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1. RAD-TUMLEYEN ALTMODULLER

R birim elemanl herhangi bir halka olsun. R-modiillerle sol R-modiilleri kastedecegiz.
R-Mod ile de sol R-modiiller kategorisini gosterecegiz.

Esas olarak Rad-tiimlenmis modiillerin baz1 ozellikleri ve daha genel olarak 7, R-Mod
kategorisinde bir radikal olmak tizere 7-tiimlenmis modiillerin baz ozelliklerini elde et-
tik. Rad-tiimleyenleri (=eg diizenli alt modiilleri) ve daha genel olarak 7-tiimleyenleri in-
celememizin motivasyonu bagil homoloji cebirinden gelmektedir. Agagidaki paragraflarda
agiklanacagi tizere tiimleyenlerle ilgili 6z sinaiflar incelemekteyiz. Cevapladigimiz ana soru-
lardan biri ne zaman biitiin R-modiillerin Rad-tiimlenmis oldugudur. Bu problemle ug-
ragirken, radikal modiiller, indirgenmis modiiller ve eg atomik modiiller yararli olmustur
(bakiniz [38]). Bu kavramlarin tanimlarinda, Rad yerine R-Mod kategorisinde bir 7 radikali
kullandigimizda elde edilen modiiller de pek tabi ki 7-tiimlenmis modiillerin 6zelliklerinin
incelenmesinde ige yaramaktadir.

Bir M modili i¢in, M'nin RadU = U sartin1 saglayan biitiin U alt modiillerinin
toplamini P(M) ile gosterelim. Her R halkasi igin, P(gR) nin iki-tarafli bir ideal olacagim
da not edelim.

Abel gruplarimin diizenli alt gruplar1 kavrami modiillere [26] ve [27]’de genellegtirilmigtir:
Modillerin bir f : K — L monomorfizmasina duzenli denir eger her basit modiil 5,
L — L/Im f projeksiyonuna gore projektif ise, yani Hom(S, L) — Hom(S, L/Im f) — 0
dizisi tam ise. Bunun duali olarak [3]’de eg diizenli alt modiiller tanimlanmigtir: Modiillerin
bir f : K — L monomorfizmasina es diizenli denir eger Rad M = 0 sartini saglayan her
M modiili bu f monomorfizmasima gore injektif ise, yani Hom(L, M) — Hom(K, M) —
0 dizisi tamsa. [27])'de belirtildigi iizere tiimleyen alt modiiller kisa tam dizilerin bir &z
siifinin tanimlanmasini saglar (bakiiz ayrica [12]). Eg diizenli monomorfizmalarin ta-
nimladig kisa tam dizilerin sinifi da radikali sifir olan modiiller tarafindan injektif olarak
iiretilen 0z smiftir ve bu 6z simif tiimleyen alt modiillerle tanimlanan 6z sinifi icerir. Eg
diizenli alt modiil taniminda, Rad yerine R-Mod kategorisinde bir 7 radikali de alabiliriz.
Bu durumda eg diizenli alt modiillerin Rad-tiimleyen olarak karakterizasyonu su teoremdeki
7 = Rad 6zel durumudur:

Teorem 1.1. (bakiniz [2, 1.11] veya [6, 10.11]) R-Mod kategorisinde bir T radikali alalim.
M bir R-modil ve V< M de bir alt modil olsun. Sunlar denktir:

(1) 7(N) = 0 sartine saglayan her N modili V- — M i¢ermesini gore injektiftir,

(2) oyle bir U < M alt modiilii vardwr kiU +V =M veUNV =7(V);

(3) oyle bir U < M alt modiili vardir kiU +V =M ve UNV < 7(V).

Eger bu denk kosullardan herhangibire saglanirsa, V 'ye M ’de bir T-tiimleyen denir.

Yukardaki onermedeki en son kogulun tiimleyen olma tanimina ne kadar benzedigine
dikkat ediniz: Ttmleyen tanimindaki U NV < V (U NV, V'de kiiciik alt modiil) yer-
ine U NV < 7(V) gelmigtir. Tiimleyenlerdekine benzer tamimlar da su sekilde verilir:
Bir M modiiliiniin U ve V alt modiilleri i¢in, V', M’de U'nun bir 7-timleyenidir denir
eger U+ V = M and UNV < 7(V) saglanirsa. M modiiliine 7-timlenmistir denir
eger M'nin her alt modiluntin M’de bir 7-tiimleyeni varsa. 7-tiimleyenler ve 7-tiimlenmis
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modiillerle ilgili baz1 6zellikler icin bakmiz [2] ve [6]. Ozel olarak 7 = Rad aldigimzda,
bir alt modiiliin Rad-timleyeni ve Rad-timlenmis modil tanimlarini elde ederiz. Ayrica
bakinz [33]; bu makalede Rad-tiimlenmis modiillere genellestirilmis timlenmis denmekte-
dir. Rad-tlimlenmis modiillerle ilgili sonuglarin taranmasi i¢in bakimz [24, Ch.6].

Elde ettigimiz esas sonucumuz sudur:

Teorem 1.2.

(1) Her sol R-modili Rad-timlenmistir ancak ve ancak R/P(R) sol mikemmel bir
halka ise.

(2) Eger R bir sol duo halkasi ise, yani, biitin sol idealleri ¢ift tarafly idealler ise, bu
durumda R (sol R-modil olarak) Rad-timlenmistir ancak ve ancak R/P(R) yari-
maukemmel ise.

Dedekind bolgeleri tizerinde, ttimlenmig modiillerin yapisi [38)’da tam olarak belirlenmistir.
Bu yapiy1 kullanarak da su sonucu da elde ettik:

Teorem 1.3. Eger R bir Dedekind bolgest ise, bir R-modul M Rad-timlenmistir ancak ve
ancak M 'nin bélinebilir kisma olan D = P(M) i¢in M /D timlenmis ise.

2. C-INJEKTIF MODULLER: KAPALI ALTMODULLERE GORE BAGIL
INJEKTIFLIK

Biitiin halkalarin birlesme 6zelligine sahip ve birim elemanli halkalar oldugunu ve biitiin
modiillerin birimli sol modiiller oldugunu kabul edelim.

Bir R-modiiliiniin bir K alt modiiliine M’de kapalr denir eger K’'nin M’de hi¢ 6z biiyiik
genislemesi yok ise. Tabii ki, M nin her dik toplam terimi M ’de kapalidir. M modiiliintin bir
L alt modiiliinii alalim. Zorn’un Onsav’mdan M nin Gyle bir K alt modiiliiniin varhg elde
edilir ki bu K alt modiilii M 'nin L’yi iceren alt modiilleri arasinda L'nin K’da biytik alt
modiil olmasi 0zelligine gore maksimal bir alt modiildiir; bu durumda K alt modiilii M 'nin
kapali bir alt modiilii olur. Bir M modiiliine C'S-modiil denir eger her kapal alt modiilii,
M’nin bir dik toplam terimi ise. Bu durumda, M nin her alt modiilii M ’deki bir dik toplam
teriminin i¢inde biiyiik bir alt modiil olur. Kapali alt modiiller ve C'S-modiillerle ilgili olarak
[7] ve [23] kaynaklarina bakiniz.

M bir R-modiil olsun. [30]'da bir R-modil X’e, M-c-injektif modiil denir eger M ’nin
her kapali alt modili K igin, her ¢ : K — X homomorfizmasi bir 6 : M — X homomor-
fizmasina genisletilebilirse. X'’e c-injektif denir eger X her R-modiili M icin c-injektif ise.
Eger M bir CS-modiil ise bu durumda her R-modiilii M-c-injektif olur. [31, Theorem 6]’'da
su gosterilmektedir: Eger R bir Dedekind bolgesi ve M de basit modiillerin dik ¢arpimi
ise, bu durumda M, M-c-injektif olur ama M bir CS modiil olmak durumunda degildir
(bakimiz [31, Proposition 2]).

