed by a different letter are significantly different at $P \leq 0.05$ as determined by Fisher's least significant difference procedure

Table 5 Relationship between number of nucleotides per repeat motif and number of alleles

Repeat	Number of alleles $^{\mathrm{a}}$			
	Cultivars	cerasiforme	Wild accessions	All accessions
Dinucleotide	$2.0 \pm 0.1 \mathrm{a}$	$2.1 \pm 0.2 \mathrm{a}$	$5.7 \pm 0.3 \mathrm{a}$	$7.4 \pm 0.5 \mathrm{a}$
Trinucleotide	$1.4 \pm 0.1 \mathrm{~b}$	$1.5 \pm 0.1 \mathrm{~b}$	$4.2 \pm 0.2 \mathrm{~b}$	$4.8 \pm 0.3 \mathrm{~b}$
Tetranucleotide	$1.0 \pm 0.0 \mathrm{~b}$	$1.0 \pm 0.0 \mathrm{~b}$	$3.3 \pm 0.7 \mathrm{~b}$	$3.3 \pm 0.7 \mathrm{~b}$

${ }^{\text {a }}$ Within comparisons, PIC values (\pm standard error) that are followed by a different letter are significantly different at $P \leq 0.05$ as determined by Fisher's least significant difference procedure
location as proximal to the centromere (within 10 cM of each side of the centromere) or telomere (within 10 cM of the chromosome ends) and interstitial. Together, the centromeric and telomeric locations were likely to contain heterochromatic DNA, while the interstitial regions were likely to contain euchromatic DNA. Based on anova, mean PIC values for these different classes of markers were only significantly different for the comparison among cultivars. This comparison gave means of $0.10,0.21$, and 0.30 for interstitial, centromeric, and telomeric markers, respectively, with a significant difference ($P=0.01$) between the PIC values for the interstitial and telomeric markers only.

Amplification of microsatellites in other solanaceous species

A set of 121 SSRs was tested for amplification in the related species potato, eggplant, and pepper. Most (92%) of the markers amplified a product in potato, while 58% and 34% amplified products in eggplant and pepper, respectively. Included among these markers were 68 of the SSRs that were mapped on agarose gels. The results of these amplifications are provided in Table 2. Of this subset of markers, 38% amplified products in all three species, while 60% amplified products in at least two species. The success of amplification appeared to be related to the genetic/phylogenetic distance between tomato and each of the other species. Thus, SSRs that did not amplify a product in potato, the closest relative of tomato, never amplified a product in either eggplant or pepper. Similarly, only one marker that
amplified a product in pepper gave unsuccessful amplification in eggplant.

Discussion

PCR-based anchor map of tomato
The SSR and CAPs markers were used to develop a PCR-based anchor map of tomato using the same S. lycopersicum $(\mathrm{LA} 925) \times S$. pennellii $(\mathrm{LA} 716) \mathrm{F}_{2}$ population that was used to create the most recent highdensity molecular map of tomato (http://www.sgn.cornell.edu). As compared to the high-density map, the PCR-anchor map, containing 152 markers, provides coverage of 95% of the genome, with a nearly uniform spacing of one marker every 10.0 cM and a maximum interval distance of 33.5 cM . These PCR-anchor markers are codominant, locus-specific, and highly reproducible. Moreover, they provide a faster, easier, and cheaper alternative to other types of markers because they are based on PCR, require little template DNA, and polymorphisms can be distinguished on ordinary agarose gels. Thus, they are economical and practical for use in a wide variety of research laboratories. Of these PCR-anchor markers, 122 were also used to characterize the S. pennellii IL lines (Eshed and Zamir 1995) that are now widely used in genetic mapping in tomato (e.g., Fridman et al. 2000, 2002; Ronen et al. 2000; Sela et al. 2001; Tadmor et al. 2002). Placement of the PCR-anchor markers on these IL lines should further facilitate their use in tomato genetics research. For example, the PCR-anchor markers can be used to verify the introgression contained in each of these stocks and as
flanking markers to select recombinants in fine-mapping studies.

