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ABSTRACT 

APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO 

STRUCTURAL RELIABILITY PROBLEMS 

 

The contemporary approach in structural engineering indirectly addresses 

uncertainties arising from load and resistance parameters by using safety factors. To 

consider these uncertainties in structural engineering, it is necessary to incorporate their 

statistical properties into the analysis and design process. However, this approach requires 

the calculation of challenging multi-fold probability integrals. Approximate methods 

known as FORM and SORM have been developed as an alternative to calculating those 

integrals. Unfortunately, these methods might have accuracy and convergence problems 

depending on the problem at hand. Simulation-based structural reliability methods have 

been developed to overcome the problems associated with approximate methods. The 

main problem with these methods is that they are often computationally expensive when 

along with finite element analysis, or it is hard to implement them when a more specific 

method is chosen to reduce computational costs. 

In this study, artificial neural networks have been applied to structural reliability 

problems to obtain accurate probability estimates with low computational cost. A special 

type of learning algorithm called Bayesian Regularization was used in the training of 

artificial neural networks. Additionally, details of the application of artificial neural 

networks to structural reliability problems are provided. 

At the end of the study, the advantages and disadvantages of applying artificial 

neural networks to structural reliability problems are presented and compared with other 

known structural reliability methods. Additionally, a new convergence criterion and an 

adaptive algorithm have been developed. It was observed that applying artificial neural 

networks to structural reliability problems provides both efficient and accurate probability 

estimates. 
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ÖZET 

YAPAY SİNİR AĞLARININ YAPISAL GÜVENİLİRLİK 

PROBLEMLERİNE UYGULANMASI 

 

Yapı mühendisliğindeki çağdaş yaklaşım, güvenlik faktörlerini kullanarak talep 

ve dayanım parametrelerinden kaynaklanan belirsizlikleri dolaylı olarak ele almaktadır. 

Yapı mühendisliğindeki bu belirsizlikleri göz önünde bulundurmak için, bunların 

istatistiksel özelliklerinin doğrudan analiz ve tasarım sürecine dahil edilmesi gerekir. 

Ancak bu yaklaşım, zorlayıcı olan, çok katlı olasılık integrallerinin hesaplanmasını 

gerektirir. İntegrallerin hesaplanmasına alternatif olarak FORM ve SORM olarak bilinen 

yaklaşık yöntemler geliştirilmiştir. Ne yazık ki, bu yöntemlerin, eldeki probleme bağlı 

olarak, doğruluk ve yakınsama sorunları olabilmektedir. Yaklaşık yöntemlerle ilgili 

problemlerin üstesinden gelmek için benzetim tabanlı yapısal güvenilirlik yöntemleri 

geliştirilmiştir. Bu yöntemlerle ilgili temel sorun, genellikle ya sonlu elemanlar analizi ile 

kullanıldıklarında hesaplama maliyetlerinin yüksek olması ya da hesaplama maliyetini 

azaltmak için daha spesifik bir yöntem seçildiğinde bunların uygulanmasının zor 

olmasıdır. 

Bu çalışmada, yapay sinir ağları düşük hesaplama maliyeti ile doğru olasılık 

tahminleri elde etmek için yapısal güvenilirlik problemlerine uygulanmıştır. Yapay sinir 

ağlarının eğitiminde Bayesci Düzenleme adı verilen özel bir öğrenme algoritması türü 

kullanılmıştır. Ayrıca yapay sinir ağlarının yapısal güvenilirlik problemlerine 

uygulanmasına ilişkin detaylara da yer verilmiştir. 

Çalışmanın sonunda yapay sinir ağlarının yapısal güvenilirlik problemlerine 

uygulanmasının lehte ve aleyhte noktaları belirtilmiş ve diğer bilinen yöntemlerle 

karşılaştırılmıştır. Ayrıca uyarlanabilir bir algoritma ve yeni bir yakınsama kriteri 

geliştirilmiştir. Yapay sinir ağlarının yapısal güvenilirlik problemlerine uygulanmasının 

hem verimli hem de doğru olasılık tahminleri verdiği gözlemlenmiştir. 
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CHAPTER 1 

INTRODUCTION 

Structural engineering is the profession of analyzing and designing structures that 

can withstand the forces of nature, governed by the laws of physics, over long periods of 

time. A structure is subjected to various uncertain loads imposed by nature throughout its 

service life, and it must provide adequate resistance against those loads to fulfill its 

purpose. However, the resistance of a structure is also uncertain, due to factors such as 

the behavior of materials, the configuration of the structural system, the geometry of its 

elements, and the assumptions made in mathematical models. These uncertainties are 

called aleatoric uncertainties. In addition to these, there are also epistemic uncertainties 

in structural engineering, which stem from the engineer's lack of knowledge. Therefore, 

a structural engineer must consider all of these uncertainties when analyzing and 

designing a structure to ensure a sufficient level of safety. 

In the contemporary structural analysis and design philosophy, the safety of 

structures is assured by using load and resistance factors that represent the aleatoric 

uncertainties in an indirect manner. However, this approach is a deterministic strategy 

that is in contradiction with the stochastic nature of the loads and resistance parameters. 

Therefore, more advanced approaches that take into account the uncertainties directly are 

needed to better represent the uncertainties involved in structural engineering. 

The safety of a structure can be evaluated by using the statistical properties of 

parameters in the structural engineering problem. Regarding those statistical properties, 

a probabilistic analysis can be performed for the problem at hand, and the effect of the 

aleatoric uncertainties can be directly imposed on the analysis and design process up to a 

certain level. However, it is necessary to calculate challenging multi-fold probability 

integrals in order to obtain a probability estimate if analytical expressions are used. On 

the other hand, it is possible to calculate those probability integrals approximately to 

decrease the computational effort. Therefore, over the last fifty years, various structural 

reliability methods based on the three main approaches—approximate methods, 
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simulation techniques, and surrogate models—have been developed to evaluate these 

integrals approximately and obtain a probability estimate. 

Chronologically, the first approach developed for structural reliability practice is 

the approximate methods. In this approach, the governing mathematical expression for a 

structural reliability problem is approximated by using the first-order or second-order 

Taylor series expansion, and the probability estimate is made based on a reliability index. 

Then, the developed simulation techniques are implemented for the structural reliability 

problems due to the deficiencies observed in the approximate methods. However, in these 

techniques, it is necessary to generate a large number of samples to perform simulations 

to obtain a low variance probability estimate.  

1.1. Research Problem and Aim of the Thesis 

Structural engineering problems are solved using computationally expensive 

finite element analysis in the present day. Therefore, combining simulation techniques 

with finite element analysis to perform reliability analysis for a structural engineering 

problem is generally computationally costly, and in some cases, the cost is prohibitive 

especially evaluation of the limit state function is expensive. To overcome this problem, 

surrogate models have started to be used to represent finite element analysis in simulation 

techniques. 

In this study, the aim is to reduce the computational cost of structural reliability 

analysis by using artificial neural networks (ANN), which are known for their robust 

function approximation capability and efficiency, to construct a surrogate model for finite 

element analysis. Then, the trained ANN will be coupled with Crude Monte Carlo 

Simulation (CMCS) to estimate the probability.  

Therefore, the application of the ANN-CMCS coupling will be investigated in 

detail to determine under which conditions the method is preferable. Furthermore, critical 

points in the implementation of ANNs for structural reliability problems will also be 

addressed. 
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1.2. Scope of the Thesis 

The method will be tested by structural reliability problems having implicit limit 

state functions. For this purpose, 2D frame problems within the linear-elastic range will 

be used generally. A single exception will be shown to investigate the performance of 

ANN-CMCS coupling in explicit limit state functions by testing the method on a well-

known cantilever beam example. All examples covered in this study will be time-

invariant reliability problems and be analyzed by using the linear analysis method. 

1.3. Thesis Outline 

This thesis is structured into seven chapters. A brief introduction about the 

research problem and the aim of the thesis is offered to the reader here in Chapter 1. The 

previous studies that existed on this subject are given in Chapter 2 to provide insight to 

the reader. The theoretical aspects, mathematical derivations, implementation, and 

critiques on the most widely used structural reliability methods corresponding to the 

above-mentioned three main approaches are given in detail in Chapter 3. The 

fundamentals and extensive mathematical derivations of the artificial neural networks are 

presented in Chapter 4. The proposed methodology for the application of ANN-CMCS 

coupling and numerical examples are introduced in Chapter 5 with the results examples. 

Chapter 6 is dedicated to the discussion of the observations made from the numerical 

examples. Finally, Chapter 7 summarizes the study and presents the conclusions drawn 

from the research. 
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CHAPTER 2 

LITERATURE REVIEW 

Several studies have previously explored the implementation of artificial neural 

networks for solving structural reliability problems. The most common approach is to use 

them as surrogates for given limit state functions, typically coupled with a simulation or 

approximate technique to obtain a probability estimate. However, literature offers diverse 

perspectives on this subject, with studies combining artificial neural networks with 

different structural reliability methods or utilizing various types of artificial neural 

networks. In this section, an overview of previous studies is presented in chronological 

order. 

In the study of Papadrakakis, Papadopoulos, and Lagaros (1996) reliability 

analysis was performed for steel frame structures. The probability of plastic collapse of 

the structures was investigated by using artificial neural networks and Monte Carlo 

Simulation. The proposed methodology was further enhanced by incorporating the 

Importance Sampling technique to improve the accuracy of the estimates. 

Shao and Murotsu (1997) introduced an active learning algorithm by searching 

the domain of limit state using factorial designs. The algorithm searches the domain of 

limit state using factorial designs and provides the capability to detect important regions 

for structural failure with a limited dataset in training. The proposed algorithm was shown 

to perform well for both single and multiple-limit state functions in reliability analysis. 

Artificial neural networks can also be used as classifiers rather than function 

approximators, and an artificial neural network architecture can be trained using different 

training algorithms and cost functions. From this point of view, an extensive comparison 

was performed by Hurtado and Alvarez (2001) by considering different types of neural 

networks, cost functions, training algorithms, and sampling methods for training data 

based on the generation of samples uniformly or with respect to statistical properties of 

random variables. The study revealed that using neural networks as function 

approximators rather than classifiers yielded more satisfactory results in structural 
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reliability problems, and there was no significant effect of the sampling method on results. 

In addition to those observations, the Gauss-Newton algorithm was recommended for 

training, and as a cost function, it was observed that the sum of square errors performed 

better than cross-entropy. Even though the radial basis function neural network performed 

better than the multi-layer feed-forward network, it is observed to have a bifurcation 

problem.  

Goh and Kulhawy (2003) trained artificial neural networks to approximate 

geotechnical engineering problems. First, an artificial neural network was trained based 

on the finite element model of the problem at hand, and then the optimal weights and 

transfer function of the network were used to develop a mathematical expression. Based 

on the developed explicit expression, it was possible to perform reliability analysis 

without using the finite element model. 

Nie and Ellingwood (2004) used artificial neural networks to identify the shape 

and location of a limit state function to perform directional simulation by using Fekete 

point sets. It was noted that using artificial neural networks with directional simulation 

can provide cost efficiency for reliability problems that have a low effective ratio. 

In the study of Gomes and Awruch (2004), the comparison between Response 

Surface Method and artificial neural networks was presented with respect to the 

commonly used structural reliability methods such as First-Order Reliability Method, 

Second-Order Reliability Method, Monte Carlo Simulation, and Monte Carlo Simulation 

with Adaptive Importance Sampling. The methodology proposed by Shao and Murotsu 

(1997) was adopted in the study for the neural networks. The results indicated that both 

Response Surface Method and artificial neural networks can efficiently be employed for 

structural reliability problems, and they reduce the computation cost in comparison to the 

other commonly used methods. The study suggested that the methods should be tested on 

problems with nonlinear high-dimensional systems. 

In a later study by H. M. Gomes and Awruch (2005), Response Surface Method 

and artificial neural networks were applied to the reliability analysis of reinforced 

concrete structures. Several methods for constructing a response surface and different 

types of neural networks were compared in the study. Both methods were found to be 
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suitable for the reliability analysis of reinforced concrete structures. However, it was 

recommended that the methods should be tested on large scale problems. 

Deng et al. (2005) implemented artificial neural network-based FORM, SORM, 

and Monte Carlo Simulation to structural reliability problems. The gradients to implement 

FORM were calculated by using artificial neural networks. In a similar manner, the first-

order and second-order partial derivatives used to perform SORM were calculated by 

using artificial neural networks too. The developed methods were tested on a structural 

reliability problem that has an implicit limit state function. The results demonstrated that 

the proposed artificial neural network-based FORM and SORM methods are effective for 

structural reliability problems with implicit and nonlinear limit state functions. 

The comparison of the Response Surface Method with artificial neural networks 

was covered in the study of Hosni Elhewy, Mesbahi, and Pu (2006). The constructed 

artificial neural network was coupled with Monte Carlo Simulation and First-Order 

Reliability Method separately and compared with a constructed response surface by using 

polynomials. It was noted that the reliability analysis by using artificial neural networks 

was more efficient and accurate than the polynomial-based Response Surface Method 

even in non-linear limit state functions. 

In 2007, Cheng (2007) proposed two methods based on the coupling of genetic 

algorithms and artificial neural networks to carry out reliability analysis efficiently for 

problems with implicit limit state functions. For the first method, a generation is 

generated based on the statistical properties of the random variables involved in the 

problem. Then, an artificial neural network is used to construct an explicit approximating 

function for the implicit limit state function, similar to the study of Goh and Kulhawy 

(2003). After that, new generations are generated by using genetic algorithm operations, 

namely reproduction, crossover, and mutation, until the convergence criterion for the 

reliability analysis is achieved. In the second method, Monte Carlo Simulation with 

Importance Sampling method is used to update the obtained reliability index for further 

improvement in the results. The proposed methods are suitable for reliability analysis 

purposes if the problem involves regular-shaped or implicit limit state functions. 

Additionally, the second method gives a fair estimate for irregular-shaped limit state 
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functions. It is also observed that the proposed methods are more efficient than Crude 

Monte Carlo Simulation in terms of computation effort due to requiring fewer samples. 

Cardoso et al. (2008) coupled artificial neural networks with Monte Carlo 

Simulation to perform reliability analysis. The trained network was used in the 

simulations instead of directly calling the actual limit state function. In the article, it was 

shown that the neural networks were capable of representing complex structural 

behaviors and they could be successfully coupled with MCS to perform structural 

reliability analysis. In addition to that, a numerical example provided in the study showed 

that the method could be used for reliability-based design optimization purposes. 

Cheng and Li (2008) further improved ANN-GA coupling by introducing a 

method called the “uniform design method” which is denoted as UDM-ANN-GA. This 

method improves the quality of the selected dataset for training an artificial neural 

network which leads to better performance. Furthermore, this method also reduces the 

number of samples to train an artificial neural network. However, it was reported that the 

method might not converge in some cases. To overcome the convergence issue, a method 

based on Importance Sampling and denoted as UDM-ANN-GA-MCSIS was suggested. 

The methods were found effective for structural and non-structural reliability problems 

in terms of computational cost and more accurate than the traditional ANN-GA method 

presented in Cheng (2007). 

Papadopoulos et al. (2012) combined artificial neural networks and the subset 

simulation in their study to reduce the variance in probability estimates obtained by using 

subset simulation method. Basically, samples at each level in the subset simulation were 

enriched by using a trained neural network based on the random variables generated by 

Markov chains. It was demonstrated that the combination of artificial neural networks 

and subset simulation yields a more robust probability estimate with low variance. 

The study of Chojaczyk et al. (2015) presented a review and application of 

artificial neural networks for reliability analysis. The reliability analysis of a stiffened 

panel was performed in the study. In the review part of the article, the application of 

artificial neural networks in the structural reliability analysis field was considered, and 

the related studies were presented in a table form in chronological order. In the second 

part of the paper, the reliability analysis of a deck-stiffened panel was performed using 
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three different approaches. The first approach included the application of ANN and MCS 

combinations to the problem, whereas the combination of ANN and Monte Carlo 

Simulation with Importance Sampling (MCIS) was employed to the problem as a second 

approach. In the last approach, the direct coupling of FORM and MCIS with finite 

element analysis (FEA) was used as a benchmark for ANN-based approaches. The results 

showed that ANN-based methods could be used in structural reliability analysis instead 

of traditional reliability methods due to their robustness and efficiency. 

Oparaji, Sheu, and Patelli (2017) developed a novel approach to increasing the 

robustness of artificial neural networks in reliability analysis. They created a set of 

competing artificial networks and selected the best of them by using model selection and 

model averaging techniques based on the Bayes theorem. Additionally, they trained each 

artificial neural network several times to eliminate potential biases and to prevent trapping 

local minima in the training phase. The decision for the best version of the network was 

made by using cross-validation. After those steps, a confidence interval for the estimate 

was determined. It was noted that this approach was computationally expensive due to 

creating a set of networks and eliminating part of them in the model selection and cross-

validation steps. However, it was suggested that parallelization techniques could be used 

to reduce the cost. 

Kroetz, Tessari, and Beck (2017) compared the performances of polynomial chaos 

expansion (PCE), Kriging, and artificial neural networks. It was observed that all three 

methods lead to accurate results for structural reliability problems. In terms of 

computational efficiency, PCE showed the worst performance when a small number of 

samples were used. Artificial neural networks and Kriging provided approximate results 

when a small number of samples were used. 

In the study conducted by Dudzik and Potrzeszcz-Sut (2019), the reliability 

analysis of a space truss structure that is susceptible to snap behavior was carried out by 

using artificial neural networks to create an explicit limit state function based on the finite 

element analysis results. The explicit limit state function was then coupled with the First-

Order Reliability Method to calculate the reliability index. Moreover, the explicit limit 

state function was also coupled with Second-Order Reliability Methods and Monte Carlo 
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Simulation to validate the results. Additionally, sensitivity analysis was performed to 

identify the random variable that has the most impact on the reliability index. 

In the study of Beheshti Nezhad, Miri, and Ghasemi (2019) a new type of artificial 

neural network called the group method of data handling type (GMDH-type) was used 

along with the response surface method to perform reliability analysis for civil 

engineering problems. The study compared the GMDH-type neural network with other 

methods using benchmark problems in the literature. The researchers derived an explicit 

limit state function for example problems using the parameters of GMDH-type neural 

networks and the Response Surface Method. Then, the obtained limit state function was 

used to perform reliability analysis using the FORM, SORM, or Monte Carlo simulation 

method. The study showed that the introduced method was capable of analyzing high-

dimensional, nonlinear, and correlated problems with less computational effort and fair 

accuracy. 

In the study of Li and Wang (2020), a dimension reduction technique was 

developed and applied to perform reliability analysis in high-dimensional problems. The 

algorithm of the proposed technique consisted of a deep feedforward network used to 

reduce the dimension of the problem by converting the actual input parameters into latent 

variables inspired by high-dimensional data abstraction (HDDA). Then, the Gaussian 

process was used to create a surrogate model. In the last step, Monte Carlo Simulation 

was used to perform the reliability analysis based on the developed surrogate model. 

Moreover, a distance-based iterative sampling strategy was presented in the article to 

enrich the training data set effectively if more samples were needed to construct a better 

surrogate model. It was observed that the proposed method could significantly reduce the 

computation effort without a reduction in accuracy. 