Elde ettigimiz ana sonuglardan biri sudur: Eger R bir Dedekind bolgesi ise, bir R-modiil
X c-injektiftir ancak ve ancak 6yle bir Y R-modiilii varsa ki Y basit R-modiillerin ve injektif
bir modiilin dik ¢arpimidir ve X modiilii de Y’nin bir dik toplam terimine izomorftur.
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Boyle bir dik toplam teriminin de aslinda homojen yari-basit R-modiillerin ve injektif R-
modiillerin dik carpimina izomorf olmak zorunda oldugunu da gosterdik. ﬂgili ozellikler
i¢in [4] ve [32] makalelerine de bakiniz.

R bir halka olsun ve £ de R'nin bos olmayan bir idealler toplulugu olsun. [20]'1 takip
ederek, bir R-modiilii M nin bir L alt modiiliine, M’de £-saf diyecegiz eger LN IM = IL
kogulu £’deki her I ideali i¢in saglaniyorsa (ayrica [22] kaynagina da bakiniz). Bir R-modiil
X'e E-saf-injektif diyecegiz eger her R-modiil M ve M nin her £-saf alt modiilii L igin, her
¢ : L — X homomorfizmasi, M’ye genisletilebiliyorsa. Ozel olarak, bu kavramlarla & nin
R’nin tiim sol primitif ideallerinden olustugu durumla ilgilendik. R’nin tiim sol primitif
ideallerinden olugan kiimeyi P ile gosterelim.

Honda [15, pp. 42-43] tarafindan bir A abel grubunun bir B alt grubuna, A’da diizenli
denir eger her p asal sayisi i¢cin pB = B N pA saglamirsa (ayrica bakimiz [10]). Bizim
terminolojimize gore, bir Z-modil A'min B alt modiili A’da diizenlidir ancak ve ancak B
alt modiilii A'nin P-saf alt modiili ise.

R Dedekind bolgesi iizerindeki c-injektif modiilleri karakterize ettigimiz ana sonuca
ulagirken daha once P-saf-injektif modiilleri daha genig bir halkalar sinifinda karakterize
ettik. Sonra da R Dedekind bolgesi lizerinde c-injektif modiillerin, P-saf-injektif modiiller
ile ayn1 oldugunu elde ettik. Daha da otesi Dedekind bolgelerini Noether tamlik bolgeleri
arasinda su ozellikle karakterize edebildik: R bir Noether tamlik bolgesi ise, R'nin Dedekind
bolgesi olmasi igin gerek ve yeter sart her basit R-modiiliin c-injektif olmasidir.

Elde ettigimiz ana sonucglar1 agagidaki teoremlerle 6zetleyecegiz.

Yukarda bahsettigimiz daha genig halkalar sinifi olarak esasta su tiir halkalarla ilgilenece-
giz: Oyle R halkalar1 ki her P sol primitif ideali i¢in R/P Artin halkasi olsun. Degismeli
halkalar tabi ki bu ozellige sahiptir. Genel olarak bir polinom 6zdesligi saglayan halkalar da
Kaplansky'nin bir teoreminden dolay1 bu 6zellige sahiptir (6rnegin bakimiz [21, Theorem
13.3.8]). Bir R halkasina soldan tamamiyle siirli denir eger R'nin her asal homomor-
fik gortintiistindeki her biiytik left ideal sifirdan farkl iki tarafli bir ideal igerirse. Bir R
halkasina sol FBN halkas1 denir eger R soldan tamamaiyle sinirli ve soldan Noether bir halka
ise. Bilinmektedir ki eger R bir sol FBN halkasi ise, bu durumda her P sol primitif ideali
i¢cin R/P Artin halkasi olur (6rnegin bakiniz [13, Proposition 8.4]). Eger R, yari-mitkemmel
bir halka ise yine her P sol primitif ideali i¢in R/P Artin halkas: olur. Bu 6zelligi saglayan
halkalara son bir 6rnek olarak da sunu verebiliriz: Roseblade [29, Corollary A] sunu goster-
mektedir: eger J = Z veya J sonlu bir cisim, G sonluyla-polisiklik bir grup ve R de J[G]
grup halkasi ise yine bu durumda her P sol primitif ideali i¢gin R/P Artin halkasi olur.
Dolaysiyla biitiin bu halkalar i¢in su sonuclarimiz var:

Teorem 2.1. R odyle bir halka olsun ki her P sol primitif ideali i¢in R/ P Artin halkasi ol-
sun. Bu durumda bir R-modil X P-saf-injektiftir ancak ve ancak oyle bir' Y R-modiili varsa
ki'Y basit R-modiillerin ve injektif modillerin dik carpimaidir ve X modili de Y ‘nin bir
dik toplam terimine izomorftur.

R &yle bir halka olsun ki her P sol primitif ideali i¢in R/P Artin halkasi olsun. Bu du-
rumda, bir R-modiil M’de P-saf olan M nin énemli bir alt modiiller sinifi vardir: tiimleyen
alt modiiller. Hatirlatacak olursak, herhangi bir R-halkasi i¢in bir R-modiiliiniin herhangi
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bir L alt modiiliine M’de bir tumleyen denir eger M’nin 6yle bir N alt modiilii varsa ki
M = N + L ve L bu ozellige gore minimal bir alt modiildiir (denk olarak M = N + L ve
N N L, L'de kii¢iik bir alt modiildiir).

Teorem 2.2. R dyle bir halka olsun ki her P sol primitif ideali i¢in R/P Artin halkas
olsun. M de herhangi bir R-modil olsun. Bu durumda M ’deki her timleyen alt modul
M min P-saf bir alt modilidir.

Teorem 2.3. R mikemmel bir halka olsun. Bir R-modil M 'nin bir L alt modili M de
bir timleyen alt moduldir ancak ve ancak L alt modiili M 'nin P-saf bir alt modili ise.

Teorem 2.4. R bir Dedekind bolgesi olsun. Bir R-modil M ‘nin bir K alt modili M ’de
kapalidir ancak ve ancak K, M 'nin P-saf bir alt modiili ise.

Lemma 2.5. R bir Dedekind bolgesi olsun. Bu durumda bir R-modil X i¢in asagidakiler
birbirine denktir:

(i) X c-ingektiftir.
(ii) X P-saf-injektiftir.
(i) X, basit R-modiillerin ve injektif modillerin dik ¢arpinwman bir dik toplam terimine
1zomorftur.

R bir halka olsun. Bir (sol) R-modiil M nin bir K alt modiiliine M’de saf denir eger
her (sonlu sunulan) sag R-modiil U igin abel gruplarinin

Usopr K “SUor M

homomorfizmasi bir monomorfizma ise (burada i : K — M igerme homomorfizmasi ve
1y : U — U birim homomorfizmadir). Eger R bir Dedekind bdlgesi ise (daha genel olarak
bir Priifer tamlik bolgesi ise) bir (sol) R-modil M’nin bir K alt modili M’de saftir
ancak ve ancak her a € R i¢cin K NaM = aK kosulu saglanirsa. Bir X R-modiiliine saf-
ingektif denir eger her R-modiil M ve M’nin her saf alt modili K igin her ¢ : K — X
homomorfizmasi M’ye genisletilebilirse.

Teorem 2.6. R bir Dedekind bolgesi olsun. Bir R-modul X c-injektiftir ancak ve ancak X
homojen yari-basit modiiller ve injektif modiillerin dik carpima ise.

Teorem 2.7. R degismeli bir Noether tambhk bolgesi ve P de R’nin bir maksimal ideals
olsun. Bu durumda asagidakiler birbirine denktir:

(i) R/P modili c-injektiftir.
(i) M = R& R serbest modiilii i¢in R/ P modili c-M -injektiftir.
(iii) P tersi olan bir idealdir.

Sonug 2.8. Degismeli bir Noether tamlik bolgesi R Dedekind bolgesi olur ancak ve ancak
her basit R-modul c-injektif ise.



