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ABSTRACT

LEGENDRE WAVELET COLLOCATION METHOD WITH
QUASILINEARIZATION TECHNIQUE FOR FRACTIONAL

DIFFERENTIAL EQUATIONS

We aim to present numerical methods based on Legendre wavelets and quasilin-

earization technique for fractional Lane-Emden type equations and time-fractional Fisher’s

equation.

The Lane-Emden equation is a second order singular non-linear ordinary differ-

ential equation, which is useful for modelling many astrophysical phenomena such as the

distribution of stars in star clusters and star formation in molecular clouds. The Fisher’s

equation is a non-linear reaction-diffusion equation that models the spread of mutant genes

in a population.

We start with a brief discussion of the purpose of studying fractional differential

equations. Then some practical aspects of wavelets are explained. We also give intro-

ductory definitions and properties of fractional calculus and Legendre wavelets. Using

Legendre wavelets and quasilinearization technique, we derive numerical methods for

fractional Lane-Emden type equations and time-fractional Fisher’s equation. Moreover,

the convergence analysis of both methods is studied. Some problems are solved to evaluate

the efficiency of the proposed methods. Test problems show that the proposed methods

are very effective.
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ÖZET

KESİRLİ DİFERANSİYEL DENKLEMLER İÇİN
KUASİLİNEERİZASYON TEKNİĞİ İLE LEGENDRE DALGACIĞI

KOLLOKASYON METODU

Kesirli Lane-Emden tipi denklemler ve zaman-kesirli Fisher denklemi için Leg-

endre dalgacıklarına ve kuasilineerizasyon tekniğine dayalı nümerik yöntemler sunmayı

amaçlıyoruz.

Lane-Emden denklemi, yıldız kümelerindeki yıldızların dağılımı ve moleküler

bulutlardaki yıldız oluşumu gibi birçok astrofiziksel olguyu modellemek için yararlı olan

ikinci dereceden tekil, doğrusal olmayan bir adi diferansiyel denklemdir. Fisher denklemi

ise, bir popülasyondaki mutant genlerin yayılmasını modelleyen doğrusal olmayan bir

reaksiyon-difüzyon denklemidir.

Kesirli diferansiyel denklemleri çalışmanın amacına ilişkin kısa bir tartışma ile

başlıyoruz. Daha sonra dalgacıkların bazı pratik yönleri açıklanmaktadır. Ayrıca kesirli

kalkülüs ve Legendre dalgacıklarının giriş seviyesi tanımları ve özellikleri verilmektedir.

Legendre dalgacıklarını ve kuasilineerizasyon tekniğini kullanarak, kesirli Lane-Emden

tipi denklemler ve zaman-kesirli Fisher denklemi için nümerik yöntemler elde edilmiştir.

Ayrıca, her iki yöntemin yakınsama analizi incelenmiştir. Önerilen yöntemlerin etkinliğini

değerlendirmek için bazı problemler çözülmüştür. Test problemleri, önerilen yöntemlerin

çok etkili olduğunu göstermektedir.
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CHAPTER 1

INTRODUCTION

The subject of fractional calculus is roughly derivatives and integrals, whose

order can be real or complex numbers. However, the term "fractional" is a historical

misnomer because in fractional calculus the order of derivatives and integrals need not be

fractional(rational) numbers.

The first appearance of fractional calculus is in a letter between L’Hopital and

Leibniz in 1695. Leibniz asked L’Hopital

"Is it possible to extend the concept of the integer order derivative
dny

dxn
to be meaningful

when the order n is a fraction?"

L’Hopital replied

"What happens if the order n is
1

2
?"

Based on the mathematics of his own time, Leibniz responded that

"When n is
1

2
, it will result in a paradox that will one day yield beneficial and practical

results."

Leibniz and L’Hopital were not the only mathematicians interested in fractional calculus.

Numerous prominent mathematicians were interested in fractional calculus, including

Euler, Riemann, Liouville, Abel, and Laplace.

Until the 20th century, fractional calculus was studied by pure mathematicians.

Recently, it is found that many real life problems are modelled better using fractional

differential equations [3], [15], [22], [29], [9]. There are two main reasons for this: First

of all, we don’t have to use only integer order derivatives and integrals; we are allowed

to use any order for the integral and derivative operators. Second, fractional derivative

operator is not a local operator. This means that if we interpret the independent variable as

time, the fractional derivative of a function depends also on the past data of the function,

which can be easily realized from the definition of the Caputo fractional derivative in
1



Chapter 2. This property helps us more accurately model problems with memory, such

as the SIR model in epidemics [8]. Furthermore, there are mathematical models that can

only be described using fractional differential equations. For example, the Bagley-Torvik

equation is used to describe how a rigid plate moves when submerged in a Newtonian

fluid, and it involves a fractional order differential term [38]. For these reasons, fractional

calculus has become attractive to many scientists and engineers.

Unfortunately, it is not always possible to find an exact solution to a fractional differ-

ential equation. Hence, many researchers develop numerical methods to find approximate

solutions. Some of the most commonly used numerical methods are Variational Iteration

Method (VIM) [7], Adomian Decomposition Method (ADM) [17], Homotopy Pertur-

bation Method (HPM) [40], and Finite Difference Method (FDM) [21]. Also, spectral

methods such as collocation [36], [45] and Galerkin methods [14], [20] are popular among

other numerical methods for solving fractional differential equations because of their fast

convergence properties.

Wavelet theory has been developed and applied to various research fields over the

past three decades. Wavelets are employed to solve problems in economics [25], signal

processing [37], inverse problems [26], etc. A Schauder basis for the space of square-

integrable functions on the interval [a, b] can be constructed using appropriately scaled

and shifted wavelets. Thus, we can express any function f ∈ L2[a, b] in terms of wavelets.

Based on this property, numerous scholars have proposed numerical methods for solving

fractional differential equations [10], [43], [39], [41], [1]. By taking advantage of this

feature, we are going to propose numerical methods which depend on Legendre wavelets

and quasilinearization technique.

Many real life problems in science and engineering can be modelled using ordinary

differential equations and partial differential equations. The Lane-Emden equation can be

given as an example for ordinary differential equations. And the Fisher’s equation can be

given as an example of partial differential equations.

The Lane-Emden equation usually appears in astrophysics and is given by

y′′(r) +
2

r
y′(r) + ym(r) = 0, r > 0. (1.1)

2



depending on the initial conditions

y(0) = P, y′(0) = Q, (1.2)

where m,P,Q ∈ R are constants. The Lane-Emden equation (1.1) is useful to model the

internal structure of a ball of gas or plasma under self-gravitation, the distribution of stars

in star clusters under self-gravitation, star formation in molecular clouds, and the theory

of thermionic currents [6]. The Lane-Emden equation (1.1) was first studied by Jonathan

Homer Lane in 1870. 37 years later, in 1907, the equation (1.1) was investigated in more

detail by Robert Emden.

In this study, we consider the following form of fractional Lane-Emden type of

equations

dαy(r)

drα
+

K

rα−β

dβy(r)

drβ
+ h(r, y(r)) = 0, r > 0, (1.3)

with the initial conditions

y(0) = P, y′(0) = Q, (1.4)

where K,P,Q ∈ R are constants. r is the independent variable and y is the dependent

variable. h(r, y(r)) represents a nonlinear function of r and y(r).
dαy(r)

drα
and

dβy(r)

drβ

denote the α-th and β-th order Caputo fractional derivative of y = y(r), where 1 < α ≤ 2

and 0 < β ≤ 1, respectively. The existence and uniqueness of the solutions to the problem

(1.3) with (1.4) is studied in [12]. Due to the term
K

rα−β
, equation (1.3) is a singular

initial value problem. Lane-Emden type equations are challenging to solve numerically

because of the presence of singularity at r = 0. By choosing an appropriate α, β, K,

and h, the Lane-Emden type equation (1.3) can be reduced to the Thomas-Fermi equation

or the Poisson-Boltzmann-Emden equation. So, the Lane-Emden type equation (1.3) is a

generalization of the classical Lane-Emden equation (1.1), Thomas-Fermi equation, and

Poisson-Boltzmann-Emden equation.

3



There exist various methods to find an approximate solution to fractional Lane-

Emden type equations (1.3). Amir Mohammadi et al. [27] used second-kind Chebyshev

wavelet method together with quasilinearization technique to solve fractional Lane-Emden

type equations. Umer Saeed [32] proposed a numerical method based on Haar wavelets

and Adomian decomposition method. For the classical Lane-Emden equation (1.1), there

are also many other numerical methods in the literature [13], [30], [35].

In addition to the fractional Lane-Emden type equation (1.3), we consider the

following form of the time-fractional Fisher’s equation

∂αy(x, t)

∂tα
= δ

∂2y(x, t)

∂x2
+ λy(x, t)(1− yp(x, t)) + q(x, t) (1.5)

0 ≤ x ≤ 1, 0 ≤ t ≤ 1.

The initial condition is

y(x, 0) = w(x), (1.6)

and boundary conditions are

y(0, t) = z1(t), (1.7)

y(1, t) = z2(t), (1.8)

where δ, λ, p ∈ R; w(x), z1(t), z2(t), and q(x, t) are known functions.
∂αy(x, t)

∂tα
denotes

the α-th order Caputo fractional derivative of y = y(x, t) with respect to t, where 0 < α ≤

1. In 1937, Fisher proposed the following simplified form of equation (1.5) to investigate

how a mutant gene spreads in a population; where y represents the density of the mutant

gene in the population [11].

∂y(x, t)

∂t
= δ

∂2y(x, t)

∂x2
+ λy(x, t)(1− y(x, t)). (1.9)

4



The Fisher’s equation is also used in many areas of science and engineering such as

chemical kinetics [31], branching Brownian motion [5], epidemics and bacteria [19].

Aghazadeh et al. [2] used Haar wavelet method together with Picard iteration to

solve the time-fractional Fisher’s equation numerically. Mohyud-Din et al. [28] obtained

numerical results for the Fisher’s equation using the modified variational iteration method.

