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ABSTRACT 

 

SHORT-TERM WIND SPEED AND POWER FORECASTING: A 

COMPREHENSIVE CASE STUDY FOR THREE OPERATIONAL 

WIND FARMS 

 

Wind energy is gradually growing with the increasing energy demand.  However, 

the rising wind power penetration into modern grids could seriously affect the safe 

operation of power systems and power quality due to the intermittence and randomness 

of wind characteristics. Several effective ways could be considered to mitigate these 

issues: a robust power grid, energy storage, and wind power forecasting. Optimal 

integration of wind energy into power systems calls for high-quality wind power 

predictions. This research focuses on the short-term forecast of wind speed and power 

generation. Firstly, wind speed forecasting is studied. A case study is performed to 

analyze the forecasting performance of five approaches: the multivariate Facebook 

Prophet, seasonal autoregressive integrated with moving average (SARIMA), SARIMA 

with exogenous variable (SARIMAX), gated recurrent units (GRU) and long short-term 

memory (LSTM). The performance indicators are applied to verify the effectiveness of 

models, which are R-square (R2), mean square error (MSE), root mean square error 

(RMSE), and mean absolute error (MAE). The predictions obtained by the LSTM model 

almost coincide with the real-time wind speed, which is also supported by the 

performance indicators, which indicate that the LSTM model outperforms the other 

methods for the real-time dataset of IZTECH meteorological mast. The second part of the 

study is to forecast the wind power generation using the LSTM model and the wind speed 

forecasts and wind speed power curve of wind turbines in the wind farms. The proposed 

model is validated using the real-time wind power generation data from the EPIAS 

Transparency Platform. Due to the unavailable meteorological dataset, an ERA5 dataset 

of the location is used to predict wind speed and power generation. Also, each wind farm's 

daily forecasts are obtained to investigate the results for Day-ahead Market. The results 

indicate that using the LSTM model with the ERA5 dataset could give better forecasts 

than wind farms’ own forecasts. Additionally, it is understood that if the SCADA data 

could be obtained, the forecasting performance might be increased. 
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ÖZET 

 

KISA DÖNEM RÜZGÂR HIZI VE GÜÇ TAHMİNİ: ÜÇ 

OPERASYONEL RÜZGÂR TARLASI İÇİN KAPSAMLI BİR VAKA 

ÇALIŞMASI 

 

Rüzgâr enerjisi, artan enerji talebi ile giderek büyümektedir. Bununla birlikte, 

modern şebekelerde artan rüzgâr enerjisi entegrasyonu, rüzgarın doğası gereği aralıklı ve 

rastgele olması nedeniyle güç sistemlerinin güvenli çalışmasını ve güç kalitesini ciddi 

şekilde etkileyebilir. Rüzgâr enerjisinin güç sistemlerine optimum entegrasyonu, yüksek 

kaliteli rüzgâr enerjisi tahminlerini gerektirir. Bu araştırma, rüzgâr hızı ve güç üretiminin 

kısa vadeli tahminine odaklanmaktadır. İlk olarak rüzgâr hızı tahmini incelenmiştir. Beş 

farklı yaklaşımın tahmin performansını analiz etmek için kapsamlı bir vaka çalışması 

yapılmıştır: çok değişkenli Facebook Prophet, hareketli ortalama ile entegre mevsimsel 

otoregresif (SARIMA), dış değişkenli SARIMA (SARIMAX), kapılı tekrarlayan birimler 

(GRU), ve uzun kısa süreli bellek (LSTM) modelleri kullanılmıştır. Performas 

göstergeleri, R-kare (R2), ortalama kare hata (MSE), ortalama karakök hata (RMSE), ve 

ortalama mutlak hata (MAE), modellerin etkinliğini doğrulamak için uygulanmıştır. 

LSTM modeli ile elde edilen tahminler, gerçek zamanlı rüzgâr hızı ile neredeyse 

örtüşmekte olup, aynı zamanda performans göstergeleri tarafından da desteklenmektedir. 

Bu da, LSTM modelinin IYTE ölçüm direğinin veri seti için diğer yöntemlerden daha iyi 

performans sergilediğini göstermektedir. Çalışmanın ikinci kısmı, rüzgâr tarlalarında 

rüzgâr hızı tahmini ve rüzgâr rütbinlerine ait güç eğrilerini, ve LSTM modelini kullanarak 

rüzgâr enerjisi üretiminin tahmin edilmesidir. Önerilen model, EPİAŞ Şeffaflık 

Platformu’ndan alınan rüzgâr enerjisi üretim verileri kullanılarak doğrulanmıştır. Mevcut 

olmayan meteorolojik veri seti nedeniyle, rüzgar hızını ve güç üretimini tahmin etmek 

için konumun ERA5 veri seti kullanılmıştır. Ayrıca, Gün Öncesi Piyasası için her bir 

rüzgar santralinin günlük tahminleri elde edilmiştir. Sonuçlar, ERA5 veri seti ile LSTM 

modelininin kullanılmasının, rüzgar tarlalarının kendi tahminlerinden daha iyi tahminler 

verebileceğini göstermektedir. Ayrıca SCADA verilerinin elde edilmesi durumunda 

tahmin performansının arttırılabileceği anlaşılmıştır.  
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CHAPTER 1 

 

INTRODUCTION 
 

Wind energy has been one of the most rapidly growing renewable energy sources 

in recent years (IEA, 2021). As is well known, it is an environmentally friendly and cost-

effective energy source that contributes to pollution reduction and economic 

development. Because of the randomness and intermittency of wind characteristics, 

increasing wind power penetration into modern grids can impact power system operation 

safety and quality. Energy storage and accurate wind speed forecasts can help to solve 

these issues. 

Limitations of excess energy storage lead to wind speed forecasting. For the usage 

of wind energy safely and efficiently, it is necessary to improve the accuracy of wind 

speed prediction. Since wind speed affects the wind energy produced, accurate wind 

speed prediction models can enhance the safety of energy systems. However, compared 

to other traditional power plants, wind speeds are highly dependent on various 

meteorological factors (e.g., temperature, relative humidity, barometric pressure, and 

wind direction). Wind power is not easily predictable due to its highly probabilistic and 

fluctuating properties. 

Research and contributions are currently being made on wind speed prediction. 

Many methods have been proposed in the literature to improve the accuracy and accuracy 

of forecasts. These methods can be divided into four groups: physical, statistical, artificial 

intelligence, and hybrid approaches. In addition, forecasting algorithms can be 

categorized based on very short-term (several seconds and 30 minutes ahead), short-term 

(30 minutes and 72 hours ahead), medium-term (72 hours and one week ahead), and long-

term (more than a week and a year ago) forecast periods (Meka et al., 2021). Recent 

studies have focused primarily on short-term wind forecasts due to the importance of 

wind forecasts for energy systems. In particular, the day before market, regulation, 

disposal, planning, load tracking, and other system operations occur during these periods. 

Therefore, a group of short-term prediction methods is examined in this study.  

The study is organized as follows: a literature survey of wind energy forecasting 

methods and the purpose of the thesis are given in the first chapter; Chapter 2 describes 
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the sites under study; the forecasting methods are compared in Chapter 3; the theory and 

method of the study are explained in Chapter 4, two different approaches in Chapter 5 

predict the wind power production of three operational wind farm.  

 

1.1 Literature Survey 

 

Before the 1990s, the significance of short-term prediction to power systems 

started to be attempted by the Pacific Northwest Laboratory (Wendel et al., 1978). Their 

conclusions showed that sufficiently reliable predictions might be used for the operation 

stages, such as weekly predictions for maintenance scheduling, daily predictions for load 

scheduling, and hourly forecasts to dispatch decisions. Wegley et al. (1984) investigated 

three methods: the persistence, autoregressive and generalized equivalent Markov models 

for 10-, 30-, and 60-min ahead. While the persistence model performed well for the 

shortest time ahead, the generalized equivalent Markov model was adequate for the 

longest. Geerts (1984) established ARMA and Kalman filter models for the wind energy 

integration to the grid with an hourly time-step for a 24 h forecast horizon. While both 

models outperformed the persistence model up to 16h, ARMA (2,1) performed better 

results than the Kalman filter. The persistence model is the most frequently utilized 

benchmark method in the literature. His results also remarked that using other variables 

could improve the forecast accuracy (e.g., temperature, pressure, and wind direction).   

In the 1990s, the installed capacity of wind energy was increasing worldwide, 

which caused a necessity to integrate an increase in wind power fluctuation into the grid. 

Motivated by this necessity, the electricity markets' members and researchers concerted 

their attention on short-term forecasting. Watson et al. (1992) worked on decreasing fossil 

fuel costs, utilizing numerical weather prediction (NWP) and model output statistics 

(MOS) to forecast wind speed and direction up to 18 h forecast horizon with an hourly 

time-step. Using the forecasts, they performed a case study on the UK grid system. They 

concluded that the predictions obtained by NWP and MOS could produce a significant 

improvement in fossil fuel savings compared to the persistence model. Jensen et al. (1994) 

proposed a wind power prediction tool (WPPT) enhanced by the Department of 

Informatics and Mathematical Modelling (IMM) from the Technical University of 

Denmark (DTU). The tool was built based on an autoregressive model using power as the 
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primary variable and wind speed as the exogenous variable and verified with seven wind 

farms. The predictions were obtained up to 36 h with a half-hourly time-step oriented to 

dispatch decisions. 

Since the year 2000, Zhang (2003) combined a seasonal ARIMA (SARIMA) and 

the least squares support vector machine (LSSVM) model. LSSVM improved results by 

forecasting the residuals of SARIMA outputs. Wang et al. (2004) described a 

mathematically nonlinear neural network model. In this algorithm, ANNs capture the 

short-term pattern in wind speed data. The long-term pattern is categorized as increasing, 

decreasing, and almost stable. The process is divided into short-term forecasting and 

adapting results to long-term forecasting. The results were compared to other linear 

regression approaches. This model improves the forecasting accuracy in short-term and 

long-term predictions. Damousis et al. (2004) developed a fuzzy logic model based on 

the spatial correlation model for wind speed and power generation forecasting. 

In contrast, it performs good results on flat terrain, but its performance declines 

in a complex landscape. Guoyang et al. (2005) stated that statistical methods use pattern 

identification, parameter estimation, and model checking to make a mathematical model 

of a problem based on a historical data set. The methods proposed by Jenkins can be 

divided into an autoregressive (AR), a moving average (MA), an autoregressive moving 

average (ARMA), and an autoregressive integrated moving average (ARIMA) model. 

Louka et al. (2008) indicated that the Kalman filter could eliminate systematic errors in 

the forecasting results of the NWP model. Jung et al. stated that physical methods 

outperform statistical methods in long-term wind prediction. As the NWP model slowly 

updates and lags behind the historical data, it might cause significant errors in the 

forecasting results. Due to the computational complexity, their applicability in short-term 

wind prediction is limited. 

Cassola et al. (2012) used the Kalman filter, which evaluates the predictions and 

observations obtained from the NWP model with statistical methods and establishes a 

regression between the predictions and observations. It corrects erroneous forecasts from 

the model based on the observations. Li et al. (2015) defined a dynamic SC model with a 

tracking framework created by the Kalman filter between the geographically distributed 

wind farms for short-term wind predictions. Filik et al. (2017) proposed ANN-based 

models that differentially combine multiple local meteorological measurements such as 
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wind speed, temperature, and pressure values. This method could improve wind speed 

forecasting for various situations. Zhu et al. (2019) studied methods that could predict 

wind speed in multiple regions by adding the SC model. Spatial characteristics were 

obtained by long short-term memory (LSTM) and a convolutional neural network. The 

forecasting limitations caused by a rapid change in wind speed were overcome by 

considering the geographical characteristics of the wind farms in the dynamic SC model. 

Shahid et al. (2020) developed a hybrid prediction model for nonlinear mapping using 

long short-term memory with wavelet kernels (WN-LSTM), which enriches deep 

learning for vanishing gradient and wavelet transformations. Compared with the well-

known existing models, a percentage improvement of up to 30% was obtained. Liu et al. 

(2020) proposed a model which consists of three stages. In the first step, the empirical 

wavelet transform reduces the nonstationarity of wind speed data by decomposing the 

data into subarrays. In the second step, three types of deep networks are applied to 

construct the forecasting model and calculate the results of all sub-series. In the last step, 

the reinforcement learning method combines the three deep networks. The results of each 

series are combined to get the final prediction results. Compared with nineteen alternative 

models, it provides the best accuracy. Hu et al. (2021) proposed a hybrid short-term 

forecasting method that integrates the corrected NWP and SC models into a Gaussian 

process (GP). Compared with the primary GP, the forecasting accuracy in different 

seasons is developed at 7.02%-29.7% using the corrected NWP, 0.65-10.23% after 

integrating SC, and 10.88-37.49% using the proposed hybrid model. 

 

1.2 The Purpose of the Thesis  

 

Renewable energy sources are the mainstay of any energy transition to reach the 

net zero target. While the countries gradually shift away from conventional resources, it 

is critical to understand the significant role of renewables in decarbonizing multiple areas 

to guarantee a smooth pathway to the net zero targets (IEA, 2021). Regarding renewables, 

wind energy has become one of the most important sources, with huge reserves and high 

commercial development value. However, the wind power series is highly nonlinear and 

nonstationary due to the inherent characteristics of wind energy. That can cause serious 

power imbalance issues due to voltage and frequency fluctuations and seriously affects 
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the power system dispatching, especially in the case of large-scale wind power integration 

into the grid. Most scholars focus on developing a highly accurate wind power prediction 

method to provide a more secure and stable power system (Jiandong et al., 2022). 

The forecasting models used in today's research and engineering are being 

investigated to find the best-performing model for an operational wind farm with real-

time production data. This research focuses on the short-term prediction of wind power 

generation, analyzing the different forecasting methods. Based on the earlier review and 

analysis, a model will be proposed to forecast wind speed. Datasets for four seasons 

collected from a meteorological mast and ERA5, mentioned in Section 2.1, will be 

utilized to verify the performance of forecasting models. For each experiment, all models 

will be evaluated separately. Four performance evaluation metrics will be used to 

compare the actual and prediction values. According to the analysis, the model gives 

better results, which indicates a higher accuracy, and will be selected. 

Considering the proposed model's effectiveness and efficiency, it is applied to 

wind power forecasting of three nearby wind farms as case studies: Urla, Kores Kocadag, 

and Germiyan wind farms, introduced in Chapter 2. The prediction results will be tested 

using the wind farms' real-time power generation. Finally, it will be determined whether 

nearby wind farms' power outputs could be predicted. 
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CHAPTER 2 

 

SITES DESCRIPTIONS 
 

2.1 The IZTECH Meteorological Mast 
 

The IZTECH meteorological mast was established at N 38⁰19'60" and E 26⁰37'58" 

in 2017. Its location is displayed in Figure 2.1.  