3. Wsupp SINIFI VE ILGILI OZSINIFLARA GORE INJEKTIF VE
PROJEKTIF MODULLER
Small smifi Im(a)’ min B’ de kiigiik alt modiil oldugu tiim

(67

0 A B C 0

kisa tam dizilerinden olusur. Zayif tiimleyenlerden yola ¢ikarak tanimlanan Wsupp smifi
Im(a)’ nin B’ de bir zayif tiimleyeni oldugu tiim

«

0 A B C 0

kisa tam dizilerinden olugur. S sinifi Im(a)’ nin B’ de bir tiimleyeni bulundugu ve Zoschinger’
in k-eleman diye tamimladig1 tiim

«

0 A B C 0

kisa tam dizilerinden oluguyor. SB smifi da Im(«)’ nin B’ de Im(a) NV smirh modiil olacak
sekilde bir V' tiimleyeninin bulundugu ve Zoschinger’ in (-eleman diye tanimladigi tiim

0 A—=B C 0
kisa tam dizilerinden oluguyor. Small, Wsupp, § ve SB smiflar1 genelde 6z siif olugtur-
mayabilir ve birbirinden farkli simiflardir. Bu simiflar1 igeren en kiicitkk 6z smflarla (bir
A smifim igeren en kiigiik 6z smif (A) seklinde gosterilmistir) ilgili agagidaki sonuca
ulagilmistir.

Teorem 3.1. (Wsupp) = (Small) = (S).

Ozel olarak R’yi tamlik bolgesi olarak aldigimizda Small smufiyla ilgili asagidaki sonuca
ulagilmistir.

Teorem 3.2. Bir R tamlik bélgesi tizerinde her sinarly modil (Small)-esinjektiftir.

Sinirh modiiller sinifin1 B ve bu smif tarafindan eginjektif tiretilmiy 6z siifi k(B) ile
gosterelim.

Sonug 3.3. Bir R tamlik bolgesi tizerinde k(B) C (Small).
R halkasina ek kogullar koyarak SB simifi igin agsagidaki sonuca ulagilmigtir.

Teorem 3.4. Bir R Noether tamlik bélgesi i¢in, SB = k(B), yani bu durumda SB bir iz
sinaf olusturur.

Yukaridaki sonug bir R Dedekind bolgesi i¢in de gecerlidir.

Teorem 3.5. R Dedekind bolgesi tizerinde, S-injektif modiller tam olarak injektif modyil-
lerdir.

Bir P smifina gore projektif olan tiim modiilleri 7(P) ve R halkas: izerinde burulma
modiilleri kategorisini 75 ile gosterelim.
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Teorem 3.6. Bir R Dedekind bolgesi tuzerinde, Tg burulma modilleri kategorisinde asagi-
dakiler dogrudur.

(a) Ext(C, A)’ nman k-elemanlary bir 6z sinif olusturur.
(b) T(Wsupp) = n(S) = n(Small) = {0}.
(¢) S-injektif modiller tam olarak Tg kategorisindeki injektif modillerdir.

Teorem 3.7. R bir Dedekind bolgesi olmak tzere R tzerinde burulma R-modillerinin
olusturdugu Tr kategorisinde X modilinin S-esinjektif olmasy icin X modilinin in-
dirgenmis kismainan her asal bileseninin sinirl olmasi gerek ve yeterlidir.

Teorem 3.8. Bir R Dedekind bolgesi tizerinde, Tr burulma modilleri kategorisinde asagi-
dakiler dogrudur.

(a) Ext(C, A)” nin B-elemanlary bir 6z sinaf olugturur.
(b) m(SB) ={0}.
(¢) SB-injektif modiller tam olarak Tr kategorisindeki injektif modiillerdir.

Teorem 3.9. R bir Dedekind bolgesi olmak tzere R tizerinde burulma R-modullerinin
olusturdugu Tr kategorisinde X modilunin SB-esinjektif olmasy i¢in X modilintin in-
dirgenmis kismanan sinirly olmasi gerek ve yeterlidir.

4. DUAL SONLU ESKAPALI MODULLER

Dual sonlu es kapaly alt modiiller, bazi temel 6zellikleri [6] te verilen es kapali alt modiillerin
genellegsmesi olarak tanimlanmig ve asagidaki gibi siniflandirilmigtar.

Lemma 4.1. Bir M modulu ve M 'nin bir N alt modili i¢in asagidakiler denktir.

(i) N alt médili M 'nin dual sonlu es kapalr alt modilidiir.
(ii) N alt modilinin N/K < M/K olacak sekilde K maximal alt modiili yoktur.
(iii) K alt modili N 'nin bir mazimal alt modili ise, M nin K = N N L olacak sekilde
bir mazximal L alt moduli vardar.
(iv) Her basit S modili f : N — M igerme homomorfizmasina gore injektifdir, yada
denk olarak, Hom(M, S) — Hom(N, S) — 0 dizisi tamdur.

Abel gruplarmin diizenli alt gruplar: kavrami modiillere [26] ve [27]’de genellestirilmistir:
Modiillerin bir f : K — L monomorfizmasina dizenli denir eger her basit modil S,
L — L/Im f projeksiyonuna gore projektif ise, yani Hom(S, L) — Hom(S, L/Im f) — 0
dizisi tam ise. Monomorfizmalar: diizenli monomorfizma olan tiim kisa tam diziler bir 6z
sinif olugturmaktadir ve tanimdan dolay1 bu 6z siif tiim basit sol R-modiiller tarafindan
projektif olarak tiretilmektedir.

Dual sonlu eg-kapali alt modiiller ve tiim basit sol R-modiiller tarafindan injektif olarak
tiretilen 6z smif ile ilgili asagidaki sonug elde edilmistir.

«

Teorem 4.2. ( N M L 0 kisa tam dizisinde Im(«)” nan M nin dual
sonlu es-kapaly alt modulu olmast icin gerek ve yeter kosul her basit R-moduluniin bu diziye
gore injektif olmasidir, yani her basit R-modil S i¢in Hom(M, S) — Hom(N, S) — 0
dizisi tam ise.
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Es diizenli monomorfizmalarin tanimladigi kisa tam dizilerin siifi radikali sifir olan
modiiller tarafindan injektif olarak tiretilen 6z siniftir ve bu 6z sinif tiimleyen alt modiillerle
tanimlanan 6z simif igerir (bakimiz [19]). Her basit modiilin radikali sifir oldugundan, her
eg diizenli f : K — L monomorfizmasi i¢in f(K), L'nin dual sonlu eg-kapali alt modiiliidiir.
Bu nedenle dual sonlu es kapali monomorfizmalarin tanimladigr kisa tam diziler smifi, eg
diizenli monoforfizmalarin tanimladigi kisa tam dizilerin sinifim1 icermektedir. S6z konusu
0z siiflarin denk oldugu bir durum asagidaki gibi elde edilmistir.

Teorem 4.3. R yaryerel bir halka ise, es dizenli monomorfizmalarin tanimladigr 0z sinaf
ile, basit moduller tarafindan injektif olarak ‘retilen 6z sinaf (ya da denk olarak, dual sonlu
es kapal monomorfizmalarn olusturdugu 6z sinif ) birbirine denktir. Eger R/Jac(R) dizgin
(Von Neumann regular) bir halka ise, ifadenin terside dogrudur.

5. ESKAPALI ALTMODULLERLE TANIMLANAN OZ SINIF

R ile birim elemanli herhangi bir halkay1 gosterecegiz. Biitiin modiiller sol R-modiiller
olacak. Sol R-modiillerin kategorisini R-Mod ile gosterecegiz.

Her tiimleyen alt modiil, eg kapali alt modiildiir. Ttimleyen alt modiillerle bu iligkisinden
dolay1 eg kapali alt modiillerle tanimlanan kisa tam dizilerin siifin1 diigtintiyoruz. Bunun
bir 6z smif olugturdugunu gosterdik. Bunun igin eg kapali altmodiillerin baz1 ozelliklerini
kullandik; bu 6zelliklerin ¢ogunu, 6rnegin yakin zamanda ¢ikmig olan [6, 3.7] monografinda
bulabilirsiniz. Yakin zamanda ¢ikmig olan [39, A.4] makalesinde 6nemli bir 6zellik ver-
ilmigtir.