Secer et al. [33] developed a computational approach for the time-fractional Fisher’s

equation based on Jacobi wavelets.

5



CHAPTER 2

PRELIMINARIES

The main goal of this chapter is to present the fundamentals of fractional calculus

and Legendre wavelets.

2.1 Fractional Calculus

Definition 1. [18] Let α ∈ R+ and Ω = [a, b] be a finite interval, where −∞ < a < b <

∞. For a function u ∈ L1[a, b], its Riemann-Liouville integral of order α is defined by

aIα
t u(t) =

1

Γ(α)

∫ t

a

(t− x)α−1u(x) dx, (2.1)

where Γ denotes the gamma function and t ∈ [a, b]. For α = 0, we set

aI0
t u(t) = u(t). (2.2)

Useful properties for the Riemann-Liouville integral operator [18]:

1. Consider the function u(t) = (t− a)λ with λ > −1. For α ∈ R+, we have

aIα
t u(t) =

Γ(λ+ 1)

Γ(λ+ α + 1)
(t− a)λ+α. (2.3)

2. Let α, β ∈ R+. Suppose that u is an absolutely integrable function over [a, b], i.e.,

u ∈ L1[a, b]. Then there holds

aIα
t aIβ

t u(t) = aIβ
t aIα

t u(t) = aIα+β
t u(t). (2.4)

6



Definition 2. [18] Let α ∈ R+ and Ω = [a, b] be a finite interval, where −∞ < a < b <

∞. For a function u ∈ L1[a, b], its Caputo derivative of order α is defined by

C
a Dα

t u(t) =


1

Γ(n− α)

∫ t

a

(t− x)n−α−1u(n)(x) dx, n− 1 < α < n, n ∈ N;

dn

dtn
u(t), α = n, n ∈ N,

(2.5)

where Γ represents the gamma function and t ∈ [a, b].

We have the following relations between the Riemann-Liouville fractional integral

and the Caputo fractional derivative [18]:

1. Let α ∈ R+ such that n − 1 < α < n, where n ∈ N. Suppose that u ∈ C[a, b].

Then
C
a Dα

t aIα
t u(t) = u(t), (2.6)

for all t ∈ [a, b].

2. Let α ∈ R+ such that n− 1 < α < n, where n ∈ N. If u ∈ Cn[a, b], then

aIα
t
C
a Dα

t u(t) = u(t)−
n−1∑
k=0

u(k)(a)
(t− a)k

k!
, (2.7)

for all t ∈ [a, b].

2.2 Wavelets

Wavelets are a special kind of family of functions. The family of functions is

created by scaling and shifting a single function, known as the mother wavelet. Each

wavelet function in the family can be described using the mother wavelet, the scaling

parameter p, and the shifting parameter r as follows:

ψp,r(t) = |p|−1/2ψ

(
t− r

p

)
, p, r ∈ R, p ̸= 0. (2.8)

7



By restricting the scaling parameter p and shifting parameter r to p = p−k
0 and r = nr0p

−k
0 ,

where p0 > 1, r0 > 0, and k, n ∈ Z; we get a countable set of wavelets Ψ whose members

are of the form

ψk,n(t) = p0
k/2ψ(p0

kt− nr0). (2.9)

The countable set of wavelets Ψ = {ψk,n : k, n ∈ Z} forms a Schauder basis for the

Hilbert space L2(R).

2.2.1 Legendre Polynomials and Legendre Wavelets

The Legendre polynomials are a special collection of orthogonal polynomials on

the interval [−1, 1]. The d-th degree Legendre polynomial can be determined using the

recursion formula

L0(t) = 1, L1(t) = t, (2.10)

(d+ 1)Ld+1(t) = (2d+ 1)tLd(t)− dLd−1(t), d = 1, 2, 3, . . . . (2.11)

The Legendre polynomials are orthogonal with respect to the weight function w(t) = 1

on [−1, 1]. More precisely, we have

⟨Ld, Lg⟩2 =
∫ 1

−1

Ld(t)Lg(t) dt =


2

2d+ 1
, d = g;

0, otherwise.
(2.12)

An explicit formula for the Legendre polynomials is given by

Ld(t) =
d∑

g=0

(
d

g

)(
d+ g

g

)(
t− 1

2

)g

. (2.13)

8



For practical use of polynomials on the interval [0, 1], the shifted Legendre poly-

nomials on the interval [0, 1] can be expressed as

Gd(t) = Ld(2t− 1),

where Ld represents the d-th degree Legendre polynomial.

Legendre waveletsψc,d(t) = ψ(b, c, d, t) consist of Legendre polynomials and have

four parameters. Legendre wavelets can be described on the interval [0, 1) as follows:

ψc,d(t) =


√

2d+ 1

2
2b/2Ld(2

bt− 2c+ 1),
2c− 2

2b
≤ t <

2c

2b
;

0, otherwise.
(2.14)

Here, b is the resolution level and it can be any positive integer. c can take the values

c = 1, 2, . . . , 2b−1. d represents the degree of Legendre polynomials and it can be

d = 0, 1, . . . , D − 1, where D ∈ Z+ is a fixed number. The term
(
2d+ 1

2

)1/2

is

required for orthonormality. The scaling parameter is p = 2−b and the shifting parameter

is r = (2c− 1)2−b. Ld denotes the d-th degree Legendre polynomials defined on [−1, 1].

It should be noted that

⟨ψc1,d1 , ψc2,d2⟩2 =
∫ 1

0

ψc1,d1(t)ψc2,d2(t) dt =


1, c1 = c2 and d1 = d2;

0, otherwise.
(2.15)

Equaivalently, Legendre wavelets can be defined using the shifted Legendre poly-

nomials as follows:

ψc,d(t) =


√

2d+ 1

2
2b/2Gd(2

b−1t− c+ 1),
2c− 2

2b
≤ t <

2c

2b
;

0, otherwise.
(2.16)

Any function y(t) ∈ L2 ([0, 1)) can be expressed in terms of Legendre wavelets as
9



follows:

y(r) =
∞∑
c=1

∞∑
d=0

ac,dψc,d(r), (2.17)

where

ac,d = ⟨y(r), ψc,d(r)⟩ (2.18)

=

∫ 1

0

y(r)ψc,d(r) dr. (2.19)

If we truncate the infinite series (2.17), we can approximate y(r)

y(r) ≈ yb,D(r) =
2b−1∑
c=1

D−1∑
d=0

ac,dψc,d(r), (2.20)

where b,D ∈ Z+. If we change the indices c, d by i = D(c− 1) + d+ 1, we can rewrite

approximation (2.20) as

y(r) ≈ yb,D(r) =
2b−1D∑
i=1

aiψi(r). (2.21)

Using Legendre wavelets, any function y(x, t) ∈ L2 ([0, 1)× [0, 1)) may be writ-

ten as follows:

y(x, t) =
∞∑
c=1

∞∑
d=0

∞∑
p=1

∞∑
q=0

ac,d,p,qψc,d(x)ψp,q(t), (2.22)

10



where

ac,d,p,q = ⟨ψc,d(x), ⟨y(x, t), ψp,q(t)⟩⟩ (2.23)

=

∫ 1

0

∫ 1

0

y(x, t)ψc,d(x)ψp,q(t) dx dt. (2.24)

If we truncate the infinite series (2.22), we can approximate y(x, t)

y(x, t) ≈ yb,D,h,Q(x, t) =
2b−1∑
c=1

D−1∑
d=0

2h−1∑
p=1

Q−1∑
q=0

ac,d,p,qψc,d(x)ψp,q(t), (2.25)

where b, h,D,Q ∈ Z+. If we change the indices c, d and p, q by i = D(c − 1) + d + 1

and j = Q(p− 1) + q + 1, respectively; we can rewrite approximation (2.25) as

y(x, t) ≈ yb,D,h,Q(x, t) =
2b−1D∑
i=1

2h−1Q∑
j=1

ai,jψi(x)ψj(t). (2.26)

We need to find the Riemann-Liouville integral of Legendre wavelets to implement the

numerical methods that will be introduced in the next chapters. Almost all numerical

methods are difficult to implement using pen and paper. For this reason, we use computers

to implement numerical methods. However, calculating an integral on a computer can

be quite time-consuming. Therefore, we are going to propose a formula to calculate the

Riemann-Liouville integral of Legendre wavelets. In our formula, the Riemann-Liouville

integral of Legendre wavelets can be calculated using finite sums. And this makes

the calculation of the Riemann-Liouville integral of Legendre wavelets on a computer

considerably fast.

11



Theorem 1. For any Legendre wavelet ψc,d(t) on the interval [0, 1), its Riemann-Liouville

integral of order α can be calculated by

0Iα
t ψc,d(t) =



0, if t <
2c− 2

2b
;

√
2d+ 1

2
2b/2

×

 d∑
g=0

g∑
z=0

(
d

g

)(
d+ g

g

)(
g

z

)

× (−1)g−z2(b−1)z Γ(z + 1)

×

(
t− 2c− 2

2b

)α+z

Γ(α + z + 1)

 , if
2c− 2

2b
≤ t <

2c

2b
;

√
2d+ 1

2
2b/2

×

 d∑
g=0

g∑
z=0

(
d

g

)(
d+ g

g

)(
g

z

)

× (−1)g−z2(b−1)z Γ(z + 1)

×

(
t− 2c− 2

2b

)α+z

Γ(α + z + 1)
−

d∑
g=0

(
d

g

)(
d+ g

g

)

× 2(b−1)g Γ(g + 1)

(
t− 2c

2b

)α+g

Γ(α + g + 1)

 , if
2c

2b
≤ t.

(2.27)
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Proof. Using the unit step function, we can write Legendre wavelets as follows:

ψc,d(t) =

√
2d+ 1

2
2b/2

(
v 2c−2

2b
(t)Ld(2

bt− 2c+ 1)

−v 2c

2b
(t)Ld(2

bt− 2c+ 1)
)
,

(2.28)

where va(t) is the unit step function given by

va(t) =


1, if t ≥ a;

0, if t < a.