 

 

Figure 2.1. The IZTECH Meteorological Mast location  

The height of the meteorological mast shown in Figure 2.2 is 101 m, and the 

elevation from sea level is 52 m. It contains several instruments to measure the different 

quantities. These are one lightning rod, a cup anemometer, a flashlight mounted, three 

wind vanes, backup, other anemometers, humidity, temperature sensors, two ultrasonic 

3D anemometers, an air pressure sensor, and a data logger. Velocity and direction data 

are obtained from anemometers and wind vanes. Also, the mast has a solar panel and 

aviation light which maintains the mast from any accident. All the instruments' locations 

are respectively shown in Figure 2.3. In addition, IEC 61400-12 is applied as a standard 

for its setup (Tuna et al., 2018). 
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Figure 2.2. The IZTECH Meteorological Mast (Source: Tuna et al., 2018) 

 

Figure 2.3. Technical drawing of the IZTECH Meteorological Mast and instruments 

(Source: Tuna et al., 2018) 
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 The detailed information about the met mast is respectively tabulated in Table 2.1. 

Also, the derived values and their related parameters are classified in Table 2.2. 

Table 2.1. The IZTECH Mat Properties (Source: Tuna et al., 2018) 

Height Channel Sensor Unit 
101 m 
99 m 
76 m 
30 m 

WS101 
WS99 
WS76 
WS30 

Thies First Class Adv. 
Anemometer 

m/s 

52 m 
10 m 

WS52, WD52, 𝜃vir52 
 

Gill WindMaster 3D 
Anemometer 

m/s, ⁰, ⁰C 
 

98 m 
74 m 
28 m 

WD98 
WD74 
WD28 

Thies First Class Wind 
Vane 

⁰ 

90 m 
35 m 
3 m 

RH90, T90 
RH35, T35 
RH3, T3 

Galtec KPC 1.S/6-ME %, ⁰C 

90 m 
2 m 

P90 
P2 

Thies 3.1157.10.000 
Pressure 

hPa 

2 m - Ammonit Meteo40 Data 
Logger 

- 

 

Table 2.2. Derived parameters (Source: Tuna et al., 2018) 

Derived Values  Related Parameters 

𝝆10  P10, RH10, T10  
𝝆52  P52, RH52, T52  
𝒖∗,10  u10, v10, w10  
𝒖∗,52  u52, v52, w52  
Q,10  WS52, WD52, 𝜃vir52  
Q,52  WS10, WD10, 𝜃vir10  
L10  w10, T10, 𝑢∗,10, z 
L52  w52, T52, 𝒖∗,52, z 

 

2.2 Capacity Factor 
 

A capacity factor (CF) of a wind farm indicates how much energy is produced 

over a given period relative to the theoretical maximum possible it could provide, that is, 

operating full time (24 hours a day, 365 days a year): 

 

 
𝐶𝐹 =  

𝐴𝑐𝑡𝑢𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑅𝑎𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑓𝑢𝑙𝑙 𝑡𝑖𝑚𝑒
 × 100% 

(2.1) 
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CF can be calculated for a single wind turbine, a wind farm, or a region consisting 

of many wind farms. It depends on factors such as geographical location, turbine design, 

etc. For example, combining a larger rotor with a smaller generator can achieve a higher 

CF. Even a higher CF does not indicate higher efficiency or vice versa; it can be said that 

a higher CF is particularly more economical because the average CF of a wind turbine is 

proportional to the present net return over its lifetime. A wind farm's typical CF varies 

between 20% and 40%. That's why the CF value plays an essential role in deciding about 

the wind farm (Zhang, 2015). 

 

2.3 Three Operational Wind Farms 

 

Three operational wind farms under study in this work are Urla, Kores Kocadag, 

and Germiyan Wind Farms, located in the Urla region of Izmir. Onshore wind farms are 

composed of five, ten, and six wind turbines. The Urla and Germiyan wind farms started 

to operate in 2016, while the Kores Kocadag Wind Farm has been operating since 2013. 

The wind farms are displayed in Figure 2.4. 

 

Figure 2.4. Three operational wind farms (a) The Urla Wind Farm (Source: Egenda, n.d.) 

(b) The Kores Kocadag Wind Farm (Source: Dost Energy, n.d.) (c) The 

Germiyan Wind Farm (Source: Egenda, n.d.) 



10 
 

The technical data with its main specifications and the total installed capacity of 

each wind farm are tabulated in Table 2.3.   

Table 2.3. The technical data and total installed capacities of wind farms 

Wind 

Farm 

Turbine 

Type 

Rated 

Power 

(kW) 

Cut-

in 

wind 

speed 

(m/s) 

Cut-

out 

wind 

speed 

(m/s) 

Rotor 

Diameter 

(m) 

Hub 

Height 

(m) 

Total 

Installed  

Capacity 

MWm/MWe 

Urla Enercon 

E-82 E4 

3000 3.0 34 82 84 15  

 

13 

Kores 

Kocadag 

Nordex 

N90 

2500 3.0 25 90 100 

25 
Nordex 

N100 

2500 3.0 20 99.8 100 

Germiyan Enercon 

E82 E2 

2000 2.0 34 82 108 12  10.8 

 

The wind farms are on a complex terrain; their average elevations above sea level 

are 450 m, 345 m, and 147 m, as seen in Figure 2.5.  
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Figure 2.5. The locations and elevations of three operational wind farms (a) The Urla 

Wind Farm, (b) The Kores Kocadag Wind Farm, (c) The Germiyan Wind 

Farm 

The turbines are arranged in one row for each wind farm, with a length of 930 m, 

2410 m, and 1855 m, respectively. The Urla Wind Farm array is regularly spaced, and 

the spacing between turbines is 230 m (~2.8D). The Kores Kocadag Wind Farm array is 

irregularly spaced, and the spacing between turbines varies from 210 m (~2.33D) to 410 

m (~4.14D). The Germiyan Wind Farm arrangements are also irregularly spaced, and the 

spacing between turbines is 310 m (~3.78D) and 500 m (~6.1D). The coordinates of each 

turbine in the wind farms are tabulated in Table 2.4. 
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Table 2.4. The coordinates of each turbine in the wind farms 

Wind Farm/Turbines 

Coordinates 

Urla Kores Kocadag Germiyan 

T1 38° 19' 2.676" 

26° 36' 9.2052" 

38° 17' 26.682" 

26° 35' 27.024" 

38° 19' 6.2544" 

26° 26' 18.7794" 

T2 38° 19' 2.676" 

26° 36' 9.2052" 

38° 17' 26.682" 

26° 35' 27.024" 

38° 19' 6.2544" 

26° 26' 18.7794" 

T3 38° 19' 2.676" 

26° 36' 9.2052" 

38° 17' 26.682" 

26° 35' 27.024" 

38° 19' 16.5822" 

26° 26' 3.2712" 

T4 38° 19' 2.676" 

26° 36' 9.2052" 

38° 17' 26.682" 

26° 35' 27.024" 

38° 19' 36.6888" 

26° 26' 27.909" 

T5 38° 19' 2.676" 

26° 36' 9.2052" 

38° 17' 26.682" 

26° 35' 27.024" 

38° 19' 36.6888" 

26° 26' 27.909" 

T6 - 38° 17' 26.682" 

26° 35' 27.024" 

38° 19' 36.6888" 

26° 26' 27.909" 

T7 - 38° 17' 32.748" 

26° 36' 15.1698" 

- 

T8 - 38° 17' 32.748" 

26° 36' 15.1698" 

- 

T9 - 38° 17' 32.748" 

26° 36' 15.1698" 

- 

T10 - 38° 17' 32.748" 

26° 36' 15.1698" 

- 

 

The monthly and annual capacity factors (CF) of three operational wind farms 

from 2017 to 2021 are displayed in Figure 2.6 (EPIAS, n.d.) 
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Figure 2.6. The monthly and annual CF for three operational wind farms from 2017 to 

2021 (Source: EPIAS, n.d.) 

The monthly and annual power production of each wind farm from 2017 to 2021 

are tabulated in Table 2.5. 

Table 2.5. The monthly and annual power productions of three operational wind farms 

(Source: EPIAS, n.d.) 

Year Month Urla 

(MWh) 

Kores 

(MWh) 

Germiyan 

(MWh) 

2017 

January 4195.1 7735 3951.32 

February 4406.99 7352 4036.51 

March  2807.23 4707 2657.07 

April 2220.23 3580 1890.26 

May 2803.05 4730 2625.74 

June 1910.31 3125 1629.07 

July 5016.31 8562 3722.91 

August 6005.12 10523 4510.05 

September 2243.76 3304 1971.84 

October 4215.51 7028 3421.96 

November 2226.83 3953 2195.16 

December 5285.65 8719 4660.28 

Annual 43336.09 73318 37272.17 

2018 

January 4351.59 7193 3576.99 

February 3746.14 5935 3058.45 

March  4919.73 9170 4651.46 

April 2270.19 3287 1486.8 

May 2634.17 4477 2221.46 

June 2193.72 3348 1764 
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July 3115.01 5429 2576.07 

August 4228.24 6454 2777.94 

September 3869.15 5760 2890.64 

October 2992.63 4063 2189.58 

November 4919.91 8088 3707.51 

December 3912.02 6331 3264.6 

Annual 43152.5 69535 34165.5 

2019 

January 3768.09 7576 3977.31 

February 3585.26 7074 3620.5 

March  3850.34 7721 3960.96 

April 2888.62 6266 3156.87 

May 1926.88 3648 2044.82 

June 4009.13 6940 2961.5 

July 4125.41 6964 2789.52 

August 5377.46 9096 3681.25 

September 3777.86 5731 2645.53 

October 2647.23 3842 1616.94 

November 2512.92 4300 2672.83 

December 3599.11 6239 3101.3 

Annual 42068.31 75397 36229.33 

 

 

 

 

 

 

 

2020 

January 5256.6 9125 4470.02 

February 4325.82 7819 3814.73 

March  4188.29 7382 3405.12 

April 3944.84 6154 3062.58 

May 2344.64 4220 2356.81 

June 1995.04 3564 1844.57 

July 4773.32 7669 3274.03 

August 4606.12 7908 3274.06 

September 3463.88 5538 2699.47 

October 1761.49 2605 1574.31 

November 4838.75 7447 3679.72 

December 4619.7 7621 3972.87 

Annual 46118.49 77052 37428.29 

2021 

January 5115.82 9098 4735.68 

February 4514.34 7351 3595.23 

March  4385.97 7756 3698.37 

April 4406.23 8050 3843.97 

May 2428.63 3861 2379.4 

June 2409.16 3996 1714.34 

July 4985.29 8948 3952.6 

August 3979.3 6595 2996.3 

September 4755.54 7296 3715.05 

October 3913.44 6305 3363. 27 

(Cont. of the next page) 

(Cont. of the next page) 
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November 3974.68 6409 3328.2 

December 5307.39 9413 4730.09 

Annual 50175.79 85078 42052.5 
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CHAPTER 3 
 

THE COMPARISON OF FORECASTING METHODS 
 
 

3.1 Forecasting Methods 
 

3.1.1. Physical Methods 

 

Physical models consider physical factors such as terrain, obstacles, temperature, 

and pressure to predict wind speed. The physical models can be investigated in 

Computational Fluid Dynamics (CFD) and the Diagnostic Model. While CFD methods 

are employed to simulate the wind flow over complex terrain, Diagnostic models utilize 

the parametrizations of the boundary layer for wind flow over flat terrain (Wang et al., 

2018; Castellani et al., 2016).  

Another usage of these methods is an auxiliary input for the first step of other 

forecasting methods. Numerical weather prediction (NWP) is one of the most used 

physical methods meteorologists develop. Generally, it is utilized for large-scale weather 

prediction. Physical methods are mainly based on NWP, and the manufacturer's power 

curves are used in case of missing historical data. These methods may not provide 

accurate results for short-term wind prediction. NWP numerically solves the conservation 

equations at the specified region to increase the accuracy. Simultaneously, digital 

elevation models to describe the topography should be employed in NWP to obtain better 

results. Model output statistics (MOS) can be applied to minimize residual error 

(Tascikaraoglu et al., 2014; Lei et al., 2009; Foley et al., 2011; Hu et al., 2021). 

Several physical methods have been developed from now on. Risoe National 

Laboratory in Denmark developed The Predictor, which uses the NWP prediction grom 

High-Resolution Limited Area Model (HIRLAM) and Wind Atlas Analysis and 

Application Program (WAsP) to consider the local conditions (Landberg, 1998; 

Landberg, 1999; Landberg, 2001).  

A model is developed, which has a modular composition that enables the 

integration of several physical process modules, and each module has been built by a 

different group (Dudhia, 2014). The method is a new-generation mesoscale NWP model 
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called Weather Research and Forecasting (WRF) (Skamarock et al., 2008). Recently, the 

WRF model has been employed for more studies evaluating turbine-height wind speed. 

 

3.1.2. Statistical Methods 

 

Statistical methods use pattern identification, parameter estimation, and model 

checking to make a mathematical model of a problem based on a historical data set (Lei, 

2009). The statistical approach describes the relations between wind speed (or power) 

prediction and online measured data.  Numerous data are analyzed, and meteorological 

variables are not characterized in a statistical approach.  

The statistical models are relatively simple compared to the physical ones, and 

large-scale supplementary monitoring equipment is not essential, decreasing the cost. It 

can be specified that statistical approaches are commonly used for short-term prediction 

models since physical models need several computational sources and take a long lead 

time.  However, the accuracy of statistical models depends on the reliability of historical 

data and the number of observations (Di et al., 2019). Additionally, these models are 

usually linear, with limited capability to forecast wind speed series containing highly 

nonlinear and non-stationary characteristics (Nie et al., 2021).  

The statistical approach contains several autoregressive methods. The linear 

autoregressive method's prediction error is larger than the polynomial method due to the 

wind power fluctuations. The polynomial autoregressive model is a nonlinear regression 

model that shows a better fit for wind power prediction (Li et al., 2021).   

An autoregressive moving average (ARMA) model is established with different 

orders based on an order determination method and the wind power curve (Dong et al., 

2011). The weighted average method is adapted to the ARMA models to obtain the 

forecast values, which improves the forecast result to a certain extent. Still, the running 

time and calculation amount get more prominent due to the step calculation.  

Another approach is the Markov chain method, which aims to generate good 

synthetic wind speed data to obtain more accurate models. An artificial time series is 

developed utilizing Monte Carlo simulations for wind speed. Three semi-Markov models 

are proposed, and these models' statistical properties are compared with actual data and a 

synthetic time series produced over a simple Markov chain (D’Amico et al., 2013).  
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Kalman filters have also been widely utilized for meteorological variables in data 

assimilation and improving weather forecasting performance. While using classical 

Kalman filters improves air temperature forecasting, similar work for wind speed 

forecasting may produce poor results. A polynomial Kalman filter is proposed to improve 

the results according to the correction of the 10-m wind speed prediction (Cassola et al., 

2012).  