Es kapali alt modiillerle tanimlanan kisa tam dizilerin siifim1 Co-Closedgpioq ile gos-
terecegiz: Bu sinif R-modiillerin 6yle

0—=A—toB 9 0 .0

kisa tam dizilerden oluguyor ki f(A), B’de eg kapali olsun.

Es kapali alt modiillerin bahsettigimiz ozelliklerini kullanarak Co-Closedgpqoq Sinifinin
bir 6z smif olugturdugunu gozledik.

Oncelikle 6z smf tammin da verelim:

P ile R-modiillerin kisa tam dizilerinden olugan bir siifi gosterelim.

Eger bir

0—=A-toB 90— o9

kisa tam dizisi P sinifinda ise f monomorfizmasina P-monomorfizma ve g epimorfizmasina
da P-epimorfizma diyelim.

P smifina bir 6z sinayf denir eger su 6zellikleri saglarsa (bakiniz [5], [18, Ch.12, §4], [26,
§2] and [25, Introduction]):

P1. Eger E, P sinifinda ise, o zaman E’ye izomorf olan her kisa tam dizi de P simifindadir.

P2. Pargalanan kisa tam dizilerin hepsi P sinfindadir.

P3. Iki tane P-monomorfizmanim bileskesi de P-monomorfizmadir, tabi ki bilegke tanimh
ise. Iki tane P-epimorfizmanin bilegkesi de P-epimorfizmadir, tabi ki bilegke taniml
ise.
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P4. Eger g ve f monomorfizma ve g o f P-monomorfizma ise, o zaman f de P-
monomorfizmadir. Eger g ve f epimorfizma ve g o f P-epimorfizma ise, o zaman g
de P-epimorfizmadir.

Es kapali alt modiil tanimini da verelim.

Tanim 5.1. K C L C M alt modiilleri i¢in, K C L icermesine M’de egkuciik denir ve bu
K(%L ile gosterilir eger L/K <« M/K (yani L/K, M/K’nm kii¢iik alt modiilii ise).

Tanmim 5.2. Bir M modiiliiniin bir L alt modiiliine, M’de eskapale denir ve bu L—==M

ile gosterilir eger L'nin hicbir 6z alt modiilii K yoksa ki K C%L olsun.

Es kapali alt modiillerle ilgili kullandigimiz ozellikler sunlardir:

Onerme 5.3. [6, 3.7 K C L C M alt modillerini alalim.

(i) Eger L~“~M ise, o zaman L/K—"~M/K olur.

(ii) Eger K~“=M ise, o zaman K—=L olur. Tersi de dogrudur ejer L“—">M
olursa.

Lemma 5.4. [39, Lemma A.4] K C L C M altmodiillerini alalim. Ejer K~*~M and
L/K“*~M/K ise, o zaman L~>M olur..

Bu ozellikleri kullanarak 6z sinif taniminda istenen P1, P2, P3 ve P4 o6zelliklerinin
saglandigini gostererek sunu elde ederiz:

Teorem 5.5. Co-Closedrpoqg Stnifi, bir 6z simf olusturur.

6. Neatp_mo-ESINJEKTIF VE BASIT PROJEKTIF MODULLER

R ile birim elemanl herhangi bir halkay1 gosterecegiz. Biitiin modiiller sol R-modiiller
olacak. Sol R-modiillerin kategorisini R-Mod ile gosterecegiz.

[34] makakesinde tanimlamp incelenen maks-injektif modiillerin ashinda Neatgpoq 02
sinifina gore eginjektif modiiller oldugunu gozledik. Bu sayede ilgili baz1 sonuclari genelleme
ve ilgili bagka sorular ortaya koymamiz miimkiin oldu. Buna dual olarak basit-projektif
modiilleri de tanimladik ve ashinda bunlar da dual sonlu eg kapali alt modiillerle tanimlanan
0z sinifa gore egprojektif modiiller oluyorlar. Agagida gerekli tanimlar1 verip elde ettigimiz
sonuglar1 0zetleyecegiz.

Tanim 6.1. P bir 6z siif olsun. Bir C' modiiliine P-esprojektif denir eger

0—=A-top 9 0 .0

seklindeki C'ile biten modiillerin biitiin kisa tam dizileri P 6z sinifinda ise. Bir A modiiliine
P-esinjektif denir eger

0—=A-top 9 0 .0

seklindeki A ile baslayan modiillerin biitiin kisa tam dizileri P 6z siifinda ise.
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Tanim 6.2. M, modiillerin bir sinifi olsun.
7 (M) = {E € Abspred| Hom(M,E) is exact for all M € M}

sinifi M tarafindan projektif olarak tretilen 6z siftir.

1Y (M) = {E € Abspod| Hom(E, M) is exact for all M € M}.

sinifi M tarafindan injektif olarak tretilen 6z siftir.
Maks-injektif modiil tanimi injektif modiil taniminin bir genellemesidir:

Tanim 6.3. [34] M bir R-modiil olsun. M modiiliine maksimallere gore injektif veya
kisaca maks-injektif denir eger R halkasinin her maksimal sol ideali P igin her f : P — M
homomorfizmasi bir g : R — M homomorfizmasina genisletilebilirse:

P&

max.

7/

/
fl 29
M

Dikkat edilirse bu injektif modiiller i¢in olan Baer kriterinde halkanin her sol ideali alinmasi
yerine her sol maksimal ideali alinmasi ile elde edilmig bir tanimdir.

N eatg.moq 0z sinifi basit R-modiiller tarafindan projektif olarak tiretilen 6z siiftir.
Ozel olarak gozledigimiz su sonug ashinda projektif olarak iiretilen 6z siniflar i¢in genel
olarak verilebilen bir sonugtur (bakiniz [25, Proposition 9.5]):

Onerme 6.4. Bir M modiilic N eat g pmoa-esinjektif bir modildir ancak ve ancak her basit
S modiilii igin Exty(S, M) = 0 ise.

Bu kogul da max-injektif olmaya denktir (bakimz [34, Proposition 2.2]); su da kolayca
gosterilir:

Onerme 6.5. Bir M modiilii icin asaqrdakiler denktir:
(i) M maks-injektif bir moddldiir.
(ii) Her basit S modiilii i¢in Extg(S, M) = 0.
(iil) M modiili, basit modiillerle biten biitin kisa tam dizilere gore injektiftir: S basit
modiul ise su diagram degismeli olarak tamamlanabilmektedir:

0 A B S 0

Sonug 6.6. Bir M modili maks-injektiftir ancak ve ancak M modilii N eat g poq-esinjektif
bir modul ise.
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Bir R halkasma sol C-halkasi denir eger her B (sol) R-modiilii ve B'nin her biiyiik 6z
alt modili A igin Soc(B/A) # 0 ise, yani B/A modiiliiniin basit bir alt modilii varsa
(bakiniz [28]).

Ornegin, bir Dedekind halkasi bir C-halkasidir. Dolayis ile esas tamlik bolgeleri de C-
halkalaridir.

Onerme 6.7. [28, Proposition 1.2] Bir R halkasi i¢in sunlar denktir:

(1) R bir C-halkasidar.
(2) R halkasinin her biyik 6z sol ideali i¢in Soc(R/I) # 0.

Bir R halkasma sol yari-Artin halka denir eger R halkasinin her 6z sol ideali igin
Soc(R/I) # 0. Tabi bu durumda sol yari-Artin halkalar ayni zamanda C-halkalaridir.

Onerme 6.8. [34, Theorem 3.1] Eger R bir sol yari-Artin halka ise, bu durumda her sol
maks-injektif R-modil ashnda inkektif modiildir.

