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Abstract The 3-RRS parallel manipulator presented in this study
comprises of parallel revolute joint axes in each leg. The manipula-
tor is composed of a base and a moving platform which are in the
shape of equilateral triangles. Moving platform has two rotational
and one translational degrees-of-freedom. This study formulates the
forward and inverse kinematics of the parallel manipulator. A 16th

order polynomial in terms of one of the passive joint variables is
obtained for the forward kinematic analysis. Numerical results and
the corresponding pose of the manipulator for inverse and forward
kinematics are presented.

1 Introduction

Parallel manipulators (PM) having less than 6 degrees-of-freedom (DoF)
attracted a lot of attention in the past few decades due to their architec-
tural simplicity, low cost and easier control (Fan et al. (2009)). Some of
the most successful designs of PMs used in the industry are with less than
6-DoF (Chen et al. (2014)).
This study deals with a 3-DoF 3-RRS PM which posseses one translational
DoF and two rotary ones (Liu and Bonev (2008)). Inverse kinematic analysis
of a 3-RRS PM has been performed by (Li et al. (2001)), where the analysis
is performed by using a geometrical approach. (Itul and Pisla (2009)) pre-
sented the inverse and forward kinematic model for a 3-RRS PM. For the
forward position analysis, the set of position equations are suggested to be
solved numerically; no analysis as to the number of solutions is presented.
In this study, first, the geometry of the 3-RRS PM is described. Then the
kinematic constraints are formulated in terms of the loop-closure equations
which are solved consequently. Inverse position analysis is done analyti-
cally. To solve the forward kinematic problem, the mathematical manipu-
lation proposed by (Srivatsan and Bandyopadhyay (2013)), is applied to a
set of three non-linear equations in terms of passive joint variables. Finally,
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a 16th order polynomial in terms of the tangent of the half of one of the
passive joint angles is obtained. The formulation is illustrated via numerical
examples.

2 Position Analysis

The architecture of the PM investigated in this study is presented in Fig-
ure 1. The 3-RRS PM consists of a fixed base, a moving platform and

Figure 1. Kinematic model of the 3-RRS PM

three identical limbs. The ith limb is composed of three joints: active rev-
olute (R) joint fixed on the base at the point O0i; passive R joint located
at the point Oij ; and a passive spherical (S) joint between the links hav-
ing a length l2 and the platform, located at the points O7j , for i = 1, 2, 3
and j = 4, 5, 6.
In Figure 1, a fixed coordinate frame O0-XY Z is attached to the base. Its
origin, O0, is chosen as the center of the circle with a radius of b, which is
the circle tangent to all the three revolute joint axes at the base. The X-

axis is along the vector
−−−→
O0O1 and the Z-axis is perpendicular to the base

plane. A moving coordinate frame, O7-UVW , is attached to the platform.
The origin, O7, is attached at the center of a circle with a radius p, which
is the circle passing through the three spherical joint centers. The U -axis is

along
−−−−→
O7O74 vector and W -axis is perpendicular to the plane of the plat-
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form. In any leg, the axes of the active and passive R joints are parallel to
each other. As a specific case, to achieve a symmetric form, the points O0i

and O7j are placed at the vertices of the base and moving platform triangles.
Therefore, α12 = ∠O01O0O02 = 120◦, α13 = ∠O01O0O03 = 240◦, α45 =
∠O74O7O75 = 120◦, and α46 = ∠O74O7O76 = 240◦. The input variables
are θ1, θ2, and θ3; passive revolute joint variables are φ1, φ2, and φ3.

Constraint Equations. Each limb is constrained to move in plane and
the relation in between the X and Y coordinates of the spherical joint
centres can be given as O7j,y = O7j,x tan(α1i). Constraint equations due to
this planar motion are derived by (Tsai (1999)) for a 3-RPS PM and these
equation are also valid for the 3-RRS PM:

O7y = −uyp (1)

O7x = p(ux − vy)/2 (2)

uy = vx (3)

where O7x and O7y are the X and Y coordinates of the platform center,
ux, uy, vx, vy are the corresponding elements of the rotation matrix and p
is the radius of the circle attached to the moving platform.
O7z remains independent, indicating the translational DoF along the Z-axis.
To determine the elements of the rotation matrix [R] between coordinate
frames of the base and moving platform, the following rotation sequence is
applied: first rotate about the fixed Z-axis by an angle of ψz, then about
the fixed Y -axis by an angle of ψy and finally about the fixed X-axis by an
angle of ψx. This results in:

[R] =

ux vx wx
uy vy wy
uz vz wz

 =

 cycz
sxsycz + cxsz
sxsz − cxsycz

−cysz
cxcz − sxsysz
sxcz + cxsysz

sy
−sxcy
cxcy

 (4)

where s and c stand for sin and cos, respectively, and subscripts x, y and z
stand for rotation angles ψx, ψy and ψz, respectively. [R] is bound to the 6
orthogonality conditions for rotation matrices. Besides, Eq. (3) further
constrains [R]. Therefore, only two elements of [R] are independent. Con-
sidering the workspace of the 3-RRS PM, the suitable choices of indepen-
dent parameters are wx and wy, while O7z, wx and wy are the independent
workspace parameters. For given wx and wy, first ψx, ψy and ψz can be
determined:

ψy = sin−1 (wx) ,where, sy 6= ±1 (5)

ψx = sin−1 (−wy/cy ) (6)
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Imposing Eq. (3) in Eq. (4), and the dividing by cz, we can determine ψz
as

ψz = tan−1 (−sxsy/(cx + cy) ) (7)

Substituting ψx, ψy and ψz given by Eqs. (5)-(7), [R] can be determined
from Eq. (4). Eqs. (1)-(2) give the dependent position parameters.

Inverse Position Analysis. Inverse kinematics problem is to find the
input angles θ1, θ2 and θ3 for a given pose of the moving platform. The
loop-closure equation can be written as:

−−−−→
O0O7j = [RZ (α1i)]


b0

0

+ [RY (θi)]

l10
0

+ [RY (φi)]

l20
0


−−−−→
O0O7j =

−−−→
O0O7 + [R] · [RZ (α4j)]

p0
0

 (8)

for i = 1, 2, 3 and j = i+3. [RY ] and [RZ ] are the elementary CCW rotation
matrices about Y -, and Z-axes, respectively. We express the points O7j in
terms of the given pose parameters using Eq. (8). The X and Z components
of Eq. (8) are:

l2cφicα1i = O7jx − cα1i(b+ l1cθi) (9)

l2sφi = −O7jz − l1sθi (10)

Solving cφi and sφi from the Eqs. (9)-(10), and using the identity c2φi +

s2φ = 1:

l22(cα1i + 1)2 − [O7jxcα1i(b+ l1cθi)]
2 − [cα1i(O7jzl1sθi)]

2 = 0

⇒ Aicθi +Bisθi + Ci = 0 (11)

where Ai = 2l1cα1i(−O7jx + bcα1i), Bi = 2l1O7jzc
2
α1i and Ci = O2

7jx −
2bO7jxcα1i + c2α1i(b

2 + l21 − l22 +O2
7jz). Applying tangent of half angle sub-

stitution to Eq. (11) and solving for θi:

θi = 2 atan2

(
−Bi ±

√
A2
i +B2

i − C2
i , Ci −Ai

)
(12)
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Ai = Ci results in singularity, which is not considered in this paper and it
is assumed that Ai 6= Ci . Due to the ± sign in Eq. (12), each θi has two
possible values, which yields at most 8 solutions. Therefore the PM has 8
assembly modes for the inverse kinematics.

Forward Position Analysis. The coordinates of the points O7j can be
calculated in terms of input variables θi and passive R joint variables φi
by making use of the Eq. (8). Since the moving platform is in the form of
an equilateral triangle, the distances between O7j are constant and can be
calculated by the cosine theorem. Using Eq. (8):

3p2 = d2 = |O74O75|2 ⇒ f1(φ1, φ2) = 0 (13)

3p2 = d2 = |O75O76|2 ⇒ f2(φ2, φ3) = 0 (14)

3p2 = d2 = |O76O74|2 ⇒ f3(φ1, φ3) = 0 (15)

Eqs. (13)-(14) can be rewritten as:

f10 + f11sφ2 + f12cφ2 = 0 (16)

f20 + f21sφ2 + f22cφ2 = 0 (17)

Solving for cφ2, sφ2 from there,

sφ2 =
f12f20 − f10f22
f11f22 − f12f21

, cφ2 =
f10f21 − f11f20
f11f22 − f12f21

(18)