Current statistical approaches mainly focus on machine learning-based models to 

better understand the relation between linear and nonlinear characteristics of wind speed 

time series.  

 

3.1.3. Artificial Intelligence Methods 

 

Since the development of artificial intelligence technology, scientists have 

constructed intelligent prediction methods to employ them for wind energy prediction, 

containing artificial neural networks (ANN), extreme learning machines (ELM), and 

support vector machines (SVM) (Nie et al., 2021). 

ANN is a commonly used method that consists of many layers. It predicts the 

wind speed by learning from a data set with input-output mapping. Input and output data 

are required to train and test these networks. The features of ANN, such as being fault-

tolerant, fast, and straightforward, being able to learn and generalize, and being adaptable 

to different situations, are significant. Another method is the fuzzy logic model, which is 

used when it is difficult to model a system (Lei et al., 2008). 

  Deep learning methods have been focused on wind speed and power production 

because of their three characteristics: strong generalization skills, unsupervised feature 

learning, and big data training to develop the performance of prediction (Shadid et al., 

2020; Jiandong et al., 2022). Because of the prediction dependency on historical 

information, RNN employs complex vector values (Olaofe, 2020). The long-term 

dependencies cause the vanishing gradient problem. Long short-term memory (LSTM) is 

proposed to prevent this problem, which uses the loopback memory to save the gradient 

along the long-term dependencies (Hochreiter et al., 2017).  

SVM is one of the powerful machine learning methods which can be effectively 

employed for time-series forecasting with good results in different areas (Zhou et al., 
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2010). Such as, daily air pollution is predicted using SVM and wavelet decomposition 

(Osowski et al., 2007).  SVM could obtain a feed-forward network design with a single 

hidden layer of cells that are primarily nonlinear (Sreelakshmi et al., 2008). It is featured 

using a kernel trick technique for nonlinear classification issues. SVM can deal with high 

dimensional data even with small training data and could sufficiently handle the 

generalization of complex methods (Belousov et al., 2002). 

A control algorithm is supplied to predict the wind speed and power based on the 

ANN method using the back-propagation approach. The results show that this method 

could help obtain better economic benefits (Flores et al., 2002). A fuzzy method based on 

spatial correlation is proposed to forecast wind speed and power production. The 

technique performs better for flat terrain than complex landscapes (Damousis et al., 

2004). Apart from these approaches, different hybrid forecasting algorithms have been 

developed to get the advantage of the unique ability of individual methods. 

 

3.1.4. Hybrid Methods 

 
 

Hybrid methods combine the final prediction performance of individual 

forecasting models and ensure significant advantages compared to the unique models. 

Hybrid models usually consist of both linear and nonlinear models. Combining a linear 

and nonlinear model to forecast the hidden components embedded in the wind speed 

could show better performance to improve prediction accuracy (Tascikaraoglu et al., 

2014). 

A combination method is put forward to get the weight coefficient of individual 

methods (persistent, ARIMA, and ANN-based models), which uses the maximum 

entropy basis. RMSE of every single and combination model are compared for different 

forecasting horizons (1-6h) (Han et al., 2010).  

A new model is proposed based on the combination of the variational mode 

decomposition (VMD) approach. The model decomposes the original wind power series 

to remove local features. The long short-term memory (LSTM) and deep belief networks 

based on particle swarm optimization (PSO-DBN) establish sub-series forecasting 

methods. Then, the multiple sub-series methods are merged by a nonlinear weighted 
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combination approach based on PSO-DBN to create a hybrid method (Jiandong et al., 

2022). 

The characteristic of NWP and historical wind power data are extracted to obtain 

an accurate result using the feature-extracting approach. The model combines ELM and 

least squares SVM (LSSVM) methods. Then, critical parameters of models are optimized 

by developing a cuckoo search (ICS) to achieve a reliable result, specified as the pre-

combined prediction value (PPA). Finally, the pre-combined forecasting method weights 

are allocated using a variance strategy to get the final predictions (Lu et al., 2021). 

A hybrid deep learning method is proposed to get more accurate forecasts for a 

wind farm's very short-term wind power generation. The gated recurrent units and fully 

connected neural networks are combined to improve the performance using the Harris 

Hawks Optimization to tune the hyperparameters (Hossain et al., 2021).  

Kalman filter-based approaches have an effective recursive algorithm to estimate 

the states of the system, reducing the MSE values, and developing the combined wind 

speed and power prediction methods. A recurrent multilayer perceptron (RMLP) method 

is put forward to predict one-step power production, training by an extended Kalman filter 

(EKF)- based back propagation (BP) through a time algorithm (Li, 2003; Tascikaraoglu 

et al., 2014). 

 

3.2 The Forecasting Methods Under Study 
 

3.2.1. Facebook Prophet 

 

Facebook Prophet is a decomposable time series forecasting model to deal with 

the standard features of business time series, which was developed by the core data 

science team of Facebook in 2017 (Chung et al., 2014; Vishwas et al., 2020). 

Significantly, it is also constructed to consist of intuitive parameters that can be 

determined with fewer details of the underlying model. It is essential for the analyst to 

efficiently tune the model (Taylor et al., 2018). It has three main model components: 

trend, seasonality, and holidays, which are combined in the following equation: 

 𝑦(𝑡) =  𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝜖𝑡   (3.2) 
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Here, the g(t) function is the trend function which is a piecewise linear or logistic 

growth curve to model non-periodic variations. Seasonality of the s(t) function represents 

periodic variations (e.g., weekly/yearly). The h(t) function is the impacts of the holiday, 

which happen on potentially irregular schedules. 𝜖𝑡 is an error term that accounts for 

idiosyncratic variations the model does not accommodate. The Prophet tries to fit 

numerous linear and nonlinear functions of time as components utilizing time as a 

regressor. Two trend models are used for Facebook applications: a nonlinear saturating 

growth model and a piecewise linear model. A nonlinear model, in its most basic form of 

the logistic growth model, is represented as: 

 
𝑔(𝑡) =  

𝐶

1 + exp (−𝑘(𝑡 − 𝑚))
 

(3.2) 

Where C is the carrying capacity, that is, the maximum value of the curve, k 

represents the growth rate, which means the curve’s steepness, and m is an offset 

parameter. If the k is tuned, m must also be adjusted to connect the endpoints of segments. 

A piecewise linear model with a constant rate of growth is then: 

 
𝑔(𝑡) =  

𝐶(𝑡)

1 + exp (−(𝑘 + 𝑎(𝑡)𝑇𝛿)(𝑡 − (𝑚 + 𝑎(𝑡)𝑇𝛾))
 

(3.3) 

Where 𝛿 and 𝛾 are vector rate correction that describes the variation in the rate 

that happens at the time 𝑠𝑗. The variation points result in the growth rate will change, and 

the trend model is: 

 𝑔(𝑡) =   (𝑘 + 𝑎(𝑡)𝑇𝛿)𝑡(𝑚 + 𝑎(𝑡)𝑇𝛾)  (3.4) 

𝛾𝑗 is adjusted to −𝑠𝑗𝛾𝑗 to make the function continuous. The seasonal effect could 

be represented with the following equation: 

 

𝑠(𝑡) =   ∑(𝑎𝑛 cos (
2𝜋𝑛𝑡

𝑃
) + 𝑏𝑛 sin (

2𝜋𝑛𝑡

𝑃
))

𝑁

𝑛=1

  
(3.5) 

Where P represents a regular period, usually, because holidays and events do not 

follow a periodic pattern, their effects could not correctly be modeled by a smooth cycle 

(Caraka et al., 2018). Prophet allows the analyst to supply a custom list of past and future 

events. A window consisting of such days is considered distinctly, and extra parameters 

are fitted to model the impact of holidays and events. Before the analysis, the data should 
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be split into training and testing (Taylor et al., 2018; Oo et al., 2019; Toharudin et al., 

2020; Thiyagarajan et al., 2020; Asha et al., 2020). 

 

3.2.2. Seasonal Autoregressive Integrated with the Moving Average 

(SARIMA) 

 

Autoregressive (AR), autoregressive with moving average (ARMA), and 

autoregressive integrated with moving average (ARIMA) are the main statistical models 

which are used to predict time series (Garcia et al., 2019). Box and Jenkins introduced 

ARIMA in 1976 (Box et al., 1976). ARIMA can predict future values based on its 

historical values, which are lagged, and prediction errors lag (Fathi, 2019; Dubey et al., 

2021). ARIMA has three main components: p is the number of lags observed values, d is 

the degree of differencing to make the predictors independent so the series can turn 

stationary, and q is the moving average (MA) degree. d should be chosen in what order 

autocorrelation (AC) reaches zero. p could be decided using the order of AR, which 

should be equivalent to the lags in the partial autocorrelation (PAC), which significantly 

cuts the limit set (Dubey et al., 2021; Liu et al., 2021). Non-seasonal ARIMA methods 

are demonstrated as ARIMA (p, d, q), and to choose these coefficients, mainly Box–

Jenkins methodology is applied (Sharma et al., 2016; Garcia et al., 2019). The following 

equation defines linear expression: 

 

𝑦𝑡 =  ∑(𝛷𝑖𝑦𝑡−𝑖)

𝑝

𝑖=1

+ ∑(𝜃𝑗𝑦𝑡−𝑗)

𝑞

𝑗=1

+ 𝜀𝑡  
(3.6) 

Where 𝑦𝑡 is the observation of time series at time t {𝑦𝑡|t=1, 2, …, N}, 𝛷𝑖 is the ith 

autoregressive coefficient, 𝜃𝑗  is the jth moving average coefficient, 𝜀𝑡 is the error term at 

time t (Fang et al., 2016; Garcia et al., 2019). 

When the requirement of seasonal patterns arises in the time series, a seasonal 

term is added to the ARIMA model, which makes the model SARIMA SARIMA can be 

expressed as the following equation:  

 𝐴𝑅𝐼𝑀𝐴 (𝑝, 𝑑, 𝑞) × (𝑃, 𝐷, 𝑄)𝑆  (3.7) 
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While (𝑝, 𝑑, 𝑞) represents the non-seasonal part, (𝑃, 𝐷, 𝑄)𝑆 represents the 

seasonal parts of the model. S refers to the number of periods per season. For instance, s 

can be defined as 12 for monthly observations because of 12 months a year. For hourly 

observations, s is generally set as 24 because of 24 hours a day (Chen et al., 2018; Siami-

Namini et al., 2018; Dubey et al., 2021; Liu et al., 2021). The SARIMA model can be 

mathematically expressed as the following formula:  

 𝜑𝑝(𝐵)𝛷𝑃(𝐵𝑠)∇𝑑∇𝑠
𝐷𝑦𝑡 = 𝜃𝑞(𝐵)𝛩𝑄(𝐵𝑠)𝜀𝑡 (3.8) 

Here, 𝑦𝑡 is the observation of time series at time t {𝑦𝑡|t=1, 2, …, N}. The 

expressions 𝜑𝑝(𝐵) and 𝜃𝑞(𝐵) denote the order of the characteristic polynomial of non-

seasonal AR and MA components. 𝛷𝑝(𝐵𝑠) and 𝛩𝑄 (𝐵𝑠
) denote the seasonal AR and MA 

polynomial. ∇𝑑 and ∇𝑠
𝐷indicate the non-seasonal and seasonal time series are 

differentiating operators, eliminating the non-seasonal and seasonal non-stationarity, 

respectively. B operates on 𝑦𝑡 by shifting it at one point, denoted as the backshift operator. 

All operators and the polynomials are expressed as follows (Fıskın et al., 2019; Fathi et 

al., 2019; Dutta et al., 2021; Manigandan et al., 2021): 

 

𝜑𝑝(𝐵) = 1 − ∑ 𝜑𝑖

𝑝

𝑖=1

𝐵𝑖            𝛷𝑃(𝐵𝑠) = 1 − ∑ 𝛷𝑖

𝑃

𝑖=1

𝐵𝑠,𝑖    
(3.9) 

 

𝜃𝑞(𝐵) = 1 − ∑ 𝜃𝑖

𝑞

𝑖=1

𝐵𝑖            𝛩𝑄(𝐵𝑠) = 1 − ∑ 𝛩𝑖

𝑄

𝑖=1

𝐵𝑠,𝑖    

(3.10) 

 ∇𝑑= (1 − 𝐵)𝑑          ∇𝑠
𝐷=   (1 − 𝐵𝑠)𝐷 (3.11) 

   

3.2.3. SARIMA with Exogenous Factor (SARIMAX) 

 

SARIMAX is an advancement of the SARIMA model, improved with the 

capability to incorporate exogenous (external features) variables (X) to improve its 

prediction performance. SARIMAX is usually defined as: 

 𝜑𝑝(𝐵)𝛷𝑃(𝐵𝑠)∇𝑑∇𝑠
𝐷𝑦𝑡 = 𝛽𝑘𝑥𝑘,𝑡

′ + 𝜃𝑞(𝐵)𝛩𝑄(𝐵𝑠)𝜀𝑡  (3.12) 



25 
 

Where 𝑥𝑘,𝑡 are the vector with the kth exogenous variables at time t and 𝛽𝑘 

represents the coefficient value of the kth exogenous (X) time-series variables (Fıskın et 

al., 2019; Fathi et al., 2019; Dutta et al., 2021; Manigandan et al., 2021). 

 

3.2.4. Gated Recurrent Unit (GRU) 

 

GRU network model is an improved variation of the LSTM network based on 

optimizing the three-gate functions, which was first proposed by Cho et al. (2014). 

Besides the LSTM model, it deals with nonlinear time series problems and has a more 

compact and straightforward structure than the LSTM network. A single update gate is 

obtained by integrating the forget gate and input gate, and the memory cell and hidden 

state are mixed simultaneously. Consequently, the number of parameters decreases, and 

the training time is immensely shortened. The following equations show the governing 

equations of a GRU unit: 

 𝑧𝑡 = 𝜎(𝑊𝑍𝑥𝑡 + 𝑈𝑍ℎ𝑡−1 + 𝑏𝑍) (3.13) 

  

Where 𝑧𝑡 is the update gate and the 𝜎(∙) represents the sigmoid function expressed 

by: 

 
𝜎(𝑥) =

1

1 + 𝑒−𝑥
 

(3.14) 

 𝑟𝑡 is the forget gate which is determined along with corresponding activation 

functions 𝜎(∙) by: 

 𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (3.15) 

Where 𝑥𝑡 is the input at time t, and ℎ𝑡−1 is the memory cell vector for time t-1. 

Then, by using the new memory cell vector ℎ̃𝑡, the final output, that is, the current 

memory cell vector ℎ𝑡 at time t, is updated by: 

 ℎ𝑡 = (1 − 𝑧𝑡)ℎ𝑡−1 + 𝑧𝑡ℎ̃𝑡) (3.16) 

Where ℎ̃𝑡 is computed by: 

  ℎ̃𝑡  = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑡 + 𝑈(𝑟𝑡 ⊗ ℎ𝑡−1) + 𝑏) (3.16) 
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Where ⊗ represents the element-wise multiplication and 𝑡𝑎𝑛ℎ(∙) is an activation 

function which is called the hyperbolic tangent function expressed by: 

 
tanh (𝑥) =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

(3.14) 

Where 𝑊𝑍, 𝑊𝑟 , 𝑊 and 𝑏𝑍, 𝑏𝑟 , 𝑏 are the assigned weights and bias, respectively. 