(2.29)

We make use of the Laplace transform to get Iαψc,d(t). The Laplace transform has the

following property

L{va(t)f(t)} = e−asL{f(t+ a)}. (2.30)

Using this property, we can write

L{ψc,d(t)} =

√
2d+ 1

2
2b/2

[
e−

2c−2

2b
sL

{
Ld

(
2b

(
t+

2c− 2

2b

)
− 2c+ 1

)}
−e−

2c

2b
sL

{
Ld

(
2b

(
t+

2c

2b

)
− 2c+ 1

)}] (2.31)

=

√
2d+ 1

2
2b/2

[
e−

2c−2

2b
sL

{
Ld(2

bt− 1)
}
− e−

2c

2b
sL

{
Ld(2

bt+ 1)
}]
.

(2.32)
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Now, let us find Ld(2
bt− 1) and Ld(2

bt+ 1) by using equation (2.13)

Ld(2
bt− 1) =

d∑
g=0

(
d

g

)(
d+ g

g

)(
(2bt− 1)− 1

2

)g

(2.33)

=
d∑

g=0

(
d

g

)(
d+ g

g

)(
2b−1t− 1

)g (2.34)

=
d∑

g=0

(
d

g

)(
d+ g

g

) g∑
z=0

(
g

z

)
(−1)g−z2(b−1)ztz (2.35)

=
d∑

g=0

g∑
z=0

(
d

g

)(
d+ g

g

)(
g

z

)
(−1)g−z2(b−1)ztz. (2.36)

Similarly, we have

Ld(2
bt+ 1) =

d∑
g=0

(
d

g

)(
d+ g

g

)(
(2bt+ 1)− 1

2

)g

(2.37)

=
d∑

g=0

(
d

g

)(
d+ g

g

)
2(b−1)gtg. (2.38)

By taking the Laplace transform of equation (2.36), we get

L{Ld(2
bt− 1)} = L

{
d∑

g=0

g∑
z=0

(
d

g

)(
d+ g

g

)(
g

z

)
(−1)g−z2(b−1)ztz

}
(2.39)

=
d∑

g=0

g∑
z=0

(
d

g

)(
d+ g

g

)(
g

z

)
(−1)g−z2(b−1)zL{tz} (2.40)

=
d∑

g=0

g∑
z=0

(
d

g

)(
d+ g

g

)(
g

z

)
(−1)g−z2(b−1)zΓ(z + 1)

sz+1
. (2.41)
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Likewise, we take the Laplace transform of equation (2.38).

L{Ld(2
bt+ 1)} = L

{
d∑

g=0

(
d

g

)(
d+ g

g

)
2(b−1)gtg

}
(2.42)

=
d∑

g=0

(
d

g

)(
d+ g

g

)
2(b−1)gL{tg} (2.43)

=
d∑

g=0

(
d

g

)(
d+ g

g

)
2(b−1)gΓ(g + 1)

sg+1
. (2.44)

Substituting equation (2.41) and equation (2.44) into equation (2.32), we obtain

L{ψc,d(t)} =

√
2d+ 1

2
2b/2

[
e−

2c−2

2b
sL

{
Ld(2

bt− 1)
}
− e−

2c

2b
sL

{
Ld(2

bt+ 1)
}]

(2.45)

=

√
2d+ 1

2
2b/2

[
e−

2c−2

2b
s

d∑
g=0

g∑
z=0

(
d

g

)(
d+ g

g

)(
g

z

)
(−1)g−z

× 2(b−1)zΓ(z + 1)

sz+1
− e−

2c

2b
s

d∑
g=0

(
d

g

)(
d+ g

g

)
2(b−1)gΓ(g + 1)

sg+1

]
(2.46)

=

√
2d+ 1

2
2b/2

[
d∑

g=0

g∑
z=0

(
d

g

)(
d+ g

g

)(
g

z

)
(−1)g−z2(b−1)z

× Γ(z + 1)e−
2c−2

2b
s

sz+1
−

d∑
g=0

(
d

g

)(
d+ g

g

)
2(b−1)gΓ(g + 1)e−

2c

2b
s

sg+1

]
(2.47)

For a function F (t), we can write its Riemann-Liouville integral of order α in terms of

the convolution operator.

aIα
t F (t) =

1

Γ(α)
tα−1 ∗ F (t), (2.48)
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where ∗ represents the convolution of tα−1 and F (t). That is,

tα−1 ∗ F (t) =
∫ t

a

(t− x)α−1F (x) dx. (2.49)

Since

0Iα
t ψc,d(t) =

tα−1

Γ(α)
∗ ψc,d(t), (2.50)

we can write

L{0Iα
t ψc,d(t)} = L

{
tα−1

Γ(α)

}
L{ψc,d(t)} (2.51)

=
1

sα
L{ψc,d(t)} . (2.52)

By substituting equation (2.47) into equation (2.52), we get

L{0Iα
t ψc,d(t)} =

1

sα

√
2d+ 1

2
2b/2

[
d∑

g=0

g∑
z=0

(
d

g

)(
d+ g

g

)(
g

z

)
(−1)g−z2(b−1)z

× Γ(z + 1)e−
2c−2

2b
s

sz+1
−

d∑
g=0

(
d

g

)(
d+ g

g

)
2(b−1)gΓ(g + 1)e−

2c

2b
s

sg+1

]
(2.53)

=
1

sα

√
2d+ 1

2
2b/2

[
d∑

g=0

g∑
z=0

(
d

g

)(
d+ g

g

)(
g

z

)
(−1)g−z2(b−1)z

×Γ(z + 1)
e−

2c−2

2b
s

sz+1
−

d∑
g=0

(
d

g

)(
d+ g

g

)
2(b−1)gΓ(g + 1)

e−
2c

2b
s

sg+1

]
(2.54)
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=

√
2d+ 1

2
2b/2

[
d∑

g=0

g∑
z=0

(
d

g

)(
d+ g

g

)(
g

z

)
(−1)g−z2(b−1)z

×Γ(z + 1)
e−

2c−2

2b
s

sα+z+1
−

d∑
g=0

(
d

g

)(
d+ g

g

)
2(b−1)g Γ(g + 1)

e−
2c

2b
s

sα+g+1

]
.

(2.55)

If the inverse Laplace transform is applied to both sides, we acquire 0Iα
t ψc,d(t),

0Iα
t ψc,d(t) =

√
2d+ 1

2
2b/2

[
d∑

g=0

g∑
z=0

(
d

g

)(
d+ g

g

)(
g

z

)
(−1)g−z2(b−1)z Γ(z + 1)

×L−1

{
e−

2c−2

2b
s

sα+z+1

}
−

d∑
g=0

(
d

g

)(
d+ g

g

)
2(b−1)g Γ(g + 1)L−1

{
e−

2c

2b
s

sα+g+1

}]

(2.56)

=

√
2d+ 1

2
2b/2

 d∑
g=0

g∑
z=0

(
d

g

)(
d+ g

g

)(
g

z

)
(−1)g−z2(b−1)z Γ(z + 1)

×
v 2c−2

2b
(t)

(
t− 2c− 2

2b

)α+z

Γ(α + z + 1)
−

d∑
g=0

(
d

g

)(
d+ g

g

)
2(b−1)g Γ(g + 1)

×
v 2c

2b
(t)

(
t− 2c

2b

)α+g

Γ(α + g + 1)

 .
(2.57)

We can rewrite the Riemann-Liouville integral of order α of ψc,d as a piecewise function.
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0Iα
t ψc,d(t) =



0, if t <
2c− 2

2b
;

√
2d+ 1

2
2b/2

×

 d∑
g=0

g∑
z=0

(
d

g

)(
d+ g

g

)(
g

z

)

× (−1)g−z2(b−1)z Γ(z + 1)

×

(
t− 2c− 2

2b

)α+z

Γ(α + z + 1)

 , if
2c− 2

2b
≤ t <

2c

2b
;

√
2d+ 1

2
2b/2

×

 d∑
g=0

g∑
z=0

(
d

g

)(
d+ g

g

)(
g

z

)

× (−1)g−z2(b−1)z Γ(z + 1)

×

(
t− 2c− 2

2b

)α+z

Γ(α + z + 1)
−

d∑
g=0

(
d

g

)(
d+ g

g

)

× 2(b−1)g Γ(g + 1)

(
t− 2c

2b

)α+g

Γ(α + g + 1)

 , if
2c

2b
≤ t.

(2.58)

The proof is now complete. ■

18



CHAPTER 3

FRACTIONAL LANE-EMDEN TYPE EQUATIONS

For fractional Lane-Emden type equations, we will first introduce the quasilin-

earization technique. Then we will explain the proposed method. Convergence analysis

will also be given. Finally, we will solve some numerical examples.

3.1 Quasilinearization

Fractional Lane-Emden type equations (1.3) are nonlinear equations. To

make calculations easier, we should linearize them. For linearization, we use the quasi-

linearization technique, which was proposed by Bellman and Kalaba [4]. First, we need

to rewrite fractional Lane-Emden type equations (1.3) in the following form

L
(
r, y,Dβy,Dαy

)
+N

(
r, y,Dβ, Dαy

)
= 0, (3.1)

whereDβy andDαy denote the Caputo fractional derivatives
dβy(r)

drβ
and

dαy(r)

drα
, respec-

tively. L
(
r, y,Dβy,Dαy

)
is the linear part and N

(
r, y,Dβy,Dαy

)
is the nonlinear part

of the equation. For fractional Lane-Emden type equations (1.3), the linear part is

L
(
r, y,Dβy,Dαy

)
=
dαy(r)

drα
+

K

rα−β

dβy(r)

drβ
, (3.2)

and the nonlinear part is

N
(
r, y,Dβy,Dαy

)
= h(r, y(r)). (3.3)

Suppose that we have an initial guess y0 for the solution of fractional Lane-Emden
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type equations (3.1). Then we can expand the nonlinear part N using the linear terms of

the Taylor series around the initial guess y0 as follows:

N
(
r, y,Dβy,Dαy

)
≈ N

(
r, y0, D

βy0, D
αy0

)
+

∂

∂y
N

(
r, y0, D

βy0, D
αy0

)
(y − y0)

+
∂

∂ Dβy
N

(
r, y0, D

βy0, D
αy0

) (
Dβy −Dβy0

)
+

∂

∂ Dαy
N

(
r, y0, D

βy0, D
αy0

)
(Dαy −Dαy0) .