In addition to their usefulness for mapping in populations derived from crosses between cultivated tomato and S. pennelli, many of the markers are also polymorphic for other wild species. For example, 44 of the agarose gel-based markers (16 SSRs and 28 CAPs) and 16 sequencer-distinguished SSRs have also been mapped in a S. lycopersicum E6203 $\times S$. pimpinellifoliu m LA1589 population (underlined markers in bold in Fig. 1). An additional 15 CAPs markers have also been especially developed for this population (underlined markers in Fig. 1; primer sequence available on the SGN website). Although some of the SSR polymorphisms are due to null alleles and are therefore dominant, most (75%) are codominant and can be easily applied to fixed populations such as the S. pimpinellifolium inbred backcross lines developed by Doganlar et al. (2002). Similarly, 89% of the tested loci were polymorphic between S. lycopersicum and S. habrochaites and can be used for mapping in the S. habrochaites near-isogenic and inbred backcross lines described by Monforte and Tanksley (2000a). The null genotypes (presence/absence polymorphisms) were probably due to primer mismatch, especially in the wild species. It is possible that alternative primers could be designed to amplify both alleles of these markers, thereby rendering them codominant. A set of the SSR markers was also tested in the related solanaceous crop species, potato, eggplant and pepper. As expected, the proportion of markers that successfully amplified products in these species decreased with increasing evolutionary distance. Thus, potato gave the highest percentage of amplification, while pepper gave the lowest. These preliminary results suggest that a considerable portion of the SSR markers developed for tomato will be useful in related species.

Previous mapping of SSRs in tomato suggested that microsatellites, especially those with longer repeat and GATA motifs, tended to cluster at the centromeres (Broun and Tanksley 1996; Grandillo and Tanksley 1996a, b; Areshchenkova and Ganal 1999, 2002; Suli-man-Pollatschek et al. 2002). Such clustering was not apparent in the present study. Different repeat motifs and lengths appeared to be randomly distributed along the chromosomes. This was not surprising because the SSRs used in this work were identified from ESTs and, therefore, many are associated with expressed genes, which are primarily found in euchromatin. In contrast, most of the previous mapping of SSRs in the tomato genome used markers that were identified from genomic DNA. Interestingly, however, it was found that, among the cultivars, markers that mapped to telomere proximal regions had significantly higher PIC values than those that mapped in interstitial regions $(P=0.01)$. This difference was not apparent in the wider cross-species comparisons and may reflect the greater homogenity of euchromatin in cultivated material relative to wild species.

Given their ease of use and adaptability to other tomato populations and solanaceous species, the PCRanchor markers are ideal for various types of genetic studies, including qualitative and quantitative trait mapping. In addition, they are a valuable resource for breeding programs using marker-assisted selection. Because the map is set within a framework of COS and RFLP markers from the high-density map, chromosomal locations can be extrapolated between the two maps, thereby allowing the ready identification of additional markers for finer mapping of any gene of interest.

Survey of SSRs for polymorphism across tomato varieties and species

Of the 109 SSRs that were selected for the polymorphism study, TA/AT (22%) was the most frequent type of repeat, followed by CTT/TCT (12\%) and AAT/ATA (11%). Several other studies have also reported the high incidence of AT-based repeats in tomato (Smulders et al. 1997; Areshchenkova and Ganal 2002; Suliman-Pollatschek et al. 2002; He et al. 2003), potato (Ashkenazi et al. 2001), and other plants (Morgante and Olivieri 1993; Wang et al. 1994). In addition, the present study identified a considerable proportion (25%) of compound or mixed repeats. Even higher percentages of compound SSRs were isolated when markers were preferentially selected to contain more than 30 repeat units (Areshchenkova and Ganal 1999).

Similar to previous studies, a high percentage (99\%) of the SSRs was found to be polymorphic across all seven species, while only 44% were polymorphic within cultivated tomato (Suliman-Pollatschek et al. 2002; He et al. 2003). This level of genetic variation among tomato cultivars is quite high compared with other types of markers like RFLPs and RAPDs. For example, Miller and Tanksley (1990) found that only 20% of the RFLP markers were polymorphic among nine tomato cultivars. In addition, most of the SSR loci reported herein ($88-92 \%$) were polymorphic between S. lycopersicum and three wild species that have been widely exploited for mapping and QTL studies: S. pennellii (LA716), S. pimpinellifolium (LA1589, LA1246, LA411, and LA373) and S. habrochaites (LA1777). Such high levels of polymorphism have not been previously reported in tomato; however, the current data are somewhat biased because the initial selection criterion for 76 of the loci (i.e., the mapped SSRs) was polymorphism between S. lycopersicum and S. pennellii. Despite this caveat, the results suggest that many of the SSRs that have not already been mapped on the F_{2} population may be useful PCR-based markers for the S. pennellii and other wild speciesderived populations.