The update gate has a curial role in computing how much of the historical 

information will go through the current state, and a combination is adjusted between the 

new input and the previous information by the forget gate (Hosseini et al., 2020; Liu et 

al., 2021; Kisvari et al., 2021; Wu et al., 2022; Ji et al., 2022). 

 

3.2.5. Long Short-term Memory (LSTM) 

 

This study proposes a multivariate LSTM model, which is why the LSTM method 

is comprehensively explained in Section 4.1. 

 

3.3 Dataset 
 

The meteorological data to be used are collected from a 100 m IZTECH 

meteorological mast. The proposed model aimed to be validated using the production 

dataset from Urla, Kores Kocadag, and Germiyan Wind Farm. The collected wind time 

series are between 05/2019-06/2020 with 10 min temporal resolution from 30, 76, and 

101 m. Figure 3.1 shows the wind speed time series. The time series is divided into the 

training and test data sets to verify the forecasting results.  
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Figure 3.1. Wind speeds data sets at (a)30, (b)76, and (c)101 m 

On the other hand, determining prevailing wind directions is essential in wind 

energy studies. Figure 3.2 shows the wind roses obtained based on the blow frequency of 

data taken from the meteorological mast's 28 m and 74 m heights. Although most winds 

come from the North (0⁰), intensity is observed in the range of 330-30⁰. Slightly winds 

are also seen between 180⁰ and 210⁰. For this reason, the prevailing winds are from the 

North and South directions. 

 

 

 

Figure 3.2. Wind roses at 28 m and 74 m  
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In addition to wind speed and direction, topography and meteorological variables 

also mainly affect the improvement of forecasting accuracy. Factors affecting wind speed, 

such as temperature, relative humidity, and barometric pressure, should also be 

considered (Liu et al., 2020). Temperature (°C), relative humidity (%), and barometric 

pressure (hPa) data are shown in Figure 3.3. 

 

 

 

Figure 3.3. Temperature, relative humidity, and barometric pressure data sets 

Here, the data is statistically analyzed and visualized for clear understanding. 

After visualizing the data, inspecting the nature of the data is the next step in the initial 

data analysis. The collected data are not naturally homogenous, and the distribution of 

these data features is not always normal. Using a histogram is an ideal option for 

understanding the data thoroughly. By looking at Figure 3.4, the real-time collected data 

are not normally distributed; the presence of skewness is in the data.  
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Figure 3.4. Histograms of selected parameters  

From the descriptive statistics of the above figure, the positive and negative 

skewness and kurtosis indicate that distributions have an asymmetric characteristic. 

While the skewness’s absolute value of wind speed data is more than 0.5, the data are 

positively skewed. And their kurtosis is lower than three, which is slightly flatter than a 

normal distribution. The wind direction data are relatively symmetrical, with skewness 

values between -0.5 and 0.5. Their kurtosis values are 1.58 and 1.55, which gives a flatter 

distribution than normal, where the values are moderately spread out. Air density, relative 

humidity, and pressure also show similar behavior. If the temperature data are considered, 

its skewness is -1.09, negatively skewed as the trail drags towards the left. Its kurtosis is 

0.98, which is flatter than a normal distribution.  
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Table 3.1. Statistical descriptions of the time series dataset 

Parameter Count Mean Std Min 25% 50% 75% Max 

WS101 57744 6.21 4.20 0.00 2.48 5.74 9.23 24.81 

WS76 57744 6.01 4.07 0.00 2.39 5.60 8.91 24.84 

WS30 57744 5.09 3.41 0.00 2.08 4.76 7.48 20.78 

WD74 57744 355.34 138.72 0.00 21.28 187.61 343.81 360.00 

WD28 57744 352.37 135.01 0.00 29.86 198.21 335.50 360.00 

RH3 57744 66.00 15.82 22.92 54.05 66.78 78.18 98.78 

T3 57744 12.62 13.09 -29.81 6.72 15.42 22.17 35.92 

P2 57744 1007.21 5.62 983.87 1003.36 1006.86 1010.38 1030.65 

rho10 57744 1.20 0.03 1.12 1.18 1.20 1.23 1.31 

 

The statistical description of the count, mean, standard deviation and percentiles 

of selected features are reported in Table 3.1. The mean wind speeds at 30 m, 76 m, and 

101 m are 5.09 m/s, 6.01 m/s, and 6.21 m/s, respectively. The mean ambient temperature 

is 12.62 °C with minimum and maximum values of -29.81 °C and 35.92 °C, respectively. 

 

3.4 Performance Evaluation Metrics 
 

To quantitatively investigate the prediction performance of forecasting models, 

the mean square error (MSE), root mean square error (RMSE), mean absolute error 

(MAE), and R square (R2) as evaluation metrics which are expressed as follows: 

   𝑀𝑆𝐸 =
1

𝑁
∑ (𝑤(𝑖) − 𝑤̅(𝑖))2𝑁

𝑡=1  (1) 

         𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑤(𝑖) − 𝑤̅(𝑖))2𝑁

𝑡=1  (2) 

 𝑀𝐴𝐸 =
1

𝑁
∑ |𝑤(𝑖) − 𝑤̅(𝑖)|𝑁

𝑡=1  (3) 

    𝑅2 =  1 −
∑ (𝑤(𝑖)−𝑤̅(𝑖))2𝑁

𝑡=1

∑ (𝑤(𝑖)−𝑤_𝑚)2𝑁
𝑡=1

 (4) 

where N is the number of samples, w(i) is the actual wind speed value, w̅(i) is the 

forecast value of wind speed, and w_m is the average wind speed value (Tian et al., 2021). 

 

3.5 Wind Speed Forecasting: A Case Study 
 

In this study, an analysis of the forecasting performance of five approaches based 

on the results is performed. According to the literature review, the selected models will 
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be investigated to obtain the best approach for wind speed prediction. After choosing the 

proposed model, the remaining methods will be used as benchmarks. A brief of 

forecasting results is provided to analyze the observations further. After determining the 

necessary parameters for each model, wind speeds are forecasted.  

Figure 3.4 provides the absolute difference between the real-time data and 

prediction results for the wind speeds based on the multivariate Facebook Prophet, 

SARIMA, SARIMAX, GRU, and LSTM models. Facebook Prophet is a method that 

utilizes the general additive model to fit the nonlinear trends for time series with daily, 

weekly, and yearly seasonality (Asha et al., 2020). SARIMA is an ARIMA model 

including seasonal effects, and SARIMAX has an additional exogenous factor 

(Mangayarkarasi et al., 2021). They are the conventional statistical methods and are 

generally used as benchmarks. A deep neural network is a promising approach based on 

machine learning, and GRU and LSTM are the types of recurrent neural networks (RNN) 

(Hossain et al., 2021). 

 

 

Figure 3.5. Daily wind speed forecasting results 

The forecasting results are presented daily in Figure 3.5, and Figure 3.6 

summarize the functional forecasting evaluation criteria to investigate the performance 

of each model. As seen in Figure 3.5, the prediction results of LSTM almost coincide 

with the real-time wind speed, which is also supported by the performance metrics. On 

the other hand, the predictions of other models follow the actual wind speed pattern for 

the day with accurate results. According to the adjusted R2 scores, which indicate the 
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goodness-of-fit, the LSTM model with the highest score of 0.9809 shows the best 

performance. That means the regression line of the LSTM model is fitted closest to the 

actual values compared with the other models. However, only the R2 score may not be 

meaningful for the time series models. The LSTM model also shows the best performance 

with the lowest errors: MSE value of 0.2932, RMSE value of 0.4358, and MAE value of 

0.3089, although the GRU model has relative values to the LSTM model. 

On the other hand, the SARIMAX model cannot deeply understand the inherently 

chaotic nature of wind speed time series. The model shows the worst performance with 

the R2 value of 0.7498, MSE value of 1.8584, RMSE value of 1.3632, and MAE value of 

1.1004. Since wind speed affects wind power generation in the third order, SARIMAX 

cannot give good forecasting results.  

 

Figure 3.6. The evaluation criteria of wind speed forecasting for each model 

 

Table 3.2. The evaluation criteria of wind speed forecasting for each model 

Evaluation 

Criteria 

Facebook 

Prophet 

SARIMA SARIMAX GRU LSTM 

MSE 1.8035 1.2245 1.8584 0.4518 0.2932 

RMSE 1.343 1.1065 1.3632 0.6407 0.4358 

MAE 0.9814 0.8916 1.1004 0.5036 0.3089 

R2 0.8911 0.8351 0.7498 0.9718 0.9809 
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CHAPTER 4 

 

THEORY AND METHOD 
 
 

4.1 Long Short-Term Memory Networks (LSTM) 

 

4.1.1 Recurrent Neural Network (RNN) 

 

A long short-term memory network is a variant model of a recurrent neural 

network (RNN). On the other hand, the RNN is one of the artificial neural networks 

(ANN) with a deep learning structure especially adapted to sequence processing tasks. Its 

approach is to forecast the next element in a sequence of observations relative to previous 

steps. The compact illustration of an RNN is shown in Figure 4.1, where xt is the input 

and element of the sequence, and yt is the output value.  

 

Figure 4.1. The compact illustration of RNN  

 

A hidden state acting as memory is calculated when xt is supplied to the RNN, 

denoted as ht. Each time a new input updates its hidden state using this new input value 

ht 

yt 

RNN 

x
t
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and its previous hidden form to feed the RNN. In this way, the past information calculated 

from earlier elements of the sequence is effectively employed to notify the output created 

for the next segment of the sequence. Figure 4.2 shows how an RNN efficiently replicates 

the memory by using historical information to make an output for the next sequence 

element. 

 

Figure 4.2. The expanded illustration of RNN 

 However, the network must be capable of memorizing information created as 

input in many steps before computing its final hidden state. This problem is due to the 

vanishing gradient, which is the function that asks the network how to adjust weights. 

That causes some weights to become too small or too large when the network unfolds for 

too many time steps. Thus, the vanishing gradient becomes very small, sometimes close 

to 0, so the network's weight is not changed. That causes the loss of information in the 

long term. The LSTM is a network structure designed to solve the long-term dependency 

problem (Graves et al., 2005; Cao et al., 2012; Li et al., 2017; Liu et al., 2018; Duan et 

al., 2020; Peixeiro, 2022). 

 

4.1.2 The LSTM Architecture 

 

As mentioned in Section 4.1.1, the LSTM network is a particular version of RNN 

developed to avoid the vanishing gradient problem, which could affect the network's 

learning. Currently, the method is widely utilized in the forecasting problem of time series 

with success. The LSTM is designed by developing a memory cell that stores the 
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historical information for a longer time, while RNN has a short-term memory using the 

hidden state. As can be seen from Figure 4.2, the architecture of LSTM is more 

complicated than the basic RNN. The memory cell is denoted as C, resolving the 

vanishing problem. In this case, both the memory cell Ct and the hidden state ht are passed 

on to the next element of the sequence. As described in Figure 4.2, the LSTM has three 

kinds of multiplicative units: a forget gate, an input gate, and an output gate in the memory 

cells (Li et al., 2018; Huang et al., 2019; Xie et al., 2021; Peixeiro, 2022). 

 

Figure 4.3. The architecture of LSTM 

 

4.1.2.1 The Forget Gate 

 

The LSTM structure starts with the forget gate, which controls how much 

historical information should be overlooked or how much new information should be kept 

in the network from both the historical and current values of the sequence. The different 

inputs entrance through the forget gate can be seen looking at Figure 4.3. Firstly, the past 

hidden state ht-1 and the present value of the sequence xt are fed into the forget gate. Then, 

ht-1 and xt are combined and duplicated. While one copy is sent to the input gate, which 

will be studied in Section 4.1.2.1, the other copy goes through a sigmoid activation 

function. The sigmoid function is stated in equation 4.1 and displayed in Figure 4.3. 
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𝑓(𝑥) =  𝜎 =  

1

1 − 𝑒−𝑥
  

(4.3) 

   

 

Figure 4.4. The forget gate 

 

The sigmoid function has only output values between 0 and 1. Therefore, which 

information to save or forget could be defined by forwarding the hidden state and current 

sequence element across the function. An output value close to 0 means that the 

information could be overlooked. Contrastingly, output comparable to 1 means that the 

information must be saved. Then, the output and previous memory cell Ct-1 are combined 

by applying pointwise multiplication, which creates an updated memory cell called C't-1. 

Presently, an updated memory cell, a copy of the combination of the past hidden state and 

current element of the sequence, is sent to the input gate (Li et al., 2018; Huang et al., 

2019; Shao et al., 2021; Yuan et al., 2021; Peixeiro, 2022). 

x 

sigmoid 

Ct-1 

ht-1 

C’t-1 
to the input gate 

to the input gate [ht-1+xt] 

xt 
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Figure 4.5. The sigmoid function 

 

4.1.2.2 The Input Gate 

 

The information proceeds to the input gate after passing through the forget gate, 

the stage where the network defines which information is appropriate from the current 

element of the sequence. The memory cell is updated here, leading to the final cell state. 

Figure 4.5 visualize the input gate configuration. 

 

Figure 4.6. The input gate  

After duplicating the past hidden state and current element of the sequence again, 

they are sent through the sigmoid and a hyperbolic tangent (tanh) activation function. The 
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hyperbolic tangent (tanh) activation function is stated in equation 4.2 and visualized in 

Figure 4.5.  

 
𝑓(𝑥) = 𝑡𝑎𝑛ℎ =  

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
  

(4.2) 

As with the forget gate, the sigmoid defines which information to keep or forget, 

while the tanh function organizes the network to keep it computationally effective. The 

hyperbolic function is visualized in Figure 4.6. Pointwise multiplication is used to 

combine the results of both operations. Then, it is utilized to update the memory cell using 

pointwise addition, resulting in the final memory cell Ct. Subsequently, the final memory 

cell Ct and the same combination [ht-1+xt] are sent to the output gate. 

         

          Figure 4.7. The hyperbolic tangent (tanh) function 

Figure 4.5 shows that the hyperbolic tangent function can only output values 

between -1 and 1, which allows for the regulation of the network. That ensures values do 

not get uncontrollably large and allows training the model to be computationally 

effective. Therefore, the information from the current element in the sequence is added to 

the network's long memory in the input gate. Then, the newly updated memory cell is 

sent to the output gate (Li et al., 2018; Huang et al., 2019; Shao et al., 2021; Yuan et al., 

2021; Peixeiro, 2022).   
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4.1.2.3 The Output Gate 

 

Ct is finally used to process the current element of the sequence, utilizing what it 

has learned from the past elements. Also, the output gate gives a result to the output layer 

or determines new information to be delivered to the operation of the following element 

in a sequence. 