Complratoq Oz smufi biitinleyen alt modillerle tanmimlanan 6z smuftir. Neatpagoq 0z
smifi her zaman igin Complgaioq 62 stifini igerir ve [12]'de gosterildigi tizere bu iki 6z simf
birbirine esittir ancak ve ancak R bir C-halkasi ise. Complraoq 0z sinifina gore eginjektif
olan modiiller sadece injektif modiillerdir. Dolayisiyla su sonucu daha once biliyorduk zaten:

Onerme 6.9. [19, Proposition 3.7.4] R bir C-halkasu ise, bir R-modili M injektiftir ancak
ve ancak butin basit S modilleri i¢in Extr(S, M) = 0 ise, yani M maks-injektif bir modiil
ise (Onerme 6.5°den dolay).

9, Theorem 4.4.1]’de , su gosterilmigtir: bir tamlik bolesi R i¢in sunlar denktir:

(i) Sifirdan farkli burulmal her R-modiiliiniin basit alt modiilii vardir.
(ii) Bir M R-modiilii injektiftir ancak ve ancak her basit S modiilii icin Ext}, (S, M) = 0
ise.
Bir tamlik bolgesi C' halkasidir ancak ve ancak sifirdan farkli burulmal her R-modiiliiniin
basit alt modiilii varsa (bakiniz orengin [19, Proposition 3.3.9]). Dolayisi ile [9, Theorem
4.4.1] sonucunu su sekilde ifade edebiliriz.

Sonug 6.10. R bir tambik bolgesi olsun. R bir C-halkasidir ancak ve ancak biitin N eat poq-
esinjektif modiiller (yani maks-injektif modiller) sadece injektif modillerden olusuyorsa.

Bu problem de iizerinde ¢ahstigimiz genel problemin 6zel halidir. Sorumuz biitiin N eat paqod-
esinjektif modiillerin (yani maks-injektif modiillerin) sadece injektif modiillerden olugtugu
R halkalarin1 karakterize etmek. Yukardaki sonug, tamlik bolgeleri arasinda cevabi C-
halkalar1 olarak karakterize ediyor. Amacimiz bunun daha genis bir halkalar simifinda da
halen dogru olup olmayacagini anlamaktir. Daha once belirttigimiz tizer eger R bir C-
halkas1 ise NV eat raqoq-esinjektif modiillerin (yani maks-injektif modiillerin) sadece injektif
modiillerden olugtugunu biliyoruz. Yani tersinin dogru olup olmadigini veya hangi halkalar
siifinda dogru olacagini bulmay1 amacliyoruz.

Maks-injektif kavramina dual olarak basit-projektif modilleri tanimlayip bunlarla ilgili
ozellikleri incelemeyi planlamaktayiz:
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Tanim 6.11. Bir M modiline basit-projektif diyelim eger M modilii, c¢ekirdegi basit
modiil olan biitiin modiil epimorfizmalarina gore projektifse, yani S'nin basit modiil oldugu
su sekildeki diagramlar degismeli olarak tamamlanabiliyorsa:

0 S B C 0

AN
N
N
N

M

Tabi kolayca sunu gosterebiliriz:

Onerme 6.12. Bir M modiili 1cin sunlar denktir:
(i) M basit-projektif bir modildiir.
(ii) Her basit S modiilii i¢in Extp(M,S) = 0 saglanar.

Oz smuflarla ilgili su sonucu kullanacagiz:

Onerme 6.13. (bakinaz ornegin [19, Proposition 2.6.5]) Modillerin bir M sinafi tarafindan
ingektif olarak retilen P = 171 (M) 6z simafina alalvm. Bir R-modiilii C' igin sunlar denktir:
(1) C modilii P-esprojektiftir.
(2) M simafindaki biitiin M modiilleri icin Exty(C, M) = 0 saglanar.

Maks-injektif modiillerdekine benzer bicimde su sonucu elde ederiz:

Onerme 6.14. Basit modiiller tarafindan injektif olarak retilen
P = 71 ({bitin basit R-modiiller})

0z sinafi icin, bir M modili basit-projektiftir ancak ve ancak M modili P-esprojektif ise.

Basit-projektif modiilleri de aslinda bu sonug nedeni ile tanimlayip incelemek istemek-
teyiz giinkii basit modiiller tarafindan injektif olarak iiretilen P = .~!({biitiin basit R-
modiiller}) 6z sifi ilgilendigimiz bir 6z simftir ve bu proje raporunun eklerinde agikladi-
gimiz dual sonlu egkapali alt modiillerle tanimlanan 6z simiftir. Bu 6zsiifin egprojektif
modiillerinin ne zaman sadece projektif modiillerden olustugunu anlamak istemekteyiz.
Maks-injektif modiillerde olan bazi sonuglarin basit-projektif modiiller i¢in karsiligi olup
olmadigina bakacagiz. Basit-projektif modiillerin sadece projektif modiillerden olugtugu
halkalari en azindan bazi halka siiflar1 arasinda karakterize etmeye calisacagiz.

7. Wsupp OZ SINIFI VE Wsupp-ESINJEKTIF MODULLER

Daha 6nceki donemlerde inceledigimiz, Im(«)’ nin B’ de kiigiik alt modiil oldugu tiim

0 A—"~B C 0 kisa tam dizilerinden olugan Small simift, Im(«)’ min B’

de bir zayif tlimleyeni oldugu tiim kisa tam dizilerden olugan Wsupp simnifi ve Im(«)’ nin
B’ de bir tiimleyeni bulundugu ve Zoschinger’ in k-eleman diye tanimladigi tiim kisa tam
dizilerden olusan § smifi genelde 6z siif olugturmayabilir ve birbirinden farkli simflardir.
Ote yandan bunlarin iirettikleri, yani bunlar igeren en kiigiik 6z simflar esittir: (Small) =
(S) = (Wsupp) (burada bir A siifini igeren en kiigiik 6z simf (A ) seklinde gosterilmistir).
Bu dénemki ¢aligmalarimiz esasen bu 6z sinif iizerine yogunlagmistir.
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Bir f : A — A’ homomorfizmas: igin, f* : Ext(C, A) — Ext(C, A’) homomor-
fizmas1 Ext(C, A)'min Wsupp siifina ait elemanlarimi Ext(C, A’)’niin Wsupp siifina ait
elemanlarina gétiirmektedir. Fakat aynm sonug bir g : ¢ — C homomorfizmasi yardimiyla
tammmlanan g, : Ext(C, A) — Ext(C’, A) homomorfizmas: i¢in gecerli degildir. Wsupp
sinifina, bu simiftaki elemanlarin birinci degiskene gore alinan goriintiilerini de ekleyerek
olusturulan sinifi Wsupp ile gosterelim. Bu donem elde ettigimiz esas sonug Wsupp siifinin
Small, Wsupp ve § smiflarini iceren en kiigiik 6z sinif oldugunu kanitlamaktir.

Teorem 7.1. Bir R kalitsal halkas: tizerinde Wsupp sinaifi bir 6z sinaftir.
Bu teoremi kanitlamak i¢in agagidaki lemmalarin dogru oldugunu gosterdik.

Lemma 7.2. Bir f : A — A’ homomorfizmas: i¢in, f* : Ext(C, A) — Ext(C, A’)
homomorfizmas: Ext(C, A) ’'nin Wsupp sinifina ait elemanlarine Ext(C; A’) 'nin Wsupp
simifina ait elemanlarina goturmektedir.

Lemma 7.3. Bir g : " — C homomorfizmast i¢in, g, : Ext(C, A) — Ext(C’, A)
homomorfizmas: Ext(C, A)’nin Wsupp sinafina ait elemanlarine Ext(C’, A) 'nin Wsupp
sinafina ait elemanlarina gotirmektedir.

Lemma 7.4. Ext(C, A) nan Wsupp sinifina ait elemanlar bir alt grup olusturur.
Lemma 7.5. Iki Wsupp -monomorfizmanin bileskesi Wsupp -monomorfizmadar.