In the study of W. J. D. S. Gomes (2020), shallow and deep artificial neural 

networks were compared for both explicit and implicit limit state functions. The results 

obtained from the study showed that deep artificial neural networks performed better than 

shallow ones for reliability problems because their complexity provided them with more 

refined adaption for the problems at hand. However, an important observation made in 

the study was that the performance of shallow neural networks was still acceptable even 

though they were outperformed by deep neural networks. 
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Lieu et al. (2022) investigated the application of deep neural networks (DNN) to 

structural reliability problems in their study. In the study, they proposed a two-staged 

adaptive surrogate model technique based on DNN, and they showed the efficiency of the 

method by applying it to six example problems. The adaptive surrogate model performed 

global and local predictions to increase the model’s accuracy. In the global predictions, 

they tried to capture the general behavior of the system by using an initial design of 

experiments chosen from Monte Carlo Simulation samples randomly. They increased the 

accuracy by adding more samples until a certain threshold was exceeded. After that, they 

further increased the model accuracy by performing local predictions by adding more 

samples from the vicinity of the limit state function and eliminating the unimportant and 

noisy initial design of experiments. The key point here was that the local prediction stage 

was not mandatory if the global prediction satisfied the predefined stopping criterion. The 

example problems revealed that the proposed technique was superior to Monte Carlo 

Simulation in terms of the number of functional evaluations when the problem was a 

complex structural system that required finite element analysis, i.e., the problem had an 

implicit limit state function. 
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CHAPTER 3 

STRUCTURAL RELIABILITY METHODS 

The failure of a structure can be defined as the exceedance of the demand for the 

capacity of the structure. The function that defines the relationship between demand and 

capacity is called the limit state function, and it can be in explicit or implicit form. For a 

simple R-S problem, R represents the capacity of the structure whereas S represents the 

demand, the limit state function can be written as:  

 𝑔(𝑅, 𝑆) = 𝑅 − 𝑆 (3.1) 

The failure or safety of a structure can be classified based on the sign of the limit 

state function. The structure is said to be safe if the limit state function is greater than 

zero. Otherwise, the structure is considered as failed. In classical structural mechanics, 

these variables are considered deterministic parameters; generally, the capacity and 

demand can depend on various parameters. If these parameters are denoted as 𝑋 =

𝑋1, 𝑋2…𝑋𝑛 then the limit state function is written as 𝑔(𝑋), and the failure of a structure 

can be represented by the following equation: 

 𝑔(𝑋) < 0 (3.2) 

Consequently, the formulation given above yields a single value that represents 

whether the structure is in a failure or safe situation. Although this deterministic 

consideration, none of the parameters related to the capacity and demand exhibit 

deterministic behavior in real life. They include some level of uncertainties in themselves, 

and the classical approach imposes these uncertainties on parameters by using safety 

factors. However, such a generalization yields the usage of the same safety factors for 

different kinds of structures with neglecting their behaviors. Therefore, it is necessary to 

take into account these uncertainties explicitly by representing the parameters with 

appropriate random variables. Clearly, this approach cannot eliminate all the uncertainties 

involved in the problem, however, a more realistic approximation to the nature of the 
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problem can be achieved in this way. If these parameters are considered random variables, 

then the probability of failure of a structure can be written as: 

 𝑃𝑓 = 𝑃[𝑔(𝑋) < 0] (3.3) 

The calculation of the probability of failure for an n-dimensional reliability 

problem is actually the calculation of multifold probability integral over a certain domain 

which is defined by the range of random variables. The general formulation for a 

reliability problem is defined as: 

 
𝑃𝑓 = 𝑃[𝑔(𝑋) < 0] = ∫…∫ 𝑓𝑋(𝑋)𝑑𝑋

𝑔(𝑋)<0

 (3.4) 

The term 𝑓𝑋(𝑥) in equation (3.4) represents the joint probability density function 

of random variables involved in the problem.  

It is also known that the complementary event of a failure situation is equivalent 

to the safety of a structure. A link between the probability of failure and the structure's 

safety can be constructed by using the rule of complementary events. Therefore, once the 

probability of failure of the structure is calculated then, one can easily obtain the safety 

of the structure by using the following relationship: 

 𝑃𝑠 = 1 − 𝑃𝑓 (3.5) 

As mentioned above, a reliability problem is essentially the calculation of the 

probability of failure of a structure and the corresponding multifold probability integral. 

Generally, these types of integrals are challenging and time-consuming to obtain an 

analytical solution. On the other hand, numerical and approximate methods can be 

performed to calculate the multifold probability integrals and the probability of failure 

for a given structure. Therefore, in this chapter, the basic approaches developed for 

structural reliability problems and related methods will be introduced. Although there are 

many methods that exist in the literature, a selected few, that are the most widely used 

ones are included in this chapter. 
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3.1. Approximate Methods 

The direct calculation of the probability integral given in equation (3.4) is not 

preferred in structural reliability analysis due to its challenging nature and the exact 

solution cannot be obtained in some cases. As an alternative to integration, the actual limit 

state function is approximated by using the Taylor series, and the probability of failure is 

calculated by using a reliability index. In this section, the methods based on Taylor series 

expansion will be introduced and two reliability index definitions that are most widely 

used will be given. At the end of the section, a critique of the presented methods will be 

provided in order to reveal the disadvantages of each method and determine which 

method is applicable to which type of problem. It is hoped that the critique section will 

be a guideline for the readers in the selection of appropriate method for their analysis. 

3.1.1. Cornell Reliability Index 

The prior study made on the structural reliability analysis has been done by 

Cornell (1969) and the reliability index is defined as the distance to the mean value in 

terms of standard deviation. In Figure 3.1 a simple 𝑔(𝑅, 𝑆) = 𝑅 − 𝑆 problem which has 

normally distributed basic variables for both 𝑅 and 𝑆 is illustrated.  

 

Figure 3.1. Cornell reliability index. 

The corresponding probability of failure for this limit state function is equal to: 

 𝑃𝑓 = 𝛷(−𝛽) (3.6) 
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Based on the definition, the reliability index, 𝛽, is equal to: 

 𝛽 =
𝜇𝑔

𝜎𝑔
 (3.7) 

where  𝜇𝑔 is the mean value of the limit state function whereas 𝜎𝑔 represents the 

standard deviation of the limit state function. 

The second moments of the limit state function can be determined by using the 

following relationships if both basic variables are normally distributed: 

 𝜇𝑔 = 𝜇𝑅 − 𝜇𝑆 (3.8) 

 
σg = √σR

2 + σS
2 (3.9) 

where  𝜇𝑅 and  𝜇𝑆 are the mean values of the capacity and demand parameters 

whereas 𝜎𝑅  and 𝜎𝑆  represents the standard deviations of the capacity and demand 

parameters. 

If equation (3.8) and equation (3.9) are substituted into equation (3.7), one can 

immediately obtain the reliability index as follows: 

 𝛽 =
𝜇𝑅 − 𝜇𝑆

√𝜎𝑅
2 + 𝜎𝑆

2

 
(3.10) 

3.1.2. Extension to n-Dimensional Linear and Non-Linear Limit State 

Functions 

The above-mentioned methodology can easily be extended to problems having n-

dimensional limit state function with normally distributed uncorrelated random variables. 

If the linear limit state function is defined as below: 

 
𝑔(𝑋) = 𝑔(𝑋1, 𝑋2…𝑋𝑛) = 𝑎0 + 𝑎1𝑋1 +⋯+ 𝑎𝑛𝑋𝑛 = 𝑎0 +∑𝑎𝑖𝑋𝑖

𝑛

𝑖=1

 (3.11) 
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Then, the mean value and standard deviation of the given linear limit state 

function are equal to: 

 
𝜇𝑔 = 𝑎0 + 𝑎1𝜇𝑋1 +⋯+ 𝑎𝑛𝜇𝑋𝑛 = 𝑎0 +∑𝑎𝑖𝜇𝑋𝑖

𝑛

𝑖=1

 (3.12) 

 

𝜎𝑔 = √𝑎1
2𝜎𝑋1

2 +⋯+ 𝑎𝑛
2𝜎𝑋𝑛

2 = √∑(𝑎𝑖𝜎𝑋𝑖)
2

𝑛

𝑖=1

 (3.13) 

Therefore, the corresponding reliability index is equal to: 

 
𝛽 =

𝑎0 + ∑ 𝑎𝑖𝜇𝑋𝑖
𝑛
𝑖=1

√∑ (𝑎𝑖𝜎𝑋𝑖)
2𝑛

𝑖=1

 
(3.14) 

Most of the structural reliability problems in structural engineering include non-

linear limit state function. Reliability analysis can be made for the problems that have 

non-linear limit state function by linearizing the existing limit state function at a certain 

point using first-order Taylor series expansion. The expansion can be made as follows: 

 
𝑔(𝑋1, 𝑋2…𝑋𝑛) ≈ 𝑔(𝑥1

∗, 𝑥2
∗, … , 𝑥𝑛

∗) +∑(𝑋𝑖 − 𝑥𝑖
∗)

𝑛

𝑖=1

𝜕𝑔

𝜕𝑋𝑖
|
𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗
 (3.15) 

3.1.3.  Mean Value First Order Second Moment Method (MVFOSM) 

It is worth mentioning here that the expansion point has different names in the 

literature as “checking point”, “design point” and, “most probable point (MPP)”. 

Although different names are given, all of these names indicate the point where the Taylor 

series expansion is made. In this study, the design point will be used to indicate the 

expansion point. One option for the selection of the design point is the usage of mean 

values of the basic variables involved in the problem. Therefore, the following Taylor 

series expansion can be written when the mean values are used as the design point: 
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𝑔(𝑋1, 𝑋2…𝑋𝑛) ≈ 𝑔(𝜇𝑋1 , 𝜇𝑋2 , … , 𝜇𝑋𝑛) +∑(𝑋𝑖 − 𝜇𝑋𝑖)

𝑛

𝑖=1

𝜕𝑔

𝜕𝑋𝑖
|
𝜇𝑋1 , 𝜇𝑋2 , … , 𝜇𝑋𝑛

 (3.16) 

Although this selection is very simple and practical to use, it introduces a serious 

problem in the result. It is observed that the calculated reliability index changes if the 

same limit state function is written in an equivalent form. This problem is named the 

“invariance problem” and it originated from the selection of the mean values as a design 

point. The invariance problem is solved by Hasofer and Lind (1974) and different 

algorithms are developed in the literature for the determination of the design point. Those 

algorithms will be introduced later in this section. 

3.1.4. First-Order Reliability Method (FORM) 

The First-Order Reliability Method (FORM) is a general methodology in the 

structural reliability analysis field that approximates the limit state function by using the 

first-order Taylor series. After the approximation is made, the Hasofer-Lind reliability 

index is used to create the link between the approximate function and the probability of 

failure. In this subsection, the Hasofer-Lind reliability index will be introduced, and then 

two similar algorithms to determine the design point will be investigated.  

3.1.4.1. Hasofer-Lind Reliability Index 

The invariance problem observed in the Cornell reliability index was solved by 

Hasofer and Lind (1974) by transforming the basic variables involved in the problem to 

the standard normal distribution form and determining the design point by an iterative 

algorithm rather than using the mean values of the basic variables involved in the 

problem. The transformation of the basic variables from the original space, i.e. x-space, 

to uncorrelated and independent standard normal space, i.e. u-space, can be performed by 

using different transformation methods. Rosenblatt Transformation (Rosenblatt 1952) or 

Nataf Transformation (Nataf 1962) are widely used techniques for transformation 

purposes in reliability analysis. 

 In Figure 3.2, a two-dimensional limit state function in the x-space is shown on 

the left whereas the same limit state function in the u-space is illustrated in Figure 3.2 A 

limit state function in (a) x-space and (b) u-space. on the right.  
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Figure 3.2 A limit state function in (a) x-space and (b) u-space. 

For example, consider the limit state function given before for a simple R-S 

problem having normally distributed uncorrelated random variables. The random 

variables R and S can be transformed from the original space to standardized normal 

space can be done as follows if both variables are uncorrelated and independent: 

 
𝑢1 =

𝑅 − 𝜇𝑅
𝜎𝑅

 (3.17) 

 
𝑢2 =

𝑆 − 𝜇𝑆
𝜎𝑆

 (3.18) 

Equivalently, 

 𝑅 = 𝑢1𝜎𝑅 + 𝜇𝑅 (3.19) 

 𝑆 = 𝑢2𝜎𝑆 + 𝜇𝑆 (3.20) 

Then the limit state function becomes in the following form after the transformation: 

 𝑔(𝑢1, 𝑢2) = 𝑢1𝜎𝑅 − 𝑢2𝜎𝑆 + 𝜇𝑅 − 𝜇𝑆 (3.21) 

After the transformation of the basic variables and determining the limit state 

function in the standard normal space, the Hasofer-Lind reliability index can be 

determined by calculating the minimum distance from the limit state function and the 

origin of the standard normal space. Therefore, the Hasofer-Lind reliability index is 

essentially an optimization problem that minimizes distance, and can be written as 

follows: 
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 𝛽 = 𝑚𝑖𝑛
𝑢
√𝑢𝑇𝑢  subjected to 𝑔(𝑢) = 0 (3.22) 

The optimization problem defined in equation (3.22) to obtain the reliability index 

can be solved by using programming techniques or other optimization methods. However, 

in the field of structural reliability, this problem is generally solved by using iterative 

techniques which will be introduced in the next subsections. 

3.1.4.2. Hasofer-Lind (HL) Algorithm  

This algorithm tries to minimize the distance between the design point and the 

origin of the standard normal space by successively performing iterations until a 

predefined tolerance for convergence is achieved. This iterative scheme can be performed 

by either solving 2n+1 simultaneous equations or using matrix algebra. The solution 

algorithm by using matrix algebra presented in Nowak and Collins (2000) is given below. 

Step 1: Determine an arbitrary initial design point to start iterations and say {𝑥∗} =

{𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗}.  

Step 2: Transform the basic variables to standard normal variables by using an appropriate 

transformation method and calculate the related design point in the standardized normal 

space. 

 {𝑢∗} = {𝑢1
∗, 𝑢2

∗ , … , 𝑢𝑛
∗ } (3.23) 

Step 3: Determine the partial derivative of the limit state function in terms of standardized 

normal variables and store them in a vector as follows: 

 

{𝐺} =

{
 
 

 
 𝐺1
𝐺2.
.
𝐺𝑛}
 
 

 
 

 and 𝐺𝑖 = −
𝜕𝑔

𝜕𝑢𝑖
∗ |
𝑢1
∗ , 𝑢2

∗ , … , 𝑢𝑛
∗
 (3.24) 

Step 4: Calculate the new estimation for the reliability index by using the partial 

derivatives and design point. 
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𝛽 =

{𝐺}𝑇{𝑢∗}

√{𝐺}𝑇{𝐺}
 (3.25) 

Step 5: Calculate the direction cosines and store them in a vector. 

 
{𝛼} =

{𝐺}

√{𝐺}𝑇{𝐺}
 (3.26) 

Step 6: Determine a new design point by using the direction cosines and estimated 

reliability index.  

 {𝑢∗} = {𝛼}𝛽 (3.27) 

Step 7: The location of design point in original space can be calculated by transforming 

back from the standard normal space if it is necessary. 

3.1.4.3.  Hasofer-Lind Rackwitz-Fiessler (HLRF) Algorithm 

Rackwitz and Fiessler (1978) proposed an iterative algorithm to determine the 

Hasofer-Lind reliability index by considering the type of distribution of each basic 

variable explicitly. First, the equivalent normal parameters of each non-normal basic 

variable are calculated at the design point. In order to calculate the equivalent normal 

value, let’s say the corresponding probability density function of the non-normal basic 

variable is 𝑓𝑋(𝑥
∗) and the cumulative density function is 𝐹𝑋(𝑥

∗) at the design point. The 

equivalent normal parameters can be calculated by equating the probability density 

function and cumulative density function of the original distribution to the probability 

density function and cumulative density function of the standard normal distribution at 

the design point. This equality can be written in the following mathematical form: 

 
𝐹𝑋(𝑥

∗) = 𝛷 (
𝑥∗ − 𝜇𝑋

𝑒

𝜎𝑋
𝑒 ) (3.28) 

 
𝑓𝑋(𝑥

∗)  =
1

𝜎𝑋
𝑒 𝜙(

𝑥∗ − 𝜇𝑋
𝑒

𝜎𝑋
𝑒 ) (3.29) 
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From equation (3.28) and equation (3.29), the equivalent normal parameters are 

calculated as follows: 

 𝜇𝑋
𝑒 = 𝑥∗ − 𝜎𝑋

𝑒[𝛷−1(𝐹𝑋(𝑥
∗))] (3.30) 

 
𝜎𝑋
𝑒 =

1

𝑓𝑋(𝑥
∗)
𝜙[𝛷−1(𝐹𝑋(𝑥

∗))] (3.31) 

The only difference between the Hasofer-Lind algorithm and the HLRF algorithm 

comes from the inclusion of these equivalent normal parameters. Therefore, the following 

steps can be immediately deduced if this new step is included in the previously introduced 

algorithm. 

Step 1: Determine an arbitrary initial design point to start iterations and say {𝑥∗} =

{𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗}.  

Step 2: Calculate the equivalent normal parameters for each non-normal basic variable 

by using equation (3.30) and (3.31). 

Step 3: Transform the basic variables to standard normal variables by using an appropriate 

transformation method and calculate the related design point in the standardized normal 

space. 

 {𝑢∗} = {𝑢1
∗, 𝑢2

∗ , … , 𝑢𝑛
∗ } (3.32) 

Step 4: Determine the partial derivative of the limit state function in terms of standardized 

normal variables and store them in a vector as follows: 

 

{𝐺} =

{
 
 

 
 𝐺1
𝐺2.
.
𝐺𝑛}
 
 

 
 

 and 𝐺𝑖 = −
𝜕𝑔

𝜕𝑢𝑖
∗ |
𝑢1
∗ , 𝑢2

∗ , … , 𝑢𝑛
∗
 (3.33) 

Step 5: Calculate the new estimation for the reliability index by using the partial 

derivatives and design point. 

 
𝛽 =

{𝐺}𝑇{𝑢∗}

√{𝐺}𝑇{𝐺}
 (3.34) 
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Step 6: Calculate the direction cosines and store them in a vector. 

 
{𝛼} =

{𝐺}

√{𝐺}𝑇{𝐺}
 (3.35) 

Step 7: Determine a new design point by using the direction cosines and the estimated 

reliability index.  

 {𝑢∗} = {𝛼}𝛽 (3.36) 

Step 8: The location of the design point in the original space can be calculated by 

transforming back from the standard normal space if it is necessary. 

3.1.5. Second-Order Reliability Method (SORM) 

Second-Order Reliability Method (SORM) is an improvement on FORM by 

including the second-order terms in Taylor series expansion in order to increase the 

accuracy of the probability estimates. Based on the definition, the general mathematical 

expression of SORM in the standard normal space can be written in matrix form as 

follows: 

 
𝑔(𝑢) ≈ 𝑔(𝑢∗) + {𝑢𝑖 − 𝑢𝑖

∗}𝑇𝛻𝑔(𝑢) |

𝑢∗
+
1

2!
{𝑢𝑖 − 𝑢𝑖

∗}𝛻2𝑔(𝑢) |

𝑢∗
{𝑢𝑖 − 𝑢𝑖

∗}𝑇 (3.37) 

In equation (3.37), 𝑢∗represents the vector of design point {𝑢1
∗, 𝑢2

∗ , … , 𝑢𝑛
∗ } whereas 

∇𝑔(𝑢) is the vector of the first derivatives and ∇2𝑔(𝑢) is 𝑛 𝑥 𝑛 matrix includes the 

second-order partial derivatives of the limit state function and named as Hessian and, 

generally denoted by H. The Hessian matrix is, then be, equal to the following expression: 

 

𝛻2𝑔(𝑢) = 𝐻 =

[
 
 
 
 
 
 
 
𝜕2𝑔

𝜕𝑢1
2

𝜕2𝑔

𝜕𝑢1𝑢2
⋯

𝜕2𝑔

𝜕𝑢1𝑢𝑛−1

𝜕2𝑔

𝜕𝑢1𝑢𝑛
𝜕2𝑔

𝜕𝑢2𝑢1
⋯ ⋯ ⋯

𝜕2𝑔

𝜕𝑢2𝑢𝑛
⋮ ⋯ ⋯ ⋯ ⋮
𝜕2𝑔

𝜕𝑢𝑛𝑢1

𝜕2𝑔

𝜕𝑢𝑛𝑢2
⋯

𝜕2𝑔

𝜕𝑢𝑛𝑢𝑛−1

𝜕2𝑔

𝜕𝑢𝑛𝑢𝑛]
 
 
 
 
 
 
 

 (3.38) 
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The corresponding probability of failure of the given approximate limit state 

function can be calculated by using the Hasofer-Lind reliability index concept. However, 

the solution process of SORM is much more different than FORM due to the existence of 

the second-order terms. Therefore, the iterative methods introduced earlier cannot be 

employed herein. On the other hand, a quadratic approximation can be made in the form 

of a paraboloid, ellipsoid, or hypersphere. After the selection of the form, the probability 

of failure of the corresponding function should be evaluated. However, it is necessary to 

rotate the coordinate axes in order to avoid evaluating complicated calculations of the 

probability content of the selected quadratic form (Fiessler, Neumann, and Rackwitz 

1979). The rotation of the axes, in most cases, is performed by coinciding with the last 

coordinate of the new coordinate system and the location of the design point. For this 

purpose, orthogonal transformation is used (Choi, Grandhi, and Canfield 2007).  

After rotating the coordinate axes, a parabolic approximation can be done in the 

new rotated space. To calculate the probability content of the approximating parabola, 

Breitung (1984) developed an asymptotic method based on the main curvatures of the 

approximated parabola and the reliability index calculated by using FORM. The derived 

equation is given below: 

 
𝑃𝑓 ≈ 𝛷(−𝛽)∏(1 + 𝑘𝑖𝛽)

−
1
2

𝑛−1

𝑖=1

 (3.39) 

where 𝑘𝑖 is the main curvature of the failure surface at the design point and 𝛽 is the 

reliability index calculated by FORM 

Please note that the estimated probability of failure is exact when β approaches 

infinity due to the asymptotic approximation. On the other hand, the method is not 

applicable when 𝑘𝑖𝛽 equals or less than -1. Although the formulation looks simple, the 

main problem in this method is the calculation of the main curvatures. Because it requires 

orthogonal transformation and the calculation of the second-order derivatives, these 

calculations can be prohibitive if the dimension of the problem is large. Additionally, the 

accuracy of the formulation is highly dependent on the radii of the curvature of the actual 

limit state function. 
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Tvedt (1983) proposed the formulation given in equation (3.40) that consists of 

three-term to improve the accuracy of the approximation. The first term of the formulation 

is the same as Breitung’s formulation and the other two terms are the corrector terms 

which improve the accuracy. Nevertheless, the computational effort made in the analysis 

is high compared to Breitung’s method due to the corrector terms. 