 

            Figure 4.8. The output gate 

Figure 4.5 shows that a sequence's past hidden state and current element are sent 

into the sigmoid function. As stated before, it is known that the output value will be 

between 0 and 1, and it decides whether the information is saved or not. 

Besides, the memory cell passes the tanh function. The results of these processes 

are combined utilizing pointwise multiplication, producing an updated hidden state ht. 

This step is that the historical information kept in the memory of the network is used to 

process the information of the current sequence element. Then, the present hidden state 

is sent off the output gate. It will either be directed to the output layer of the network or 

to the next LSTM neuron, which deals with the following sequence element. The same is 

valid for the memory cell Ct (Li et al., 2018; Huang et al., 2019; Shao et al., 2021; Yuan 

et al., 2021; Peixeiro, 2022). 
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4.2 ERA5 Dataset 
 

The historical weather observations are combined by reanalysis using an 

atmospheric weather model (Hayes et al., 2021). Reanalysis employs historical data to 

regulate the original model parameters and then re-predict (Liao et al., 2022). ERA5 is a 

comprehensive reanalysis dataset produced by European Centre for Medium-range 

Weather Forecast (ECMWF) for the global climate and weather in recent years. The 

“comprehensive” data integrates satellite remote sensing, station observations, such as 

wind profiler, ship, Synop, radar, Metar, aircraft, radio sounding, and numerical model 

simulation (Gualtieri et al, 2021; Liao et al., 2022). Most recent studies have used wind 

data reanalyzed due to their global coverage, availability for the long term, and free access 

to any location. Although several reanalysis datasets are available, ERA5 has a higher 

spatial and temporal resolution (Nefabas et al., 2021; Ahmad et al., 2022). Available data 

is currently from 1959 to 5 days behind real-time. ERA5 offers hourly estimations for 

many atmospheric, ocean-wave, and land-surface parameters. 

ERA5 are updated version of ERA-Interim reanalysis, which was terminated in 

2019. ERA5 implements several improvements over the former product, including an 

increase in horizontal and vertical resolution and time step. Additionally, ERA5 brings 

an uncertainty estimate that was not existing in ERA-Interim. Besides the increased time 

resolution to 1 h, the most significant feature of using ERA5 reanalysis datasets for wind 

energy is the availability of a higher number of parameters, especially wind speed at 100 

m.  

Dataset is rearranged on a regular latitude-longitude grid of 0.25 degrees for the 

reanalysis and 0.5 degrees for the uncertainty estimation. There are hourly and monthly 

products on both pressure and single levels. Table 4.1 lists the data description of ERA5 

hourly data on pressure levels from 1959 to the present (Hersbach et al.,2018). 

Table 4.1. The description of ERA5 hourly data on pressure levels from 1959 to the 

present (Source: Hersbach et al.,2018) 

DATA DESCRIPTION 

Data Type Gridded 

Projection Regular latitude-longitude grid 

Horizontal coverage Global 

(Cont. of the next page) 
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Horizontal resolution Reanalysis: 0.25° x 0.25° 

Vertical coverage 1000 hPa to 1 hPa 

Vertical resolution 37 pressure levels 

Temporal coverage 1959 to present 

Temporal resolution Hourly 

File Format GRIB 

 

 The downloaded ERA5 data is obtained by sub-region extraction, and the four 

coordinates are 38.25 26.25, 38.25 26.50, 38.00 26.25, and 38.00 26.50. The dataset is at 

an atmospheric level that corresponds to 100 m in height. The data is a NetCDF file and 

consists of date-time, latitude, longitude, temperature (K), air pressure (kPa), U-

component (m/s), and V-component (m/s) of wind. The data is from 01 January 2019 to 

31 December 2020. Table 4.2 lists the names, units, and descriptions of the main variables 

chosen for wind speed and power forecasting. 

Table 4.2. The name, units, and descriptions of the main variables under study 

                          (Source: Hersbach et al., 2018) 

MAIN VARIABLES 

Name Units Description 

Temperature K The temperature in the atmosphere has kelvin 

(K) units. It is available on multiple 

atmosphere levels. 

U-component of wind m s-1 This parameter is the horizontal speed of air 

moving towards the east. The air is moving 

toward the west when it has a negative sign. 

Combination with the V-component of wind 

gives the horizontal wind speed and direction. 

V-component of wind m s-1 This parameter is the horizontal speed of air 

moving towards the north. When it has a 

negative sign, air moves toward the south. 

Combination with the U-component of wind 

gives horizontal wind speed and direction. 

 

(Cont. of the next page) 



42 
 

4.2 Wind Power Forecasting Methodology 
 

This study proposes a multivariate LSTM network for wind speed and power 

forecasting. The framework of the wind power forecasting methodology is described in 

Figure 4.9. As mentioned in Section 4.2, an ERA5 dataset is used because there is no 

available SCADA data for Kores Kocadag and Germiyan wind farms. 

   

   

Figure 4.9. The framework of the wind power forecasting  
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CHAPTER 5 
 

RESULTS  
 

5.1 ERA5 Dataset Validation 
 

It is necessary to validate the ERA5 dataset with the IZTECH meteorological 

mast. Firstly, the dataset is controlled by whether there is a time shift. The process is 

performed by plotting each parameter of both datasets on the same graph. This situation 

is handled both annually and monthly. 

 

Figure 5.1. The wind speed data of ERA5 vs. IZTECH met. mast  

 

Figure 5.2. The temperature data of ERA5 vs. IZTECH met. mast 
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Figure 5.3. The air pressure data of ERA5 vs. IZTECH met. mast 

 

Figure 5.4. The wind direction data of ERA5 vs. IZTECH met. mast 

The hourly average wind directions are calculated and split into twelve sectors. 

The first and second sector filters the dataset. Firstly, the dataset is filtered lower than 

0.35 m/s because the anemometer cannot read values lower than 0.35 m/s. Secondly, the 

dataset is also filtered greater than 2.5 m/s because the cut-in wind speed of a wind turbine 

is mostly greater than 2.5 m/s. Then, the scatter plot is obtained from the wind speed data 

of ERA5 and IZTECH meteorological mast, illustrated in Figure 5.5. The coefficient of 

determination R2 0.7596 denotes the correlation between the ERA5 and IZTECH 

meteorological mast. 
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Figure 5.5. The scatter plot of wind speed data of ERA5 vs. IZTECH met. mast 

 

5.2 Wind Power Forecasting Using the Power Curve of Turbines 
 

This section compares and analyzes the wind power forecasting results using the 

power curve of turbines for three operational wind farms. The R-square, RMSE, MAE, 

and MAPE values are determined for each operational wind farm to verify the method's 

performance. To demonstrate the error measures more intuitively, a radar chart for R-

square, a horizontal histogram for RMSE, an area chart for MAE, and a vertical histogram 

for MAPE are illustrated. Two years dataset, an EAR5 dataset mentioned before, is used 

to predict the wind speed predictions of last month. The dataset is from 1st January 2019, 

00:00 AM to 30th December 2020, 23:50. It includes the four meteorological variables: 

wind speed, direction, temperature, and air pressure. Thus, a multivariate LSTM model 

can be obtained using four variables. The LSTM network is trained, validated, and tested 

using the training, validation, and testing data set. After getting the wind speed forecasting 

results, the wind power generations are calculated using the fitting curve equation of the 

power curves of the turbines between the cut-in and cut-out wind speed values. The lower 

than the cut-in wind speed and the higher than the cut-off wind speed are assumed as not 

producing wind power and accepted as 0. Wind farms' licensed and installed capacities 

are also considered while calculating wind power production. If the wind power 

generation forecasts exceed the licensed installed capacity, it is districted with the 

licensed installed capacity.  
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The prediction results of the Urla, Kores Kocadag and Germiyan Wind Farms are 

illustrated in Figure 5.14, Figure 5.15, and Figure 5.16 show, respectively, as the one-

month, the last 350, and the previous 100 samples.  

 

 

 

Figure 5.14. The EPIAS versus the forecasts obtained from the power curve of the turbine 

for Urla Wind Farm (a) the samples of one-month comparison (b) the last 

350 samples comparison (c) the last 100 samples comparison  
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Figure 5.15. The EPIAS versus the forecasts obtained from the power curve of the turbine 

for Kores Kocadag Wind Farm (a) the samples of one-month comparison 

(b) the last 350 samples comparison (c) the last 100 samples comparison  
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Figure 5.16. The EPIAS versus the forecasts obtained from the power curve of the turbine 

for Germiyan Wind Farm (a) the samples of one-month comparison (b) the 

last 350 samples comparison (c) the last 100 samples comparison 

Table 5.2 lists the scores of the evaluation criteria. As mentioned in the previous 

section, MAPE can be the best indicator for comparison. Mainly, Urla Wind Farm 

exhibits a minor mean absolute percentage error compared with the other wind farms, 

with a value of 45.98%, which means the accuracy is higher than the other wind farms. 

Figure 5.17, Figure 5.18, and Figure 5.19 show that the forecast wind power generation 

of the Urla Wind Farm has more similarity than the other wind farms' actual wind power 

generation with a significant difference. The correlations denoted by the coefficient of 

determination R2 are 0.5979, 0.7389, and 0.6682, respectively, in the Urla, Kores 

Kocadag, and Germiyan wind farms.  
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Figure 5.17. The correlation plot between the wind power productions of EPIAS and the 

forecasts obtained from the power curve of the turbine for Urla Wind Farm  

(R2 = 0.687306) 

 

Figure 5.18. The correlation plot between the wind power productions of EPIAS and the 

forecasts obtained from the power curve of the turbine for Kores Kocadag  

 

Figure 5.19. The correlation plot between the wind power productions of EPIAS and the 

forecasts obtained from the power curve of the turbine for Germiyan Wind 

Farm 
 

Lastly, Urla Wind Farm exhibits 45.98% of the MAPE, followed by Germiyan 

Wind Farm, with 46.24%. Kores Kocadag Wind Farm occupies the minor rank with 

51.12%. 
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Table 5.2. Statistical measurements of three operational wind farm data using the actual 

and forecasts obtained from the power curve of turbine  

Evaluation 

Criteria 
Urla  

Kores 

Kocadag  
Germiyan 

R-square 0.5979 0.7389 0.6682 

RMSE (kWh) 3115.72 4948.16 2500.74 

MAE (kWh) 2278.75 3317.86 1571.1 

MAPE (%) 45.98 51.12 46.24 

 

5.3 Wind Power Forecasting Using a Multivariable LSTM Network 
 

This section compares and analyzes the wind power forecasting results using a 

multivariate LSTM Network for three operational wind farms. To evaluate the proposed 

model's performance, the R-square, RMSE, MAE, and MAPE are calculated for each 

operational wind farm. To demonstrate the error measures more intuitively, a radar chart 

for R-square, a horizontal histogram for RMSE, an area chart for MAE, and a vertical 

histogram for MAPE are displayed. Two years dataset, an EAR5 dataset mentioned 

before, is used to predict the wind power predictions of last month. The dataset is from 

1st January 2019, 00:00 AM to 30th December 2020, 23:50. It includes the four 

meteorological variables: wind speed, wind direction, temperature, and air pressure. The 

wind power generations are also added as a variable for the LSTM model. Thus, a 

multivariate LSTM model can be obtained using five variables. The LSTM network is 

trained, validated, and tested using the training, validation, and testing data set. 

Here, the wind power productions are recorded by the SCADA system of Urla 

farm, and data sets from 1st January 2019, 00:00 AM to 30th December 2020, 23:50, are 

registered every 10 min. Thus, the 10 min power production dataset consists of 105120 

observations. Firstly, the wind speed data of 730 days are averaged into the hourly data 

set because the dataset is also compared with the EPIAS data set. The mentioned process 

is applied to the EPIAS and SCADA power production values. 

Figure 5.6. and Figure 5.7 shows the one month, the last 350, and the previous 

100 samples of actual and forecasted wind power of the Urla Wind Farm, respectively, 

the SCADA and EPIAS data using the LSTM model. The real-time wind power 

generations are obtained from the EPIAS Transparency Platform. The difference between 
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the actual and forecast values can be understood more intuitively from Figure 5.6a and 

Figure 5.7a.  

 

 

Figure 5.6. The SCADA versus LSTM for Urla Wind Farm (a) the samples of one-month 

comparison (b) the last 350 samples comparison (c) the last 100 samples 

comparison  
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Figure 5.7. The EPIAS versus LSTM for Urla Wind Farm (a) the samples of one-month 

comparison (b) the last 350 samples comparison (c) the last 100 samples 

comparison  

While Figure 5.8 demonstrates the results of the Kores Kocadag Wind Farm, 

Figure 5.9 illustrates the results of the Germiyan Wind Farm.  
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Figure 5.8. The EPIAS versus LSTM for Kores Kocadag Wind Farm (a) the samples of 

one-month comparison (b) the last 350 samples comparison (c) the last 100 

samples comparison  
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Figure 5.9. The EPIAS versus LSTM for Germiyan Wind Farm (a) the samples of one-

month comparison (b) the last 350 samples comparison (c) the last 100 

samples comparison  

For the Urla Wind Farm, the wind power productions of the SCADA and EPIAS 

give close results and are very close to the actual wind power productions. That means 

the wind power production of the EPIAS can be used for the other wind farm because 

their SCADA data are not included. The statistics and measures also support that, 

tabulated in Table 5.1, demonstrate the comparison of prediction results. According to 

Table 5.1, the SCADA's RMSE, MAE, and MAPE are 531.25 kWh, 408.92 kWh, and 

29.34%. The error values of EPIAS are 432.21 kWh, 366.46 kWh, and 28.1%, which are 

99.04 kWh, 42.46 kWh, and 1.23% lower than the SCADA’s scores. In other words, 

EPIAS’s wind power forecasting results are more accurate than the SCADAs. 

Additionally, the comparisons of actual and predictions of wind power generation 

utilizing scatter plots are displayed in Figure 5.2 and Figure 5.4, respectively, the SCADA 

and EPIAS. The scatter plots show how much the wind power predictions are closer to 

the actual wind power generation. The correlation result can be ranged from 0 to 1. If the 

correlation value is one, the actual and predicted wind power generation is the same. If 

the correlation value is 0, the actual and predicted wind power differ. Figure 5.10 and 
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Figure 5.11 shows that the forecast wind power generation of the EPIAS has more 

similarity than the SCADA to the actual wind power generation with a minimal 

difference. The correlations are denoted by the coefficient of determination R2 are 0.9940 

and 0.9945, respectively, the SCADA and EPIAS.  