) (Wsupp) siift Wsupp’1 igeren bir 6z sif oldugundan Wsupp simifini da icermektedir.

Ote yandan teoremden dolayr Wsupp bir 6z simf oldugundan (Wsupp) € Wsupp'dir,
dolayisiyla agagidaki sonucu elde ederiz.

Sonug 7.6. (Small) = (S) = Wsupp) = Wsupp.

Bir siifin injektif modiilleri bu sinifin iirettigi 6z simifin injektif ve projektif modiilleri
ile ayn1 oldugundan agagidaki sonucu elde ederiz.

Sonug 7.7. R Dedekind bolgesi tizerinde, Wsupp -injektif modiller tam olarak injektif mo-
dullerdir.

R Dedekind bolgesi tizerinde Wsupp -esinjektif modiiller ile ilgili agagidaki sonuclar elde
edilmisgir.
Teorem 7.8. R Dedekind bolgesi tuzerinde bir M moduli i¢in asagidaki kosullar denktir.
(a) M modili VWsupp -esinjektiftir.
(b) M modiilii WWsupp -esinjektiftir.
(¢) M/N injektif ve M ‘nin injektif biriminde kii¢ik olacak sekilde M ’nin bir N alt-
modilu vardar.

Wsupp -esinjektif modiiller i¢in bu kriteri kullanarak Dedekind bolgesi iizerinde bazi 6zel
modiillerin Wsupp -esinjektif olup olmadig1 soylenebilir.

Sonug 7.9. Bir A modulinin herhangi bir monomorfizma altindaki gorintisi kiguk ise
A modilu Wsupp -esinjektiftir.
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Sonug 7.10. Dedekind halkast uzerinde her es atomik modul VWsupp -esinjektiftir.
Sonug 7.11. Dedekind bolgesi uizerinde her sonlu tretilmis modil YW supp-esinjektiftir.

Gozlem 7.12. Indirgenmis (yani boliinebilir alt grubu olmayan) Wsupp-esinjektif modiiller
es atomik olmayabilir. Ornegin Abel gruplar kategorisinde Jp, p-sel sayilar grubu Wsupp-
esinjektiftir, fakat eg atomik degildir. Bagka bir 6rnek: Rasyonel sayilar grubunda paydalar:
1’den biiyiik sayilarin karesine boliinmeyen sayilarin olugturdugu alt grup (p asal say1 ol-
mak iizere 1/p seklindeki sayilarin olugturdugu alt grup) da Wsupp-esinjektiftir, fakat eg
atomik degildir.

Ote yandan Wsupp-esinjektif burulma gruplari tam olarak betimlenmistir.

Onerme 7.13. R Dedekind bolgesi tizerinde bir A indirgenmis ve burulma modili i¢in
asagqidaks kosullar denktir.

(a) A is coatomic.
(b) Her p asal sayst igcin A’nin p-bileseni sinurldar.
(c) A is Wsupp-esinjektiftir.

Wsupp-esinjektif modiillerle ilgili agagidaki sonug da elde edilmigtir.

Onerme 7.14. M modiili Wsupp-esinjektif ise, M nin burulma kisminan radikalinin M “de
bir tumleyeni vardur.

Wsupp-esprojektif modiillerle ilgili agagidaki sonug elde edilmigtir.
Onerme 7.15. Sonlu gdsterilen her modil Wsupp-esprojektiftir.

Ote yandan ornegin Abel gruplart kategorisinde smurh gruplar Wsupp-esprojektif ol-
mayabilir. Dolayisiyla Wsupp smifi Ext(C, A) grubunun burulma altgrubuna karsilik gelen
Text simfini igermeyebilir, bu da Ext(C, A) grubunun Wsupp simfina kargihik gelen alt-
grubunun ve bu simifin global boyutunun incelenmesini zorlagtiriyor.

8. ES ATOMIK TUMLEYEN ALTMODULLER
R bir kalitsal halka, M bir R-modiil ve U bir altmodiil olsun. M = U +V ve UNV

es atomik olacak gekilde bir V' altmodiilii varsa U ya V nin es atomik timleyeni denir.
Extr(C,A) dabir E: 0 A—=B C 0 kisa tam dizisine o-tam denir eger Im «
B de es atomik tiimleyen ise.

Bu boliimde, ¥ ile gosterecegimiz tiim o-tam dizilerin sinifin1 inceleyecegiz.

Lemma 8.1. (i) f: A — A" bir homomorfizma ise, f. : Ext(C, A) — Ext(C, A)
altinda o-elemanlar korunur.
(ii) g : C" — C bir homomorfizma ise, g* : Ext(C, A) — Ext(C’, A) altinda o-
elemanlar korunur.

Kanat. (i) Let E:0 A B C 0, Ext(C,A) da bir kisa tam dizi ve
f A — A keyfi bir homomorfizm olsun. f,(E) = E; olmak iizere agagidaki diagram
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degismelidir ve satirlar1 tamdir.

0 A———8 C 0:E
/| /|
0 A’ B’ C 0:E;

a/

Eger V, Im o nin B de bir eg atomik tiimleyeni ise, o zaman Ima+V = B ve V NIm a es
atomiktir. Boylece, pushout diagramindan, f'(V)+Im o’ = B’ elde ederiz ve f'(V)NIm o’ =
f(VNIm «) eg atomiktir, ¢iinki VNIm « eg atomiktir ve eg atomik bir modiiliin homomorfik
goriintiisii de eg atomiktir.

(ii) £:0 A B C 0, Ext(C, A) da bir kisa tam dizi ve g : " — C
keyfi bir homomorfizma olsun. ¢*(E) = F; olmak iizere asagidaki diagram degismelidir ve
satirlar1 tamdir.

0 A = B’ 5 C’ 0:FE,;
|
0 A o B 3 C 0:F

V, Ker 8 nmin B de bir eg atomik tiimleyeni olsun. Yani, Ker 3+ V = B ve V N Ker 3
es atomik olsun. O zaman, pullback diagramindan, ¢~ *(V) + Ker 8/ = B’ elde ederiz.
Ciinkii ¢’ bize D' = ¢ 1(V) N Ker 8 ve D = V N Ker 8 arasinda bir izomorfizma verir ve
eg atomik bir modiiliin epimorfik goruntiisii de eg atomiktir. Boylece, D’ es atomiktir. [

Sonug 8.2. Ext(C, A) min bir o-elemanin katr da yine bir o-elemandar.
Teorem 8.3. o-elemanlarin sinafi 3 ile Wsupp-elemanlarin sinifs Wsupp ¢akigiktur.

Kamit. Kabul edelim ki A'nin B de bir eg atomik tiimleyeni olsun. O zaman, B nin bir
altmodiilii V' vardir oyleki B = A+ V ve ANV eg atomiktir. Boylece, agagidaki diagram
degismelidir ve satirlar1 tamdir:

0 0
ANV ANV
0 A B C 0:F
"y
0—=A/ANV —=B/ANV*—=(C—=0:F;
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Acikca, a bir Split-epimorfizmadir ve es atomik moduller Wsupp-esinjectif oldugundan,
~ bir Wsupp-epimorfizmadir. Boylece, o o v bir Wsupp-epimorfizmadir, ve E bir Wsupp-
elemandir. Tersini kanmitlamak icin, kabul edelim ki £ € Wsupp olsun. O zaman Wsupp
sinifinda bir F, vardir oyle ki agsagidaki diagram degismelidir ve satirlar1 tamdir:

«

0 A B C 0:E
0 A pr cr 0:E

Eger V, Im o/ nin B"’de bir zayif tiimleyeni ise, o zaman Im o'+ V = B’ ve Ima/ NV <« B’
dir. Béylece Ima/ NV eg atomiktir [37, Lemma 3.3] ve Lemma 8.1(ii) den dolay1, £ bir
o-elemandir. ]

R bir ayrik deger halkasi, K # R R nin kesirler cismi ve (p) de maksimal ideali olsun. Eger
A, B'nin eg atomik altmodiili ise B’de kii¢iik olmak zorunda degildir, fakat B/ Rad(B)
yaribasit oldugundan, ve

X/Rad(B) @ (A + Rad(B))/ Rad(B) = B/ Rad(B)

oldugundan, X N A < B olmak iizere X + A = B elde ederiz . Boylece, her eg atomik
altmodiiliin bir zayif tiimleyeni vardir.