 𝑃𝑓 ≈ 𝐴1 + 𝐴2 + 𝐴3 (3.40) 

where, 

 
𝐴1 = 𝛷(−𝛽)∏(1 + 𝑘𝑖𝛽)

−
1
2

𝑛−1

𝑖=1

 (3.41) 

 
𝐴2 = [βΦ(−𝛽) − 𝜙(−𝛽)] {∏(1 + 𝑘𝑖𝛽)

−
1
2

𝑛−1

𝑖=1

−∏[1 + (𝛽 + 1)𝑘𝑖]
−
1
2

𝑛−1

𝑖=1

} (3.42) 

 
𝐴3 = (𝛽 + 1)[𝛽𝛷(−𝛽) − 𝜙(−𝛽)] {∏(1 + 𝑘𝑖𝛽)

−
1
2

𝑛−1

𝑖=1

 

− 𝑅𝑒 [∏[1 + (𝛽 + 𝑖)𝑘𝑖]
−
1
2

𝑛−1

𝑖=1

]} 

(3.43) 

The above-mentioned formulations are based on curvature fitting and they require 

complicated processes of orthogonal transformation and calculation of the Hessian matrix 

in order to coincide with the principal curvatures of the actual limit state function and 

second-order approximation (Zhao and Ono 1999a). In order to eliminate the calculation 

of costly Hessian matrix, Kiureghian et al. (1987) developed a new method by 

constructing a parabola based on the selected points. However, this method is less 

accurate than the standard curvature fitting methods because of neglecting cross-

derivative terms (Kiureghian et al. 1987).  

The development of the second-order methods in structural reliability analysis is 

still open to research and discussion, and more detailed information on SORM can be 

found in the study of Köylüoǧlu and Nielsen (1994), Hu et al. (2021), der Kiureghian and 

Dakessian (1998), Zhao and Ono (1999b) and Breitung (2021). 
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3.1.6. Critical Appraisal on Approximate Methods 

Approximate methods are extremely useful structural reliability methods in terms 

of efficiency. In general, only a few iterations are needed for FORM or SORM 

calculations for low-dimensional reliability problems. However, the main problem with 

the approximate methods is the level of accuracy due to linear/quadratic approximation 

to the limit state function. The calculated probability of failure is exact only if the limit 

state function is linear for FORM and quadratic for SORM, beyond these types of 

functions these methods can overestimate or underestimate the probability of failure 

based on the shape of the limit state function. 

Moreover, the approximate methods have no convergence guarantee. The iterative 

process can fail for multiple limit state functions or having highly non-linear limit state 

functions. On top of that, the limit state function must be differentiable in order to employ 

an iterative scheme.  

Furthermore, the approximate methods are not always feasible with finite element 

analysis. First of all, the implicit limit state function representing the finite element 

analysis must be smooth and there must be no detrimental numerical noise. Even under 

these conditions, the limit state function must not be highly non-linear. If all these three 

conditions are met, then FORM can be applied for static finite element analysis and even 

though the conditions are met, FORM is not recommended for dynamic finite element 

analysis (Koduru and Haukaas 2010). The same issues can also be considered for SORM 

if the reasons presented above for FORM are extended.  

Real-life engineering problems are solved by using finite element analysis these 

days. Therefore, if we want to apply structural reliability methods in the industry, then 

the developed methods should be compatible with finite element analysis. As mentioned 

above, applying FORM to finite element analysis properly requires prior knowledge of 

the situation of the limit state function. However, it must be recognized that an 

analyst/engineer has no prior knowledge at the beginning of the analysis.  
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3.2. Simulation Methods 

Simulation methods are very powerful tools to perform structural reliability 

analysis, especially if the limit state function is implicit and highly nonlinear. The 

simulation methods are immune to the shape of the function. Therefore, having a convex 

or concave limit state function does not affect the result. However, the performance of 

the simulation methods is directly related to the number of samples which is related to 

the magnitude of the probability of failure. The results obtained from the simulation 

methods can be deceiving in the case of not having enough samples, or the number of 

samples can be excessively high for a very small probability of failure. Hence, an 

empirical relationship between the number of samples and the probability of failure will 

be given in this section and the most widely used sampling strategies will be introduced 

in order to ease the computational burden of the simulation methods. 

3.2.1. ‘Crude’ Monte Carlo Simulation (CMCS) 

Monte Carlo simulation is based on the successive random sampling of the 

generated data which is generated by using the statistical properties of the basic variables 

involved in the problem. The sampled data are then transferred to the limit state function 

and the evaluation of the limit state function is performed. An indicator function is used 

to classify the results based on the observation of failure or safe. The value of the indicator 

function is taken as one if the failure occurs. After that, the number of observations of 

failure is summed and divided by the total number of samples in order to determine the 

probability of failure of the given structural reliability problem.  

Therefore, the probability integral given in equation (3.4) is approximated by 

using the following relationship: 

 
𝑃𝑓𝑇𝑟𝑢𝑒 = ∫…∫ 𝐼[𝑔(𝑋) < 0]𝑓𝑋(𝑋)𝑑𝑋 ≅ 𝑃𝑓 =

1

𝑁
∑𝐼[𝑔(𝑋𝑖) < 0]

𝑁

𝑖=1

 (3.44) 

where, 𝑁 is the total number of samples and 𝐼[ ]is the indicator function that can take 

values only one and zero depending on satisfaction of the condition inside. 
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The exact probability of failure of the given event by using MCS can be achieved 

if the total number of samples reaches infinity but imposing such a number of samples on 

analysis is impossible in practice. Nevertheless, an approximate formulation for the 

required number of samples with a certain variance in results can be achieved by 

performing repetitive simulations for the problem at hand with the same number of 

samples. In each simulation, different results will be obtained due to having a finite 

number of samples. Hence, the probability estimate performed by using MCS is also a 

random variable having binomial distribution. Therefore, the governing equation for the 

coefficient of variance, 𝑉𝑃𝑓, of the results is given in equation (3.45) by using the true 

probability of failure and the number of samples (Lemaire, Chateauneuf, and Mitteau 

2009). 

 
𝑉𝑃𝑓 = √

1 − 𝑃𝑓𝑇𝑟𝑢𝑒
𝑁𝑃𝑓𝑇𝑟𝑢𝑒

 (3.45) 

The required number of samples can be immediately calculated for a certain level 

of coefficient variation by rearranging equation (3.45) as follows: 

 
𝑁 =

1 − 𝑃𝑓𝑇𝑟𝑢𝑒
𝑉𝑃𝑓

2𝑃𝑓𝑇𝑟𝑢𝑒
 (3.46) 

If a rough estimation is made for the magnitude of the probability of failure for a 

given problem as 10−3 and the desired coefficient of variation is determined as 0.1, then 

the number of required samples is equal to 99900. The required number of samples 

quickly escalates to 999900 for the problems that have a 10−4 magnitude of the 

probability of failure with the same coefficient of variation. Moreover, a further 

simplification can be made as shown in equation (3.47) for the required number of 

samples if the magnitude of the probability of failure approaches zero. 

 
𝑁 =

1

𝑉𝑃𝑓
2𝑃𝑓𝑇𝑟𝑢𝑒

 (3.47) 

Please note that if the number of samples used in the simulation is decreased then 

the variation in results starts to increase. This trade-off can lead to serious problems when 

the evaluation of the limit state function is costly. Therefore, different sampling strategies 
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are developed based on this “Crude” Monte Carlo simulation (CMCS) procedure in order 

to decrease the number of samples by keeping the variance at an acceptable level. 

3.2.2. Monte Carlo Simulation with Importance Sampling (IS) 

One way of reducing the required number of samples by providing a certain 

variance in results can be achieved by using the Importance Sampling (IS) technique 

when the magnitude of the probability of failure is low. The basic motivation behind this 

technique is shifting the sampling region from the whole domain to the region that 

contributes more to the probability of failure. Then, the estimate for the probability of 

failure can be calculated by using the following formulation:  

 
𝑃𝑓𝑇𝑟𝑢𝑒 = ∫…∫𝐼[𝑔(𝑋) < 0]

𝑓𝑋(𝑋)

ℎ𝑉(𝑋)
ℎ𝑉(𝑋)𝑑𝑋 (3.48) 

where ℎ𝑉(𝑉) is the importance sampling probability density function. 

The expression given above can be rearranged as follows in order to provide a 

discrete form for simulation purposes. 

 
𝑃𝑓𝑇𝑟𝑢𝑒 ≅ 𝑃𝑓 =

1

𝑁
∑𝐼[𝑔(𝑉𝑖) < 0]

𝑁

𝑖=1

𝑓𝑋(𝑉𝑖)

ℎ𝑉(𝑉𝑖)
 (3.49) 

where, 𝑉 is the samples taken from the importance sampling probability density function. 

There are two key points that exist in this technique that impact the efficiency and 

accuracy of the obtained results. One of them is the location of the sampling points. 

Generally, the vicinity of the design point is selected to perform sampling due to its high 

probability content with respect to the standard sampling. The location of the design point 

can be found by performing a FORM analysis. The second key point is the distribution 

of the selected sampling function. The distribution can be made by equating the mean 

value of the sampling function to the design point and a significant decrease in the 

required number of samples can be obtained (Harbitz 1983). The derivation for an 

optimum selection of the sampling function can be found in the book of Melchers and 

Beck (2018). However, generally Normal distribution function is used as the sampling 

function due to its simplicity. 
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3.2.3. Subset Simulation (SS) 

The required number of samples increases exponentially in CMCS dependent on 

the magnitude of the probability of failure of the problem at hand. Therefore, for the small 

probabilities, excessive amount of samples is needed to achieve a stable probability 

estimation with an acceptable variance. Additionally, even though the CMCS is immune 

to dimensionality, the IS suffers from the curse of dimensionality indirectly due to the 

need for prior FORM analysis in order to determine a design point. In order to reduce the 

required number of samples for those types of problems, Au and Beck (1999) developed 

Subset Simulation (SS) technique. In this technique, a finite number of intermediate 

failure events is used to calculate the small probability of failure. Generally, those 

intermediate failure events are defined as 𝐹𝑖 = 𝑔(𝑋) < 𝑏𝑖 where 𝑏𝑖 is a certain threshold 

and the events are ordered in a decreasing fashion as 𝐹1 ⊃ 𝐹2 ⊃ ⋯ ⊃ 𝐹𝑚 so that any 𝑘𝑡ℎ 

event can be written as 𝐹𝑘 = ⋂ 𝐹𝑖
𝑘
𝑖=1 . Therefore, the intersection of all intermediate events 

yields an estimation for the probability of failure of the actual event. Thus, the given 

equation below is the main idea of the SS.  

 
𝑃𝑓 = 𝑃(𝐹𝑚) = 𝑃 (⋂𝐹𝑖

𝑚

𝑖=1

) (3.50) 

The probability calculation for the intersection of events can be accomplished by 

using the conditional probabilities as follows: 

 
𝑃𝑓 = 𝑃(𝐹𝑚|𝐹𝑚−1)𝑃 (⋂ 𝐹𝑖

𝑚−1

𝑖=1

) (3.51) 

A further simplification in the equation given above can be performed by 

benefitting from the multiplication of conditional events: 

 
𝑃𝑓 = 𝑃(𝐹1)∏𝑃(𝐹𝑖|𝐹𝑖−1)

𝑚

𝑖=2

 (3.52) 

Consequently, the actual event is divided into intermediate events which are larger 

probabilities compared to the actual event. However, it is necessary to generate 

conditional samples to perform the analysis. Fortunately, those conditional samples can 
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be generated by using the Metropolis-Hastings algorithm (Metropolis et al. 1953; 

Hastings 1970) which is a variant of Markov Chain MCS (MCMCS).  

3.2.3.1. Implementation of Subset Simulation  

There are two main important steps that should be handled in the implementation 

of SS. The first step is the determination of the intermediate events and the second one is 

the generation of the conditional samples. 

The determination of the first intermediate event can be done by predefining a 

target probability, 𝑝0. Then, generate 𝑁 number of samples and evaluate the limit state 

function. After that, equate the [(1 − 𝑝0)𝑁]-th largest value to 𝑏1 which is the threshold 

for the first intermediate event. Therefore, in total 𝑝0𝑁 samples are belonged to the first 

intermediate event and based on these samples, new (1 − 𝑝0)𝑁 samples, which are 

conditional on 𝐹1, are generated by using the MCMCS. Repeating this method until all of 

the events yield the probability of failure of the actual event. The noteworthy point here 

is that all intermediate events will have the probability of 𝑝0 and only the last event might 

have a different probability if 𝑝0 is kept fixed. Thus, the probability of failure up to 𝑚 −

1 will be equal to 𝑝0
𝑚−1. As a consequence, the estimate for the probability of failure of 

the actual event can be written as follows: 

 𝑃𝑓 ≅ 𝑝0
𝑚−1𝑃(𝐹𝑚|𝐹𝑚−1) (3.53) 

In the equation given above 𝑃(𝐹𝑚|𝐹𝑚−1) can be obtained approximately by using 

the CMCS. In fact, the probability of intermediate events except for the last one is not 

exactly equal to 𝑝0. Hence, the probability of failure estimation by this approach is not 

exact, however, is approximate. Additionally, the target probability and the number of 

samples might be different for each intermediate step (Papaioannou 2012). The typical 

interval for the target probability is suggested between 0.1 and 0.3 (Zuev et al. 2012). The 

MATLAB implementation of SS is provided in the study of H. S. Li and Cao (2016). 
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3.2.4. Directional Simulation (DS) 

Directional Simulation (DS) is a technique based on performing simulation by 

distributing direction vectors on a unit hyper-sphere. It was first developed by Deák 

(1980) to calculate the multiple normal probability integrals. Then, it is applied to load 

space by Ditlevsen, Olesen, and Mohr (1987). After that, Bjerager (1988) applied DS for 

reliability problems and combined it with IS technique to improve its efficiency. Later 

on, Ditlevsen, Melchers, and Gluver (1990) proposed a generalized version of DS that is 

valid for different types of joint distribution functions and complicated limit state 

functions.  

The general procedure for DS given in the study of Bjerager (1988) starts with the 

generation of n-dimensional Gaussian vector 𝑢 which is defined as 𝑢 = 𝑅𝐀 where 𝑅2 is 

a chi-squared random variable with n degrees of freedom and 𝐀 is a random direction 

vector, on a unit hyper-sphere Ω𝑛. Please notice that 𝑢 is a vector in polar coordinates due 

to the direction vector. In the simplest way, 𝐀 is distributed uniformly, however, more 

advanced distribution techniques can be found in the study of Nie and Ellingwood (2000). 

If the condition 𝐀 = 𝐚 is set, then the associated probability of failure can be calculated 

as given below: 

 

𝑃𝑓 = ∫ 𝑃[ 𝑔(𝑅𝑨) ≤ 0|𝑨 = 𝒂]𝑓𝑨
𝒂∈𝛺𝑛

(𝒂)𝑑𝒂 = ∫ 𝑃[ 𝑔(𝑅𝒂) ≤ 0]𝑓𝑨
𝒂∈𝛺𝑛

(𝒂)𝑑𝒂 (3.54) 

where 𝑓𝐀(𝐚) is the probability density of  𝐀  on the unit hyper-sphere. 

If N number of 𝐚𝒊 is generated, then the probability of failure can be estimated as: 

 
𝑃𝑓 ≅ 𝑃𝑓̂ =

1

𝑁
∑𝑃[ 𝑔(𝑅𝒂𝒊) ≤ 0]

𝑁

𝑖=1

 (3.55) 

Thus, the estimated standard deviation is equal to: 

 
𝜎𝑃𝑓̂ =

1

𝑁(𝑁 − 1)
∑(𝑃[ 𝑔(𝑅𝒂𝒊) ≤ 0] − 𝑃𝑓̂)

2
𝑁

𝑖=1

 (3.56) 
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For a given 𝐚 the probability of 𝑔(𝑅𝐚) ≤ 0 can be calculated analytically as 

follows: 

 𝑃[ 𝑔(𝑅𝒂) ≤ 0 ] = 𝑃[𝑅 ≥ 𝑟] = 1 − 𝜒𝑛
2(𝑟2)    for    𝑟 ≥ 0 (3.57) 

where 𝑟 is defined as the root which satisfies 𝑔(𝑟𝐚) = 0. 

3.2.4.1. Importance Sampling in Directional Simulation 

The efficiency of the DS can be further improved by performing importance 

sampling on 𝐀. For a selected importance sampling function, the formulation given in 

equation (3.54) turns into the following form: 

 

𝑃𝑓 = ∫ 𝑃[ 𝑔(𝑅𝒃) ≤ 0]
𝑓𝑨(𝒃)

ℎ𝑩(𝒃)
ℎ𝑩(𝒃)

𝒃∈𝛺𝑛

𝑑𝒃 (3.58) 

Then, the probability estimate is rewritten as: 

 
𝑃𝑓 ≅ 𝑃𝑓̂ =

1

𝑁
∑𝑃[ 𝑔(𝑅𝒃𝒊) ≤ 0]

𝑓𝑨(𝒃𝒊)

ℎ𝑩(𝒃𝒊)

𝑁

𝑖=1

 (3.59) 

3.2.5. Critical Appraisal on Simulation Methods 

Simulation methods generally do not suffer from the accuracy issues that exist in 

the approximate methods. However, they also have several important drawbacks in their 

implementation to the structural reliability problems related to computational cost or 

implementation challenges. 

First of all, CMCS is a robust method for any type of problem. It is not affected 

by the non-linearity of the limit state function. On the other hand, the computational cost 

is directly related to the magnitude of the probability of failure. For very small 

probabilities, the computational cost can increase exponentially and the method might 

become impractical to use for real-life structural engineering problems.  
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As previously introduced, IS can be used to decrease computational cost. In spite 

of that, it requires a design point to perform sampling and generally, a prior analysis is 

performed to find the point. At this point, please remember that FORM is generally used 

to find the design point but it has convergence issues. Therefore, when FORM does not 

converge to a design point, implementing IS can be difficult or not feasible. Additionally, 

if FORM converges to an erroneous design point, then results obtained from IS can be 

misleading. 

Moreover, in order to implement SS to reliability problems, it is necessary to 

calculate conditional probabilities. As mentioned previously, MCMCS can be used for 

conditional probabilities. However, performing MCMCS with finite element analysis can 

be challenging. 

Implementing DS to reliability analysis problems requires the distribution of 

directional vectors on the surface of a unit hypersphere. Even though there are several 

methods that exist in the literature, the methods generally need special care and attention 

which makes the implementation challenging. 

3.3. Surrogate Models 

In the structural reliability context, an expensive limit state function is replaced 

with a representative function - that is cheap to evaluate - in order to reduce the 

computation effort in the analysis. The representative function is generally called the 

surrogate model and it is constructed by using data points generated from the original 

limit state function, and it can be an explicit or implicit function depending on the used 

method. Although there are various methods that exist in the literature to construct a 

surrogate model, only the Response Surface Method (RSM) will be introduced in this 

study because of its wide usage.  

Artificial Neural Network (ANN) can also be used to construct a surrogate model 

that is used for structural reliability analysis purposes. However, ANN will not be covered 

in this section. Instead, the next chapter will be devoted to ANN to investigate it in detail. 
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3.3.1. Response Surface Method (RSM) 

Response Surface Method (RSM) is a surrogate modeling technique by 

approximating the limit state function at a local point by using low-order polynomials in 

order to reduce the computational cost. The main advantage of RSM is that the method 

can be used with finite element analysis with a relatively low computational with respect 

to the simulation methods by providing a satisfactory level of accuracy. One of the early 

applications of the method to structural reliability problems was introduced by Faravelli 

(1989). In the application, the limit state function was approximated by using a second-

order polynomial without cross-terms. Therefore, the polynomial that is used in the 

analysis has the following form: 

 
𝑔̅(𝑥) = 𝑎 +∑𝑏𝑖

𝑛

𝑖=1

𝑥𝑖 +∑𝑐𝑖𝑥𝑖
2

𝑛

𝑖=1

 (3.60) 

where, 𝑥𝑖 from 1 to n represents the number of random variables involved in the 

problem and 𝑎, 𝑏𝑖, and 𝑐𝑖 coefficients of the polynomial. In order to determine the 

coefficients of the approximating polynomial, samples obtained from evaluation of the 

actual limit state function are used. 

In the response surface methodology, there are various ways to obtain samples 

from the limit state function called “experiment design”. Examples of design strategies 

include full-factorial design, central composite face-centered design, and Box-Behnken 

design. Typical representations of the above-mentioned design strategies are given in 

Figure 3.3.  