The PIC value of a marker is a measure of its informativeness for genetic studies. In this study, PIC values
for each marker were calculated among cultivars, among cerasiforme accessions, among wild species, and for all 19 accessions. In general, PIC values for the cultivars were quite low, with an average PIC of only 0.17 . However, if only the 48 SSRs that were polymorphic among cultivars were considered, the average PIC value rose to 0.39 . This value is comparable to that obtained by He et al. (2003), who obtained a PIC of 0.37 for 65 polymorphic loci tested on 19 tomato cultivars. Similarly, although the cultivars were chosen to represent diverse processing and freshmarket germplasm, the number of alleles detected among cultivars was low (1.6). This value rose to 2.3 alleles per locus when nonpolymorphic markers were excluded. This result is quite similar to previously reported values of 2.5 and 2.7 alleles per locus (Areshchenkova and Ganal 2002; He et al. 2003). The PIC values for the comparisons across cerasiforme lines, wild species, and all accessions were significantly higher as were the numbers of alleles per locus. On average, 5.5 alleles per SSR were detected for the seven different species examined. In similar studies, three (Smulders et al. 1997; Suliman-Pollatschek et al. 2002) and 8.5 (Alvarez et al. 2001) alleles per locus were identified in four and ten different tomato species, respectively. Thus, the present results are within the range expected for such a comparison. Despite this general concurrence, our value is probably an underestimate for outcrossing species such as S. habrochaites and S. peruvianum, because only one individual for each accession was sampled. Surveying of multiple individuals in these species would undoubtedly reveal additional alleles.

The number of nucleotides in the repeat motif (dinucleotide and trinucleotide) was significantly correlated with both the PIC value and the number of alleles per locus such that SSRs consisting of dinucleotide repeats had significantly higher PIC values and numbers of alleles. Although such correlations have been reported in rice (Blair et al. 1999) and ryegrass (Jones et al. 2001), previous studies in tomato did not detect such a relationship (Smulders et al. 1997; Suli-man-Pollatschek et al. 2002; He et al. 2003). Total number of repeats and total length of the SSRs were significantly and positively correlated with both PIC value and number of alleles per locus. This association between longer microsatellites and greater polymorphism has also been noted by several other researchers (Smulders et al. 1997; Areshchenkova and Ganal 1999; He et al. 2003). Because of their higher polymorphism, longer SSRs may be preferable for mapping studies. Although Areshchenkova and Ganal (1999) found that long (>30 repeat units) dinucleotide SSRs were clustered at the centromere, no relationship between microsatellite length and map location was detected in the present study.

A high proportion of the SSRs had accession-specific alleles, suggesting that these loci may be useful for germplasm identification. As expected, the species-mating system was a fairly good predictor of allelic diversity.

Thus, allogamous, self-incompatible (S. habrochaites and S. peruvianum) and facultative self-compatible $(S$. pennellii) species had the highest numbers of unique alleles. Similarly, the two self-incompatible species were found to have the most heterozygous loci. With the notable exception of S. neorickii, which ranked third in total number of unique alleles, autogamous self-compatible species had fewer unique alleles and were rarely heterozygous. This relationship between mating system and genetic diversity of microsatellites was also reported by Alvarez et al. (2001).

Conclusions

We have developed a set of PCR-anchor markers, based on SSRs and CAPs, that covers the entire tomato genome at regular intervals and can be readily analyzed on standard agarose gels. This resource should be valuable for those wishing to map genes quickly, easily, and cheaply. Because the map is anchored in a high-density map containing more than 1,500 markers, identification of markers for fine mapping is also facilitated. In addition, we have surveyed 109 EST-derived SSRs for polymorphism in cultivated tomato and other species in the genus Solanum. The results indicate that many of the loci will be useful for mapping in wild species-derived populations and suggest that the markers may also be appropriate for germplasm fingerprinting/identification, studies of species relationships, taxonomy, and breeding. The data generated by this work, including an interactive map and primer sequences, are available on the SGN website (http://www.sgn.cornell.edu).