(3.4)

The notation
∂

∂ Dβy
N

(
r, y0, D

βy0, D
αy0

)
indicates taking the partial derivative of the

nonlinear part N with respect to Dβy and evaluating the result for
(
r, y0, D

βy0, D
αy0

)
.

Also, the notation
∂

∂ Dαy
N

(
r, y0, D

βy0, D
αy0

)
indicates taking the partial derivative of

the nonlinear partN with respect toDαy and evaluating the result for
(
r, y0, D

βy0, D
αy0

)
.

Note that the right hand side of approximation (3.4) is linear. Now, we can replace the

nonlinear part of fractional Lane-Emden type equation (3.1) by the right-hand side of

approximation (3.4). Then we can solve the resulting linear equation for y and call the

solution y1. Now, we can expand the nonlinear part N using the linear terms of the Taylor

series around the approximate solution y1. Using this approximation, we can solve the

resulting linear equation for y and call it y2. Continuing this way, the general method for

the (p+ 1)-th iteration can be expressed as follows

N
(
r, y,Dβy,Dαy

)
≈ N

(
r, yp, D

βyp, D
αyp

)
+

∂

∂y
N

(
r, yp, D

βyp, D
αyp

)
(yp+1 − yp)

+
∂

∂ Dβy
N

(
r, yp, D

βyp, D
αyp

) (
Dβyp+1 −Dβyp

)
+

∂

∂ Dαy
N

(
r, yp, D

βyp, D
αyp

)
(Dαyp+1 −Dαyp) .

(3.5)

Since N
(
r, y,Dβy,Dαy

)
= h (r, y(r)) for fractional Lane-Emden type equation (3.1),

we have
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h (r, y(r)) ≈ h(r, yp(r)) +
∂

∂y
h(r, yp(r)) (yp+1(r)− yp(r)) . (3.6)

So, in each iteration, we need to solve the equation for yp+1(t)

dαyp+1(r)

drα
+

K

rα−β

dβyp+1(r)

drβ
+h(r, yp(r))+

∂

∂y
h(r, yp(r)) (yp+1(r)− yp(r)) = 0, (3.7)

with the initial conditions

yp+1(0) = P, y′p+1(0) = Q. (3.8)

Furthermore, Bellman and Kalaba [4] showed that the sequence {yp+1}∞p=0 con-

verges quadratically to y if the sequence converges. Just like in the Newton-Raphson

method for approximating roots of algebraic equations, the initial guess has a very crucial

impact on the convergence of quasilinearization technique [24].

3.2 Description of the Proposed Method

Let yp+1(r) be the approximate solution of the nonlinear fractional Lane-Emden

type equation (1.3) obtained by quasilinearization technique in the (p + 1)-th iteration.

Using Legendre wavelets, we can approximate
dαyp+1(r)

drα
by

dαyp+1(r)

drα
≈

2b−1∑
c=1

D−1∑
d=0

ap+1
c,d ψc,d(r). (3.9)

By integrating both sides of equation (3.9) and using the initial conditions, we can approx-

imate
dβyp+1(r)

drβ
and yp+1(r) as follows:

dβyp+1(r)

drβ
≈

2b−1∑
c=1

D−1∑
d=0

ap+1
c,d

[
0Iα−β

r ψc,d(r)
]
+Q

r1−β

Γ(2− β)
, (3.10)
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yp+1(r) ≈
2b−1∑
c=1

D−1∑
d=0

ap+1
c,d [0Iα

r ψc,d(r)] +Qr + P. (3.11)

If we replace ≈ by = and put equation (3.9), equation (3.10), and equation (3.11), in

equation (3.7), we get

2b−1∑
c=1

D−1∑
d=0

ap+1
c,d ψc,d(r) +

K

rα−β

2b−1∑
c=1

D−1∑
d=0

ap+1
c,d

[
0Iα−β

r ψc,d(r)
]
+Q

r1−β

Γ(2− β)


+ h (r, yp(r)) +

∂

∂y
h(r, yp(r))

2b−1∑
c=1

D−1∑
d=0

ap+1
c,d [0Iα

r ψc,d(r)] +Qr + P

− yp(r)


= 0.

(3.12)

If we solve the linear equation (3.12) at the collocation points rj =
2j − 1

2bD
, where j =

1, . . . , 2b−1D, we can obtain the unknown coefficients ap+1
c,d . We can find an approximate

solution by substituting the coefficients ap+1
c,d into equation (3.11).

3.3 Convergence Analysis

Theorem 2. [44] Suppose that y(r) ∈ L2 ([0, 1)) is a real valued function with |y′′(r)| ≤

C, where C ∈ R+. Let yb,D(r) be the approximation in (2.20). Then we have

∥y(r)− yb,D(r)∥22 ≤
3DC2

(24b−1) (16D4 − 40D2 + 9)
. (3.13)

Proof. Please see [44]. ■

From the above error estimation, it can be concluded that the approximation yb,D(r)

converges to y(r) in L2([0, 1)) as b or D goes to infinity.
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3.4 Numerical Examples

We will solve some examples to illustrate the effectiveness of the Legendre wavelet

collocation method with quasilinearization technique (LWCMQT). In addition, maximum

absolute errors

EL∞ := max |yexact(rj)− yapproximate(rj)| , (3.14)

where the maximum is taken over all collocation points rj , will be compared with some

other methods in the literature. All calculations and graphs were obtained using Wolfram

Mathematica Online [16].

Example 3.1. In the first example, we consider

dαy(r)

drα
+

2

rα−β

dβy(r)

drβ
+ ym(r) = 0, (3.15)

with

y(0) = 1, y′(0) = 0. (3.16)

When α = 2 and β = 1, the exact solutions are known only for m = 0, 1, 5 [6]. In this

example, we will solve equation (3.15) for m = 1 and m = 5.

• Example 3.1.a: When m = 1, equation (3.15) becomes

dαy(r)

drα
+

2

rα−β

dβy(r)

drβ
+ y(r) = 0, (3.17)

with

y(0) = 1, y′(0) = 0, (3.18)
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which is a linear equation. Hence, we do not need to apply the quasilinearization tech-

nique. If we take α = 2 and β = 1, equation (3.17) with initial conditions (3.18) has the

exact solution

yexact(r) =
sin (r)

r
. (3.19)

We solve equation (3.17) using Legendre wavelet method. In Table 3.1, we compare

maximum absolute errors of Haar Wavelet Collocation Method (HWCM) [34], Haar

Wavelet Collocation Adomian Method (HWCAM) [32], Chebyshev Wavelet Collocation

Quasilinearization Method (CWCQM) [27], and Legendre Wavelet Collocation Method

with Quasilinearization Technique (LWCMQT) for α = 2 and β = 1. Figure 3.1 shows

the graphs of numerical solutions for various pairs of α and β. The graphs of approximate

solution and exact solution for α = 2, β = 1 and b = 2, D = 8 are plotted in Figure 3.2.

Moreover, we plot the absolute error for α = 2, β = 1 and b = 2, D = 8 in Figure 3.3.

Table 3.1. Maximum absolute errors (EL∞) for α = 2 and β = 1 obtained by various
numerical methods in Example 3.1.a

Number of HWCM HWCAM CWCQM LWCMQT

Col. Pts. EL∞ EL∞ EL∞ EL∞

8 1.8562E − 05 7.2156E − 05 6.7870E − 08 2.5801E − 13

16 5.0012E − 06 4.3274E − 05 1.1146E − 11 1.6098E − 14

32 1.2932E − 06 1.0015E − 05 9.6485E − 12 2.2204E − 16

• Example 3.1.b: When m = 5, equation (3.15) becomes

dαy(r)

drα
+

2

rα−β

dβy(r)

drβ
+ y5(r) = 0, (3.20)

with
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Figure 3.1. The graphs of numerical solutions for various pairs of α and β in Example
3.1.a obtained by LWCMQT with b = 3 and D = 8.
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α=1.6 , β=0.6 (Approx. sol.)

α=1.7 , β=0.7 (Approx. sol.)

α=1.8 , β=0.8 (Approx. sol.)

α=1.9 , β=0.9 (Approx. sol.)

α=2 , β=1 (Exact sol.)

α=2 , β=1 (Approx. sol.)

Figure 3.2. Exact solution and approximate solution of Example 3.1.a for α = 2, β = 1
and b = 2, D = 8 obtained by LWCMQT.
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y(0) = 1, y′(0) = 0. (3.21)

If we take α = 2 and β = 1, equation (3.20) with initial conditions (3.21) has the exact

solution

yexact(r) =
1√

1 +
r2

3

. (3.22)
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Figure 3.3. Absolute error |yexact(r)− yapproximate(r)| in Example 3.1.a for α = 2, β = 1
and b = 2, D = 8.
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We use y0(r) = 1 as an initial guess and implement the Legendre wavelet collocation

method with quasilinearization technique. We iterate the quasilinearization technique three

times. In Table 3.2, we compare maximum absolute errors of Haar Wavelet Collocation

Method (HWCM) [34], Haar Wavelet Collocation Adomian Method (HWCAM) [32],

Chebyshev Wavelet Collocation Quasilinearization Method (CWCQM) [27], and Legendre

Wavelet Collocation Method with Quasilinearization Technique (LWCMQT) for α = 2

and β = 1. Approximate solutions for various pairs of α and β are plotted in Figure 3.4.

For α = 2, β = 1 and b = 3, D = 8, the plot of the exact solution along with the plots

of numerical solutions in the first, second, and third iteration are drawn in Figure 3.5.