   

Figure 3.3. Different design strategies in RSM. Full-factorial design (left), central 

composite face-centered design (middle), Box-Behnken design (right). 
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The suggested methodology for reliability analysis was further improved by 

Bucher and Bourgund (1990). In the first step, it is suggested the response surface can be 

constructed around the mean values, 𝜇𝑖, and points 𝜇𝑖 ± 𝑓𝑖𝜎𝑖 where 𝜎𝑖 is the standard 

deviation of each random variable and 𝑓𝑖 is an arbitrary factor, generally taken as 3. 

Then, an estimate for a design point is determined by using the constructed 

response surface. The design point is used with the constructed response surface in order 

to calculate a new center point for constructing an updated response surface. The main 

idea behind the update is to locate the new response surface close as possible to the point 

where the exact limit state function is equal to zero in each update in order to cover the 

failure domain adequately for the probability estimate. The key assumption in the 

application here is that the random variables are uncorrelated Gaussian variables. The 

new center point based on the update can be found by using the following relationship. 

 
𝑥𝑀 = 𝑥̅ + (𝑥̅𝐷 − 𝑥̅)

𝑔(𝑥̅)

𝑔(𝑥̅) − 𝑔(𝑥̅𝐷)
 (3.61) 

However, this update increases the total number of evaluations from 2n+1 to 4n+3. 

Additional improvement for the method was suggested by introducing the cross-terms to 

the approximating polynomial as follows: 

 
𝑔̅(𝑥) = 𝑎 +∑𝑏𝑖

𝑛

𝑖=1

𝑥𝑖 +∑𝑐𝑖𝑥𝑖
2

𝑛

𝑖=1

+ ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1 𝑎𝑛𝑑
𝑗≠𝑖

𝑛

𝑖=1 𝑎𝑛𝑑
𝑖≠𝑗

 
(3.62) 

Depending on the design method used to construct the response surface, the number of 

evaluations can increase up to 2𝑛 + 2𝑛 + 1 function evaluations which makes the method 

inefficient for large systems. 

The ideas suggested by Bucher and Bourgund (1990) are investigated further by 

Rajashekhar and Ellingwood (1993). In the first place, it is suggested that the arbitrary 

factor, 𝑓𝑖, can be reduced for further updates in order to avoid an ill-conditioned system 

of equations. In addition, the effect of the distribution tails in the samples was explicitly 

considered. Furthermore, the effect of cross-terms was also regarded. 
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The main drawback of the response surface method is the local approximation to 

the limit state function. Therefore, the constructed surface does not represent the behavior 

of the limit state function for a large range which means that when the interested region 

in the limit state function is changed, the surface must be constructed all over again in 

order to perform reliability analysis. Moreover, the constructed response surface is 

sensitive to the arbitrary factor, 𝑓𝑖, used in the experimental design and this can lead to 

fluctuations in the probability estimate (Guan and Melchers 2001). 
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CHAPTER 4 

ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks (ANNs) are universal function approximators that 

mimic biological neuron behavior. They consist of interconnected artificial neurons that 

receive inputs and transform them into output by using weights, biases, and transfer 

function. The sequential combination of these neurons creates a network that is capable 

of approximating complex functions. Their capability of approximating any kind of 

function is proven by Hornik, Stinchcommbe, and White (1989) when certain conditions 

are met. Although ANNs were originally accepted as function approximators, their 

capability is not limited only to that. ANNs can be used for classification problems, 

pattern recognition, language processing, and cluster analysis in many subjects. 

In this thesis, feed-forward neural networks will be used to create a surrogate 

model for the limit state function for the given problem. The supervised learning 

paradigm will be followed for the training of the networks. Bayesian regularization will 

be used in this study as the training algorithm of neural networks even though there are 

different training methods and algorithms that exist for the neural networks. 

In this chapter, basic information on neural networks will be given in order to 

provide insight to the reader. The discussion will start with the definition of a simple 

neuron and continues until the derivation of Bayesian regularization. The given 

information is kept limited deliberately due to providing only necessary knowledge about 

the neural networks for the scope of this thesis and the mathematical derivations are tried 

to be kept simple as possible while protecting their main purpose. 

4.1. Simple Artificial Neuron 

Artificial neurons are basic elements of an artificial network and they mimic the 

biological neuron structure. The biological neurons take inputs via dendrites, then process 

the inputs in the cell body and generate an output. Artificial neurons take inputs and 
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manipulate them by using weights, bias, and a transfer function in order to generate an 

output. Therefore, an artificial neuron basically consists of weights, bias, and a transfer 

function. The analogy between biological and artificial neurons is illustrated in Figure 

4.1. 

 

Figure 4.1. Biological neuron vs. artificial neuron. 

The relationship between the inputs, 𝑥𝑖 , and output, 𝑦, in a simple artificial neuron 

can be written mathematically as follows: 

 
𝑦 = 𝑓 (∑𝑤𝑖𝑥𝑖

𝑛

𝑖=1

+ 𝑏) (4.1) 

where, w represents the network weights whereas b represents the bias terms. The transfer 

function is represented by 𝑓(… ). 

The transfer function is a crucial component of an artificial neuron due to its direct 

impact on the output. Even though any function can be used as a transfer function, there 

are commonly used transfer functions, some of which are given below. 
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Table 4.1. List of some transfer functions. 

Name Function Plot 

Binary Step Function 𝑓(𝑥) = {
0, 𝑥 < 0
1, 𝑥 ≥ 0

 

 

Pure Linear Function 𝑓(𝑥) = 𝑥 

 

Rectified Linear Unit 

(ReLU) 
𝑓(𝑥) = {

0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

 

 

Leaky ReLU 𝑓(𝑥) = {
𝛼𝑥, 𝑥 < 0
𝑥, 𝑥 ≥ 0

 

 

Logistic Sigmoid  

(Log-sig) 
𝑓(𝑥) =

1

1 + 𝑒−𝑥
 

 

Hyperbolic Tangent 

(Tanh) 
𝑓(𝑥) =

2

1 + 𝑒−2𝑥
− 1 
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4.2. Architecture of Artificial Neural Networks 

An artificial neural network is basically a system of artificial neurons that are 

connected to each other. Artificial neural networks can be divided into two categories as 

feed-forward neural networks and recurrent (feedback) neural networks based on the flow 

of inputs through the network. These two categories have also sub-branches and some of 

them are depicted in Figure 4.2. 

 

Figure 4.2. Different neural network architectures. 

The difference between the feed-forward neural network and the recurrent neural 

network is the existence of a feedback mechanism for the artificial neurons. There are no 

feedback connections that exist in the feed-forward neural network and inputs flow 

through only unidirectional connections whereas recurrent neural networks have such 

connections and they can have multidirectional connections. Those multidirectional 

connections provide a dynamic behavior for recurrent neural networks (Jain, Mao, and 

Mohiuddin 1996). 

4.3. Learning Paradigms in Artificial Neural Networks 

The artificial neural networks are expected to produce desired output based on the 

provided inputs and they can learn the behavior of a function based on the labeled inputs 

and/or outputs. There are mainly three paradigms that exist in the literature for the 

learning paradigm. They are namely, supervised learning, unsupervised learning, and 

reinforced learning. 
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In supervised learning, both labeled inputs and outputs are provided to the 

network in the training phase. Therefore, the network can learn from the dataset at hand. 

This learning paradigm can be used effectively for function-approximating purposes. In 

unsupervised learning, only inputs are provided to the network and it is expected from 

the network to find patterns and matches for inputs and outputs. This type of paradigm is 

generally used for clustering problems. The reinforced learning paradigm is an 

intermediate level of supervised and unsupervised paradigms. In the reinforced learning 

paradigm, inputs are provided to the network, and the network is rewarded or punished 

based on its performance by the algorithm. This rewarding and punishing algorithm 

provides a guide to the network to increase its performance.  

4.4. Feed-Forward Neural Networks 

Feed-forward neural networks consist of artificial neurons in a consecutive 

layered fashion. There is no interconnection between the neurons of the same layer. 

Generally, feed-forward neural networks are divided into three groups called single-layer 

feed-forward neural networks, multi-layer feed-forward neural networks, and radial basis 

function networks based on the number of layers or type of the function used in the 

network. The single-layer feed-forward neural networks and multi-layer feed-forward 

neural networks are also called single-layer perceptron and multi-layer perceptron 

respectively in the literature. Their schematic view is provided in Figure 4.3. 

 

Figure 4.3. Configuration of single-layer feed-forward neural network and multi-layer 

feed-forward neural network. 
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The single-layer feed-forward neural networks consist of an input layer and an 

output layer whereas the multi-layer feed-forward neural networks have intermediate 

layers called hidden layers. There might be more than one number of hidden layers in the 

multi-layer feed-forward neural network and the number of hidden layers represents the 

depth of the network. The number of neurons in each hidden layer can be determined by 

using the trial-and-error method based on the convergence criterion.  

The connection between the layers is provided by weights and biases. These terms 

are adjusted by using a proper training algorithm in order to obtain a useful neural 

network.  

4.5. Training Algorithms 

Training a neural network is basically adjusting the weight vector and bias term 

of each layer systematically in order to provide a capability to the network to perform 

reasonable predictions. The adjustment process is generally carried out by minimizing a 

cost function which is a function that compares predictions generated by the network and 

actual output in the supervised learning paradigm. Even though various algorithms exist 

in the literature, the gradient descent algorithm with the back-propagation method is a 

widely used algorithm for training feed-forward neural networks due to its efficiency in 

computation and it constitutes the basics of neural network training. Therefore, it must be 

understood well in order to grasp the more advanced learning algorithms. 

4.5.1. Back Propagation Method and Gradient Descent Algorithm 

Back-propagation is actually a method to calculate the gradients of a cost function 

with respect to the network parameters. However, in the machine learning community, 

the back-propagation term is used loosely like a learning algorithm. In general, the 

calculated gradients by the back-propagation method are used in the gradient descent 

algorithm in order to update network parameters.  

At the beginning of the training, the weight matrix and bias vector can be 

randomly assigned small numbers to start the process and the input signal propagates 

through the network from the input layer to the output layer in the forward direction. This 
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first stage is called the forward phase due to the direction of the flow of the input signals. 

At the end of this stage, an error between the predictions and the desired outputs occurs. 

The cost function can be evaluated by using the error.  

In the second stage, the gradients of the cost function are calculated with respect 

to each weight term in the network by using the chain rule. This stage propagates in the 

backward direction; therefore, it is called backpropagation. 

In the last stage, the weight and bias terms are updated by using the gradient 

descent algorithm.   

Consider an ideal three-layer feed-forward neural network given in Figure 4.4 in 

order to derive equations for the algorithm. Let’s say the network has a fixed structure 

with i number of inputs, j number of neurons in the hidden layer, and yields k number of 

outputs.  

 

Figure 4.4. An ideal three-layer feed-forward neural network. 

The propagation of the input through the network which is the first stage of the 

algorithm can be illustrated in a simple manner like in Figure 4.5. 

 

Figure 4.5. Simple representation of the flow of inputs in the jth neuron. 
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Each input parameter from x1 to xi is multiplied with the related weights and, 

consider that the bias term is embedded into the weight vector. Let say, 

 
𝑧𝑗 =∑𝑤𝑗𝑖𝑥𝑖

𝑖

 (4.2) 

Then, the signal in the jth neuron of the hidden layer becomes, 

 𝑎𝑗 = 𝑓(𝑧𝑗) (4.3) 

where 𝑓(. ) represents the transfer function. The signal in the neurons of the hidden layer 

propagates to the output layer in a similar manner. 

 
𝑧𝑘 =∑𝑤𝑘𝑗𝑎𝑗

𝑘

 (4.4) 

Therefore, the output at the kth neuron becomes equal to 

 𝑜𝑘 = 𝑓(𝑧𝑘) (4.5) 

Now, in the second stage, assume that there are only 2 output neurons. If the cost 

function is considered as the mean squared error of a certain set of inputs: 

 
𝐿 =

1

2
∑(𝑦𝑘 − 𝑜𝑘)

2

𝑘

 (4.6) 

where 𝑦𝑘 represents the desired or actual output whereas 𝑜𝑘 is the predicted output by the 

neural network. 

Remember that the main effort in training neural networks is to minimize the 

function L as much as possible. As it can also be deducted from the first stage, if the type 

of the transfer function and inputs are kept constant, the function L can only be changed 

by changing the layers' weights. Therefore, the change in the cost function, L, with respect 

to the weights of the output layer can be calculated by using the chain rule as shown in 

the equation below. 
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 𝜕𝐿

𝜕𝑤𝑘𝑗
=
𝜕𝐿

𝜕𝑧𝑘

𝜕𝑧𝑘
𝜕𝑤𝑘𝑗

 (4.7) 

The partial derivative of 𝑧𝑘 with respect to 𝑤𝑘𝑗 is nothing but 𝑎𝑗. Then, the equality 

becomes in the form of: 

 𝜕𝐿

𝜕𝑤𝑘𝑗
=
𝜕𝐿

𝜕𝑧𝑘
𝑎𝑗 (4.8) 

Use the chain rule again for the partial derivative of the cost function with respect to the 

𝑧𝑘, 

 𝜕𝐿

𝜕𝑧𝑘
=
𝜕𝐿

𝜕𝑜𝑘

𝜕𝑜𝑘
𝜕𝑧𝑘

 (4.9) 

Please notice that the partial derivative of 𝑜𝑘 with respect to 𝑧𝑘 is equal to the derivative 

of the transfer function. If the transfer function is considered as logistic sigmoid: 

 𝜕𝑜𝑘
𝜕𝑧𝑘

= 𝑜𝑘(1 − 𝑜𝑘) (4.10) 

Moreover, the partial derivative of the cost function with respect to the output generated 

by the network can be written as:  

 𝜕𝐿

𝜕𝑜𝑘
=

𝜕

𝜕𝑜𝑘

1

2
∑(𝑦𝑘 − 𝑜𝑘)

2

𝑘

 (4.11) 

In the equation above, the partial derivative of terms other than 𝑜𝑘 in the summation 

operation is equal to zero. Therefore, 

 𝜕𝐿

𝜕𝑜𝑘
=

𝜕

𝜕𝑜𝑘

1

2
(𝑦𝑘 − 𝑜𝑘)

2 (4.12) 

If the necessary arrangements are performed, 

 𝜕𝐿

𝜕𝑜𝑘
= −(𝑦𝑘 − 𝑜𝑘) (4.13) 
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If equations (4.8), (4.10), and (4.13) are combined, 

 𝜕𝐿

𝜕𝑤𝑘𝑗
= −(𝑦𝑘 − 𝑜𝑘)𝑜𝑘(1 − 𝑜𝑘)𝑎𝑗 (4.14) 

Let’s say −(𝑦𝑘 − 𝑜𝑘)𝑜𝑘(1 − 𝑜𝑘) = 𝛿𝑘, then, 

 𝜕𝐿

𝜕𝑤𝑘𝑗
= 𝛿𝑘𝑎𝑗 (4.15) 

The change in the corresponding weight then becomes equal to, 

 Δ𝑤𝑘𝑗 = −𝜂𝛿𝑘𝑎𝑗 (4.16) 

where 𝜂 stands for the learning rate. 

The amount of change or the amount of adjustment for the weights of hidden layer 

neurons can be calculated by using the same approach. However, the main difference is 

that the output of the hidden layer effects all neurons of the downstream layer. In this 

case, the downstream layer is nothing but the output layer. If the jth neuron of the hidden 

layer is considered, 

 𝜕𝐿

𝜕𝑤𝑗𝑖
=
𝜕𝐿

𝜕𝑧𝑗

𝜕𝑧𝑗

𝜕𝑤𝑗𝑖
 (4.17) 

Please notice that the partial derivative of 𝑧𝑗 with respect to 𝑤𝑗𝑖 is nothing but input 𝑥𝑖 . 

Then, 

 𝜕𝐿

𝜕𝑤𝑗𝑖
=
𝜕𝐿

𝜕𝑧𝑗
𝑥𝑖 (4.18) 

The cost function is affected by the 𝑧𝑗 via 𝑎𝑗 because 𝑎𝑗 is a component of 𝑧𝑘. 

Therefore, the partial derivative of the cost function with respect to 𝑧𝑗 can be expanded 

further by using the chain rule.  
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If the chain rule is applied, 

 𝜕𝐿

𝜕𝑧𝑗
= ∑

𝜕𝐿

𝜕𝑧𝑘

𝜕𝑧𝑘
𝜕𝑎𝑗

𝜕𝑎𝑗

𝜕𝑧𝑗𝑘∈𝑑𝑜𝑤𝑛
𝑠𝑡𝑟𝑒𝑎𝑚 𝑜𝑓 𝑗

 (4.19) 

It is previously derived that, 

 𝜕𝐿

𝜕𝑧𝑘
= 𝛿𝑘  (4.20) 

Therefore, 

 𝜕𝐿

𝜕𝑧𝑗
= ∑ 𝛿𝑘

𝜕𝑧𝑘
𝜕𝑎𝑗

𝜕𝑎𝑗

𝜕𝑧𝑗𝑘∈𝑑𝑜𝑤𝑛
𝑠𝑡𝑟𝑒𝑎𝑚 𝑜𝑓 𝑗

 (4.21) 

It is known that the partial derivative of 𝑧𝑘 with respect to 𝑎𝑗 is nothing but 𝑤𝑘𝑗. 

Furthermore, the partial derivative of 𝑎𝑗 with respect to 𝑧𝑗 is equal to the derivative of the 

transfer function. If logistic sigmoid function is used as transfer function, the equation 

becomes equal to: 

 𝜕𝐿

𝜕𝑧𝑗
= ∑ 𝛿𝑘𝑤𝑘𝑗𝑎𝑗(1 − 𝑎𝑗)

𝑘∈𝑑𝑜𝑤𝑛
𝑠𝑡𝑟𝑒𝑎𝑚 𝑜𝑓 𝑗

 (4.22) 

Consequently, 

 𝜕𝐿

𝜕𝑤𝑗𝑖
= 𝑎𝑗(1 − 𝑎𝑗) ∑ 𝛿𝑘𝑤𝑘𝑗

𝑘∈𝑑𝑜𝑤𝑛
𝑠𝑡𝑟𝑒𝑎𝑚 𝑜𝑓 𝑗

𝑥𝑖 (4.23) 

Let’s say, 

 
𝑎𝑗(1 − 𝑎𝑗) ∑ 𝛿𝑘𝑤𝑘𝑗

𝑘∈𝑑𝑜𝑤𝑛
𝑠𝑡𝑟𝑒𝑎𝑚 𝑜𝑓 𝑗

= 𝛿𝑗 (4.24) 
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Then the change in the cost function with respect to the weight of jth neuron is equal to: 

 𝜕𝐿

𝜕𝑤𝑗𝑖
= 𝛿𝑗𝑥𝑖 (4.25) 

The change in the corresponding weight becomes equal to the following: 

 Δ𝑤𝑗𝑖 = −𝜂𝛿𝑗𝑥𝑖 (4.26) 

where 𝜂 is the learning rate as in the previous derivation. 

Even though the convergence of the algorithm can be guaranteed when the step 

size, i.e. the learning rate, is selected properly, the algorithm converges very slowly which 

can create problems when quick convergence is needed. One way of providing quick 

convergence can be using the Gauss-Newton algorithm instead of the gradient descent. 

However, the Gauss-Newton algorithm does not guarantee convergence in every case. In 

order to benefit from the convergence guarantee of the gradient descent algorithm and the 

speed of the Gauss-Newton algorithm, the Levenberg-Marquardt algorithm was 

developed. 

4.5.2. Levenberg-Marquardt Algorithm 

The Levenberg-Marquardt algorithm is a minimization algorithm used in non-

linear least-squared problems and developed by Levenberg (1944) and Marquardt (1963) 

in different time periods independently. The application of the algorithm to machine 

learning problems was presented by Hagan and Menhaj (1994).  