Since, c2φ2 + s2φ2 = 1, from Eq. (16)-(17), assuming f11f22 − f12f21 6= 0:

(f12f20 − f10f22)
2

+ (f10f21 − f11f20)
2 − (f11f22 − f12f21)

2
= 0 (19)

At this point we apply the tangent of half angle substitution for the angles φ1
and φ3 for Eqs. (13)-(15): t1 = tan(φ1/2) and t3 = tan(φ3/2). Eq. (17)
involves t1 and t3, only. Rearranging Eq. (17), it is seen that it is a 4th

degree polynomial in t1:

a0 + a1t1 + a2t
2
1 + a3t

3
1 + a4t

4
1 = 0 (20)

Coefficients ai in Eq. (20) are also 4th degree polynomials in t3. Also rear-
ranging Eq. (15) in terms of t1 results in a quadratic equation:

b0 + b1t1 + b2t
2
1 = 0 (21)

The coefficients bi are also 2nd degree polynomials in terms of t3. Eliminat-
ing t1 from Eqs. (20)-(21) using polynomial division, we obtain:

b32H

[a4b31 − b1 (2a4b0 + a3b1) b2 + (a3b0 + a2b1) b22 − a1b32]
2 = 0⇒ H = 0 (22)
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where

H =a4
{
a4b

4
0 + b1

[
−a3b30 + b1

(
a2b

2
0 − a1b0b1 + a0b

2
1

)]}
+ b2

(
a23 − 2a2a4

)
b30+

b22
[(
a22 − 2a1a3 + 2a0a4

)
b20 + (−a1a2 + 3a0a3) b0b1 + a0a2b

2
1

]
+

(−a2a3 + 3a1a4) b20b1 + (a1a3 − 4a0a4) b0b
2
1 − a0a3b31+

b32
[(
a21 − 2a0a2

)
b0 − a0a1b1

]
+ a20b

4
2

Eq. (22) is valid provided that b2 6= 0 and also denominator in Eq. (22)
is nonzero. Eq. (22) is a 16th order polynomial in terms of t3. The value
of t3 can be numerically computed from Eq. (22). For any t3 value, t1 is
determined from Eqs. (20)-(21) and φ2 is given by Eq. (16). There are at
most 16 assembly modes of the moving platform for the forward kinematics.
Once the platform points O7j are determined from Eq. (8), the location of
the platform is determined.

3 Numerical Example

Several numerical examples are worked out in order to check forward and
inverse kinematic solutions using Mathematica. As an example, consider
the case where b = 0.55 m, p = 0.275 m, l1 = 0.7 m and l2 = 0.775 m.
For the inverse kinematic analysis, as a generic example for given pose
parameters O7z = 1.2 m, wx = −0.2 and wy = 0.2, the possible corre-
sponding joint angles are found as (θ1, θ2, θ3)=(−71.60◦,−66.09◦,−68.57◦),
(−133.61◦,−144.85◦,−136.47◦). Any of two solutions for an angle is valid
and there are totally eight solutions.
To verify the forward kinematic formulation, let θ1 = −133.61◦, θ2 =
−144.85◦ and θ3 = −136.47◦, which is one of the eight solutions above.
The solution of the 16th order univariate polynomial in terms of t3 results in
sixteen distinct real solutions. The numerical values obtained for t3, corre-
sponding passive joint variables φi and task space variables O7z, wx and wy
are presented in Figure 2. Notice that the 6th set of solutions matches with
the task space parameters used in the inverse kinematic analysis. Figure 2
depicts the poses of the PM for the corresponding solutions.

4 Conclusion

A detailed analysis for the forward and inverse kinematics analysis of the 3-
RRS PM is presented in this study. For the forward kinematics, all but one
dependent joint variables are eliminated to obtain a 16th order polynomial.
This suggests that an upper bound for the forward kinematics solutions of
the 3-RRS PM is 16, which proves that polynomial obtained is the smallest

6



Figure 2. Forward kinematic solutions

one. The formulations are implemented in Mathematica and several nu-
merical examples are presented. Indeed 16 real solutions are obtained for
some configurations.
The formulations developed here will be implemented for the control of a
3-RRS PM in Izmir Institute of Technology. Further studies would include
the identification of singularities and safe working zone, (see, Srivatsan and
Bandyopadhyay (2014)) and dynamic analyses of the PM.
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