Moreover, we plot the absolute errors in the first, second, and third iteration for α = 2,

β = 1 and b = 3, D = 8 in Figure 3.6.

Table 3.2. Maximum absolute errors (EL∞) for α = 2 and β = 1 obtained by various
numerical methods in Example 3.1.b

Number of HWCM HWCAM CWCQM LWCMQT

Col. Pts. EL∞ EL∞ EL∞ EL∞

8 9.2374E − 05 7.7048E − 05 4.0104E − 07 6.1911E − 09

16 2.4231E − 05 1.0573E − 05 7.7340E − 11 8.4153E − 11

32 6.2101E − 06 4.3726E − 06 1.8416E − 11 6.7579E − 13
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Figure 3.4. The graphs of numerical solutions for various pairs of α and β in Example
3.1.b obtained by LWCMQT with b = 3 and D = 8 in the third iteration.
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α=1.7 , β=0.7 (Approx. sol.)

α=1.8 , β=0.8 (Approx. sol.)

α=1.9 , β=0.9 (Approx. sol.)

α=2 , β=1 (Exact sol.)

α=2 , β=1 (Approx. sol.)

Example 3.2. In the second example, we consider

dαy(r)

drα
+

2

rα−β

dβy(r)

drβ
+ 8ey(r) + 4e

y(r)
2 = 0, (3.23)

with

y(0) = 0, y′(0) = 0. (3.24)

If we take α = 2 and β = 1, the function

yexact(r) = −2 ln (1 + r2). (3.25)

is the exact solution of equation (3.23) with initial conditions (3.24). We use y0(r) = 0

as an initial guess and implement the Legendre wavelet collocation method with quasilin-

earization technique. We iterate the quasilinearization technique three times. For α = 2,

β = 1 and b = 2,D = 8, we present the numerical results obtained by Adomian Decompo-

sition Method (ADM) [42], Haar Wavelet Collocation Method (HWCM) [34], Chebyshev

Wavelet Collocation Quasilinearization Method (CWCQM) [27], and Legendre Wavelet
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Figure 3.5. For α = 2 and β = 1, the plot of the exact solution along with the plots of
numerical solutions in the first, second, and third iteration in Example 3.1.b
obtained by LWCMQT with b = 3 and D = 8
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yexact
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y3

Collocation Method with Quasilinearization Technique(LWCMQT) in the third iteration

in Table 3.3. Approximate solutions for various pairs of α and β are plotted in Figure

3.7. For α = 2, β = 1 and b = 3, D = 8, the plot of the exact solution along with the

plots of numerical solutions in the first, second, and third iteration are drawn in Figure

3.8. Moreover, for α = 2, β = 1, we plot the absolute errors in the first, second, and third

iteration for b = 3, D = 8 in Figure 3.9.

Example 3.3. In the last example, we consider

dαy(r)

drα
+

2

rα−β

dβy(r)

drβ
+ ey(r)

(
6− 4r2ey(r)

)
= 0, (3.26)

with

y(0) = − ln (4), y′(0) = 0. (3.27)

If we take α = 2 and β = 1, equation (3.26) with initial conditions (3.27) has the exact

solution
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yexact(r) = ln

(
1

r2 + 4

)
. (3.28)

We use y0(r) = − ln (4) as an initial guess and implement the Legendre wavelet colloca-

tion method with quasilinearization technique. We iterate the quasilinearization technique

three times. In Table 3.4, we compare maximum absolute errors of Haar Wavelet Colloca-

tion Method (HWCM) [34], Chebyshev Wavelet Collocation Quasilinearization Method

(CWCQM) [27], and Legendre Wavelet Collocation Method with Quasilinearization Tech-

nique(LWCMQT) for α = 2 and β = 1. Approximate solutions for various pairs of α and

β are plotted in Figure 3.10. For α = 2, β = 1 and b = 3, D = 8, the plot of the exact

solution along with the plots of numerical solutions in the first, second, and third iteration

are drawn in Figure 3.11. Moreover, we plot the absolute errors in the first, second, and

third iteration for α = 2, β = 1 and b = 3, D = 8 in Figure 3.12.
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Figure 3.6. For α = 2, β = 1, and b = 3,D = 8, the graphs of absolute errors in Example
3.1.b
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(a) Absolute error of the first iteration |yexact(r)− y1(r)| in Example 3.1.b

0.0 0.2 0.4 0.6 0.8 1.0

0

2.×10-7

4.×10-7

6.×10-7

8.×10-7

Absolute error of the 2nd iteration, b=3, D=8, α=2, β=1

yexact - y2

(b) Absolute error of the second iteration |yexact(r)− y2(r)| in Example 3.1.b
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(c) Absolute error of the third iteration |yexact(r)− y3(r)| in Example 3.1.b
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Table 3.3. Numerical results for α = 2, β = 1 and b = 2, D = 8 in Example 3.2 obtained
by ADM, HWCM, CWCQM, and LWCMQT in the third iteration.

Col. Pts. Exact Sol. ADM HWCM CWCQM LWCMQT
r yexact(r) yADM(r) yHWCM(r) yCWCQM(r) yLWCMQT (r)

1

32
−0.001952 −0.001952 −0.001949 −0.001952 −0.001952

3

32
−0.017501 −0.017501 −0.017504 −0.017501 −0.017501

5

32
−0.048241 −0.048241 −0.048255 −0.048241 −0.048241

7

32
−0.093483 −0.093483 −0.093513 −0.093483 −0.093483

9

32
−0.152257 −0.152257 −0.152309 −0.152257 −0.152257

11

32
−0.223376 −0.223376 −0.223454 −0.223376 −0.223376

13

32
−0.305509 −0.305508 −0.305619 −0.305509 −0.305509

15

32
−0.397253 −0.397247 −0.397399 −0.397253 −0.397253

17

32
−0.497196 −0.497163 −0.497381 −0.497196 −0.497196

19

32
−0.603967 −0.603819 −0.604194 −0.603967 −0.603967

21

32
−0.716277 −0.715706 −0.716548 −0.716277 −0.716277

23

32
−0.832944 −0.831008 −0.833257 −0.832944 −0.832944

25

32
−0.952905 −0.947015 −0.953261 −0.952905 −0.952905

27

32
−1.075224 −1.058866 −1.075621 −1.075224 −1.075224

29

32
−1.199089 −1.157061 −1.199524 −1.199089 −1.199089

31

32
−1.323804 −1.222860 −1.324275 −1.323804 −1.323804
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Figure 3.7. Numerical solutions for various pairs of α and β in Example 3.2 obtained by
LWCMQT with b = 3 and D = 8 in the third iteration.
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Figure 3.8. For α = 2 and β = 1, the plot of the exact solution along with the plots of
numerical solutions in the first, second, and third iteration in Example 3.2
obtained by LWCMQT with b = 3 and D = 8
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Table 3.4. Maximum absolute errors (EL∞) for α = 2 and β = 1 obtained by various
numerical methods in Example 3.3

Number of HWCM CWCQM LWCMQT

Col. Pts. EL∞ EL∞ EL∞

8 8.94E − 05 5.32E − 07 1.16E − 09

16 2.02E − 05 3.70E − 12 1.41E − 11

32 5.22E − 06 1.25E − 14 1.32E − 13
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Figure 3.9. For α = 2, β = 1, and b = 3,D = 8, the graphs of absolute errors in Example
3.2
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(a) Absolute error of the first iteration |yexact(r)− y1(r)| in Example 3.2
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(b) Absolute error of the second iteration |yexact(r)− y2(r)| in Example 3.2
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(c) Absolute error of the third iteration |yexact(r)− y3(r)| in Example 3.2
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Figure 3.10. Numerical solutions for various pairs of α and β in Example 3.3 obtained by
LWCMQT with b = 3 and D = 8 in the third iteration.
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Figure 3.11. For α = 2 and β = 1, the plot of the exact solution along with the plots of
numerical solutions in the first, second, and third iteration in Example 3.3
obtained by LWCMQT with b = 3 and D = 8
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Figure 3.12. For α = 2, β = 1, and b = 3, D = 8, the graphs of absolute errors in
Example 3.3
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(a) Absolute error of the first iteration |yexact(r)− y1(r)| in Example 3.3
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(b) Absolute error of the second iteration |yexact(r)− y2(r)| in Example 3.3
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(c) Absolute error of the third iteration |yexact(r)− y3(r)| in Example 3.3
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CHAPTER 4

TIME-FRACTIONAL FISHER’S EQUATION

In this chapter, we will describe the quasilinearization technique for the time-

fractional Fisher’s equation. After that, we will explain the proposed method and study

the convergence analysis. Lastly, we will solve some numerical examples.

4.1 Quasilinearization

The time-fractional Fisher’s equation (1.5) is a nonlinear equation. For ease of

computation, we should linearize it. For this purpose, we employ the quasilinearization

technique, which was presented by Bellman and Kalaba [4]. First, we need to rewrite the

modified time-fractional Fisher’s equation (1.5) in the following form

L
(
y,Dy,D2y

)
+N

(
y,Dy,D2y

)
+ q(x, t) =

∂αy(x, t)

∂tα
, (4.1)

whereDy andD2y denote the partial derivatives
∂y

∂x
and

∂2y

∂x2
, respectively. L

(
y,Dy,D2y

)
consists of linear terms and N

(
y,Dy,D2y

)
consists of nonlinear terms of the equation.

For the time-fractional Fisher’s equation (1.5), the linear part is

L
(
y,Dy,D2y

)
= δ

∂2y(x, t)

∂x2
+ λy(x, t), (4.2)

and the nonlinear part is

N
(
y,Dy,D2y

)
= −λyp+1(x, t). (4.3)
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Suppose we have an initial guess y0 for the solution of the time-fractional Fisher’s equation

(4.1). The nonlinear part N can be approximated by expanding the Taylor series around

the initial guess y0 and using only linear terms as follows:

N
(
y,Dy,D2y

)
≈ N

(
y0, Dy0, D

2y0
)
+

∂

∂y
N

(
y0, Dy0, D

2y0
)
(y − y0)

+
∂

∂ Dy
N

(
y0, Dy0, D

2y0
)
(Dy −Dy0)

+
∂

∂ D2y
N

(
y0, Dy0, D

2y0
)
(D2y −D2y0).