 

Figure 5.10. The correlation plot between the wind power productions of SCADA and 

LSTM for Urla Wind Farm (R2 = 0.994) 

 

Figure 5.11. The correlation plot between the wind power productions of EPIAS and 

LSTM for Urla Wind Farm (R2 = 0.9945) 

Figure 5.12 and Figure 5.13, respectively, showcase the correlation results of 

Kores Kocadag Wind Farm and Germiyan Wind Farm, which are R2 scores: 0.9947 and 

0.997.  
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Figure 5.12. The correlation plot between the wind power productions of EPIAS and 

LSTM for Kores Kocadag Wind Farm  

 

Figure 5.13. The correlation plot between the wind power productions of EPIAS and 

LSTM for Germiyan Wind Farm  

Since the installed capacities of wind farms are significantly different, RMSE and 

MAE may not show comparable results. Also, R-square values are too close to each other. 

MAPE could be the best indicator to compare the forecast results of wind farms, which 

shows the quality of forecasts. Lewis (1982, as cited in Moreno et al., 2013) states that a 

MAPE of less than 10% is considered highly accurate forecasting; greater than 10% but 

less than %20 indicates good forecasting, between 20% and 50% indicates reasonable 

forecasting with low but acceptable accuracy, and greater than 50% is considered as 

inaccurate and not acceptable. 

In this context, MAPE scores are in the range of 8.7%-28.1% obtained by the 

LSTM model, which are considered accurate results. However, Kores Kocadag Wind 

Farm gives highly accurate results with a MAPE value of 8.7%. Germiyan Wind Farm 

has the second-best forecasting results, with a MAPE value of 25.49%. The worst 

forecasting results belong to Urla Wind Farm, with a MAPE value of 28.1%. Although 

both Germiyan and Urla wind farms give the forecasting results with lower accuracy, they 

can be considered reasonable.   
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Table 5.1. Statistical measurements of three operational wind farm data using the actual 

and forecasts of the LSTM model  

Evaluation 

Criteria 

Urla 

(SCADA) 
Urla (EPIAS) 

Kores 

Kocadag  
Germiyan 

R-square 0.9940 0.9945 0.9947 0.997 

RMSE (kWh) 531.25 432.21 615.54 292.96 

MAE (kWh) 408.92 366.46 451.24 236.07 

MAPE (%) 29.34 28.10 8.7 25.49 

 

5.4 Day-ahead Market (DAM) 
 

Progress in wind power generation forecasting techniques brings millions of 

dollars in profit to electricity generator companies. Day Ahead Market (DAM) is one of 

the interdependent platforms of the Turkish Electricity Market. The trading activity 

should be forecasted a day in advance for the optimum production and best trading 

strategies on the generator company side and the load delivery on the market operator 

side. Wind energy production for the next day can be used in investment strategies of the 

market participants, such as energy consumers and producers (Kalay, 2018). 

DAM allows customers and producers to sell out their energy surpluses or 

shortages for a day later. Under bilateral agreements, market transactions are performed 

a day in advance. While the generator corporations are obligated to transfer the energy to 

customers, the customer companies are committed to taking the energy from the 

producers. 

Predicting the total electricity load decreases the imbalance costs and prevents 

possible foreseeable imbalances for a system operator. Moreover, the total electricity load 

must be estimated to create a strategy for selling its electricity to the most profitable 

market for an electricity generator. The next day's wind energy generation is forecasted 

with two different approaches for these purposes (Kalay, 2018).  

Because we do not have information about power failures and cuts, the real-time 

fluctuations are not precisely calculated. That’s why the forecasting results are negatively 

affected. If these data are obtained, the real-time fluctuations can be more appropriately 

followed, and the forecasting accuracy can be improved.  
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In this section, each wind farm's hourly forecast results are averaged daily to 

investigate the results on the day ahead market bases. Although there can be hourly 

deviations, these may not be reflected in the daily forecast.  The December 2020 forecasts 

are plotted, and each wind farm's error metrics are calculated in the following sections. 

5.4.1. The Daily Forecasts using the Power Curve of Wind Turbines 

According to Figure 5.21, the forecast values of the daily averages of wind energy 

production obtained using the power curve of wind turbines can be seen in December 

2020, which crosses the actual values. Besides the visual inspection of forecasting results, 

Table 5.4 shows the performance of the forecasting method for each wind farm using the 

evaluation criteria. 
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Figure 5.21. The forecasts for December 2020 using the power curve of wind turbines (a) 

Urla Wind Farm, (b) Kores Kocadag Wind Farm, (c) Germiyan Wind Farm 

As mentioned above, MAPE could be the best indicator to compare the forecast 

results of wind farms, which shows the quality of forecasts.  In this method, MAPE scores 

change between 31.08 % and 44.65% obtained by the power curve of wind turbines, 

which means they are reasonable forecasts with low accuracies, but they can be 

considered acceptable. For this method, Urla Wind Farm gives the best forecast results 

when compared with the MAPE value of the wind farms, which is 31.08%.  Unlike the 

previous approach, a producer cannot have a reference predictor value as accurate as the 

previous approach. A deviation of reference predictor value varies between 31.08%-

44.65% about the wind energy generation of tomorrow. This method may not forecast 

possible imbalances and system shutdowns at times, which causes necessary actions may 

not to be appropriately taken a day in advance. 

Table 5.4. The evaluation criteria of three operational wind farms for the daily 

forecasting obtained using the power curve of wind turbines 

Evaluation 

Criteria 

Urla Kores Kocadag Germiyan 

R-square 0.8135 0.8838 0.8633 

RMSE (kWh) 47397.76 74918.31 32043.84 

MAE (kWh) 34271 57232.04 22513.61 

MAPE (%) 31.08 44.65 35.70 
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5.4.2. The Daily Forecasts using the LSTM Model 

 

Looking at Figure 5.20, the forecast values of the daily averages of wind energy 

production obtained by the LSTM model can be seen in December 2020, overlapping the 

actual values. However, the visual inspection cannot be enough to assess the method’s 

performance. That’s why Table 5.3 is also used to support the forecasting results, which 

tabulates the evaluation criteria. Since that means that the LSTM model generates more 

accurate predictions on daily bases if compared with the hourly forecasting results.  

 

 

Figure 5.20. The forecasts for December 2020 using LSTM (a) Urla Wind Farm (b) Kores 

Kocadag Wind Farm (c) Germiyan Wind Farm 

Since the installed capacities of wind farms are significantly different, RMSE and 

MAE may not show comparable results. Also, R-square values are too close to each other. 
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MAPE could be the best indicator to compare the forecast results of wind farms, which 

shows the quality of forecasts.  Lewis (1982, as cited in Moreno et al., 2013) states that a 

MAPE of less than 10% is considered highly accurate forecasting; greater than 10% but 

less than %20 indicates good forecasting, between 20% and 50% indicates reasonable 

forecasting with low but acceptable accuracy, and greater than 50% is considered as 

inaccurate and not acceptable. In this context, MAPE scores are in the range of 7.15%-

16.77% obtained by the LSTM model, which means they are accurate forecasts. It can be 

said that Kores Kocadag Wind Farm gives the best forecast results when compared with 

the MAPE value of the wind farms, which is 7.15%, and highly accurate forecasts. Thus, 

a producer can have a reference predictor value with deviations in the range of 7.15%-

16.77% about the wind energy generation of tomorrow. This method can forecast possible 

imbalances and system shutdowns, and necessary actions can be taken a day in advance 

from the system operator’s perspective.   

Table 5.3. The evaluation criteria of three operational wind farms for the daily forecasting 

Evaluation 

Criteria 

Urla Kores Kocadag Germiyan 

R-square 0.9984 0.9985 0.9991 

RMSE (kWh) 8698.74 7228.45 5073.66 

MAE (kWh) 8015.59 5423.45 4285.37 

MAPE (%) 14.62 7.15 16.77 

 

5.5 Day-ahead Market Analysis by Filtering Data 
 

Because we do not have information about power failures and shutdowns, the 

forecasting methods do not precisely calculate the real-time fluctuations. That’s why 

possible failures and shutdowns are aimed to be considered by filtering MAPE values 

higher than %50. In this way, it can be understood that if information about power failures 

and shutdowns could be obtained, the forecasting performance might be increased. 

5.5.1. The Filtered Daily Forecasts using the Power Curve of Turbines 
 

In this approach, five, seven, and three values are filtered, respectively, Urla, 

Kores Kocadag, and Germiyan wind farms. According to Figure 5.23, the forecast values 

overlap the actual values more than the non-filtered analysis. Besides the visual 
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inspection of forecasting results, Table 5.6 shows the increase in the performance of the 

forecasting method for each wind farm using the evaluation criteria.  

 

 

 

Figure 5.23. The forecasts for December 2020 using the power curve of wind turbines (a) 

Urla Wind Farm, (b) Kores Kocadag Wind Farm, (c) Germiyan Wind Farm 

 

MAPE scores decrease and are obtained between 19.17% and 22.87%, which 

means they are more accurate forecasts. After filtering data, Germiyan Wind Farm gives 

the best forecast results when compared with the MAPE value of the wind farms, which 

is 19.17%.  Unlike the non-filtered analysis, a producer can have a more accurate 

reference predictor value. Now, the deviations of reference predictor value are decreased 
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and vary between 19.17% and 22.87% about the wind energy generation of tomorrow. 

Now, possible imbalances and system shutdowns can be predicted at times, and necessary 

actions might be adequately taken a day in advance. 

Table 5.6. The evaluation criteria of three operational wind farms for the daily forecasting 

obtained using the power curve of wind turbines 

Evaluation 

Criteria 

Urla Kores Kocadag Germiyan 

R-square 0.8067 0.9185 0.9031 

RMSE (kWh) 45369.88 59958.86 26856.92 

MAE (kWh) 32526.39 49072.54 18439.96 

MAPE (%) 22.87 19.32 19.17 

 

5.5.2. The Filtered Daily Forecasts using the LSTM Model 
 

In this way, two, one, and three values are filtered, respectively, Urla, Kores 

Kocadag, and Germiyan wind farms. Looking at Figure 5.22, the forecast values overlap 

the actual values more than the non-filtered analysis. However, the visual inspection 

cannot be enough to assess the increase in the method’s performance. That’s why Table 

5.5 is also used to support the forecasting results, which tabulates the evaluation criteria. 

 

 



64 
 

 

 

Figure 5.22. The forecasts for December 2020 using LSTM (a) Urla Wind Farm (b) Kores 

Kocadag Wind Farm (c) Germiyan Wind Farm 
 

In this context, MAPE scores are in the range of 4.92%-9.04% obtained by the 

LSTM model, which means they are highly accurate forecasts. Kores Kocadag Wind 

Farm still gives the best forecast results when compared with the MAPE value of the wind 

farms, which is 4.92%. Thus, a producer can have a highly precise reference predictor 

value with deviations in the range of 4.92%-9.04% about the wind energy generation of 

tomorrow.  

Table 5.5. The evaluation criteria of three operational wind farms for the daily forecasting 

Evaluation 

Criteria 

Urla Kores Kocadag Germiyan 

R-square 0.9981 0.9984 0.9989 

RMSE (kWh) 8393.14 7292.66 4772.55 

MAE (kWh) 7429.42 5437.34 3978.79 

MAPE (%) 9.04 4.92 8.64 
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CHAPTER 6 
 

DISCUSSION 
 

The aims of the study are to predict wind power generation and to validate the 

result against the measurements. At the same time, the study tried to evaluate the 

suitability of ERA5 reanalysis data for the predictions of hourly wind power generation 

due to the unavailable SCADA data. The three operational wind farms were selected as 

the study area to assess the suitability of ERA5 data. 

Correlation measures between wind speeds at 101 m from the meteorological mast 

and 100 m from ERA5 reanalysis data are also obtained. It is found that the cross-

validation and correlation plot shows reasonable agreement between the met. mast and 

ERA5 datasets. That’s why it has been decided to use the ERA5 dataset for the wind 

power predictions in three operational wind farms.  

In this paper, the LSTM model is proposed to forecast hourly and day-ahead wind 

power production. Before it is proposed, the model is compared with Prophet, SARIMA, 

SARIMAX, and GRU models based on wind speed prediction. The LSTM model 

outperforms the other models with the lowest errors and highest R2 score: MSE value of 

0.2932, RMSE value of 0.4358, MAE value of 0.3089, and R2 value of 0.9809. After the 

comparison, the LSTM model is decided to use for wind power predictions.  

Wind power production is predicted based on two different approaches. In the first 

approach, wind speeds are predicted with the LSTM model using the ERA5 dataset, and 

wind power productions are determined using the power curves of wind turbines. In the 

second approach, real-time wind power productions are used as an additional input for 

the LSTM model to forecast future wind power production.  

The results are tabulated in Table 1.1.  According to the results, the first approach 

gives inaccurate results and cannot be acceptable with the highest errors and lowest R2 

value. In the second approach, using the real-time wind power production data as an input 

improves the forecasting performance by 38.89%, 82.98%, and 44.87%, respectively, for 

Urla, Kores Kocadag, and Germiyan wind farms.  
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On the other hand, the hourly forecasts from EPIAS, which is called the final daily 

production program, are also compared with the actual power production. Its forecasting 

errors are also tabulated in Table 1.1 and compared with our forecasting results. If the 

MAPE scores are considered, both approaches 1 and 2 outperform the forecasts from 

EPIAS. Especially approach 2 improves 43.9%, 84.4%, and 62.26%, respectively, for 

Urla, Kores Kocadag, and Germiyan wind farms. These results indicate that using the 

LSTM model with the ERA5 dataset could give better forecasts than wind farms’ own 

forecasts. 

Another aim of this study is to give accurate forecasts for Day-ahead Market. 

While using the daily forecasts of approach 1 improves the forecasting results by 32.41%, 

12.66%, and 22.79%, approach 2 improves by 47.97%, 17.82%, and 34.21%, 

respectively, for Urla, Kores Kocadag, and Germiyan wind farms. According to the 

results, although there can be hourly deviations, these may not be reflected in the daily 

forecasts. 

Because we do not have information about power failures and shutdowns due to 

unavailable SCADA data, the forecasting method cannot precisely calculate the real-time 

fluctuations. That’s why possible failures and shutdowns are aimed to be considered by 

filtering MAPE values higher than %50. In this way, it can be understood that if the 

SCADA data could be obtained, the forecasting performance might be increased.  

Table 6.1. The forecast results of Final Daily Production Program (EPIAS), Approach 1, 

Approach 2 

Wind Farm Forecasts 
RMSE 
(kWh) 

MAE 
(kWh) 

MAPE 
(%) 

R2  
(%) 

Urla 

Final Daily Production 

Program (EPIAS) 
1949.02 1439.03 50.09 0.81 

Approach 1 3115.72 2278.75 45.98 0.6 

Approach 2 432.21 366.46 28.1 0.99 

Kores 

Kocadag 

Final Daily Production 

Program (EPIAS) 
3624.38 2623.48 55.78 0.82 

Approach 1 4948.16 3317.86 51.12 0.74 

Approach 2 615.54 451.24 8.7 0.99 

Germiyan 

Final Daily Production 

Program (EPIAS) 1702.92 1198.19 67.54 0.82 

Approach 1 2500.74 1571.1 46.24 0.67 

Approach 2 292.96 236.07 25.49 0.99 
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CHAPTER 7 
 

CONCLUSION 
 

The integration of wind energy requires more precise and enhanced predictions. 