Acknowledgements We thank Dr. Amy Frary for valuable comments on the manuscript and Dane Rusçuklu and Evrim Balci for help with data analysis. This project was supported by grants from the National Science Foundation (DBI-0116076), the U.S. Department of Agriculture Plant Genome Program (9701552), and the Binational Agricultural Research and Development Fund (IS-3337-02).

References

Akkaya MS, Bhagwat AA, Cregan PB (1992) Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132:1131-1139
Alvarez AE, van de Wiel CC, Smulders MJ, Vosman B (2001) Use of microsatellites to evaluate genetic diversity and species relationships in the genus Lycopersicon. Theor Appl Genet 103:1283-1292
Areshchenkova T, Ganal MW (1999) Long tomato microsatellites are predominantly associated with centromeric regions. Genome 42:536-544
Areshchenkova T, Ganal MW (2002) Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor Appl Genet 104:229-235
Ashkenazi V, Chani E, Lavi U, Levy D, Hillel J, Veilleux RE (2001) Development of microsatellite markers in potato and their use in phylogenetic and fingerprinting analyses. Genome 44:50-62

Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1998a) Advanced backcross quantitative trait locus analysis of tomato. I. Identification of QTLs for traits of agronomic importance from L. hirsutum. Theor Appl Genet 97:381-397
Bernacchi D, Beck-Bunn T, Emmatty D, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D, Tanksley SD (1998b) Advanced backcross quantitative trait locus analysis of tomato. II Evaluation of near isogenic lines carrying single-donor introgressions for desirable wild QTL alleles derived from L. hirsutum and L. pimpinellifolium. Theor Appl Genet 97:11911196
Bernatzky R, Tanksley SD (1986) Toward a saturated linkage map in tomato based on isozymes and random complementary DNA sequences. Genetics 112:887-898
Blair MW, Panaud O, McCouch SR (1999) Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theor Appl Genet 98:780-792
Broun P, Tanksley SD (1996) Characterization and genetic mapping of simple repeat sequences in the tomato genome. Mol Gen Genet 250:39-49
Doganlar S, Frary A, Ku HK, Tanksley SD (2002) Mapping quantitative trait loci in inbred backeross lines of Lycopersicon pimpinellifolium (LA1589). Genome 45:1189-1202
Eshed Y, Zamir D (1995) An introgression-line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTLs. Genetics 141:1147-1162
Frary A, Nesbitt TC, Frary A, Grandillo S, Van der Knaap E, Cong B, Lui J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85-88
Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild species QTL for tomato sugar content to 484-bp within an invertase gene. Proc Natl Acad Sci USA 97:47184723
Fridman E, Liu YS, Carmel-Goren L, Gur A, Shoresh M, Pleban T, Eshed Y, Zamir D (2002) Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Mol Genet Genomics 266:821-826
Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207-209
Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457-1467
Grandillo S, Tanksley SD (1996a) Genetic analysis of RFLPs, GATA microsatellites and RAPDs in a cross between L. esculentum and L. pimpinellifolium. Theor Appl Genet 92:957-965
Grandillo S, Tanksley SD (1996b) Quantitative trait locus analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor Appl Genet 92:935-951
Haanstra JP, Wye C, Verbakel H, Meijer-Dekens F, van den Berg P, Odinot P, van Heusden AW, Tanksley S, Lindhout P, Peleman J (1999) An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum \times L. pennelli F_{2} populations. Theor Appl Genet 99:254-271
He C, Poysa V, Yu K (2003) Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor Appl Genet 106:363-373
Jones DF (1917) Linkage in Lycopersicon. Am Nat 51:608-621
Jones ES, Dupal MP, Kölliker R, Drayton MC, Forster JW (2001) Development and characterization of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 102:405-415
van der Knapp E, Tanksley SD (2001) Identification and characterization of a novel locus controlling early fruit development in tomato. Theor Appl Genet 103:353-358
van der Knapp E, Lippman ZB, Tanksley SD (2002) Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions. Theor Appl Genet 104:241-247
Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCRbased markers. Plant J 4:403-410
Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172-175
Ku HM, Doganlar S, Chen KY, Tanksley SD (1999) The genetic basis of pear-shaped tomato fruit. Theor Appl Genet 99:844850
Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174-181
Martin GB, Williams JG, Tanksley SD (1991) Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. Proc Natl Acad Sci USA 88:2336-2340
Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Mapbased cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432-1436
Matsuoka Y, Mitchell SE, Kresovich S, Goodman M, Doebley J (2002) Microsatellites in Zea-variability, patterns of mutations and use for evolutionary studies. Theor Appl Genet 104:436450
Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437-448
Monforte AJ, Tanksley SD (2000a) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirstum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43:803-813
Monforte AJ, Tanksley SD (2000b) Fine mapping of a quantitative trait locus from L. hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100:471-479
Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175-182
Nesbitt TC, Tanksley SD (2002) Comparative sequencing in the genus Lycopersicon: implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162:365379
Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors using a complete linkage map of restriction fragment polymorphism. Nature 335:721-726
Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta (B) and oldgold (og) color mutations in tomato. Proc Natl Acad Sci USA 97:11102-11107
Rozen S, Skaletsky HJ (1997) PRIMER3. http://www-genome.wi.mit.edu/genome_software/other/primer3.html