(4.4)

Here,
∂

∂ D2y
N

(
y0, Dy0, D

2y0
)

means that we first take the partial derivative of the

nonlinear part N with respect to D2y and then evaluate the result for (y0, Dy0, D2y0).

Similarly,
∂

∂ Dy
N

(
y0, Dy0, D

2y0
)

means that we first take the partial derivative of the

nonlinear part N with respect to Dy and then evaluate the result for (y0, Dy0, D2y0). It

should be noted that the right-hand side of approximation (4.4) is linear. Now, we can

replace the nonlinear part of the time-fractional Fisher equation (4.1) by the right hand

side of approximation (4.4). Then we can solve the resulting linear equation for y and

call the solution y1. Again, the nonlinear part N can be approximated by expanding the

Taylor series around the approximate solution y1 and using only linear terms. Using this

approximation, we can solve the resulting linear equation for y and call it y2. Continuing

this way, the general method for the (r + 1)-th iteration can be written as follows

N
(
y,Dy,D2y

)
≈ N

(
yr, Dyr, D

2yr
)
+

∂

∂y
N

(
yr, Dyr, D

2yr
)
(yr+1 − yr)

+
∂

∂ Dy
N

(
yr, Dyr, D

2yr
)
(Dyr+1 −Dyr)

+
∂

∂ D2y
N

(
yr, Dyr, D

2yr
)
(D2yr+1 −D2yr).

(4.5)

Since N
(
y,Dy,D2y

)
= −λyp+1 for the time-fractional Fisher’s equation (4.1), we have

−λyp+1 ≈ −λyp+1
r − λ ((p+ 1)(ypr )) (yr+1 − yr) (4.6)

= −λyp+1
r − λ(p+ 1)ypryr+1 + λ(p+ 1)yp+1

r . (4.7)
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So, in each iteration, we need to solve the equation

δ
∂2yr+1(x, t)

∂x2
+ λyr+1(x, t) + q(x, t)− λ(p+ 1)ypr (x, t)yr+1(x, t) + λpyp+1

r (x, t)

=
∂αyr+1(x, t)

∂tα
,

(4.8)

which can be rearranged as

δ
∂2yr+1(x, t)

∂x2
+ (λ− λ(p+ 1)ypr (x, t)) yr+1(x, t) + q(x, t) + λpyp+1

r (x, t)

=
∂αyr+1(x, t)

∂tα
,

(4.9)

with the initial condition

yr+1(x, 0) = w(x), (4.10)

and boundary conditions

yr+1(0, t) = z1(t), (4.11)

yr+1(1, t) = z2(t). (4.12)

Furthermore, Bellman and Kalaba [4] showed that the sequence {yr+1}∞r=0 con-

verges quadratically to y if the sequence converges. Just like in the Newton-Raphson

method for approximating roots of algebraic equations, the initial guess has a very crucial

impact on the convergence of quasilinearization technique [24].

4.2 Description of the Proposed Method

Let yr+1(x, t) be the approximate solution of the nonlinear time-fractional Fisher’s

equation (1.5) obtained by quasilinearization technique in the (r + 1)-th iteration. Using
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Legendre wavelets, we can approximate
∂2+αyr+1(x, t)

∂x2∂tα
by

∂2+αyr+1(x, t)

∂x2∂tα
≈

2b−1D∑
i=1

2h−1Q∑
j=1

ar+1
i,j ψi(x)ψj(t). (4.13)

Taking the α-th order fractional integral of both sides of equation (4.13) with respect to t,

we obtain

∂2yr+1(x, t)

∂x2
≈ ∂2yr+1(x, t)

∂x2

∣∣∣∣
t=0

+
2b−1D∑
i=1

2h−1Q∑
j=1

ar+1
i,j ψi(x) [0Iα

t ψj(t)] . (4.14)

Since
∂2yr+1(x, t)

∂x2

∣∣∣∣
t=0

= y′′r+1(x, 0) = f ′′(x) by the initial condition, we can write

∂2yr+1(x, t)

∂x2
≈ f ′′(x) +

2b−1D∑
i=1

2h−1Q∑
j=1

ar+1
i,j ψi(x) [0Iα

t ψj(t)] . (4.15)

Integrating equation (4.15) with respect to x from 0 to x, we get

∂yr+1(x, t)

∂x
≈ ∂yr+1(x, t)

∂x

∣∣∣∣
x=0

+ f ′(x)− f ′(0) (4.16)

+
2b−1D∑
i=1

2h−1Q∑
j=1

ar+1
i,j

[
0I1

xψi(x)
]
[0Iα

t ψj(t)] . (4.17)

Integrating equation (4.16) with respect to x from 0 to x, we get

yr+1(x, t) ≈ yr+1(0, t) + x

(
∂yr+1(x, t)

∂x

∣∣∣∣
x=0

)
+ w(x)− w(0)− xw′(0)

+
2b−1D∑
i=1

2h−1Q∑
j=1

ar+1
i,j

[
0I2

xψi(x)
]
[0Iα

t ψj(t)] .

(4.18)
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Now, let us evaluate equation (4.18) at x = 1.

yr+1(1, t) ≈ yr+1(0, t) + 1

(
∂yr+1(x, t)

∂x

∣∣∣∣
x=0

)
+ w(1)− w(0)− 1w′(0)

+
2b−1D∑
i=1

2h−1Q∑
j=1

ar+1
i,j

[
0I2

xψi(x)
]
x=1

[0Iα
t ψj(t)] .

(4.19)

Using the boundary conditions, we can write

z2(t) ≈ z1(t) +

(
∂yr+1(x, t)

∂x

∣∣∣∣
x=0

)
+ w(1)− w(0)− w′(0)

+
2b−1D∑
i=1

2h−1Q∑
j=1

ar+1
i,j

[
0I2

xψi(x)
]
x=1

[0Iα
t ψj(t)] .

(4.20)

Thus, we have

(
∂yr+1(x, t)

∂x

∣∣∣∣
x=0

)
≈ z2(t)− z1(t) + w(0) + w′(0)− w(1)

−
2b−1D∑
i=1

2h−1Q∑
j=1

ar+1
i,j

[
0I2

xψi(x)
]
x=1

[0Iα
t ψj(t)] .

(4.21)

If we put equation (4.21) in equation (4.18), we get

yr+1(x, t) ≈ z1(t) + x

 z2(t)− z1(t) + w(0) + w′(0)− w(1)

−
2b−1D∑
i=1

2h−1Q∑
j=1

ai,j
[
0I2

xψi(x)
]
x=1

[0Iα
t ψj(t)]

+ w(x)− w(0)

− xw′(0) +
2b−1D∑
i=1

2h−1Q∑
j=1

ar+1
i,j

[
0I2

xψi(x)
]
[0Iα

t ψj(t)] .

(4.22)
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Taking the α-th order Caputo derivative of both sides of equation (4.22) with respect to t

yields

∂αyr+1(x, t)

∂tα
≈
[
C
0 Dα

t z1(t)
]
+ x

 [
C
0 Dα

t z2(t)
]
−
[
C
0 Dα

t z1(t)
]

−
2b−1D∑
i=1

2h−1Q∑
j=1

ar+1
i,j

[
0I2

xψi(x)
]
x=1

ψj(t)


+

2b−1D∑
i=1

2h−1Q∑
j=1

ar+1
i,j

[
0I2

xψi(x)
]
ψj(t).

(4.23)

If we substitute equation (4.15), equation (4.22), and equation (4.23) in equation (4.9),

and replace ≈ by =, we get

δ

f ′′(x) +
2b−1D∑
i=1

2h−1Q∑
j=1

ar+1
i,j ψi(x) [0Iα

t ψj(t)]


+ (λ− λ(p+ 1)ypr (x, t))

 z1(t) + x

 z2(t)− z1(t) + w(0) + w′(0)− w(1)

−
2b−1D∑
i=1

2h−1Q∑
j=1

ar+1
i,j

[
0I2

xψi(x)
]
x=1

[0Iα
t ψj(t)]

+ w(x)− w(0)− xw′(0)

+
2b−1D∑
i=1

2h−1Q∑
j=1

ar+1
i,j

[
0I2

xψi(x)
]
[0Iα

t ψj(t)]

+ q(x, t) + λpyp+1
r (x, t)

=
[
C
0 Dα

t z1(t)
]
+ x

 [
C
0 Dα

t z2(t)
]
−
[
C
0 Dα

t z1(t)
]

−
2b−1D∑
i=1

2h−1Q∑
j=1

ar+1
i,j

[
0I2

xψi(x)
]
x=1

ψj(t)

+
2b−1D∑
i=1

2h−1Q∑
j=1

ar+1
i,j

[
0I2

xψi(x)
]
ψj(t).

(4.24)

If we solve the linear equation (4.24) at the collocation points xe =
2e− 1

2bD
, tf =

2f − 1

2hQ
,

where e = 1, . . . , 2b−1D, f = 1, . . . , 2h−1Q, we can obtain the unknown coefficients ar+1
i,j .

We can find an approximate solution by substituting the coefficients ar+1
i,j into equation

(4.22).
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4.3 Convergence Analysis

Theorem 3. [23] Let y = y(x, t) be a square-integrable function on [0, 1) × [0, 1), that

is y(x, t) ∈ L2 ([0, 1)× [0, 1)). Suppose that y(x, t) has the property
∣∣∣∣∂4y(x, t)∂x2∂t2

∣∣∣∣ ≤ K,

where K ∈ R+. Then we have the upper bound

|ac,d,p,q| ≤
12K

c5/2(2d− 3)2 p5/2(2q − 3)2
, (4.25)

for |ac,d,p,q|. Moreover, the Legendre wavelets series expansion of y(x, t) converges

uniformly to y(x, t).