Over the years, researchers have been developing various approaches to improve the 

accuracy and performance of wind speed and power predictions. The randomness and 

intermittency of wind characteristics complicate wind energy forecasting for linear 

methods. Addressing the complications faced by the linear approaches, this study 

proposes a nonlinear approach, the Long-short Term Memory (LSTM) model, for 

enhanced wind speed and power forecasting. The ideology behind the LSTM model is to 

improve forecasting performance by reducing the forecasting process's statistical errors 

and computation load. 

In the first part of the study, a case study is performed using real-time data from 

the IZTECH meteorological mast. In addition to wind speed and direction, topography 

and meteorological variables also mainly affect the improvement of forecasting accuracy. 

Factors affecting wind speed, such as temperature, relative humidity, and barometric 

pressure, should also be considered. Based on the literature review, five methods are 

chosen to investigate: Facebook Prophet, SARIMA, SARIMAX, GRU, and LSTM. The 

statistical performance indicators are used to compare the methods: MSE, RMSE, MAE, 

and R2.  

According to the daily forecasting results, the LSTM model shows the best 

performance with the lowest errors: MSE value of 0.2932, RMSE value of 0.4358, and 

MAE value of 0.3089, although the GRU model has relative values to the LSTM model. 

Meanwhile, the R2 value is 0.9809, closer to 1 than the other methods. On the other hand, 

the SARIMAX model cannot deeply understand the inherently chaotic nature of wind 

speed time series. The model shows the worst performance with the R2 value of 0.7498, 

MSE value of 1.8584, RMSE value of 1.3632, and MAE value of 1.1004. Since wind 

speed affects wind power generation in the third order, SARIMAX cannot give good 

forecasting results.  

The second part of the study is to forecast the wind power generation using the 

LSTM model and the wind speed forecasts and power curve of wind turbines in the wind 
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farms. The proposed model is validated using the real-time wind power generation data 

from the EPIAS Transparency Platform. This part investigates three operational wind 

farms: Urla Wind Farm, Kores Kocadag Wind Farm, and Germiyan Wind Farm. Due to 

the unavailable meteorological dataset of Kores Kocadag and Germiyan Wind Farm, an 

ERA5 dataset of the nearest location is used to predict wind speed and power generation. 

Before using the ERA5 dataset, it is validated with the real-time dataset of the IZTECH 

meteorological mast. The correlation between the ERA5 and IZTECH meteorological 

mast datasets is denoted by the coefficient of determination R2 of 0.7596. 

Firstly, the wind power generation is predicted using a multivariate LSTM 

network for the three operational wind farms. The R-square, RMSE, MAE, and MAPE 

values are calculated for each operational wind farm to evaluate the performance of the 

LSTM model. For the Urla Wind Farm, the wind power productions of the SCADA and 

EPIAS give close results. They are very close to the actual wind power productions. That 

means the wind power production of the EPIAS can be used for the other wind farm 

because their SCADA data are unavailable. The correlations are denoted by the 

coefficient of determination R2 are 0.9940 and 0.9945, respectively, the SCADA and 

EPIAS.  

Since the installed capacities of wind farms are significantly different, RMSE and 

MAE may not show comparable results. Also, R-square values are too close to each other. 

MAPE could be the best indicator to compare the forecast results of wind farms, which 

shows the quality of forecasts.  In this context, MAPE scores are in the range of 8.7%-

28.1% obtained by the LSTM model, which are considered accurate results. However, 

Kores Kocadag Wind Farm gives highly accurate results with a MAPE value of 8.7%. 

Germiyan Wind Farm has the second-best forecasting results, with a MAPE value of 

25.49%. The worst forecasting results belong to Urla Wind Farm, with a MAPE value of 

28.1%. Although both Germiyan and Urla wind farms give the forecasting results with 

lower accuracy, they can be considered reasonable.   

Secondly, wind power generation is forecasted using wind speed forecasts and 

wind curves of turbines for three operational wind farms. The correlations between the 

real-time power generations and forecasts are denoted by the coefficient of determination 

R2 are 0.5979, 0.7389, and 0.6682, respectively, the Urla, Kores Kocadag, and Germiyan 

wind farms. Mainly, Urla Wind Farm exhibits a minor mean absolute percentage error 
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compared with the other wind farms, with a value of 45.98%, which means the accuracy 

is higher than the other wind farms. Lastly, Urla Wind Farm exhibits 45.98% of the 

MAPE, followed by Germiyan Wind Farm, with 46.24%. Kores Kocadag Wind Farm 

occupies the major rank with 51.12%. 

Progress in wind power generation forecasting techniques brings millions of 

dollars in profit to electricity generator companies. Day Ahead Market (DAM) is one of 

the interdependent platforms of the Turkish Electricity Market. Wind energy production 

for the next day can be used in the investment strategies of the market participants. That’s 

why the next day's wind energy generation is forecasted with two different approaches.. 

Although there can be hourly deviations, these may not be reflected in the daily forecast.   

The LSTM model generates more accurate predictions on daily bases if compared 

with the hourly forecasting results. MAPE scores are in the range of 7.15%-16.77% 

obtained by the LSTM model, which means they are accurate forecasts. Kores Kocadag 

Wind Farm outperforms the other wind farms with a MAPE value of 7.15%. Thus, a 

producer can have a reference predictor value with deviations in the range of 7.15%-

16.77% about the wind energy generation of tomorrow. This method can forecast possible 

imbalances and system shutdowns, and necessary actions can be taken a day in advance 

from the system operator’s perspective.   

In the second approach, MAPE scores change between 31.08 % and 44.65%, 

which means they are reasonable forecasts with low accuracies but can be considered 

acceptable. Urla Wind Farm outperforms the other wind farms with a MAPE value of 

31.08% for this method. Unlike the previous approach, a producer cannot have a reference 

predictor value as accurate as the previous method. A deviation of reference predictor 

value varies between 31.08%-44.65% about the wind energy generation of tomorrow. 

This method may not forecast possible imbalances and system shutdowns at times, which 

causes necessary actions may not to be adequately taken a day in advance.  

In conclusion, the results indicate that using the LSTM model with the ERA5 

dataset could give better forecasts than wind farms’ own forecasts. Additionally, because 

we do not have information about power failures and shutdowns, the forecasting methods 

cannot precisely calculate the real-time fluctuations. If the SCADA data could be 

obtained, the forecasting performance might be increased.  
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APPENDIX A 

 

PYTHON CODES 

 

Facebook Prophet  

import pandas as pd 

import numpy as np 

import xlsxwriter 

from prophet import Prophet 

from numpy import concatenate 

from pandas import read_csv 

from pandas import DataFrame 

from pandas import concat 

from datetime import datetime 

from sklearn.metrics import * 

from math import sqrt 

 

#prophet univariate 

 

all_df = pd.read_csv('iztech.csv', usecols = ['Name','WS101']) 

all_df.columns = ['ds', 'y'] 

 

results=[] 

for i in range(0, 57601, 2): 

    df=all_df[i:i+144] 

    m = Prophet(daily_seasonality=True, weekly_seasonality=True, ye

arly_seasonality=True) 

    m.fit(df) 

    future = m.make_future_dataframe(periods=144,freq='10 min') 

    forecast = m.predict(future) 

    result = forecast[['ds', 'yhat']] 

    result = result.tail(2) 

    results.append(result)  

 

#prophet multivariate 

 

train = pd.read_csv('iztech.csv', usecols = ['Name','WS101', 

'RH3','T3','P2']) 

train.rename(columns={'Name':'ds', 'RH3': 'add1', 'T3': 'add2', 

'P2': 'add3', 'WS101': 'y'}, inplace=True) 

 

results_multivariate=[] 

for i in range(0, 57601, 2): 

    X_train = train.iloc[i:i+144] 
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    X_val  = train.iloc[i+144:i+146] 

     

    model = Prophet(daily_seasonality=True, weekly_seasonality=True

, yearly_seasonality=True) 

    model.add_regressor('add1') 

    model.add_regressor('add2') 

    model.add_regressor('add3') 

    model.fit(X_train) 

 

    forecast_1 = model.predict(X_val.drop(columns="y")) 

    result_1 = forecast_1[['ds', 'yhat']]  

    results_multivariate.append(result_1) 

 

# Create Pandas dataframes from forecasts 

df1 = pd.read_csv('iztech.csv', usecols = ['Name','T3']) 

df1.columns = ['ds', 'y'] 

df1=df1[144:57601] 

 

df1 = pd.DataFrame(df1) 

df2 = pd.DataFrame(np.concatenate(results),columns=['ds', 'yhat']) 

df3 = pd.DataFrame(np.concatenate(results_multivariate), columns=['

ds', 'yhat']) 

 

expected=df1['y'] 

prediction_multi=df2['yhat'] 

prediction_uni=df3['yhat'] 

 

MSE_multi = mean_squared_error(expected, prediction_multi) 

R2_multi = r2_score(expected, prediction_multi) 

RMSE_multi = sqrt(mean_squared_error(expected, prediction_multi)) 

MAE_multi = mean_absolute_error(expected, prediction_multi) 

 

print(MSE_multi) 

print(R2_multi) 

print(RMSE_multi) 

print(MAE_multi) 

 

SARIMA 

from statsmodels.graphics.tsaplots import plot_pacf 

from statsmodels.graphics.tsaplots import plot_acf 

from statsmodels.tsa.statespace.sarimax import SARIMAX 

from statsmodels.tsa.stattools import adfuller 

from sklearn.metrics import mean_squared_error 

import matplotlib.pyplot as plt 

from tqdm import tqdm_notebook 

import numpy as np 

import pandas as pd 
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from itertools import product 

 

from sklearn.metrics import * 

from math import sqrt 

import warnings 

warnings.filterwarnings('ignore') 

 

all_df = pd.read_csv('iztech.csv', usecols = ['Name','WS101']) 

 

forecast=[] 

for i in range(0, 57601, 2): 

    data = all_df[i:i+144] 

     

    def optimize_SARIMA(endog, parameters_list, d, D, s): 

     

        results = [] 

         

        for param in tqdm_notebook(parameters_list): 

            try:  

                model = SARIMAX(endog, order=(param[0], d, param[1]

), seasonal_order=(param[2], D, param[3], s), simple_differencing=F

alse).fit(disp=False) 

            except: 

                continue 

             

            aic = model.aic 

            results.append([param, aic]) 

         

        result_df = pd.DataFrame(results) 

        result_df.columns = ['(p,q)x(P,Q)', 'AIC'] 

     

        #Sort in ascending order, lower AIC is better 

        result_df = result_df.sort_values(by='AIC', ascending=True)

.reset_index(drop=True) 

     

        return result_df 

 

    p = range(0, 3, 1) 

    d = 1 

    q = range(0, 3, 1) 

    P = range(0, 3, 1) 

    D = 1 

    Q = range(0, 3, 1) 

    s = 4 

 

    parameters = product(p, q, P, Q) 

    parameters_list = list(parameters) 
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    result_df = optimize_SARIMA(data['WS101'], parameters_list, 1, 

1, 4) 

    result_df_min=result_df[result_df.AIC == result_df.AIC.min()] 

    p=result_df_min['(p,q)x(P,Q)'][0][0] 

    q=result_df_min['(p,q)x(P,Q)'][0][1] 

    P=result_df_min['(p,q)x(P,Q)'][0][2] 

    Q=result_df_min['(p,q)x(P,Q)'][0][3] 

 

    best_model = SARIMAX(data['WS101'], order=(p,d,q), seasonal_ord

er=(P,D,Q,s), simple_differencing=False) 

    res = best_model.fit(disp=False) 

 

    n_forecast = 2 

    predict = res.get_prediction(end=best_model.nobs + n_forecast) 

 

    prediction=predict.predicted_mean[-n_forecast:] 

    forecast.append(prediction)  

 

    df=all_df[144:57601] 

    df1 = pd.DataFrame(np.concatenate(forecast)) 

    expected=df['WS101'] 

    prediction=df1 

 

    MSE = mean_squared_error(expected, prediction) 

    R2 = r2_score(expected, prediction) 

    RMSE = sqrt(mean_squared_error(expected, prediction)) 

    MAE = mean_absolute_error(expected, prediction) 

 

    print(MSE) 

    print(R2) 

    print(RMSE) 

    print(MAE) 

 

SARIMAX 

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf 

from statsmodels.tsa.statespace.sarimax import SARIMAX 

from statsmodels.tsa.stattools import adfuller 

import statsmodels.api as sm 

from sklearn.metrics import mean_squared_error 

from tqdm import tqdm_notebook 

import matplotlib.pyplot as plt 

import pandas as pd 

import numpy as np 

from itertools import product 

import warnings 

from sklearn.metrics import * 

from math import sqrt 
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warnings.filterwarnings('ignore') 

%matplotlib inline 

 

macro_data = pd.read_csv('iztech.csv', usecols = ['Name','T3','RH3'

,'P2','WS101']) 

 

forecast=[] 

for i in range(0, 144, 2): 

    data = macro_data[i:i+144] 

    def optimize_SARIMAX(endog, exog, parameters_list, d, D, s): 

        """ 

            Returns dataframe with parameters, corresponding AIC 

         

            endog - the observed variable 

            exog - the exogenous variables 

            parameters_list - list with (p, d, P, Q)tuples 

            d - integration order 

            D - seasonal integration order 

            s - length of the season 

        """ 

     

        results = [] 

     

        for param in tqdm_notebook(parameters_list): 

            try: 

                model = SARIMAX(endog, 

                               exog, 

                               order=(param[0], d, param[1]), 

                               seasonal_order=(param[2], D, param[3

], s), 

                               simple_differencing=False).fit(disp=

False) 

            except: 

                continue 

             

            aic = model.aic 

            results.append([param, aic]) 

         

        result_df = pd.DataFrame(results) 

        result_df.columns = ['(p,q)x(P,Q)', 'AIC'] 

        result_df = result_df.sort_values(by='AIC', ascending=True)

.reset_index(drop=True) 

     

        return result_df 

    p = range(0, 3, 1) 

    d = 1 

    q = range(0, 3, 1) 

    P = range(0, 3, 1) 

    D = 0 
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    Q = range(0, 3, 1) 

    s = 4 

 

    parameters = product(p, q, P, Q) 

    parameters_list = list(parameters) 

     

    endog = macro_data['WS101'][i:i+142] 

    exog = macro_data[['T3','RH3','P2']][i:i+142] 

 

    result_df = optimize_SARIMAX(endog, exog, parameters_list, 1, 0

, 4) 

    result_df_min=result_df[result_df.AIC == result_df.AIC.min()] 

    p=result_df_min['(p,q)x(P,Q)'][0][0] 

    q=result_df_min['(p,q)x(P,Q)'][0][1] 