Saal B, Wricke G (1999) Development of simple sequence repeats in rye (Secale cereale L.). Genome 42:964-972
Sela M, Budai-Hadrian O, Qilin P, Carmel-Goren L, Vunsch R, Zamir D, Fluhr R (2001) Genome-wide analysis for Fusarium resistance in tomato reveals multiple complex loci. Mol Genet Genomics 265:1104-1111
Smulders MJ, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 97:264-272
Suliman-Pollatschek S, Kashkush K, Shats H, Hillel J, Lavi U (2002) Generation and mapping of AFLP, SSRs and SNPs in Lycopersicon esculentum. Cell Mol Biol Lett 7:583-597

Tadmor Y, Fridman E, Gur A, Larkov O, Ravid U, Zamir D, Lewinsohn E (2002) Identification of malodorous, a wild species allele affecting tomato aroma that was selected against during domestication. J Agric Food Chem 50:2005-2009
Tanksley SD, Ganal MW, Prince JP, deVicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Paterson AH, Pineda O, Roder MS, Wing RA, Wu W, Young ND (1992) High-density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141-1160
Tanksley SD, Grandillo S, Fulton T, Zamir D, Eshed Y, Petiard Y, Lopez J, Beck-Bunn T (1996) Advanced backcross quantitative trait locus analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213-224

Valdes AM, Slatkin M, Freimer NB (1993) Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133:737-749
Van der Hoeven R, Ronning C, Giovannoni J, Martin G, Tanksley S (2002) Deductions about the number, organization and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14:1441-1456
Wang Z, Weber JL, Zhong G, Tanksley SD (1994) Survey of plant short tandem DNA repeats. Theor Appl Genet 88:1-6
Young ND, Zamir D, Ganal MW, Tanksley SD (1988) Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics 120:579-586

[^0]: Communicated by R. Hagemann
 A. Frary • Y. Xu • J. Liu • E. Tedeschi

 Department of Plant Breeding, Cornell University, Ithaca, NY 14853, USA

 Present address: A. Frary
 Department of Biology, Izmir Institute of Technology, Urla, Izmir, 35430, Turkey
 S. Mitchell

 Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA
 S. Tanksley (\boxtimes)

 Departments of Plant Breeding and Plant Biology, Cornell University, Ithaca, NY 14853, USA
 E-mail: sdt4@cornell.edu
 Tel.: + 1-607-2551673
 Fax: + 1-607-2556683

[^1]: ${ }^{\text {a }}$ Formerly L. esculentum var. esculentum, L. esculentum var. cerasiforme, L. pimpinellifolium, L. parviflorum, L. hirsutum, L. pennellii, and L. peruvianum, respectively
 ${ }^{\mathrm{b}}$ SC, Self-compatible; SI, self-incompatible
 ${ }^{\text {c }}$ Number of unique (accession-specific) alleles identified in each line