Proof. Please see [23]. ■

Maleknejad et al. [23] gave an upper bound for approximation error when b = h and

D = Q. Using similar steps, we generalized the upper bound for approximation error. In

our error estimation, b need not to be equal h and D need not to be equal Q.

Theorem 4. Let y = y(x, t) be a square-integrable function on [0, 1) × [0, 1), that is

y(x, t) ∈ L2 ([0, 1)× [0, 1)). Suppose that y(x, t) has the property
∣∣∣∣∂4y(x, t)∂x2∂t2

∣∣∣∣ ≤ K,

where K ∈ R+. Then the approximation error can be bounded by the following error

estimation

∥y(x, t)− yb,D,h,Q(x, t)∥2 ≤
K

(2b−1)2(D − 1)3/2(2h−1)2(Q− 1)3/2
. (4.26)

Proof.

∥y(x, t)− yb,D,h,Q(x, t)∥2 =

∫ 1

0

∫ 1

0

y(x, t)− 2b−1∑
c=1

D−1∑
d=0

2h−1∑
p=1

Q−1∑
q=0

ac,d,p,q

×ψc,d(x)ψp,q(t)

)2

dx dt

1/2

.

(4.27)
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Note that

y(x, t)−
2b−1∑
c=1

D−1∑
d=0

2h−1∑
p=1

Q−1∑
q=0

ac,d,p,qψc,d(x)ψp,q(t) (4.28)

=
∞∑
c=1

∞∑
d=0

∞∑
p=1

∞∑
q=0

ac,d,p,qψc,d(x)ψp,q(t)−
2b−1∑
c=1

D−1∑
d=0

2h−1∑
p=1

Q−1∑
q=0

ac,d,p,qψc,d(x)ψp,q(t) (4.29)

=
∞∑

c=2b−1+1

∞∑
d=D

∞∑
p=2h−1+1

∞∑
q=Q

ac,d,p,qψc,d(x)ψp,q(t). (4.30)

Thus, it can be stated that

∥y(x, t)− yk,M,h,Q(x, t)∥2 =

∫ 1

0

∫ 1

0

 ∞∑
n=2k−1+1

∞∑
m=M

∞∑
p=2h−1+1

∞∑
q=Q

an,m,p,q

×ψn,m(x)ψp,q(t)

)2

dx dt

1/2

.

(4.31)

Due to orthonormality (2.15), we have

∥y(x, t)− yb,D,h,Q(x, t)∥2 =

 ∞∑
c=2b−1+1

∞∑
d=D

∞∑
p=2h−1+1

∞∑
q=Q

a2c,d,p,q

×
∫ 1

0

∫ 1

0

ψ2
c,d(x)ψ

2
p,q(t) dx dt

)1/2

(4.32)

≤ 12K

 ∞∑
c=2b−1+1

1

c5

∞∑
d=D

1

(2d− 3)4

×
∞∑

p=2h−1+1

1

p5

∞∑
q=Q

1

(2q − 3)4

1/2

.

(4.33)

It is known that

∞∑
u=v

1

uw
≤ 1

(w − 1)(v − 1)(w−1)
. (4.34)
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Thus, we have

∞∑
c=2b−1+1

1

c5
≤ 1

4(2b−1)4
, (4.35)

∞∑
p=2h−1+1

1

p5
≤ 1

4(2h−1)4
. (4.36)

Note that

∞∑
d=D

1

(2d− 3)4
≤

∞∑
d=D

1

d4
, for d ≥ 3, (4.37)

∞∑
q=Q

1

(2q − 3)4
≤

∞∑
q=Q

1

q4
, for q ≥ 3. (4.38)

Therefore, we can write

∞∑
d=D

1

(2d− 3)4
≤ 1

3(D − 1)3
, (4.39)

∞∑
q=Q

1

(2q − 3)4
≤ 1

3(Q− 1)3
. (4.40)

As a result, we conclude that

∥y(x, t)− yb,D,h,Q(x, t)∥2 ≤ 12K

 ∞∑
c=2b−1+1

1

c5

∞∑
d=D

1

(2d− 3)4

×
∞∑

p=2h−1+1

1

p5

∞∑
q=Q

1

(2q − 3)4

1/2 (4.41)

≤ K

(2b−1)2(D − 1)3/2(2h−1)2(Q− 1)3/2
. (4.42)

This completes the proof. ■
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4.4 Numerical Examples

We will solve some test problems to investigate the effectiveness of the Legendre

wavelet collocation method with quasilinearization technique (LWCMQT). In addition,

maximum absolute errors

EL∞ := max |yexact(xe, tf )− yapproximate(xe, tf )| (4.43)

where the maximum is taken over all collocation points (xe, tf ), will be compared with

the Haar wavelet collocation iteration method (HWCIM) [2] and the modified variational

iteration method (MVIM) [28]. In all examples, we will take the resolution levels b = 2,

h = 2 and D = 2, Q = 2 and iterate the quasilinearization technique three times. All

calculations and graphs were obtained using Wolfram Mathematica Online [16].

Example 4.1. In the first test problem, we solve the following time-fractional homogeneous

Fisher’s equation

∂αy(x, t)

∂tα
=
∂2y(x, t)

∂x2
+ y(x, t)

(
1− y6(x, t)

)
, (4.44)

with the initial condition

y(x, 0) =
(
1 + e

3x
2

)− 1
3
, (4.45)

and boundary conditions

y(0, t) =
(
1 + e

−15t
4

)− 1
3
, (4.46)

y(1, t) =
(
1 + e

6−15t
4

)− 1
3
. (4.47)
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The exact solution for α = 1 is

yexact(x, t) =
(
1 + e

6x−15t
4

)− 1
3
. (4.48)

We use y0(x, t) =
(
1 + e

3x
2

)− 1
3 as an initial guess and implement the Legendre wavelet

collocation method with quasilinearization technique. We iterate the quasilinearization

technique three times. In Table 4.1, the numerical results for the resolution levels b = 2,

h = 2 and the degree of polynomialsD = 2,Q = 2 are presented. The maximum absolute

errors of some other methods are compared in Table 4.2. The approximate solution is

plotted in Figure 4.1. Also, the absolute error is illustrated in Figure 4.2.

Figure 4.1. Numerical solution for α = 1 obtained by LWCMQT with b = 2, h = 2 and
D = 2, Q = 2 in the 3rd iteration in Example 4.1
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Table 4.1. Numerical results for Example 4.1 obtained by using the LWCMQT with the
resolution levels b = 2, h = 2 and the degree of polynomials D = 2, Q = 2

Col. Pts. α = 0.5 α = 0.7 α = 0.9 α = 1 Absolute error for α = 1

(x, t) y3(x, t) y3(x, t) y3(x, t) y3(x, t) |yexact(x, t)− y3(x, t)|(
1
8
, 1
8

)
0.841965 0.837217 0.831816 0.829149 8.64386E − 05(

1
8
, 3
8

)
0.920330 0.919341 0.918173 0.917268 2.83358E − 05(

1
8
, 5
8

)
0.960751 0.961107 0.962609 0.964099 4.83664E − 05(

1
8
, 7
8

)
0.980168 0.981730 0.983990 0.985399 6.85387E − 05(

3
8
, 1
8

)
0.809699 0.799151 0.787212 0.781343 2.34064E − 04(

3
8
, 3
8

)
0.895346 0.893036 0.889976 0.887503 8.54197E − 05(

3
8
, 5
8

)
0.942496 0.943067 0.946154 0.949353 8.42780E − 05(

3
8
, 7
8

)
0.967799 0.971121 0.975982 0.979079 1.44718E − 04(

5
8
, 1
8

)
0.757606 0.746537 0.733928 0.727673 2.50099E − 04(

5
8
, 3
8

)
0.859489 0.856715 0.853110 0.850308 1.36321E − 04(

5
8
, 5
8

)
0.922621 0.923055 0.926167 0.929488 5.55606E − 05(

5
8
, 7
8

)
0.957987 0.961485 0.966695 0.970038 1.22053E − 04(

7
8
, 1
8

)
0.685000 0.679575 0.673283 0.670091 1.03955E − 04(

7
8
, 3
8

)
0.810705 0.809069 0.807159 0.805823 8.18697E − 05(

7
8
, 5
8

)
0.900009 0.900163 0.901686 0.903333 1.13899E − 05(

7
8
, 7
8

)
0.951098 0.952903 0.955655 0.957412 4.45979E − 05

Table 4.2. Maximum absolute errors (EL∞) of LWCMQT, HWCIM [2], and MVIM [28]
for the numerical solution of Example 4.1

The Method Maximum Absolute Error (EL∞)

LWCMQT 2.50099E − 04

HWCIM 1.17E − 03

MVIM 1.97465E − 01
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Figure 4.2. The absolute error |yexact(x, t)− y3(x, t)| of Example 4.1
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Example 4.2. In the second example, we consider the following time-fractional homoge-

neous Fisher’s equation

∂αy(x, t)

∂tα
=
∂2y(x, t)

∂x2
+ y(x, t) (1− y(x, t)) , (4.49)

with the initial condition

y(x, 0) = µ, (4.50)

and boundary conditions

y(0, t) =
µet

1− µ+ µet
, (4.51)

y(1, t) =
µet

1− µ+ µet
, (4.52)
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where µ is a constant. The exact solution for α = 1 is given by

yexact(x, t) =
µet

1− µ+ µet
. (4.53)

We use y0(x, t) = µ as an initial guess and implement the Legendre wavelet collocation

method with quasilinearization technique. We iterate the quasilinearization technique

three times. In Table 4.3, the numerical results for µ =
2

3
, b = 2, h = 2 and D = 2,

Q = 2 are presented. The maximum absolute errors of some other methods are compared

in Table 4.4. The approximate solution is plotted in Figure 4.3. Also, the absolute error is

illustrated in Figure 4.4.