As mentioned before, the Levenberg-Marquardt algorithm provides both the 

Gauss-Newton algorithm's speed and the gradient descent's convergence guarantee. As a 

very brief introduction to the Gauss-Newton algorithm, the change in the elements of a 

vector of n number of parameters is equal to: 

 Δ𝑥̅ = −[∇2𝑓(𝑥̅)]−1∇𝑓(𝑥̅) (4.27) 

where, ∇2𝑓(𝑥̅) is the Hessian matrix of the function and ∇𝑓(𝑥̅) is the gradient. If 𝑓(𝑥̅) is 

described as: 
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𝑓(𝑥̅) =∑𝑒𝑖

2(𝑥̅)

𝑘

𝑖=1

 (4.28) 

Then, gradient and Hessian of the function are approximated as follows: 

 ∇𝑓(𝑥̅) = 𝐽𝑇(𝑥̅)𝑒(𝑥̅) (4.29) 

 ∇2𝑓(𝑥̅) = 𝐽𝑇(𝑥̅)𝐽(𝑥̅) + 𝑆(𝑥̅) (4.30) 

where, 𝐽 is the Jacobian matrix, and 𝑆(𝑥̅) is given in the form of following: 

 

𝐽(𝑥̅) =

[
 
 
 
 
 
 
 
𝜕𝑒1(𝑥̅)

𝜕𝑥1

𝜕𝑒1(𝑥̅)

𝜕𝑥2
⋯

𝜕𝑒1(𝑥̅)

𝜕𝑥𝑛
𝜕𝑒2(𝑥̅)

𝜕𝑥1

𝜕𝑒2(𝑥̅)

𝜕𝑥2
⋯

𝜕𝑒2(𝑥̅)

𝜕𝑥𝑛
⋮ ⋮ ⋱ ⋮

𝜕𝑒𝑘(𝑥̅)

𝜕𝑥1

𝜕𝑒𝑘(𝑥̅)

𝜕𝑥2
⋯

𝜕𝑒𝑘(𝑥̅)

𝜕𝑥𝑛 ]
 
 
 
 
 
 
 

 (4.31) 

 
𝑆(𝑥̅) =∑𝑒𝑖(𝑥̅)∇

2𝑒𝑖

𝑘

𝑖=1

 (4.32) 

It is generally assumed that 𝑆(𝑥̅) ≅ 0. Physically, this assumption can be 

interpreted by the magnitude of the error. If the calculated errors or the Hessian of the 

errors are very small, then 𝑆(𝑥̅) ≅ 0 assumption is valid. If all findings are substituted 

back in equation (4.27), 

 Δ𝑥̅ = −[𝐽𝑇(𝑥̅)𝐽(𝑥̅)]−1𝐽𝑇(𝑥̅)𝑒(𝑥̅) (4.33) 

The Levenberg-Marquardt is a modified version of the Gauss-Newton algorithm 

having a positive combination coefficient, 𝜇, as follows: 

 Δ𝑥̅ = −[𝐽𝑇(𝑥̅)𝐽(𝑥̅) + 𝜇𝐼]−1𝐽𝑇(𝑥̅)𝑒(𝑥̅) (4.34) 

Please notice that the Levenberg-Marquardt algorithm is nothing but the Gauss-

Newton algorithm when 𝜇 is equal to zero but providing a positive combination 

coefficient assures that the matrix 𝐽𝑇(𝑥̅)𝐽(𝑥̅) + 𝜇𝐼 is always invertible which eliminates 

the problems of the Gauss-Newton algorithm. On the other hand, the combination 



49 
 

coefficient provides adaptability to the algorithm for example for very large 𝜇 values the 

algorithm turns to the gradient descent algorithm (Yu and Wilamowski 2018).  

The calculation of the Jacobian matrix is one of the critical issues in the 

implementation of the Levenberg-Marquardt algorithm to artificial neural networks. The 

elements of the Jacobian matrix can be calculated by using the standard back-propagation 

algorithm with minor modifications. Even though some changes have to be made in the 

back-propagation algorithm, the same logic applies due to the consecutive chain 

differentiation. One of the drawbacks of the Levenberg-Marquardt algorithm is that the 

size of the Jacobian matrix is dependent on the size of the network, i.e. the number of 

neurons and hidden layers. The algorithm loses its advantage of speed if the size of the 

network is large. Moreover, the algorithm can only be applied to multi-layer feed-forward 

neural networks. Therefore, the application range of the algorithm is limited. However, 

within its limits, the Levenberg-Marquardt algorithm is stable and efficient. 

4.5.3. Bayesian Regularization 

The ultimate aim of training neural networks in this thesis is to create a network 

that can approximate any function based on the data at hand. Regularization is applied to 

neural networks in order to increase the performance of the network. One of the 

commonly used regularization algorithms is Bayesian Regularization which was 

presented by Mackay (1992). A further implementation of Bayesian Regularization to the 

neural networks was performed by Foresee and Hagan (1997) by implementing the 

regularization with the Levenberg-Marquardt algorithm.  

The classical training approach for neural networks is to minimize a cost function 

or an error relationship described in the following form: 

 
𝐸𝐷 =∑(𝑦𝑖 − 𝑜𝑖)

2

𝑛

𝑖=1

 (4.35) 

As can be deducted from the previous formulations 𝑦𝑖 represents the 

actual/desired output whereas 𝑜𝑖 represents the output obtained by the network. Due to 

the error, the relationship between the actual output and the network output can be written 

as 𝑦𝑖 = 𝑜𝑖 + 𝑣𝑖 where 𝑣𝑖 is independent Gaussian noise. 
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In Bayesian Regularization, however, the cost function - or sometimes called the 

objective function - is written in the following form: 

 𝐹 = 𝛽𝐸𝐷 + 𝛼𝐸𝑊 (4.36) 

where 𝐸𝑊 is the regularizing function which is equal to the sum of squares of the weight 

terms, and 𝛼 and 𝛽 are called objective function parameters. It is needed a regularizing 

function in the neural networks to provide smoothness to the network weights when 

minimizing the errors. 

The main purpose of Bayesian Regularization is to minimize the function 𝐹 by 

using the appropriate objective function parameters and the Bayesian approach is used in 

order to obtain those parameters. In this approach, the network weights are considered 

random variables and they can be updated based on the data at hand as follows: 

 
𝑃(𝑤|𝐷, 𝛼, 𝛽,𝑀) =

𝑃(𝐷|𝑤, 𝛽,𝑀)𝑃(𝑤|𝛼,𝑀)

𝑃(𝐷|𝛼, 𝛽,𝑀)
 (4.37) 

where 𝐷 represents the available data, 𝑀 is the network configuration, and 𝑤 is the 

network weights. Actually, equation (4.37) represents the Bayes’ rule in the following 

form: 

 
𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =

(𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑)(𝑃𝑟𝑖𝑜𝑟)

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟
 (4.38) 

Therefore, the term 𝑃(𝑤|𝛼,𝑀) represents the prior density function of weights 

when there is no data. The likelihood term 𝑃(𝐷|𝑤, 𝛽,𝑀) indicates the probability of the 

data occurring given the weights. The normalization term 𝑃(𝐷|𝛼, 𝛽,𝑀) is used to obtain 

the total probability as 1.  

If the distribution of likelihood and prior density function is assumed Gaussian, 

then the probabilities can be written in the form of: 

 
𝑃(𝐷|𝑤, 𝛽,𝑀) =

1

𝑍𝐷(𝛽)
exp(−𝛽𝐸𝐷) (4.39) 
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𝑃(𝑤|𝛼,𝑀) =

1

𝑍𝑊(𝛼)
exp(−𝛼𝐸𝑊) (4.40) 

The equations introduced above can also be written as: 

 1

𝑍𝐷(𝛽)
𝑒𝑥𝑝(−𝛽𝐸𝐷) =

1

𝑍𝐷(𝛽)
𝑒𝑥𝑝 (−

1

1 𝛽⁄
∑𝑒𝑖

2

𝑛

𝑖=1

) (4.41) 

 1

𝑍𝑊(𝛼)
𝑒𝑥𝑝(−𝛼𝐸𝑊) =

1

𝑍𝑊(𝛼)
𝑒𝑥𝑝 (−

1

1 𝛼⁄
∑𝑤𝑖

2

𝑁

𝑖=1

) (4.42) 

For small noise, in order to normalize the distributions, 

 
𝑍𝐷(𝛽) = (

𝜋

𝛽
)

𝑛
2
 (4.43) 

 
𝑍𝑊(𝛼) = (

𝜋

𝛼
)

𝑁
2

 (4.44) 

It is known that 𝑃(𝐷|𝛼, 𝛽,𝑀) is just the normalizing term. Therefore, the posterior 

density function is directly related to the likelihood and prior density functions. If all these 

terms are substituted back into equation (4.37), 

 

𝑃(𝑤|𝐷, 𝛼, 𝛽,𝑀) =
[

1
𝑍𝐷(𝛽)

exp(−𝛽𝐸𝐷)] [
1

𝑍𝑊(𝛼)
exp(−𝛼𝐸𝑊)]

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟
 

(4.45) 

Rearranging the equation yields, 

 

𝑃(𝑤|𝐷, 𝛼, 𝛽,𝑀) =

1
𝑍𝐷(𝛽)𝑍𝑊(𝛼)

exp(−𝛽𝐸𝐷 − 𝛼𝐸𝑊)

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟
 

(4.46) 

Equivalently, 

 

𝑃(𝑤|𝐷, 𝛼, 𝛽,𝑀) =

1
𝑍𝐹(𝛼, 𝛽)

exp(−𝐹)

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟
 

(4.47) 
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In order to maximize the posterior probability, it is necessary to minimize the 

objective function and it can be achieved by determining optimum objective function 

parameters. 

The following equation is used to obtain the optimum objective function 

parameters by applying Bayes’ rule again. 

 
𝑃(𝛼, 𝛽|𝐷,𝑀) =

𝑃(𝐷|𝛼, 𝛽,𝑀)𝑃(𝛼, 𝛽|𝑀)

𝑃(𝐷|𝑀)
 (4.48) 

Please notice that in this case, the prior term is equal to 𝑃(𝛼, 𝛽|𝑀), the likelihood 

term becomes 𝑃(𝐷|𝛼, 𝛽,𝑀) and the normalization factor is 𝑃(𝐷|𝑀). If the prior term has 

uniform density for the objective function parameters, like in the previous case, the 

posterior term can only be maximized by maximizing the likelihood term. Interesting fact 

that the normalization factor of the equation (4.37) is nothing but the likelihood term of 

equation (4.48). If equation (4.37) is solved for the normalization factor, one can obtain 

the following equation: 

 
𝑃(𝐷|𝛼, 𝛽,𝑀) =

𝑃(𝐷|𝑤, 𝛽,𝑀)𝑃(𝑤|𝛼,𝑀)

𝑃(𝑤|𝐷, 𝛼, 𝛽,𝑀)
 (4.49) 

If the previous findings are substituted back into the equation, 

 

𝑃(𝐷|𝛼, 𝛽,𝑀) =
[

1
𝑍𝐷(𝛽)

exp(−𝛽𝐸𝐷)] [
1

𝑍𝑊(𝛼)
exp(−𝛼𝐸𝑊)]

1
𝑍𝐹(𝛼, 𝛽)

exp(−𝐹)
 (4.50) 

Equivalently, 

 
𝑃(𝐷|𝛼, 𝛽,𝑀) =

𝑍𝐹(𝛼, 𝛽)

𝑍𝐷(𝛽)𝑍𝑊(𝛼)

exp(−𝛽𝐸𝐷 − 𝛼𝐸𝑊)

exp(−𝐹)
 (4.51) 

Please notice that exp(−𝛽𝐸𝐷 − 𝛼𝐸𝑊) = exp(−𝐹). Therefore,  

 
𝑃(𝐷|𝛼, 𝛽,𝑀) =

𝑍𝐹(𝛼, 𝛽)

𝑍𝐷(𝛽)𝑍𝑊(𝛼)
 (4.52) 
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If 𝐹(𝑤) is approximated by using Taylor series expansion in quadratic form, 

 
𝑍𝐹(𝛼, 𝛽) ≈ (2𝜋)

𝑁
2 [det ((𝐇MP)

−1
)]

1
2
exp (−𝐹(𝑤MP)) (4.53) 

where 𝐇 is the Hessian matrix of the objective function and is equal to 𝛽∇2𝐸𝐷 + 𝛼∇
2𝐸𝑊. 

If calculated 𝑍𝐹(𝛼, 𝛽) is substituted into equation (4.52) and derivatives of the 

equation with respect to objective function parameters are evaluated, one can obtain the 

optimum objective function parameters as given below. 

 𝛼MP =
𝛾

2𝐸𝑊(𝑤
MP)

 (4.54) 

 𝛽MP =
𝑛 − 𝛾

2𝐸𝐷(𝑤
MP)

 (4.55) 

where 𝛾 is the effective number of parameters and equals to 𝑁 − 2𝛼MPtr(𝐇MP)−1, 𝑁 

denotes the total number of parameters in the network.  

It is necessary to calculate the Hessian matrix as can be seen from the derived 

equations. The Levenberg-Marquardt algorithm can be used in the calculation of the 

Hessian matrix. The procedure introduced in Foresee and Hagan (1997) can be tracked in 

order to perform calculations. The procedure consists of the following steps: 

1. Initialize the objective function parameters and the weights. For the objective 

function parameters 𝛼 and 𝛽 can be taken as 0 and 1, respectively. In the 

introduced procedure, the Nguyen and Widrow (1990) method was suggested for 

the initialization of the weights. 

2. The minimization of the objective function, 𝐹, can be performed by using the 

Levenberg-Marquardt algorithm. 

3. In order to calculate the effective number of parameters, the Hessian matrix can 

be approximated by using the Jacobian matrix and can be solved by using the 

Levenberg-Marquardt algorithm. 
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4. From the calculated effective number of parameters, new estimates for the 

objective function parameters can be obtained. 

5. Finally, steps 2 through 4 are repeated until convergence for the objective function 

parameters is achieved. 
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CHAPTER 5 

NUMERICAL EXAMPLES  

This chapter of the thesis will cover five different numerical examples. Four of 

them are well-known benchmark problems from literature and the last one is a new 

problem that is developed from a real-life reinforced concrete structure. A general 

framework followed in this thesis for reliability analysis of structural engineering 

problems by using artificial neural networks will also be introduced herein.  

5.1. General Framework of Solution Algorithm 

The solution algorithm applied to the numerical examples consists of several 

sequential steps that start from the generation of the dataset and end with CMCS by using 

ANN instead of calculating the actual limit state function by finite element analysis. In 

this subsection, those steps will be clearly explained as possible and it is hoped that this 

subsection will provide insight to the reader about the presented method. 

5.1.1. Generation of the Dataset and Analysis with Traditional 

Reliability Methods 

The solution algorithm consists of a combination of Python and MATLAB scripts. 

The structure is modeled and analyzed in Python by using OpenSeesPy. FORM, SORM, 

CMCS, and IS analyses are performed by using Pystra which is an open software that 

works with OpenSeesPy in order to perform reliability analysis. Additionally, the 

necessary dataset for training ANN is generated in Python by using the previously 

constructed OpenSeesPy model. Then the dataset is written into a spreadsheet file in a 

tabular fashion. 
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5.1.2. Training Parameters and Algorithm for ANN 

The artificial neural networks used for the reliability analysis are trained by using 

the Bayesian Regularization algorithm in this study. The main advantage of the Bayesian 

Regularization algorithm is not its efficiency in computation time but its increased 

prediction capability with respect to Levenberg-Marquardt algorithm. The algorithm 

optimizes the Levenberg-Marquardt algorithm to increase the accuracy of predictions and 

obtain a generalized artificial neural network by minimizing error.  

No validation checks are performed for the default Bayesian Regularization 

algorithm function in MATLAB. However, it has been observed that refusing validation 

checks leads to overfitting in artificial neural networks due to consideration of the 

performance of the training set as one of the main stopping criteria. Therefore, a 

maximum number of failures for validation checks are also defined in this study for 

training networks. In this case, however, the networks are trained based on the 

performance of the validation set. Fortunately, it has also been observed that the 

performance of the validation set and training set have a tendency to behave similarly 

which means that the starting of overfitting in the training phase affects negatively both 

the performance of validation and test sets. This common behavior enables the use of the 

performance of the validation set as one of the main stopping criteria in the training phase. 

The dataset in the training phase was partitioned by ratios of 70%, 15%, and 15% 

for training, validation, and test sets. 

5.1.3. Determination of ANN Architecture 

The main function in MATLAB imports the tabulated dataset and turns the table 

format into an array format in order to create a compatible dataset for the Neural Network 

Toolbox. After that, it sends the dataset to a function called “OptArch” which further 

sends the dataset to sub-functions such as “OneHiddenLayer”, “TwoHiddenLayers”, or 

“ThreeHiddenLayers” based on the raised flags. Those flags have been used as indicators 

that indicate the optimum architecture is found for the specified number of hidden layers 

by satisfying user-defined criteria. For example, if an optimum architecture - based on 

the coefficient of regression of the test set - for one hidden layer is not achieved then the 

script raises “flag=0” and increases the number of hidden layers to two hidden layers 
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automatically. However, if the criterion is satisfied then it raises “flag=1” and the sub-

function stops the search and saves the trained network.  

5.1.4. Reloading Trained ANN 

After saving the network, the “OptArch” function imports back the saved network 

and sends it to the main MATLAB function. However, in MATLAB, the networks are 

saved as structure-type arrays and therefore they cannot be imported directly. It is 

necessary to further import the network among the fields of the structure array. Then, they 

can be directly used for simulations. Alternatively, the trained network can be transferred 

to the main function directly, however, the above procedure is more useful if an existing 

network in the folder is to be used.  

5.1.5. Reliability Analysis by using ANN-CMCS 

New random variables are generated independently from the previously generated 

dataset for the training of neural network in order to create a dataset for CMCS. Finally, 

the main function sends the new dataset and trained network to the CMCS function to 

perform CMCS. In the CMCS function, the trained network is used as a surrogate instead 

of the OpenSeesPy model. Those analysis steps can be illustrated as a flow chart given in 

Figure 5.1. 

5.1.6. Repetitive CMCS for the Probability of Failure Estimation 

CMCS for each problem is repeated 10 times due to the small volatility in the 

results in each run because of the generation of new CMCS samples which are completely 

different from each other and the dataset used in the training. This process prevents 

obtaining a single optimistic result for just for one run and leads to a more general 

probability estimate. The mean value of the probability of failure obtained from all runs 

is accepted as the final probability of failure estimate. Repetitions increase the CPU time 

of analyses but it was observed that the increase in time is just a few seconds and therefore 

the increase is negligible. 
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Figure 5.1. Flow chart of the solution algorithm. 
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5.2. Cantilever Beam Example 

This example is taken from the study of Rajashekhar and Ellingwood (1993) in 

order to present the efficiency of artificial neural networks in low-dimensional reliability 

problems. In the problem, a cantilever beam subjected to a uniformly distributed vertical 

load given in Figure 5.2 is considered. The beam has a rectangular cross-section having 

a depth-to-width ratio equal to two. The modulus of elasticity and length of the beam are 

considered deterministic variables equal to 2.6x104 MPa and 6 m respectively. The limit 

state function that represents the maximum serviceability deflection at the free end of the 

beam is defined explicitly in the equation below: 

 
𝑔 = −

(𝑤𝑏)𝑙4

8𝐸𝐼
+

𝑙

325
 (5.1) 

If the modulus of elasticity and length of the beam are substituted to the equation 

above and the width of the beam is written in terms of the depth, the equation simplifies 

to the following: 

 𝑔(𝑤, ℎ) = 18.46154 − (7.476923𝑥1010)
𝑤

ℎ3
 (5.2) 

The statistical properties of the uniformly distributed load and depth of the beam 

are provided in Table 5.1.  

Table 5.1. Statistical properties of the cantilever beam 

Random Variable Mean Value Coefficient of Variation Distribution Type 

w 1000 N m2⁄  0.20 Normal 

h 250 mm2 0.15 Normal 
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Figure 5.2. Configuration of the cantilever beam (Source: Beheshti Nezhad, Miri, and 

Ghasemi 2019a). 

5.2.1. Results 

FORM, SORM, CMCS, and IS methods have been applied to the example given 

above before the application of ANN-CMCS coupling. The results obtained from FORM, 

SORM, CMCS, and IS are given in the table below: 

Table 5.2. Results of FORM, SORM, IS, and CMCS analyses for the cantilever beam 

example. 

Method Estimated Probability of Failure 

FORM 0.00988 

SORM (Breitung) 0.00957 

SORM (Breitung HR) 0.00952 

IS (7000 Samples with 0.02 CoV) 0.00964 

CMCS (42000 Samples with 0.05 CoV) 0.00964 

 

The change in coefficient of variation (CoV) and estimated probability of failure with 

respect to the number of simulations for CMCS are given in Figure 5.3 and Figure 5.4. 
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Figure 5.3. Change in the coefficient of variation with respect to the increasing number 

of simulations for the cantilever beam example. 

 

Figure 5.4. Change in the estimated probability of failure with respect to the increasing 

number of simulations for the cantilever beam example. 

Then, neural networks have been trained with different sizes of training samples 

in order to observe the effect of training samples on the probability estimate. For this 

purpose, there are 11 different datasets have been generated with a sample size of 30, 50, 

100, 250, 500, 750, 1000, 1250, 1500, 1750, and 2000. The performance metrics for each 

trained network are given in the figures below indicating that the networks for each 

dataset trained well: 
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Figure 5.5. Performance metrics of the network that is trained by using 30 samples for 

the cantilever beam example. MSE performance (on the left side), regression 

plots (on the right side). 

 

 

Figure 5.6. Performance metrics of the network that is trained by using 50 samples for 

the cantilever beam example. MSE performance (on the left side), regression 

plots (on the right side). 
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Figure 5.7. Performance metrics of the network that is trained by using 100 samples for 

the cantilever beam example. MSE performance (on the left side), regression 

plots (on the right side). 

 

 

Figure 5.8. Performance metrics of the network that is trained by using 250 samples for 

the cantilever beam example. MSE performance (on the left side), regression 

plots (on the right side). 
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Figure 5.9. Performance metrics of the network that is trained by using 500 samples for 

the cantilever beam example. MSE performance (on the left side), regression 

plots (on the right side). 