    P=result_df_min['(p,q)x(P,Q)'][0][2] 

    Q=result_df_min['(p,q)x(P,Q)'][0][3] 

     

    best_model = SARIMAX(endog,  

                     exog,  

                     order=(p,d,q),  

                     seasonal_order=(P,D,Q,s), 

                    simple_differencing=False) 

    res = best_model.fit(dis=False) 

     

    n_forecast = 2 

    predict = res.get_prediction(end=best_model.nobs + n_forecast, 

                            exog = exog.iloc[-3:]) 

    prediction=predict.predicted_mean[-n_forecast:] 

    forecast.append(prediction) 

 

    df=macro_data['WS101'] 

    expected=df[144:57601] 

    prediction=pd.DataFrame(np.concatenate(forecast)) 

 

    MSE = mean_squared_error(expected, prediction) 

    R2 = r2_score(expected, prediction) 

    RMSE = sqrt(mean_squared_error(expected, prediction)) 

    MAE = mean_absolute_error(expected, prediction) 

 

    print(MSE) 

    print(R2) 

    print(RMSE) 

    print(MAE) 

 

GRU 

import pandas as pd 

import numpy as np 
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from math import sqrt 

from numpy import concatenate 

from matplotlib import pyplot 

from pandas import read_csv 

from pandas import DataFrame 

from pandas import concat 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.preprocessing import LabelEncoder 

from sklearn.metrics import mean_squared_error 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import LSTM, GRU 

import tensorflow as tf 

from datetime import datetime 

import matplotlib.pyplot as plt 

plt.rcParams['figure.figsize'] = (15,5) 

from sklearn.metrics import * 

from math import sqrt 

 

 

dataset = read_csv("iztech.csv", 

                   parse_dates={'dt' : ['Name']}, 

                   infer_datetime_format=True,  

                   index_col= 0, 

                   na_values=['nan','?']) 

dataset.fillna(0, inplace=True) 

values = dataset.values 

 

dataset.head(4) 

 

dataset.drop(columns  = [ 'WS101Max', 'WS101Min', 'WS101Count', 'WS

76', 'WS76Max', 'WS76Min', 'WS76Std','WS76Count','WD28Max','WD28Min

','WD28Std','WD28Count','rho10','rho10Max','rho10Std'], inplace = T

rue) 

 

dataset.drop(columns  = [ 'WS101Std', 'WS30', 'WS30Max', 'WS30Min',

 'WS30Std', 'WS30Count', 'WD74','WD74Max','WD74Min','WD74Std','WD74

Count','WD28'], inplace = True) 

 

dataset = dataset[[ 'T3','P2','RH3', 'WS101']] 

 

values = dataset.values 

# ensure all data is float 

values = values.astype('float32') 

 

# normalizing input features 

scaler = MinMaxScaler(feature_range=(0, 1)) 

scaled = scaler.fit_transform(values) 

scaled =pd.DataFrame(scaled) 
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scaled.head(4) 

 

def create_ts_data(dataset, lookback=1, predicted_col=3): 

    temp=dataset.copy() 

    temp["id"]= range(1, len(temp)+1) 

    temp = temp.iloc[:-lookback, :] 

    temp.set_index('id', inplace =True) 

    predicted_value=dataset.copy() 

    predicted_value = predicted_value.iloc[lookback:,predicted_col] 

    predicted_value.columns=["Predcited"] 

    predicted_value= pd.DataFrame(predicted_value) 

     

    predicted_value["id"]= range(1, len(predicted_value)+1) 

    predicted_value.set_index('id', inplace =True) 

    final_df= pd.concat([temp, predicted_value], axis=1) 

    #final_df.columns = ['var1(t-1)', 'var2(t-1)', 'var3(t-

1)', 'var4(t-1)', 'var5(t-1)', 'var6(t-1)', 'var7(t-1)', 'var8(t-

1)','var1(t)'] 

    #final_df.set_index('Date', inplace=True) 

    return final_df 

 

#We now create the time series dataset with looking back one time s

tep 

 

reframed_df= create_ts_data(scaled, 1,3) 

reframed_df.fillna(0, inplace=True) 

 

reframed_df.columns = ['var1(t-1)', 'var2(t-1)', 'var3(t-

1)', 'var4(t-1)', 'var5(t-1)',] 

print(reframed_df.head(4)) 

 

# split into train and test sets 

values = reframed_df.values 

training_sample =int( len(dataset) *0.7) 

train = values[:training_sample, :] 

test = values[training_sample:, :] 

# split into input and outputs 

train_X, train_y = train[:, :-1], train[:, -1] 

test_X, test_y = test[:, :-1], test[:, -1] 

 

# reshape input to be 3D [samples, time steps, features] 

train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1])) 

test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1])) 

print(train_X.shape, train_y.shape, test_X.shape, test_y.shape) 

 

model_gru = Sequential() 

model_gru.add(GRU(75, return_sequences=True,input_shape=(train_X.sh

ape[1], train_X.shape[2]))) 
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model_gru.add(GRU(units=30, return_sequences=True)) 

model_gru.add(GRU(units=30)) 

model_gru.add(Dense(units=1)) 

model_gru.compile(loss='mae', optimizer='adam') 

model_gru.summary() 

 

# fit network 

gru_history = model_gru.fit(train_X, train_y, epochs=10,validation_

data=(test_X, test_y), batch_size=64, shuffle=False) 

 

pred_y =  model_gru.predict(test_X) 

pred_y_1 =  model_gru.predict(train_X) 

 

#dont run this cell if you are running this cell than add "validati

on_data=(test_X, test_y)" in model_gru.fit() 

pyplot.plot(gru_history.history['loss'], label='GRU train', color='

brown') 

pyplot.plot(gru_history.history['val_loss'], label='GRU test', colo

r='blue') 

pyplot.legend() 

pyplot.show() 

 

test_y.reshape(17323,1) 

 

MSE = mean_squared_error(test_y, pred_y) 

R2 = r2_score(test_y, pred_y) 

RMSE = sqrt(mean_squared_error(test_y, pred_y)) 

MAE = mean_absolute_error(test_y, pred_y) 

 

print(MSE) 

print(R2) 

print(RMSE) 

print(MAE) 

 

#plotting predicted test value vs actual test value 

plt.plot(test_y, label = 'Actual') 

plt.plot(pred_y, label = 'Predicted') 

plt.legend() 

plt.show() 

 

#visualization over full data 

tra = np.concatenate([train_X,test_X]) 

tes = np.concatenate([train_y,test_y]) 

fp = model_gru.predict(tra) 

plt.plot(tes, label = 'Actual') 

plt.plot(fp, label = 'Predicted') 

plt.legend() 

plt.show() 



88 
 

 

 

 

#inverse normalizing 

dataset_1 = dataset[['WS101']] 

dataset_1 = dataset_1[40421:57744] 

dataset_1.head() 

 

values_1 = dataset_1.values 

# ensure all data is float 

values_1 = values_1.astype('float32') 

 

# normalizing input features 

scaler_1 = MinMaxScaler(feature_range=(0, 1)) 

scaled_1 = scaler_1.fit_transform(values_1) 

scaled_1 =pd.DataFrame(scaled_1) 

 

scaled_1.head(4) 

 

inversed_1 = scaler_1.inverse_transform(scaled_1) 

print(inversed_1) 

print(values_1) 

print(scaled_1) 

 

test_y_inv = scaler_1.inverse_transform([test_y]) 

test_y_inv=test_y_inv.reshape(17323,1) 

pred_y_inv = scaler_1.inverse_transform(pred_y) 

pred_y_1_inv = scaler_1.inverse_transform(pred_y_1) 

test_X_1=dataset['WS101'] 

test_X_1=test_X_1[:40420] 

 

MSE = mean_squared_error(test_y_inv, pred_y_inv) 

R2 = r2_score(test_y_inv, pred_y_inv) 

RMSE = sqrt(mean_squared_error(test_y_inv, pred_y_inv)) 

MAE = mean_absolute_error(test_y_inv, pred_y_inv) 

 

print(MSE) 

print(R2) 

print(RMSE) 

print(MAE) 

 

LSTM 

import pandas as pd 

import numpy as np 

from math import sqrt 

from numpy import concatenate 

from matplotlib import pyplot 
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from pandas import read_csv 

from pandas import DataFrame 

from pandas import concat 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.preprocessing import LabelEncoder 

from sklearn.metrics import mean_squared_error 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import LSTM, GRU 

import tensorflow as tf 

from datetime import datetime 

from sklearn.metrics import * 

from math import sqrt 

from sklearn.metrics import * 

from math import sqrt 

 

dataset = read_csv("iztech.csv", 

                   parse_dates={'dt' : ['Name']}, 

                   infer_datetime_format=True,  

                   index_col= 0, 

                   na_values=['nan','?']) 

dataset.fillna(0, inplace=True) 

values = dataset.values 

dataset.head(4) 

 

dataset.drop(columns  = [ 'WS101Max', 'WS101Min', 'WS101Count', 'WS

76', 'WS76Max', 'WS76Min', 'WS76Std','WS76Count','WD28Max','WD28Min

','WD28Std','WD28Count','rho10','rho10Max','rho10Std'], inplace = T

rue) 

dataset.drop(columns  = [ 'WS101Std', 'WS30', 'WS30Max', 'WS30Min',

 'WS30Std', 'WS30Count', 'WD74','WD74Max','WD74Min','WD74Std','WD74

Count','WD28'], inplace = True) 

 

dataset = dataset[[ 'T3','P2','RH3', 'WS101']] 

 

values = dataset.values 

# ensure all data is float 

values = values.astype('float32') 

 

# normalizing input features 

scaler = MinMaxScaler(feature_range=(0, 1)) 

scaled = scaler.fit_transform(values) 

scaled =pd.DataFrame(scaled) 

 

def create_ts_data(dataset, lookback=1, predicted_col=3): 

    temp=dataset.copy() 

    temp["id"]= range(1, len(temp)+1) 

    temp = temp.iloc[:-lookback, :] 

    temp.set_index('id', inplace =True) 
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    predicted_value=dataset.copy() 

    predicted_value = predicted_value.iloc[lookback:,predicted_col] 

    predicted_value.columns=["Predcited"] 

    predicted_value= pd.DataFrame(predicted_value) 

     

    predicted_value["id"]= range(1, len(predicted_value)+1) 

    predicted_value.set_index('id', inplace =True) 

    final_df= pd.concat([temp, predicted_value], axis=1) 

    #final_df.columns = ['var1(t-1)', 'var2(t-1)', 'var3(t-

1)', 'var4(t-1)', 'var5(t-1)', 'var6(t-1)', 'var7(t-1)', 'var8(t-

1)','var1(t)'] 

    #final_df.set_index('Date', inplace=True) 

    return final_df 

 

#We now create the time series dataset with looking back one time s

tep 

 

reframed_df= create_ts_data(scaled, 1,3) 

reframed_df.fillna(0, inplace=True) 

 

reframed_df.columns = ['var1(t-1)', 'var2(t-1)', 'var3(t-

1)', 'var4(t-1)', 'var5(t-1)',] 

print(reframed_df.head(4)) 

 

# split into train and test sets 

values = reframed_df.values 

training_sample =int( len(dataset) *0.7) 

train = values[:training_sample, :] 

test = values[training_sample:, :] 

# split into input and outputs 

train_X, train_y = train[:, :-1], train[:, -1] 

test_X, test_y = test[:, :-1], test[:, -1] 

 

# reshape input to be 3D [samples, time steps, features] 

train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1])) 

test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1])) 

print(train_X.shape, train_y.shape, test_X.shape, test_y.shape) 

 

 

model_lstm = Sequential() 

model_lstm.add(LSTM(75, return_sequences=True,input_shape=(train_X.

shape[1], train_X.shape[2]))) 

model_lstm.add(LSTM(units=30, return_sequences=True)) 

model_lstm.add(LSTM(units=30)) 

model_lstm.add(Dense(units=1)) 

model_lstm.compile(loss='mae', optimizer='adam') 

model_lstm.summary() 

 

# fit network 
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lstm_history = model_lstm.fit(train_X, train_y, epochs=10,validatio

n_data=(test_X, test_y), batch_size=64, shuffle=False) 

 

pred_y =  model_lstm.predict(test_X) 

pred_y_1 =  model_lstm.predict(train_X) 

 

#dont run this cell if you are running this cell than add "validati

on_data=(test_X, test_y)" in model_gru.fit() 

pyplot.plot(lstm_history.history['loss'], label='lstm train', color

='brown') 

pyplot.plot(lstm_history.history['val_loss'], label='lstm test', co

lor='blue') 

pyplot.legend() 

pyplot.show() 

 

test_y.reshape(17323,1) 

 

MSE = mean_squared_error(test_y, pred_y) 

R2 = r2_score(test_y, pred_y) 

RMSE = sqrt(mean_squared_error(test_y, pred_y)) 

MAE = mean_absolute_error(test_y, pred_y) 

 

print(MSE) 

print(R2) 

print(RMSE) 

print(MAE) 

 

#plotting predicted test value vs actual test value 

plt.plot(test_y, label = 'Actual') 

plt.plot(pred_y, label = 'Predicted') 

plt.legend() 

plt.show() 

 

#visualization over full data 

tra = np.concatenate([train_X,test_X]) 

tes = np.concatenate([train_y,test_y]) 

fp = model_lstm.predict(tra) 

plt.plot(tes, label = 'Actual') 

plt.plot(fp, label = 'Predicted') 

plt.legend() 

plt.show() 

 

# inverse normalizing 

dataset_1 = dataset[['WS101']] 

dataset_1 = dataset_1[40421:57744] 

dataset_1.head() 

 

values_1 = dataset_1.values 
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# ensure all data is float 

values_1 = values_1.astype('float32') 

 

# normalizing input features 

scaler_1 = MinMaxScaler(feature_range=(0, 1)) 

scaled_1 = scaler_1.fit_transform(values_1) 

scaled_1 =pd.DataFrame(scaled_1) 

 

scaled_1.head(4) 

 

inversed_1 = scaler_1.inverse_transform(scaled_1) 

print(inversed_1) 

print(values_1) 

print(scaled_1) 

 

test_y_inv = scaler_1.inverse_transform([test_y]) 

test_y_inv=test_y_inv.reshape(17323,1) 

 

pred_y_inv = scaler_1.inverse_transform(pred_y) 

pred_y_inv 

 

pred_y_1_inv = scaler_1.inverse_transform(pred_y_1) 

pred_y_1_inv 

 

test_X_1=dataset['WS101'] 

test_X_1=test_X_1[:40420] 

 

MSE = mean_squared_error(test_y_inv, pred_y_inv) 

R2 = r2_score(test_y_inv, pred_y_inv) 

RMSE = sqrt(mean_squared_error(test_y_inv, pred_y_inv)) 

MAE = mean_absolute_error(test_y_inv, pred_y_inv) 

 

print(MSE) 

print(R2) 

print(RMSE) 

print(MAE) 
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