Figure 4.3. Numerical solution for µ =
2

3
and α = 1 obtained by LWCMQT with b = 2,

h = 2 and D = 2, Q = 2 in the 3rd iteration in Example 4.2
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Table 4.3. Numerical results for Example 4.2 obtained by using the LWCMQT with the
resolution levels b = 2, h = 2 and the degree of polynomials D = 2, Q = 2

Col. Pts. α = 0.5 α = 0.7 α = 0.9 α = 1 Absolute error for α = 1

(x, t) y3(x, t) y3(x, t) y3(x, t) y3(x, t) |yexact(x, t)− y3(x, t)|(
1
8
, 1
8

)
0.699479 0.697388 0.695016 0.693843 0.00000E − 00(

1
8
, 3
8

)
0.747179 0.746198 0.745017 0.744244 0.00000E − 00(

1
8
, 5
8

)
0.789141 0.788652 0.788610 0.788873 1.11022E − 16(

1
8
, 7
8

)
0.826046 0.826320 0.826995 0.827519 2.88658E − 15(

3
8
, 1
8

)
0.705598 0.701172 0.696237 0.693843 0.00000E − 00(

3
8
, 3
8

)
0.750559 0.748549 0.745995 0.744244 0.00000E − 00(

3
8
, 5
8

)
0.789508 0.788461 0.788339 0.788873 4.44089E − 16(

3
8
, 7
8

)
0.824498 0.825061 0.826431 0.827519 7.77156E − 15(

5
8
, 1
8

)
0.705598 0.701172 0.696237 0.693843 0.00000E − 00(

5
8
, 3
8

)
0.750559 0.748549 0.745995 0.744244 0.00000E − 00(

5
8
, 5
8

)
0.789508 0.788461 0.788339 0.788873 2.22045E − 16(

5
8
, 7
8

)
0.824498 0.825061 0.826431 0.827519 7.99361E − 15(

7
8
, 1
8

)
0.699479 0.697388 0.695016 0.693843 0.00000E − 00(

7
8
, 3
8

)
0.747179 0.746198 0.745017 0.744244 0.00000E − 00(

7
8
, 5
8

)
0.789141 0.788652 0.788610 0.788873 2.22045E − 16(

7
8
, 7
8

)
0.826046 0.826320 0.826995 0.827519 2.88658E − 15

Table 4.4. Maximum absolute errors (EL∞) of LWCMQT, HWCIM [2], and MVIM [28]
for the numerical solution of Example 4.2

The Method Maximum Absolute Error (EL∞)

LWCMQT 7.99361E − 15

HWCIM 2.19E − 05

MVIM 3.68E − 02
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Figure 4.4. The absolute error |yexact(x, t)− y3(x, t)| of Example 4.2

0

2.×10-15

4.×10-15

6.×10-15

8.×10-15

Example 4.3. In the third test problem, we solve the following time-fractional non-

homogeneous Fisher’s equation

∂αy(x, t)

∂tα
=
∂2y(x, t)

∂x2
+ y(x, t)

(
1− y3(x, t)

)
+ q(x, t), (4.54)

where

q(x, t) = t

(
−2− x(t+ x)

(
1− t3x3(t+ x)3

)
+

x2t−α

Γ(2− α)
+

2xt1−α

Γ(3− α)

)
, (4.55)

with the initial condition

y(x, 0) = 0, (4.56)

and boundary conditions
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y(0, t) = 0, (4.57)

y(1, t) = t2 + t. (4.58)

When α = 1, the problem has the exact solution

yexact(x, t) = xt2 + tx2. (4.59)

We use y0(x, t) = 0 as an initial guess and implement the Legendre wavelet collocation

method with quasilinearization technique. We iterate the quasilinearization technique

three times. In Table 4.5, the numerical results for the resolution levels b = 2, h = 2 and

the degree of polynomials D = 2, Q = 2 are presented. The maximum absolute errors

of some other methods are compared in Table 4.6. The approximate solution is plotted in

Figure 4.5. Also, the absolute error is illustrated in Figure 4.6.

Figure 4.5. Numerical solution for α = 1 obtained by LWCMQT with b = 2, h = 2 and
D = 2, Q = 2 in the 3rd iteration in Example 4.3
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Table 4.5. Numerical results for Example 4.3 obtained by using the Legendre wavelet
collocation method with quasilinearization technique with the resolution levels
b = 2, h = 2 and the degree of polynomials D = 2, Q = 2

Col. Pts. α = 0.5 α = 0.7 α = 0.9 α = 1 Absolute error for α = 1

(x, t) y3(x, t) y3(x, t) y3(x, t) y3(x, t) |yexact(x, t)− y3(x, t)|(
1
8
, 1
8

)
0.003635 0.003507 0.003635 0.003906 8.67362E − 19(

1
8
, 3
8

)
0.023602 0.023678 0.023568 0.023437 6.93889E − 18(

1
8
, 5
8

)
0.058457 0.058386 0.058470 0.058593 2.29585E − 09(

1
8
, 7
8

)
0.109399 0.109417 0.109399 0.109375 1.30438E − 08(

3
8
, 1
8

)
0.022788 0.022480 0.022788 0.023437 6.93889E − 18(

3
8
, 3
8

)
0.105861 0.106040 0.105776 0.105469 0.00000E − 00(

3
8
, 5
8

)
0.234052 0.233886 0.234089 0.234375 6.16237E − 09(

3
8
, 7
8

)
0.410211 0.410251 0.410205 0.410156 4.49039E − 08(

5
8
, 1
8

)
0.057944 0.057637 0.057944 0.058593 6.93889E − 18(

5
8
, 3
8

)
0.234767 0.234946 0.234681 0.234375 5.55112E − 17(

5
8
, 5
8

)
0.487962 0.487799 0.487999 0.488281 7.27352E − 09(

5
8
, 7
8

)
0.820365 0.820403 0.820359 0.820313 8.52705E − 08(

7
8
, 1
8

)
0.109105 0.108976 0.109104 0.109375 1.38779E − 17(

7
8
, 3
8

)
0.410320 0.410396 0.410287 0.410156 1.11022E − 16(

7
8
, 5
8

)
0.820182 0.820114 0.820194 0.820312 3.49513E − 09(

7
8
, 7
8

)
1.339860 1.339880 1.339870 1.339840 6.49032E − 08

Table 4.6. Maximum absolute errors (EL∞) of LWCMQT, and HWCIM [2] for the nu-
merical solution of Example 4.3

The Method Maximum Absolute Error (EL∞)

LWCMQT 8.52705E − 08

HWCIM 1.19E − 03
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Figure 4.6. The absolute error |yexact(x, t)− y3(x, t)| of Example 4.3
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CHAPTER 5

CONCLUSION

In this thesis, our main goal was to develop efficient numerical methods based

on Legendre wavelets and quasilinearization technique for fractional Lane-Emden type

equation (1.3) and the time-fractional Fisher’s equation (1.5).

In Chapter 1, we briefly explained why we study fractional differential equations

and why we use wavelets for numerical solution of differential equations.

Chapter 2 consists of the basic definitions and properties of fractional calculus and

Legendre wavelets. Additionally, we gave a formula for the Riemann-Liouville integral of

Legendre wavelets in Chapter 2.

We started Chapter 3 by explaining quasilinearization technique for fractional

Lane-Emden type equation (1.3) in detail. Then we developed our method based on

Legendre wavelets and quasilinearization technique for fractional Lane-Emden type equa-

tion (1.3). We solved three examples to assess the efficiency of the presented method

for fractional Lane-Emden type equations (1.3). Numerical results support that the pre-

sented method for fractional Lane-Emden type equations (1.3) performs better than Haar

Wavelet Collocation Method (HWCM) [34], Haar Wavelet Collocation Adomian Method

(HWCAM) [32], and Adomian Decomposition Method (ADM) [42]. In many cases, the

proposed method for fractional Lane-Emden type equations (1.3) yields better results than

Chebyshev Wavelet Collocation Quasilinearization Method (CWCQM) [27]. However,

Chebyshev Wavelet Collocation Quasilinearization Method (CWCQM) [27] produced

slightly better results in some situations. As a result, both Chebyshev Wavelet Colloca-

tion Quasilinearization Method (CWCQM) [27] and the proposed method for fractional

Lane-Emden type equations (1.3) give satisfactory results and either of these two methods

can be used to get very accurate approximate solutions for fractional Lane-Emden type

equations (1.3).

In Chapter 4, we described quasilinearization technique for the time-fractional

Fisher’s equation (1.5) in depth. Then we derived our method utilizing Legendre wavelets
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and quasilinearization technique for the time-fractional Fisher’s equation (1.5). To inves-

tigate the efficiency of the proposed method for the time-fractional Fisher’s equation (1.5),

three numerical examples were solved. The examples show that the proposed method is

quite effective even when the resolution levels b, h and the degree of polynomials D,Q

are very small.

There are two new theoretical contributions to the literature in this thesis. Theorem

1 is the first theoretical contribution and it is useful for fast computation of the Riemann-

Liouville integral of Legendre wavelets on a computer. The second theoretical contribution

is Theorem 4. We gave an upper bound for the approximation error in Theorem 4.

We first iteratively linearized the fractional Lane-Emden type equation and the

time-fractional Fisher equation. We then developed numerical methods based on Legendre

wavelets for these two equations. Anyone interested in this topic can develop numerical

methods based on Legendre wavelets without linearizing the fractional Lane-Emden type

equation and the time-fractional Fisher equation. Then, the resulting system of algebraic

equations can be solved using Newton’s method and the numerical results can be compared

with the numerical results in this thesis.

We used 2-scale Legendre wavelets and performed convergence analysis for 2-

scale Legendre wavelets. It is also possible to define Legendre wavelets different than

2-scale Legendre wavelets such as 3-scale Legendre wavelets, 4-scale Legendre wavelets,

etc. We predict that 3-scale Legendre wavelets and 4-scale Legendre wavelets will yield

more accurate numerical results than 2-scale Legendre wavelets. As far as we know, there

is no research on this topic. A research can be conducted on this subject.
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