 

 

Figure 5.10. Performance metrics of the network that is trained by using 750 samples for 

the cantilever beam example. MSE performance (on the left side), 

regression plots (on the right side). 
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Figure 5.11. Performance metrics of the network that is trained by using 1000 samples 

for the cantilever beam example. MSE performance (on the left side), 

regression plots (on the right side). 

 

 

Figure 5.12. Performance metrics of the network that is trained by using 1250 samples 

for the cantilever beam example. MSE performance (on the left side), 

regression plots (on the right side). 
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Figure 5.13. Performance metrics of the network that is trained by using 1500 samples 

for the cantilever beam example. MSE performance (on the left side), 

regression plots (on the right side). 

 

 

Figure 5.14. Performance metrics of the network that is trained by using 1750 samples 

for the cantilever beam example. MSE performance (on the left side), 

regression plots (on the right side). 
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Figure 5.15. Performance metrics of the network that is trained by using 2000 samples 

for the cantilever beam example. MSE performance (on the left side), 

regression plots (on the right side). 

The probability estimates for the example with respect to the increasing number 

of training dataset size are given in Figure 5.16. It can be observed that the estimated 

probability of failure converges to the result obtained by using CMCS when the number 

of samples in the dataset increases. 

 

Figure 5.16. Change in probability estimate with respect to the increasing number of 

samples in the datasets used in the neural networks for the cantilever beam 

example. 
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5.3. Simple Portal Frame Example 

The simple portal frame structure given in the study of Deng et al. (2005) is 

revisited in this example. The structural configuration of the frame is given in Figure 5.17 

and the limit state function is defined as the exceedance of 0.01 meters of the horizontal 

displacement in the third node.  

In the example, the cross-section area of columns (A1) and beams (A2), and the 

horizontal wind load (P) are considered random variables without correlation whereas 

the modulus of elasticity (E) is a deterministic variable equal to 2x106  kN m2⁄ . 

Additionally, the relationship between the moment of inertial and the cross-sectional area 

of the members is defined as follows: 

 𝐼𝑖 = 𝛼𝑖𝐴𝑖
2 (5.3) 

The statistical properties of the random variables and coefficients of 𝛼𝑖 are listed 

in Table 5.3.  

 

Figure 5.17. Configuration of the portal frame (Source: Deng et al., 2005). 

 

Table 5.3. Statistical properties of the portal frame 

Random 

Variable 
Mean Value 

Coefficient of 

Variation 

Distribution 

Type 

Coefficient 

𝛼𝑖 

A1 0.36 m2 0.10 Lognormal 0.08333 

A2 0.18 m2 0.10 Lognormal 0.16670 

P 20.0 kN 0.25 Gumbel - 
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5.3.1. Results 

FORM, SORM, CMCS, and IS methods have been applied to the example given 

above before the application of ANN-CMCS coupling. The results obtained from FORM, 

SORM, CMCS, and IS are given in the table below: 

Table 5.4. Results of FORM, SORM, IS, and CMCS analyses for the simple portal frame 

example. 

Method Estimated Probability of Failure 

FORM 0.002239 

SORM (Breitung) 0.002305 

SORM (Breitung HR) 0.002311 

IS (8000 Samples with 0.02 CoV) 0.002350 

CMCS (1E6 Samples with 0.02 CoV) 0.002343 

 

The change in coefficient of variation (CoV) and estimated probability of failure with 

respect to the number of simulations for CMCS are given in Figure 5.18 and Figure 5.19. 

 

Figure 5.18. Change in the coefficient of variation with respect to the increasing number 

of simulations for the simple portal frame example. 
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Figure 5.19. Change in the probability estimate with respect to the increasing number of 

simulations for the simple portal frame example. 

The performance metrics for each trained network are given in the figures below 

indicating that the trained networks for each dataset trained well. 

 

 

Figure 5.20. Performance metrics of the network that is trained by using 30 samples for 

the simple portal frame example. MSE performance (on the left side), 

regression plots (on the right side). 
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Figure 5.21. Performance metrics of the network that is trained by using 50 samples for 

the simple portal frame example. MSE performance (on the left side), 

regression plots (on the right side). 

 

 

Figure 5.22. Performance metrics of the network that is trained by using 100 samples for 

the simple portal frame example. MSE performance (on the left side), 

regression plots (on the right side). 



72 
 

 

 

Figure 5.23. Performance metrics of the network that is trained by using 250 samples for 

the simple portal frame example. MSE performance (on the left side), 

regression plots (on the right side). 

 

 

Figure 5.24. Performance metrics of the network that is trained by using 500 samples for 

the simple portal frame example. MSE performance (on the left side), 

regression plots (on the right side). 
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Figure 5.25. Performance metrics of the network that is trained by using 750 samples for 

the simple portal frame example. MSE performance (on the left side), 

regression plots (on the right side). 

 

 

Figure 5.26. Performance metrics of the network that is trained by using 1000 samples 

for the simple portal frame example. MSE performance (on the left side), 

regression plots (on the right side). 
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Figure 5.27. Performance metrics of the network that is trained by using 1250 samples 

for the simple portal frame example. MSE performance (on the left side), 

regression plots (on the right side). 

 

 

Figure 5.28. Performance metrics of the network that is trained by using 1500 samples 

for the simple portal frame example. MSE performance (on the left side), 

regression plots (on the right side). 
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Figure 5.29. Performance metrics of the network that is trained by using 1750 samples 

for the simple portal frame example. MSE performance (on the left side), 

regression plots (on the right side). 

 

 

Figure 5.30. Performance metrics of the network that is trained by using 2000 samples 

for the simple portal frame example. MSE performance (on the left side), 

regression plots (on the right side). 

The probability estimates for the example with respect to the increasing number 

of training dataset size are given in Figure 5.31. It can be observed that the estimated 

probability of failure converges to the result obtained by using CMCS with some amount 

of fluctuations when the number of samples in the dataset increases. 
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Figure 5.31. Change in probability estimate with respect to the increasing number of 

samples in the datasets used in the neural networks for the simple portal 

frame example. 

5.4. 12-Story 3-Bay Frame Structure Example 

The 12-story frame structure example given in Figure 5.32 has been covered in 

previous studies (Cheng and Xiao 2005; Cheng 2007; Beheshti Nezhad, Miri, and 

Ghasemi 2019a) as a benchmark problem to prove the efficiency of the developed 

methods. In this study, the frame structure will be analyzed to further investigate the 

capability of artificial neural networks in the structural reliability analysis field.  

The problem consists of six random variables that are the cross-sectional area for 

five different members (AI)  and horizontal acting load (P). There is also a relationship 

exists between the cross-sectional area and the moment of inertia of each member as in 

the previous example and given in the equation below. The modulus of elasticity is 

considered a deterministic variable equal to 2x107  kN m2⁄  and there is no correlation 

defined for the random variables. The limit state function is described as the exceedance 

a horizontal displacement limit of the top right node, 𝑢𝐴, as given in the equation below.  

 𝐼𝑖 = 𝛼𝑖𝐴𝑖
2 (5.4) 
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 𝑔(𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝑃) = 0.096 − 𝑢𝐴(𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝑃) (5.5) 

The statistical properties of the random variables and coefficients of 𝛼𝑖 are listed 

in Table 5.5.  

 

Figure 5.32. Configuration of the 12-story frame (Source: Beheshti Nezhad et al., 2019). 

 

Table 5.5. Statistical properties of the 12-story frame structure 

Random 

Variable 
Mean Value 

Coefficient of 

Variation 

Distribution 

Type 

Coefficient 

𝛼𝑖 

A1 0.25 m2 0.10 Lognormal 0.08333 

A2 0.16 m2 0.10 Lognormal 0.08333 

A3 0.13 m2 0.10 Lognormal 0.08333 

A4 0.20 m2 0.10 Lognormal 0.26670 

A5 0.15 m2 0.10 Lognormal 0.20000 

P 30.0 kN 0.25 Type I Largest - 

5.4.1. Results 

FORM, SORM, CMCS, and IS methods have been applied to the example given 

above before the application of ANN-CMCS coupling. The results obtained from FORM, 

SORM, CMCS, and IS are given in the table below: 
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Table 5.6. Results of FORM, SORM, IS, and CMCS analyses for the 12-story 3-bay frame 

structure example. 

Method Estimated Probability of Failure 

FORM 0.07292 

SORM (Breitung) 0.07583 

SORM (Breitung HR) 0.07676 

IS (18000 Samples with 0.01 CoV) 0.07631 

CMCS (1E5 Samples with 0.01 CoV) 0.07648 

 

The change in coefficient of variation (CoV) and estimated probability of failure with 

respect to the number of simulations for CMCS are given in Figure 5.33 and Figure 5.34. 

 

Figure 5.33. Change in the coefficient of variation with respect to the increasing number 

of simulations for the 12-story 3-bay frame structure example. 
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Figure 5.34. Change in the probability estimate with respect to the increasing number of 

simulations for the 12-story 3-bay frame structure example. 

The performance metrics for each trained network are given in the figures below 

indicating that the trained networks for each dataset trained well. 

 

 

Figure 5.35. Performance metrics of the network that is trained by using 30 samples for 

the 12-story 3-bay frame structure example. MSE performance (on the left 

side), regression plots (on the right side). 
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Figure 5.36. Performance metrics of the network that is trained by using 50 samples for 

the 12-story 3-bay frame structure example. MSE performance (on the left 

side), regression plots (on the right side). 

 

 

Figure 5.37. Performance metrics of the network that is trained by using 100 samples for 

the 12-story 3-bay frame structure example. MSE performance (on the left 

side), regression plots (on the right side). 
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Figure 5.38. Performance metrics of the network that is trained by using 250 samples for 

the 12-story 3-bay frame structure example. MSE performance (on the left 

side), regression plots (on the right side). 

 

 

Figure 5.39. Performance metrics of the network that is trained by using 500 samples for 

the 12-story 3-bay frame structure example. MSE performance (on the left 

side), regression plots (on the right side). 
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Figure 5.40. Performance metrics of the network that is trained by using 750 samples for 

the 12-story 3-bay frame structure example. MSE performance (on the left 

side), regression plots (on the right side). 

 

 

Figure 5.41. Performance metrics of the network that is trained by using 1000 samples 

for the 12-story 3-bay frame structure example. MSE performance (on the 

left side), regression plots (on the right side). 
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Figure 5.42. Performance metrics of the network that is trained by using 1250 samples 

for the 12-story 3-bay frame structure example. MSE performance (on the 

left side), regression plots (on the right side). 

 

 

Figure 5.43. Performance metrics of the network that is trained by using 1500 samples 

for the 12-story 3-bay frame structure example. MSE performance (on the 

left side), regression plots (on the right side). 
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Figure 5.44. Performance metrics of the network that is trained by using 1750 samples 

for the 12-story 3-bay frame structure example. MSE performance (on the 

left side), regression plots (on the right side). 

 

 

Figure 5.45. Performance metrics of the network that is trained by using 2000 samples 

for the 12-story 3-bay frame structure example. MSE performance (on the 

left side), regression plots (on the right side). 

The probability estimates for the example with respect to the increasing number 

of training dataset size are given in Figure 5.46. It can be observed that the estimated 

probability of failure converges to the result obtained by using CMCS with some amount 

of fluctuations when the number of samples in the dataset increases. 



85 
 

 

Figure 5.46. Change in probability estimate with respect to the increasing number of 

samples in the datasets used in the neural networks for the 12-story 3-bay 

frame structure example. 

5.5. 5-Story 3-Bay Correlated Frame Structure Example 

In this example, a 5-story 3-bay structural frame system given in Figure 5.47 was 

reanalyzed. This example has been investigated by several researchers previously 

(Beheshti Nezhad, Miri, and Ghasemi 2019b; Blatman and Sudret 2010; Bucher and 

Bourgund 1990a; Liu and Kiureghian 1986; X. S. Nguyen et al. 2009; Richard, Cremona, 

and Adelaide 2012; Roussouly, Petitjean, and Salaun 2013; Wei and Rahman 2007) 

The limit state function is defined as the exceedance of 60 mm horizontal 

displacement at the top right node. The structural system consists of 8 different members, 

2 different elasticity modules, and 3 horizontal-acting loads. The moment of inertia and 

area of each member is considered random variable along with loads and elasticity 

modules. Therefore, a total of 21 correlated random variables exist in this problem. The 

distribution of random variables related to the geometry of members and material 

properties is deliberately selected as truncated normal distribution in order to prevent the 

generation of non-physical quantities in the simulation. The statistical properties of the 

random variables are given in Table 5.7. The coefficients of correlation between the 

random variables used in this study are given below: 
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• 𝜌𝐴𝑖𝐴𝑗 = 𝜌𝐼𝑖𝐼𝑗 = 𝜌𝐴𝑖𝐼𝑗 = 0.13 

• 𝜌𝐹𝑖,𝑗 = 0.95 

• 𝜌𝐸𝑖,𝑗 = 0.90 

• 𝜌𝐴𝑖𝐼𝑖 = 0.95 

Table 5.7. Statistical properties of the correlated frame structure 

Random 

Variable 
Mean Value 

Standard 

Deviation 
Unit Distribution Type 

F1 133.454 40.04 kN Lognormal 

F2 88.970 35.59 kN Lognormal 

F3 71.175 28.47 kN Lognormal 

E1 2.173752x107 1.915200x106 kN m2⁄  Truncated Normal [0,+∞) 

E2 2.379736x107 1.915200x106 kN m2⁄  Truncated Normal [0,+∞) 

I1 0.813443x10-2 1.083440x10-3 m4 Truncated Normal [0,+∞) 

I2 1.150936x10-2 1.298048x10-3 m4 Truncated Normal [0,+∞) 

I3 2.137452x10-2 2.506090x10-3 m4 Truncated Normal [0,+∞) 

I4 2.596095x10-2 3.028778x10-3 m4 Truncated Normal [0,+∞) 

I5 1.081076x10-2 2.596095x10-3 m4 Truncated Normal [0,+∞) 

I6 1.415540x10-2 3.461460x10-3 m4 Truncated Normal [0,+∞) 

I7 2.327853x10-2 5.624873x10-3 m4 Truncated Normal [0,+∞) 

I8 2.596065x10-2 6.490238x10-3 m4 Truncated Normal [0,+∞) 

A1 3.125640x10-1 5.581500x10-2 m2 Truncated Normal [0,+∞) 

A2 3.721000x10-1 7.442000x10-2 m2 Truncated Normal [0,+∞) 

A3 5.060600x10-1 9.302500x10-2 m2 Truncated Normal [0,+∞) 

A4 5.581500x10-1 11.163000x10-2 m2 Truncated Normal [0,+∞) 

A5 2.530280x10-1 9.302500x10-2 m2 Truncated Normal [0,+∞) 

A6 2.911683x10-1 10.232275x10-2 m2 Truncated Normal [0,+∞) 

A7 3.730300x10-1 12.093250x10-2 m2 Truncated Normal [0,+∞) 

A8 4.186000x10-1 19.537500x10-2 m2 Truncated Normal [0,+∞) 
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Figure 5.47. The configuration of correlated frame structure (Source: Beheshti Nezhad, 

Miri, and Ghasemi 2019a). 

5.5.1. Results 

FORM, SORM, CMCS, and IS methods have been applied to the example given 

above before the application of ANN-CMCS coupling. The results obtained from FORM, 

SORM, CMCS, and IS are given in the table below: 

Table 5.8. Results of FORM, SORM, IS, and CMCS analyses for the 5-story 3-bay 

correlated frame structure example. 

Method Estimated Probability of Failure 

FORM 0.000170 

SORM (Breitung) 0.000245 

SORM (Breitung HR) 0.000252 

IS (46000 Samples with 0.01 CoV) 0.000245 

CMCS (2E6 Samples with 0.05 CoV) 0.0002525 
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The change in coefficient of variation (CoV) and estimated probability of failure with 

respect to the number of simulations for CMCS are given in Figure 5.48 and Figure 5.49. 

 

Figure 5.48. Change in the coefficient of variation with respect to the increasing number 

of simulations for the 5-story 3-bay correlated frame structure example. 

 

Figure 5.49. Change in the probability estimate with respect to the increasing number of 

simulations for the 5-story 3-bay correlated frame structure example. 
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The performance metrics for each trained network are given in the figures below 

indicating that the trained networks for each dataset trained well. 

 

 

Figure 5.50. Performance metrics of the network that is trained by using 30 samples for 

the 5-story 3-bay correlated frame structure example. MSE performance (on 

the left side), regression plots (on the right side). 

 

 

Figure 5.51. Performance metrics of the network that is trained by using 50 samples for 

the 5-story 3-bay correlated frame structure example. MSE performance (on 

the left side), regression plots (on the right side). 
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Figure 5.52. Performance metrics of the network that is trained by using 100 samples for 

the 5-story 3-bay correlated frame structure example. MSE performance (on 

the left side), regression plots (on the right side). 

 

 

Figure 5.53. Performance metrics of the network that is trained by using 250 samples for 

the 5-story 3-bay correlated frame structure example. MSE performance (on 

the left side), regression plots (on the right side). 



91 
 

 

 

Figure 5.54. Performance metrics of the network that is trained by using 500 samples for 

the 5-story 3-bay correlated frame structure example. MSE performance (on 

the left side), regression plots (on the right side). 

 

 

Figure 5.55. Performance metrics of the network that is trained by using 750 samples for 

the 5-story 3-bay correlated frame structure example. MSE performance (on 

the left side), regression plots (on the right side). 
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Figure 5.56. Performance metrics of the network that is trained by using 1000 samples 

for the 5-story 3-bay correlated frame structure example. MSE performance 

(on the left side), regression plots (on the right side). 

 

 

Figure 5.57. Performance metrics of the network that is trained by using 1250 samples 

for the 5-story 3-bay correlated frame structure example. MSE performance 

(on the left side), regression plots (on the right side). 
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Figure 5.58. Performance metrics of the network that is trained by using 1500 samples 

for the 5-story 3-bay correlated frame structure example. MSE performance 

(on the left side), regression plots (on the right side). 

 

 

Figure 5.59. Performance metrics of the network that is trained by using 1750 samples 

for the 5-story 3-bay correlated frame structure example. MSE performance 

(on the left side), regression plots (on the right side). 
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Figure 5.60. Performance metrics of the network that is trained by using 2000 samples 

for the 5-story 3-bay correlated frame structure example. MSE performance 

(on the left side), regression plots (on the right side). 

 

 

Figure 5.61. Performance metrics of the network that is trained by using 3000 samples 

for the 5-story 3-bay correlated frame structure example. MSE performance 

(on the left side), regression plots (on the right side). 
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Figure 5.62. Performance metrics of the network that is trained by using 4000 samples 

for the 5-story 3-bay correlated frame structure example. MSE performance 

(on the left side), regression plots (on the right side). 

 

 

Figure 5.63. Performance metrics of the network that is trained by using 5000 samples 

for the 5-story 3-bay correlated frame structure example. MSE performance 

(on the left side), regression plots (on the right side). 
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Figure 5.64. Performance metrics of the network that is trained by using 6000 samples 

for the 5-story 3-bay correlated frame structure example. MSE performance 

(on the left side), regression plots (on the right side). 

 

 

Figure 5.65. Performance metrics of the network that is trained by using 7000 samples 

for the 5-story 3-bay correlated frame structure example. MSE performance 

(on the left side), regression plots (on the right side). 
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Figure 5.66. Performance metrics of the network that is trained by using 8000 samples 

for the 5-story 3-bay correlated frame structure example. MSE performance 

(on the left side), regression plots (on the right side). 

 

 

Figure 5.67. Performance metrics of the network that is trained by using 9000 samples 

for the 5-story 3-bay correlated frame structure example. MSE performance 

(on the left side), regression plots (on the right side). 
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Figure 5.68. Performance metrics of the network that is trained by using 10000 samples 

for the 5-story 3-bay correlated frame structure example. MSE performance 

(on the left side), regression plots (on the right side). 

The probability estimates for the example with respect to the increasing number 

of training dataset size are given in Figure 5.69. It can be observed that the estimated 

probability of failure converges to the result obtained by using CMCS with some amount 

of fluctuations up to 6000 samples in the dataset. Then, a sudden drop in the probability 

estimate was seen. The reason for the sudden drop is investigated in detail in Section 6.2. 

 

Figure 5.69. Change in probability estimate with respect to the increasing number of 

samples in the datasets used in the neural networks for the 5-story 3-bay 

correlated frame structure example. 
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5.6. A Real-Life 11-Story Reinforced Concrete Structure 

A structure located in Kahramanmaraş/Türkiye is selected as a real-life example 

for this study. The structure has 11 stories and a roof story which is not included in the 

idealized model. The total height of the structure with the roof story is 37.75 meters 

whereas without the roof story 34.10 meters. The structure is constructed on sandy-silt 

soil having soil parameters as given in the table below. 

Table 5.9. Soil Properties of the Construction Stite 

Parameter Name Value Unit 

Soil Type ZD (Sandy Soil-Silt Soil) - 

Corner Period for Horizontal Acceleration 

Spectrum (Elastic Design), TA 
0.100 sec. 