Lemma 8.4. Bir ayrik deger halkasi tizerinde Wsupp bir ozsinif olusturur.

Kanit. A'nin B’de eg atomik tiimleyeni oldugunu varsayalim. O zaman B’nin bir V' alt-
modiilii vardir 6yleki B = A+ V ve ANV ey atomiktir. O halde agagidaki diagram
degismelidir ve satirlar1 tamdir:

0 0
ANV ANV
0 A B C 0:F
v
0—=A/ANV —=B/ANV *—~(C—=0:F

0 0

ANV eg atomik oldugundan, v bir Wsupp-epimorfizmadir. O zaman, ao~y bileskesi Wsupp-
epimorfizmadir. Boylece, E¥ bir Wsupp-elemandir. O
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9. MAKSIMAL ALTMODULLERI TUMLEYEN OLAN MODULLER

[1] de maksimal altmodiillerinin tiimleyenleri olan altmodiiller incelenmistir. [1] deki
sonuclardan yola cikarak maksial altmodiilleri tiimleyen olan ve ayrica, maksimal alt-
modiilleri dik toplam olan modiilleri inceledik.

Bu konuda elde ettigimiz sonuglar, Hacettepe Journal of Science and Engineering (SCI)
de yayina kabul edildi.
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MODULES WHOSE MAXIMAL SUBMODULES ARE SUPPLEMENTS
ENGIN BUYUKASIK AND DILEK PUSAT-YILMAZ

ABSTRACT. We study modules whose maximal submodules are supplements (direct sum-
mands). For a locally projective module, we prove that every maximal submodule is a
direct summand if and only if it is semisimple and projective. Over a commutative do-
main, every maximal submodule of a torsion module is a direct summand if and only if
every maximal ideal is idempotent and every nonzero proper ideal is an intersection of
finitely many maximal ideals.

2000 Mathematics subject classification: 13C05, 13C99, 16D10, 16P40
Key words: locally projective module, supplement submodule

1. INTRODUCTION

Let R be a unitary ring and M be a left R-module. A submodule N of M is called a
supplement if there exists another submodule L such that N is minimal with respect to
the property that N + L = M. This is equivalent to N + L = M and NNL < N. A
module M is called supplemented if every submodule has a supplement. Several authors
have been recently attracted by different generalizations of supplemented modules. An
interesting example of this situation has been studied in [1], where modules M in which
the kernel of any epimorphism from M to a finitely generated module has a supplement
are studied. These modules are characterized as modules whose maximal submodules have
supplements, (see [1, Theorem 2.8]). Motivated by these results, we study in this paper
some dual notions. Namely, modules in which any maximal submodule is a supplement,
and modules in which any maximal submodule is a direct summand. For the sake of
brevity, we call them ms-modules and md-modules, respectively.

We begin by studying some basic properties of md-modules. In particular, we show
that homomorphic images and that a module M containing an md-module L is also md
provided that L is not contained in any maximal submodule of M (Proposition 2.2). In
general, md-modules need not be closed under extensions. But we show that M is an
md-module provided that L and M/L are md-modules where L is a closed submodule of
M. These basic results allow us to characterize semilocal rings as those rings in which any
module with zero Jacobson radical is an md-module.

In Section 3, we study locally projective md-modules. Locally projective modules were
introduced by Huisgen-Zimmermann in [20] and they coincide with the flat strict Mittag-
Leffler modules in the sense of Raynaud and Gruson (see [10]). These modules are closely

Work supported by TUBITAK project number 107T7009.
The authors would like to thank Prof. P.F. Smith and Prof. P.A.Guil Asensio for their valuable
suggestions and comments.
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related to pure submodules of direct products of free modules (see [20]). And it has been
recently observed by several authors that there exists a strong connection between the
existence of nontrivial locally projective modules in the functor category of a ring (in the
sense that they are not projective) and the construction of separable modules and the pure
semisimplicity of certain subcategories of modules over the ring (see e.g. [8,9,11,12,21]).
In particular, it is proved in [21] that any ring R which is not left perfect has locally
projective left modules which are not projective. Motivated by these relations, we show
in Section 3 that any locally projective md-module is semisimple projective. In particular,
we deduce that any projective md-module is semisimple.

In Section 4, we characterize the coatomic modules whose maximal submodules are
supplement (Theorem 4.3). As a consequence for a module M over a left perfect ring, we
prove that every maximal submodule of M is a supplement if and only if Rad K = Rad M
for every maximal submodule K of M.

In Section 5, we prove that the class of ms-modules is strictly larger than class of md-
modules. We close this paper by studying md-modules over commutative domains. We
show that any (cyclic) torsion module over a commutative domain is an md-module if and
only if any maximal ideal is idempotent and any ideal is a finite intersection of finitely
many maximal ideals. Zoschinger proved that over a Dedekind domain, a submodule of a
module is closed if and only it is coclosed. Using this result we obtain that ms-modules
and md-modules coincide over Dedekind domains. This allows us to determine completely
the structure of md-modules over Dedekind domains.

Throughout this paper, R will be an associative ring with identity and all modules are
unital left R-modules. By N C M we shall mean that N is a submodule of M. Let L C M,
L is said to be small in M, denoted by L < M, if L+ K # M for every proper submodule
K C M. Dually, a submodule L C M is called essential in M, denoted by L < M, if
LN K # 0 for every nonzero K C M. By Rad M and Soc(M), we denote the Jacobson
radical and the socle of M, respectively. A submodule L of M is called closed in M if
L < K for some K C M, implies L = K. Dually, a submodule N of M is called coclosed
in M if N/JK <« M/K implies K = N for every submodule K of N.

It is easy to see that a maximal submodule of a module is either essential or a direct
summand. Therefore a module is an md-module if and only if every maximal submodule
is a closed submodule.

2. MODULES WHOSE MAXIMAL SUBMODULES ARE DIRECT SUMMANDS

Let M and N be R-modules. N is said to be an M-generated module if there is an
epimorphism f : M) — N for some index set A.
Some properties of md-modules are given in the following proposition.

Proposition 2.1. Let M be an md-module. Then

(1) every homomorphic image of M is an md-module,
(2) every direct summand of M is an md-module,

(3) an arbitrary sum of md-modules is an md-module,
(4) every M-generated module is an md-module.
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Proof. (1) follows directly, and (2) is a consequence of (1).

(3) Let M = > M; where M; is an md-module for each i € I. Let K be a maximal

i€l

submodule of M. Then M; g K for some ¢ € I. Then M = M; + K, and so M; N K is a
maximal submodule of M;. Since M; is an md-module, there is a submodule L C M; such
that M; = L & M; N K for some L C M. Then it is straightforward to see that the sum
M = K + L is direct. Hence M is an md-module.

(4) follows from (1) and (3). O

Proposition 2.2. Let M be an R-module and N C M. Suppose N s an md-module and
M/N has no mazimal submodules. Then M is an md-module.

Proof. Let K be a maximal submodule of M. If N C K, then K/N would be a maximal
submodule of M/N which is impossible, so we must have M = N + K. Since M/K =
N/(N N K) is simple, N N K is a maximal submodule of N. Since N is an md-module,
NNK®&L = N for some simple submodule L C N. Then M = K+ N =K+ KNN+L =
K + L. Since L is simple, K N L = 0. That is, K is a direct summand of M, and so M is
an md-module. U

Let M be a module with no maximal submodules, i.e. if Rad M = M, then M is an
md-module (take N = 0 in the above Proposition).