Corner Period for Horizontal Acceleration 

Spectrum (Elastic Design), TB 
0.502 sec. 

Mapped, Short Period, Spectral Response 

Acceleration Parameter, SS 
0.763 - 

Mapped, 1.0 Second Period, Spectral 

Response Acceleration Parameter, S1 
0.210 - 

Design, Short Period, Spectral Response 

Acceleration Parameter, SDS 
0.912 - 

Design, 1.0 Second Period, Spectral 

Response Acceleration Parameter, SD1 
0.458 - 

Peak Ground Acceleration, PGA 0.322 g 

Peak Ground Velocity, PGV 19.922 cm/sec. 

 

A horizontal acceleration response spectrum can be generated for the location as 

shown in Figure 5.70 based on the provided soil parameters. 
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Figure 5.70. The horizontal response spectrum based on the given soil properties. 

The material properties for the materials used in the structure are given in Table 

5.10.  

Table 5.10. Material properties. 

Parameter Value Unit 

Characteristic Compressive Strength, Concrete, fck 30 MPa 

Characteristic Tensile Strength, Concrete, fctk 1.917 MPa 

Resistance Factor, Concrete, γc 1.5 - 

The Factor of Equivalent Rectangular Stress Distribution, k1 0.82 - 

Characteristic Yield Strength, Longitudinal Reinforcement, fyk 420 MPa 

Characteristic Yield Strength, Transverse Reinforcement, fywk 420 MPa 

Resistance Factor, Concrete, γs 1.15 - 

Modulus of Elasticity, E 31800 MPa 

Shear Modulus, G 13250 MPa 

Poisson Ratio, μ 0.20 - 

Unit Weight, Concrete 2.5 tonf/m3 

Coefficient of Thermal Expansion  1E-5 - 
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The section views of the structure are provided in Figure 5.71 and Figure 5.72 to 

provide information about the architectural configuration of the structure. The floor plans 

of the ground and mezzanine floors are given in Figure 5.73 and Figure 5.74, respectively. 

The ground floor has 4 meters in height whereas the mezzanine floor has 3.1 meters. 

Furthermore, they have additional two frames with respect to the normal floor plan.  

The normal floors including the ninth floor have 3 meters in height as depicted in 

Figure 5.75 and Figure 5.76. The roof floor, on the other hand, has fewer frames relative 

to the other floors and has the same height as normal floors. The detailed configuration 

of the roof floor is provided in Figure 5.77.  

As can be seen from the floor plans, the structure has shear walls against the lateral 

loads and they provide large amount stiffness of to the system due to their lengths and 

directions. However, a coupled shear wall exists in Grid D that attracts most of the lateral 

forces onto it. Even though this observation yields a guess about the stiffest frame in the 

structure, it is necessary to prove the guess mathematically. Determination of the stiffest 

grid in the structure is performed in Section 5.6.2. 
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Figure 5.71. Section view of the structure in North-East direction. 
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Figure 5.72. Section of the structure in North-West direction. 
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Figure 5.73. Ground floor plan. 
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Figure 5.74. Mezzanine floor plan. 
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Figure 5.75. Normal floor plan. 
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Figure 5.76. Ninth floor plan. 
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Figure 5.77. Roof floor plan. 
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5.6.1. Lateral Loads and Selection of the Representative Frame 

The earthquake load and wind load acting on the structure have been provided as 

a report companion to the drawings by the engineer. The calculated wind loads for each 

story are given in Table 5.11 whereas the earthquake loads calculate based on the modal 

superposition and equivalent earthquake load methods are provided in Table 5.12. 

Table 5.11. Wind loads acting on the structure. 

Floor X Direction (kN) Y Direction (kN) 

Roof 53.35 92.13 

9 100.19 133.59 

8 95.54 128.93 

7 95.54 128.93 

6 95.54 128.93 

5 95.54 128.93 

4 69.48 93.77 

3 69.48 93.77 

2 69.48 93.77 

1 69.48 93.77 

Mezzanine 44.88 82.81 

Ground 52.49 106.85 
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Table 5.12. Calculated earthquake loads for the structure. 

 X Direction Y Direction 

Floor 

Modal 

Super 

Position 

(kN) 

Equivalent 

Earthquake 

Loading 

(kN) 

Selected 

Load 

(kN) 

Modal 

Super 

Position 

(kN) 

Equivalent 

Earthquake 

Loading 

(kN) 

Selected 

Load 

(kN) 

Roof 284.82 378.92 284.82 345.92 421.78 345.92 

9 624.05 407.40 624.05 649.18 453.47 649.18 

8 384.32 400.37 384.32 434.37 445.64 434.37 

7 220.59 361.75 220.59 276.10 402.66 276.10 

6 154.10 323.12 154.10 206.54 359.67 206.54 

5 136.11 284.50 136.11 178.88 316.69 178.88 

4 133.56 245.88 133.56 162.26 273.69 162.26 

3 140.51 207.26 140.51 169.85 230.70 169.85 

2 161.46 168.64 161.46 183.31 187.72 183.31 

1 178.23 130.03 178.23 194.70 144.73 194.70 

Mezzanine 388.41 123.40 388.41 402.91 137.36 402.91 

Ground 287.14 48.67 287.14 249.53 54.17 249.53 

Total 3097.75 3079.94 3097.75 3453.59 3428.29 3453.59 

 

The stiffest grid on the structure can be obtained by using the dimensions of the 

columns and shear walls in the structure. The percentage for sharing lateral loads for each 

grid is provided in Table 5.13. 
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Table 5.13. Percentage of loads resisted by each grid. 

Grid Ground Floor (%) Mezzanine Floor (%) Normal Floors (%) 

A 3.19 3.19 0.20 

B 0.08 0.08 0.09 

C 0.06 0.06 0.00 

D 40.49 40.48 45.47 

E 0.65 0.65 0.69 

F 23.89 23.81 26.79 

G 31.16 31.24 26.49 

H 0.00 0.00 0.09 

I 0.48 0.48 0.18 

Total 100.00 100.00 100.00 

 

The stiffest grid in the structure is Grid D as expected previously. The earthquake loads 

acting on the grid at each floor level then can be calculated by multiplying the loads given 

in Table 5.12 and the percentages provided in Table 5.13. The calculated loads for the 

grid are indicated in Table 5.14. 
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Table 5.14. Earthquake loads acting on Grid D. 

Floor FX (kN) FY (kN) 

Roof 129.48 157.26 

9 283.70 295.16 

8 174.73 197.52 

7 102.33 125.51 

6 70.05 93.90 

5 61.89 81.33 

4 60.73 73.79 

3 63.89 77.22 

2 73.39 83.33 

1 81.01 88.50 

Mezzanine 157.23 163.10 

Ground 116.25 101.01 

Total 1374.68 1537.63 

 

It is known that Grid D is the stiffest grid in the structure based on the percentages 

provided in Table 5.13. Therefore, the frame in Grid D is going to attract most of the 

lateral forces itself and it will become the most critical frame and it can represent the 

behavior of the structure. For that reason, it is reasonable to select Grid D for the 

reliability analysis. The geometrical configuration of Grid D is shown in Figure 5.78, and 

the configuration will be used as a basis for the development of a real-life 11-story 

reinforced concrete structure problem. The proposed frame for the configuration 

illustrated in Figure 5.78 is given in Figure 5.79. In Figure 5.79, the elements denoted 

with R.L represent the assigned rigid links between the shear walls and adjacent beam 

elements. 
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Figure 5.78. Configuration of Grid D. 

 

Figure 5.79. Equivalent frame model for Grid D. 
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5.6.2. Determination of Random Variables and Limit State Function 

The random variables that will be used in the problem can be considered in three 

categories based on the origin of uncertainty. The uncertainties related to material, 

geometry, and load will be considered in this problem. Therefore, the modulus of 

elasticity of the concrete and its Poisson ratio, the cross-sectional area of the frame 

sections, and lateral loads can be taken into account as random variables. The following 

table contains the random variables that will be used in the problem. 

Table 5.15. The list of random variables for real-life RC frame structure. 

Random Variable Units Mean Value CoV Distribution Type 

E kN/m2 3.18E7 0.10 Normal 

μ - 0.20 0.10 Normal 

b1 m 0.70 0.05 Normal 

b2 m 1.50 0.05 Normal 

b3 m 0.25 0.05 Normal 

h1 m 0.30 0.05 Normal 

h2 m 0.25 0.05 Normal 

h3 m 0.50 0.05 Normal 

P11 kN 283.70 0.20 Lognormal 

P10 kN 174.73 0.20 Lognormal 

P9 kN 102.33 0.20 Lognormal 

P8 kN 70.05 0.20 Lognormal 

P7 kN 61.89 0.20 Lognormal 

P6 kN 60.73 0.20 Lognormal 

P5 kN 63.89 0.20 Lognormal 

P4 kN 73.39 0.20 Lognormal 

P3 kN 81.01 0.20 Lognormal 

P2 kN 157.23 0.20 Lognormal 

P1 kN 116.25 0.20 Lognormal 
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The limit state function can be constructed by considering a serviceability limit 

state function for infill walls. The residents experience high panic when cracks on infill 

walls are developed or they fear entering their building if heavy damage/failure in the 

walls occurs. This fear causes post-earthquake problems such as accommodation 

problems and renovation problems for a region affected by an earthquake and has a 

population of up to millions. Those problems related to fear and panic are observed by 

the author in the recent Türkiye-Syria earthquake.  

In Chapter 4.9 of 2018 Turkish Seismic Code (TSC2018) maximum limits for 

inter-story drift ratio are defined based on the connection of infill walls to structural 

elements. If there is no connection between the infill walls and structural elements exist 

then, the maximum inter-story drift ratio for a structure is defined as: 

 
𝜆
𝛿𝑖,𝑚𝑎𝑥
(𝑋)

ℎ𝑖
≤ 0.008𝒦 (5.6) 

where ℎ𝑖  represents the story height, 𝜆 is the ratio of spectral accelerations at the period 

of the structure for DD-3 and DD-2 earthquake levels defined in the code and it is 

approximately equal to 0.404. The constrant, 𝒦, is taken as 1.0 for reinforced concrete 

structures, and 𝛿𝑖,𝑚𝑎𝑥
(𝑋)

 is defined as the largest effective inter-story drift.  

The inter-story drift is calculated in TSC2018 as follows: 

 
𝛿𝑖,𝑚𝑎𝑥
(𝑋)

=
𝑅

𝐼
Δ𝑖
(𝑋)

 (5.7) 

where 𝑅 is a coefficient that describes the structural system behavior based on its expected 

ductility. 𝑅 is taken as 8 if the structure is to be designed as ductile coupled walls and 

ductile column elements. The building importance factor, 𝐼, is taken as 1.0 for residential-

type structures. The displacement between successive two floors is denoted by Δ𝑖
(𝑋)

 and 

calculated as: 

 Δ𝑖
(𝑋)

= 𝑢𝑖
(𝑋)

− 𝑢𝑖−1
(𝑋)

 (5.8) 

where 𝑢𝑖
(𝑋)

 represents the displacement at the upper node of a column or a shear wall 

element. 
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The same equation can also be used as follows if a connection between the infill 

walls and structural elements is provided. 

 
𝜆
𝛿𝑖,𝑚𝑎𝑥
(𝑋)

ℎ𝑖
≤ 0.016𝒦 (5.9) 

In this real-life frame problem, it is decided that the limit state function can 

constructed by using equation (5.9). The limit state function for the problem can be 

written as follows if the equation is arranged as below: 

 
𝑔(𝑋) = 0.008 − max

𝑖=1 𝑡𝑜 𝑡𝑜𝑡𝑎𝑙 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑜𝑟𝑖𝑒𝑠

(0.404)𝛿𝑖,𝑚𝑎𝑥
(𝑋)

ℎ𝑖
 (5.10) 

5.6.3. Modeling of the Frame in OpenseesPy 

The frame structure was modeled in 2D in OpenseesPy by using 

“forceBeamColumn” elements with elastic sections. It is assumed that the frame elements 

stay within their linear elastic limits under the defined loads. Furthermore, the deflections 

that occurred due to shear forces were also considered by imposing shear modulus and 

shear area to the elastic sections. The shear modulus was calculated by using the modulus 

of elasticity and Poisson’s ratio.  

Shear walls in the frame were modeled by using the wide column approach and 

they linked to adjacent beams via rigid links with beam type defined in OpenseesPy. The 

wide column approach was selected due to observed mesh sensitivity problems related to 

the drilling degree of freedom when shell elements are used. A shear wall in the frame 

was isolated from other elements to compare the performances of shell modeling (by 

using ShellMITC4 shell elements available in OpenseesPy) and the wide column 

approach by imposing the mean value of the loads acting at story levels. The exaggerated 

deflected shapes of the two approaches are shown in Figure 5.80.  
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Figure 5.80. Deflected shape of shell elements and equivalent frame element. 

 

The tip displacements of the two approaches are 27.74 cm and 28.11 cm for the 

equivalent wide column and shell elements respectively. The difference between the 

displacement of the two models is equal to 1.31 percent. Based on the results, it can be 

said that the equivalent frame elements can be used in the structure to model the shear 

walls for the purpose of this study. 

In the model, the effective stiffness multipliers stated by TSC2018 were used. For 

columns, the moment of inertia was multiplied by 0.7. For regular beams, the moment of 

inertia multiplied by 0.35 whereas the moment of inertia for coupling beams was 

multiplied by 0.15. Multipliers 0.5 and 0.5 were used to obtain effective stiffness in 

bending and shear for the equivalent frame element that is used for modeling shear walls. 

The model of the frame based on the wide column approach is given in Figure 

5.81 whereas the deformed shape of the model when the mean value of loads is applied 

is shown in Figure 5.82. 
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Figure 5.81. Frame model built in OpenseesPy. 

 

Figure 5.82. Deformed shape of the frame. 
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Another important issue to consider in the modeling of shear walls as equivalent 

wide columns is checking the amount of rotations at the ends of rigid links to validate the 

small rotation assumption for rigid links in OpenseesPy. Based on the analysis results of 

the model shown in Figure 5.81, rotation at both ends of the rigid links are provided in 

Table 5.16.  

Table 5.16. Rotation at both ends of rigid links. 

Floor 

Rotation at the 

Left End of 

Rigid Link on 

the Left 

Rotation at the 

Right End of 

Rigid Link on 

the Left 

Rotation at the 

Left End of 

Rigid Link on 

the Right 

Rotation at the 

Left End of 

Rigid Link on 

the Right 

Ground -0.000907 -0.000907 -0.000904 -0.000904 

Mezzanine -0.001311 -0.001311 -0.001311 -0.001311 

1 -0.001535 -0.001535 -0.001537 -0.001537 

2 -0.001654 -0.001654 -0.001655 -0.001655 

3 -0.001703 -0.001703 -0.001704 -0.001704 

4 -0.001705 -0.001705 -0.001705 -0.001705 

5 -0.001670 -0.001670 -0.001669 -0.001669 

6 -0.001609 -0.001609 -0.001607 -0.001607 

7 -0.001529 -0.001529 -0.001526 -0.001526 

8 -0.001444 -0.001444 -0.001440 -0.001440 

9 -0.001379 -0.001379 -0.001374 -0.001374 

 

From the table, it can be observed that the rotations are within acceptable limits 

to not violate the small rotation assumption. Therefore, there is no problem with using 

rigid links in the model. 
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5.6.4. Reliability Analysis by Using Pystra and ANN-CMCS 

FORM, SORM, CMCS, and IS methods have been applied to the example given 

above before the application of ANN-CMCS coupling. The results obtained from FORM, 

SORM, CMCS, and IS are given in the table below: 

Table 5.17. Results of FORM, SORM, IS, and CMCS analyses for the real-life 11-story 

RC frame structure example. 

Method Estimated Probability of Failure 

FORM 0.002453 

SORM (Breitung) 0.003082 

SORM (Breitung HR) 0.003228 

IS (23000 Samples with 0.01 CoV) 0.032423 

CMCS (2.93E5 Samples with 0.01 CoV) 0.033048 

 

The change in coefficient of variation (CoV) and estimated probability of failure with 

respect to the number of simulations for CMCS are given in Figure 5.83 and Figure 

5.84Figure 5.49. 

 

Figure 5.83. Change in the coefficient of variation with respect to the increasing number 

of simulations for the real-life 11-story RC frame structure example. 
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Figure 5.84. Change in the probability estimate with respect to the increasing number of 

simulations for the real-life 11-story RC frame structure example. 

The performance metrics for each trained network are given in the figures below 

indicating that the trained networks for each dataset trained well. 

 

 

Figure 5.85. Performance metrics of the network that is trained by using 50 samples for 

the real-life 11-story RC frame structure example. MSE performance (on 

the left side), regression plots (on the right side). 
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Figure 5.86. Performance metrics of the network that is trained by using 100 samples for 

the real-life 11-story RC frame structure example. MSE performance (on 

the left side), regression plots (on the right side). 

 

 

Figure 5.87. Performance metrics of the network that is trained by using 250 samples for 

the real-life 11-story RC frame structure example. MSE performance (on 

the left side), regression plots (on the right side). 
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Figure 5.88. Performance metrics of the network that is trained by using 500 samples for 

the real-life 11-story RC frame structure example. MSE performance (on 

the left side), regression plots (on the right side). 

 

 

Figure 5.89. Performance metrics of the network that is trained by using 750 samples for 

the real-life 11-story RC frame structure example. MSE performance (on 

the left side), regression plots (on the right side). 
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Figure 5.90. Performance metrics of the network that is trained by using 1000 samples 

for the real-life 11-story RC frame structure example. MSE performance (on 

the left side), regression plots (on the right side). 

 

 

Figure 5.91. Performance metrics of the network that is trained by using 1250 samples 

for the real-life 11-story RC frame structure example. MSE performance (on 

the left side), regression plots (on the right side). 
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Figure 5.92. Performance metrics of the network that is trained by using 1500 samples 

for the real-life 11-story RC frame structure example. MSE performance (on 

the left side), regression plots (on the right side). 

 

 

Figure 5.93. Performance metrics of the network that is trained by using 1750 samples 

for the real-life 11-story RC frame structure example. MSE performance (on 

the left side), regression plots (on the right side). 
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Figure 5.94. Performance metrics of the network that is trained by using 2000 samples 

for the real-life 11-story RC frame structure example. MSE performance (on 

the left side), regression plots (on the right side). 

The probability estimates for the example with respect to the increasing number 

of training dataset size are given in Figure 5.95. It can be observed that the estimated 

probability of failure converges to the result obtained by using CMCS when the number 

of samples in the dataset increases. 

 

Figure 5.95. Change in probability estimate with respect to the increasing number of 

samples in the datasets used in the neural networks for the real-life 11-story 

RC frame structure example. 
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CHAPTER 6  

DISCUSSION  

This chapter aims to further investigate the results obtained for the numerical 

examples and introduce fruitful discussions based on the observations made from the 

examples.  

The results of the numerical examples have shown that the estimated probability 

of failure by using ANN-CMCS coupling fluctuates if the number of samples in a dataset 

used in the training of the neural networks is increased. Depending on the number of 

samples in the dataset, the amount of fluctuation can be high or low. Therefore, the 

different estimates of the probability of failure in each number of samples cause the 

question of how many samples are needed in a dataset to obtain a probability of failure 

estimate with low fluctuation. It is basically a problem of convergence to a stable 

probability of failure estimation under the increasing number of samples in the training 

dataset. In this chapter, a novel convergence criterion will also be introduced to obtain a 

final estimate of the probability of failure among a set of probability of failure estimates. 

An interesting observation can be made from the 5-story 3-bay correlated frame 

structure example. In that example, the probability of failure estimation starts to diverge 

from the stable estimate when the number of samples increases in the dataset. It is a 

noteworthy question whether this behavior still be observed if a different dataset is going 

to be used in the training of a neural network. In addition to this problem, it should also 

be investigated whether different datasets have any effect on the final probability of 

failure estimate. For these reasons, 4 additional different datasets - independent from each 

other and the one used in Chapter 5 - have been generated for each example and analyses 

for the probability of failure estimation are repeated. 

Another important issue is to be pointed out that the performance of neural 

networks is satisfactory for each number of samples. However, even though the 

performances are well, the corresponding probability of failure estimate does not have to 

be satisfactory. 
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6.1. 3-Step Convergence Criterion 

A general observation can be made from the results of the numerical examples 

that the existence of fluctuations in the probability of failure estimates for the different 

number of samples in the training dataset. If those fluctuations are investigated deeply, 

one can realize that the final probability of failure estimate based on the amount of 

fluctuation between the successive two steps can be misleading because a decision based 

on the successive two steps can lead to an overestimation or underestimation. 

Alternatively, successive 3 steps can be used to determine the convergence of the 

estimation made for the probability of failure. If the probability of failure estimation for 

a specific number of samples is named as the current step, 𝑝𝑓𝑖, then, the one-step lower 

number of samples can be named the backward step and can be denoted by 𝑝𝑓𝑖−1. The 

same logic can be applied to the forward step. For the ideal case, all those 3 steps should 

be equal for a perfect convergence which means that the average of the probability of 

failures obtained from backward and forward steps is equal to the probability of failure 

corresponding to the current step. However, in practice, there is always a difference i.e. 

fluctuation between them. If the amount of fluctuation is represented by 𝜒 then, a 

formulation can be derived for the convergence criterion as given below: 

 |𝑝𝑓𝑖+1 − 2𝑝𝑓𝑖 + 𝑝𝑓𝑖−1|

2
= 𝜒 (6.1) 

If the amount of fluctuation is defined by a percentage of the probability of failure 

estimate at the current step, then the equation given above can be rewritten as follows for 

convergence check: 

 |𝑝𝑓𝑖+1 − 2𝑝𝑓𝑖 + 𝑝𝑓𝑖−1|

2
< 𝜓𝑝𝑓𝑖 

(6.2) 

The term denoted by 𝜓 in equation (6.2) can be considered as a coefficient for 

sensitivity. Generally, taking 𝜓 between 0.005 and 0.02 provides satisfactory results. 

However, it should also be noted that the higher coefficient of sensitivity comes with a 

price of higher error in the probability of failure estimate. 
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Once the convergence criterion is satisfied for a number of samples in the dataset 

then, the final estimate for the probability of failure can be calculated by using equation 

(6.3). 

 
𝑝𝑓̅̅ ̅ =

𝑝𝑓𝑖+1 + 𝑝𝑓𝑖 + 𝑝𝑓𝑖−1
3

 (6.3) 

Based on the convergence criterion introduced in equation (6.2) and formulation 

for the final probability of failure estimate defined in equation (6.3), the final probability 

estimate for each example is given in the table below: 

Table 6.1. Results the application of 3-step convergence criterion to the examples. 

Example 
Final Probability 

Estimate 

Error Compared 

to CMCS Result 

(%) 

𝜓 

Required 

Number of 

Samples for 

Convergence 

Cantilever Beam 0.00949857 1.47 0.01 500 

Simple Portal 

Frame 
0.00227873 2.74 0.01 100 

12-Story 3-Bay 

Frame Structure 
0.0736438 3.71 0.01 250 

5-Story 3-Bay 

Correlated Frame 

Structure 

0.000247967 1.60 0.01 5000 

Real-Life 11-Story 

RC Structure 
0.0329086 0.42 0.01 750 

 

From the table above, it can be stated that the proposed convergence criterion 

provides accurate estimates for the probability of failure with a lower number of samples 

compared to FORM, SORM, IS, and CMCS for the covered examples. 
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6.2. Effect of Different Datasets on the Probability of Failure 

Estimate 

The behavior observed in the 5-story 3-bay correlated frame example needs 

further investigation of the effect of the datasets used in the training of neural networks. 

Additional 4 different datasets independent from each other and the one used in the 

examples have been generated for each example in this study to observe the effect of 

datasets on the probability of failure estimate. 

The results of the analyses made for each example with 5 datasets are given in the 

following figures. 

 

Figure 6.1. Effect of the dataset on the probability of failure estimate for the cantilever 

beam example. 
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Figure 6.2. Effect of the dataset on the probability of failure estimate for the simple portal 

frame example. 

 

Figure 6.3. Effect of the dataset on the probability of failure estimate for the 12-story 3-

bay frame structure example. 
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Figure 6.4. Effect of the dataset on the probability of failure estimate for the 5-story 3-

bay frame structure example. 

 

Figure 6.5. Effect of the dataset on the probability of failure estimate for the real life 11-

story RC frame structure example. 
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The figures from Figure 6.1 to Figure 6.5 shows that the observation made for the 

5-story 3-bay correlated frame structure is a unique case related to the quality of the 

dataset. It is possible that the added samples can be sampled from the locations of the 

region that is not interested in reliability analysis of the limit state function. The shape of 

the limit state function estimated by the neural network might be affected by those 

samples. Consequently, those samples might lead to divergence from the expected 

probability of failure.  

Detailed information on the required number of samples for the convergence, 

probability of failure estimates, the coefficient of sensitivity, and the corresponding errors 

for each example and the dataset is provided in the tables below: 

Table 6.2. Effect of different datasets on the cantilever beam example. 

Dataset No. 

Final 

Probability 

Estimate 

Error 

Compared to 

CMCS Result 

(%) 

𝜓 

Required 

Number of 

Samples for 

Convergence 

1 0.00949857 1.47 0.01 500 

2 0.00952280 1.22 0.01 100 

3 0.00953810 1.06 0.01 750 

4 0.00950003 1.45 0.01 500 

5 0.00939387 2.55 0.01 100 
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Table 6.3. Effect of different datasets on the simple portal frame structure example. 

Dataset No. 

Final 

Probability 

Estimate 

Error 

Compared to 

CMCS Result 

(%) 

𝜓 

Required 

Number of 

Samples for 

Convergence 

1 0.00227873 2.74 0.01 100 

2 0.00232063 0.95 0.01 1000 

3 0.00237833 -1.51 0.01 750 

4 0.00233900 0.17 0.01 750 

5 0.00232893 0.60 0.01 1000 

 

Table 6.4. Effect of different datasets on the 12-story 3-bay frame structure example. 

Dataset No. 

Final 

Probability 

Estimate 

Error 

Compared to 

CMCS Result 

(%) 

𝜓 

Required 

Number of 

Samples for 

Convergence 

1 0.07364380 3.71 0.01 250 

2 0.07648150 0.00 0.01 250 

3 0.07469640 2.33 0.01 250 

4 0.07500890 1.92 0.01 250 

5 0.07535070 1.48 0.01 100 
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Table 6.5. Effect of different datasets on the 5-story 3-bay correlated frame structure 

example. 

Dataset No. 

Final 

Probability 

Estimate 

Error 

Compared to 

CMCS Result 

(%) 

𝜓 

Required 

Number of 

Samples for 

Convergence 

1 0.00024797 1.60 0.01 5000 

2 0.00023343 7.37 0.02 6000 

3 0.00025220 -0.08 0.01 5000 

4 0.00023733 5.82 0.02 8000 

5 0.00025310 -0.44 0.01 7000 

 

Table 6.6. Effect of different datasets on the real-life 11-story RC frame structure 

example. 

Dataset No. 

Final 

Probability 

Estimate 

Error 

Compared to 

CMCS Result 

(%) 

𝜓 

Required 

Number of 

Samples for 

Convergence 

1 0.0329086 0.42 0.01 750 

2 0.0327076 1.03 0.01 1000 

3 0.0324963 1.67 0.01 750 

4 0.0324975 1.67 0.005 1000 

5 0.0285349 13.66 0.005 250 

 

Throughout the tables from Table 6.2 to Table 6.6, it can be observed that the final 

estimate for the probability of failure that is made by using the 3-step convergence 

criterion approach has been not affected much by the different datasets for all examples. 

However, the dataset used in the training of neural networks certainly has an effect on the 

required number of samples for convergence. Furthermore, in some cases, it was 

necessary to change the coefficient of sensitivity to provide convergence or increase the 

accuracy of the estimation. Even though those changes are dependent on the user’s 
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preference, in general, the coefficient of sensitivity can be taken as 0.01 at the beginning 

of the process. If the convergence is not achieved, then it can be gradually increased to 

0.02. In a similar manner, the coefficient of sensitivity can be decreased to 0.005 in order 

to improve the accuracy.  

Another important point to be noted is that the required number of samples and 

convergence are also sensitive to the amount of difference between the number of samples 

for each step. For example, in this work, the number of samples is increased by 1000 

samples per step after 2000 samples. However, this non-uniform fashion of increasing the 

number of samples is not mandatory. One can also increase the number of samples, for 

example, 100 per step. In such a scenario, if the probability of failure estimate at the 

current step satisfies the convergence criterion, the required number of samples will be 

equal to 2100 due to the need for evaluation of the forward step. In the case that is used 

in this study, the required number of samples will be equal to 3000 samples due to the 

1000 sample increase per step. Even though 100 samples per step makes sense in terms 

of requiring less number of samples, it should also be kept in mind that one has to train 

much more neural networks because of the increase in the total number of steps until the 

convergence. Basically, this trade-off can be performed by considering the cost of 

evaluation of the limit state function at hand. If the evaluation of the limit state function 

is cheap, then a high amount of increase in the number of samples between steps can be 

more logical.  

6.3. Performance of a Neural Network in the Training Phase and 

Probability of Failure Estimate Capability 

The performance metrics of each neural network for each example have a high 

value of the coefficient of determination for both train, validation, and test sets because 

of the stopping criterion defined based on the coefficient of regression in the training 

phase i.e. the neural networks that have a lower coefficient of regression than the 

threshold value are rejected in the training phase. The higher coefficient of determination 

for those sets indicates that the neural network has high prediction potential and is well-

trained. On the other hand, however, even if the coefficient of determination for each set 

is high for a low number of samples, it is not a must that the estimation of the probability 
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of failure should be satisfactory. Therefore, a sole decision based on the coefficient of 

determination of the train, validation, and test sets can be deceiving. The main reason for 

this problem is that the coefficient of determination for those sets is calculated by using 

the limited data used in the training. It should also be noted that the training data includes 

the total data used in the train, validation, and test sets, therefore it is not only the number 

of samples in the train set. For that reason, the coefficient of determination of the test set 

is only an indicator of the prediction capability of neural networks for limited unseen data. 

Hence, the network might perform well for the limited unseen data but this does not 

guarantee that the network is able to predict all points in the limit state function. 

6.4. Comparison of ANN-CMCS Coupling with Other Methods 

It can be seen clearly from the results of the numerical examples and the tables 

provided in Sections 6.1 and 6.2  that ANN-CMCS coupling for structural reliability 

analysis provides accurate results with limited data. In some cases, the performance of 

SORM is superior to the other methods in terms of the computational cost and good level 

of accuracy. However, as stated in Section 3.1.6, it might converge in all cases and the 

level of accuracy depends on the shape of the limit state function which is not known for 

the implicit limit state functions priorly. On the other hand, the results of the simulation 

methods implemented in this study have shown that they require a large number of 

samples to yield a probability of failure estimate with a low coefficient of variation. At 

this point, ANN-CMCS coupling seems a promising method to balance convergence 

guarantee, accuracy, and low computational cost.  

It should also be realized that each method can be superior with respect to the 

others depending on the dimension of the problem, the shape of the limit state function, 

or the magnitude of the probability of failure to be estimated. For example, FORM 

provides excellent accuracy and much lower computational cost with respect to the other 

methods if the limit state function at hand is linear. On the other hand, it starts to lose its 

accuracy when the limit state function is highly non-linear. For the limit state functions 

close to the second-order polynomials, SORM becomes superior in terms of accuracy and 

computational cost balance. However, neither FORM nor SORM does guarantee a 
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convergency for all types of limit state functions and they start to lose their accuracy if 

the basic assumptions made in their derivation are starts to not valid. 

For non-linear and complex limit state functions the simulation methods can be 

preferable to reach a reliable probability of failure estimate. But their computational cost 

is high and IS might not be used if the prior FORM analysis does not converge to a design 

point. At this point, ANN-CMCS coupling becomes attractive because it is free from any 

prior analysis and it can perform well with the limited number of samples. Nevertheless, 

using ANN-CMCS coupling for reliability problems that have simple limit state functions 

– either linear or explicit – cannot be efficient due to the effort performed for the training 

of neural networks, and they also have a certain level of error inherently because of 

creating a surrogate for the limit state function at hand. 

Consequently, one should decide which method is more appropriate than the 

others based on the problem at hand. The following flowchart is developed based on the 

observations made from the examples introduced in this study to help the one who will 

perform structural reliability analysis. If the limit state function is not explicit, then the 

flowchart might be tracked from the decision point of “Is dataset limited?” question. 

 

Figure 6.6. Flowchart for selecting appropriate method under problem-specific conditions. 
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6.5. Comparison of the Results with the Results of Previous Studies 

In this subsection, a comparison between the obtained results from ANN-CMCS 

coupling for the benchmark examples and the results obtained from the selected previous 

studies that include the related problem will be performed. This subsection is essential 

because of providing a check of the consistency between the results and identifying the 

inconsistencies if there exist. Even though it is not possible to compare their 

computational efficiency because the number of samples used to find the result is not 

available in each study, it is possible to compare them in terms of accuracy. 

6.5.1. Comparison of the Results for the Cantilever Beam Example 

The cantilever beam example implemented in this study was also studied by 

Beheshti Nezhad, Miri, and Ghasemi (2019b), Rajashekhar and Ellingwood (1993), 

Cheng and Li (2008), and Ren and Bai (2011). The corresponding results obtained from 

the studies and the results obtained in this study are given in Figure 6.7. Based on the 

comparison of the results, it can be observed that ANN-CMCS coupling provides 

satisfactory results for the problem at hand. 

 

Figure 6.7. Comparison of different results obtained for the cantilever beam example. 
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6.5.2.  Comparison of the Results for the Simple Portal Frame Example 

The simple portal frame structure example is provided in the study of Deng et al. 

(2005). In the study, there are two results presented for the problem. The first one is the 

result of an ANN-CMCS coupling like in this study. The second result is based on the 

probability of failure estimate obtained by using the modified response surface approach 

without using cross terms. The results obtained from this study and Deng et al. (2005) are 

presented in Figure 6.8. From the figure, it can be said that the results agree well. 

 

Figure 6.8. Comparison of different results obtained for the simple portal frame structure 

example. 

6.5.3. Comparison of the Results for the 12-Story 3-Bay Frame 

Structure Example 

Cheng and Xiao (2005), Cheng (2007), and Beheshti Nezhad, Miri, and Ghasemi 

(2019a) have been studied on this problem in their studies. The problem configuration, 

definition of the limit state function, and the statistical distributions and properties of the 

random variables are the same in all those three studies. In this study, the problem is 

compatible with those above-mentioned studies. The comparison of the results is 
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provided Figure 6.9. Based on the figure, the results of ANN-CMCS coupling provide 

satisfactory results in terms of accuracy. 

 

Figure 6.9. Comparison of different results obtained for the 12-story 3-bay frame structure 

example. 

6.5.4. Comparison of the Results for the 5-Story 3-Bay Correlated 

Frame Structure Example 

The 5-story 3-bay correlated frame structure example has been investigated in 

several studies before as mentioned in Section 5.5. The results obtained from those studies 

and the results obtained from this study are provided in Figure 6.10. In the figure, the 

dashed line represents the result obtained from CMCS in this study. As can be shown 

from the figure, there is a considerable amount of difference between the results of the 

studies. The main reason for those differences is that the example has differences in 

random variables or differences in the coefficient of correlation in each mentioned study. 

The differences between studies related to the coefficient of correlation are given in Table 

6.7 whereas the differences related to the type of random variables and threshold value 

used in the limit state function are given in Table 6.8. 
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Figure 6.10. Comparison of different results obtained for the 5-story 3-bay correlated 

frame structure example. 

 

Table 6.7. Differences in studies in terms of coefficient of correlation. 

Authors 𝜌𝐴𝑖𝐴𝑗 𝜌𝐼𝑖𝐼𝑗 𝜌𝐴𝑖𝐼𝑗 𝜌𝐹𝑖,𝑗  𝜌𝐸𝑖,𝑗 𝜌𝐴𝑖𝐼𝑖 

Beheshti Nezhad, Miri, and Ghasemi 

(2019b) 
0.13 0.13 0.13 0.95 0.90 0.00 

X. S. Nguyen et al. (2009) 0.13 0.13 0.13 0.95 0.90 0.00 

Blatman and Sudret (2010) 0.13 0.13 0.13 0.00 0.90 0.95 

Richard, Cremona, and Adelaide 

(2012) 
0.13 0.00 0.00 0.95 0.90 0.00 

Roussouly, Petitjean, and Salaun 

(2013) 
0.13 0.13 0.13 0.00 0.90 0.95 

Wei and Rahman (2007) 0.13 0.13 0.13 0.00 0.90 0.95 

Liu and Der Kiureghian (1986) 0.13 0.13  0.13 0.50 0.90 0.95 

Bucher and Bourgund (1990b) 0.13 0.13 0.13 0.90 0.90 0.00 

This study 0.13 0.13 0.13 0.90 0.90 0.95 
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Table 6.7 and Table 6.8 show that even though the configurations are the same, the 

definition of the problem is different in almost all studies presented herein. Therefore, 

their results cannot be compared directly.  

Table 6.8. Differences in studies in terms of random variables and limit state function. 

Authors Type of Loads 

Type of Other 

Random 

Variables 

Threshold of 

Limit State 

Function 

Beheshti Nezhad, Miri, and 

Ghasemi (2019b) 
Gumbel Max Normal 0.061 

X. S. Nguyen et al. (2009) Gumbel Max Normal 0.061 

Blatman and Sudret (2010) Lognormal Truncated Normal 0.060 

Richard, Cremona, and 

Adelaide (2012) 
Gumbel Max Normal 0.061 

Roussouly, Petitjean, and 

Salaun (2013) 
Lognormal Normal 0.060 

Wei and Rahman (2007) Lognormal Normal 0.06096 

Liu and Der Kiureghian 

(1986) 
Rayleigh Normal 0.06096 

Bucher and Bourgund 

(1990b) 
Rayleigh Normal 0.061 

This study Lognormal Truncated Normal 0.060 

 

6.6. Adaptive Algorithm for ANN-CMCS Coupling 

The flowchart given in Figure 5.1 can be extended to obtain an adaptive algorithm 

as given in Figure 6.11. In the updated flowchart, a portion along the length of the random 

variables is used in the first step to obtaining a probability estimate. If the convergence 

criterion is not satisfied then, new samples are added and a new artificial neural network 

is trained for the extended dataset. This procedure continues until the convergence 

criterion given in equation (6.2) is satisfied. This adaptive scheme provides efficiency in 
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terms of computational cost by avoiding the evaluation of all random variables along their 

total length. 

Even though the number of new samples added after the first step is indicated as 

“m” in the flowchart, the number of “m” can be changed in each step i.e. it does not have 

to be equal to a constant number. This flexibility in the addition of new samples can be 

used to provide fine-tuning when the probability estimate reaches a plateau. 

The determination of the optimum number of new samples added at each step and 

the detailed application of the developed adaptive algorithm are open problems for future 

works. 

 

Figure 6.11. Adaptive algorithm for ANN-CMCS coupling. 
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CHAPTER 7 

CONCLUSION 

In this study, the theoretical background of the most widely known structural 

reliability methods and artificial neural networks is presented. Then, artificial neural 

networks have been coupled with CMCS and applied to the 4 well-known benchmark 

examples and one novel example derived from a real-life RC structure to reduce the 

computational effort made in analysis by providing a certain level of accuracy. Bayesian 

Regularization has been implemented in the training phase of the neural networks in order 

to increase the performance of the trained network. The obtained results are also 

compared with the commonly used structural reliability methods such as FORM, SORM, 

CMCS, and IS to investigate the efficiency of the introduced methodology. The results 

obtained for well-known benchmark examples are also compared with the selected 

studies from the literature in terms of accuracy. Additional effort has also been made to 

the important points inherent to artificial neural networks. The critical findings from this 

study are listed below: 

• A 3-step convergence criterion is developed in this study in order to stop the training 

of new neural networks with a larger dataset when the probability estimate is 

stabilized. A coefficient of sensitivity is also proposed to provide both high accuracy 

and convergence guarantee to the method. 

• Detailed analysis of results has revealed that the efficiency of the introduced 

methodology is dependent on the dataset used in the neural network. Even though the 

dataset affects the efficiency of the method, i.e. the size of the dataset – a larger dataset 

used in the training means a decrease in the efficiency due to the increase in the limit 

state function evaluation - the accuracy of the method still yields satisfactory results. 

• A distinction is also pointed out between the performance of the trained neural 

network and the performance of the method. This distinction basically states that a 

neural network trained by a small dataset and having a high coefficient of 

determination does not always represent the performance of the method. 
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• Based on the observations made from the numerical examples and related discussions, 

an adaptive algorithm for ANN-CMCS coupling is suggested to reduce the 

computational cost further while providing a certain level of accuracy. 

• The coupling of artificial neural networks and CMCS provides satisfactory results in 

most cases in both accuracy and efficiency based on the comparison made with the 

other methods and selected studies from the literature. However, FORM is a more 

appropriate method in terms of efficiency and accuracy when the limit state function 

at hand is linear. In a similar manner, SORM outperforms the other methods when the 

limit state function at hand is a second-order polynomial. Among all of the methods, 

CMCS is the most robust and reliable method when its computational cost is not 

prohibitive. The alternative, IS, can be used in order to decrease the computational 

cost of CMCS, however, it requires a design point to detect the most critical sampling 

region in the problem space. The main advantage of ANN-CMCS coupling does not 

require a design point and provides high accuracy with relatively low computational 

cost. Therefore, it is a preferable method when the limit state function is implicit and 

the dataset at hand is limited i.e. evaluating the limit state function is computationally 

costly. 
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