In general, a submodule of an md-module need not be an md-module. For example,
the Z-module zQ is an md-module, because it has no maximal submodules. On the other
hand, ;Q does not contain any nonzero proper md-submodule, because every submodule
of zQ is essential in Q. We have the following result for particular submodules.

Proposition 2.3. Let M be an md-module. Then any coclosed submodule N of M with
Soc(M) C N is an md-module.

Proof. Let K be a maximal submodule of N. Since N is coclosed, we have N/K +T/K =
M/K for some proper submodule T/K C M/K. Then (N/K)N (T/K) = 0 because
N/K is a simple module. Now we get M/K = N/K & T/K and so NNT = K. Then
N/K = M/T is also simple, hence T is a maximal submodule of M. Since M is an md-
module, M = T & S for some simple submodule S of M. Then S C Soc(M) C N. By
modular law, we get N = NNT @& S = K ®S. That is, K is a direct summand of N.
Hence N is an md-module. U

Let M be an R-module. If U and M /U are md-modules for some U C M, then M
need not be an md-module. To see this, let p be a prime integer and M = Z/p?Z and let
U = pM. Then U and M /U are both simple modules, hence md-modules. Clearly, U is
a maximal submodule of M and U is not a direct summand of M. Hence M is not an
md-module.

Proposition 2.4. Let M be an R-module and L be a closed submodule of M. If L and
M/L are md-modules, then M is an md-module.

Proof. Let K be a maximal submodule of M. If K + L = M, then M/K = L/(LNK) is
simple, so L N K is a maximal submodule of L. Since L is an md-module, L=LNK & S
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for some simple submodule S C L. Then M = K+ L =K+ LNK+ S5 =K+ S and
KNS =0. So that K is a direct summand of M. If L C K, then K/L is a maximal
submodule of M/L, so K/L is a direct summand of M/L. That is, M/L = K/L & N/L
for some submodule N/L of M/L. Since N/L is simple, L is a maximal submodule of V.
As L is closed in M, L. NS = 0 for some nonzero S C N. So L ® S = N with S a simple
submodule of M. Weget M = K+ N=K+L+S=K+Sand KNS =0. So Kisa
direct summand of M. Hence M is an md-module. U

For a module M let s(M) be the sum of all simple submodules of M that are direct
summands of M.

Theorem 2.5. For an R-module M, the following are equivalent.

(1) M is an md-module,
(2) M/s(M) has no mazimal submodules,
(3) M/Soc(M) has no maximal submodules.

Proof. (1)=(2) Let M be an md-module and suppose K is a maximal submodule of M
such that s(M) C K. Then M = K @& S for some simple submodule S C M. Hence
S C s(M) C K, a contradiction. Therefore M/s(M) has no maximal submodules.
(2)=-(3) Clear, because any submodule of M containing Soc(M) also contains s(M).
(3)=(1) Clearly Soc(M) is an md-module. Then (3) and Proposition 2.2 implies that
M is an md-module. U

Note that, if M is a finitely generated module, then every submodule is contained in
a maximal submodule. In this case, M is an md-module if and only if it is semisimple
by Theorem 2.5. In particular, R is a semisimple (artinian) ring if and only if gR is an
md-module.

Proposition 2.6. Let M be a module such that s(M) is finitely generated. Then M is an
md-module if and only if M = s(M) @& N where N C M with N = Rad N = Rad M.

Proof. First note that the (composition) length I(s(M)) of s(M) is finite. The proof is
by induction on the length I(s(M)) of s(M). First suppose I(s(M)) = 0. Then clearly
s(M) = 0. So that M has no maximal submodules, because M is an md-module. Then
Rad M = M, and so we are done. Suppose [(s(M)) =n > 0 and each md-submodule of M
with length less than n has the desired decomposition. Let K be a maximal submodule of
M. Then M = K &S for some S C s(M). Now, K is an md-module by Proposition 2.1(2)
and [(s(K)) = n — 1. By the induction hypothesis, K = s(K) @ N where Rad N = N.
Then M =S® K =5S®s(K)® N = s(M)® N, and this completes the proof.

For the converse, note that a module with no maximal submodules is an md-module.
Now if M = s(M) @& N with N = Rad N, then both s(M) and N are md-modules. Hence
M is an md-module by Proposition 2.1(3). O

Proposition 2.7. The following are equivalent for any ring R.

(1) Every R-module with zero radical is an md-module.
(2) R/J(R) is an md-module.
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(3) R is semilocal.

Proof. (1) = (2) Since Rad(R/J(R)) = 0, this is clear.

(2) = (3) R/J(R) is a finitely generated R-module, and so R/J(R) is semisimple. Hence
R is semilocal.

(3) = (1) Let M be an R-module with Rad M = 0. Since J(R)M C Rad(M), the
module M is an R/J(R)-module. Then M is semisimple, and so it is an md-module. [

3. LOCALLY PROJECTIVE MODULES

Let R be a ring and let us denote Soc(gR) by S. As S is a two-sided ideal, R/S has
a canonical ring structure. Moreover, for any R-module M, we have that M/SM is an
R/S-module. Let us note that a module M is semisimple projective if and only if M = SM
The proof of the following lemma is straightforward.

Lemma 3.1. Let M be a left R-module, X be an R/S-module and f : M — X be a
homomorphism of R-modules. Then SM C Ker(f) where SM is the R-submodule of M
generated by the products of elements of S by elements of M.

Let F' be a module. We recall that F' is called locally projective if for any epimorphism
p: X — Y, any homomorphism ¢ : F' — Y, and any finitely generated submodule Z of F,
there exists a homomorphism h : F' — X such that poh |z= g |z (see e.g. [20]).

Every projective module is in particular locally projective. But the converse is far from
being true. It was proved in [20, Examples 2.3(1)] that any pure submodule of a projective
module is locally projective. This means, for instance, that if F' is a flat module and
q : RY — F is an epimorphism, then Ker(q) is always locally projective. But it cannot
be projective if we choose a flat module having projective dimension bigger than one. In
fact, a main result of [21, Theorem 10] asserts that if R is a ring which is not left perfect,
then there always exists a locally projective left R-module which is not projective.

The notion of locally projective modules coincides with that of flat strict Mittag-Leffler
modules in the sense of Raynaud and Gruson [10] and their existence has been shown to
have a strong relation with the decomposition properties of modules into direct summands
(see e.g. [11,12]). Bearing in mind this connection, we will prove in this section that
any locally projective md-module is trivial in the sense that it is a direct sum of simple
projective modules.

We first need to prove the following easy lemma.

Lemma 3.2. Let F be a locally projective module. Then any finitely generated direct
summand of F' is projective.

Proof. Let N be a finitely generated direct summand of F and let p : R™ — N be an
epimorphism. Let us denote by u : N — F' the inclusion and let 7 : FF — N be an
epimorphism such that mou = 1y. As F is locally projective and N is finitely generated,
there exists a homomorphism h : F' — R(™ such that po h |y= 7 |y. But this means that
N is a direct summand of R™ and therefore, projective. ]

We can now state the main result of this section.
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Theorem 3.3. Let F' be a locally projective module. If every mazimal submodule is a direct
summand, then F' is semisimple projective.

Proof. We need to show that SF = F. Assume on the contrary that SF # F' and let us
choose 0 # x € F\ SF. Let p: RY) — F be an epimorphism for some index set I. As F
is locally projective, there exists a homomorphism & : F — R such that p o h(z) = x.

We claim that Im(h) C (J + S)Y). Otherwise, if we call 7 : RY) — RD/(J + )1
the canonical projection, we have that 7 o h # 0. And, as Rad(RY) /(J + S)¥)) = 0, this
means that there exists an epimorphism ¢ : R /(J + ) — C onto a simple module C
such that g o mo h # 0. Our hypothesis implies now that C' is a direct summand of F,
which must be projective by Lemma 3.2. Hence C' C SF'. But this is a contradiction, since
otherwise g om o h = 0.

Let us now choose a finite subset K C I such that h(x) C R¥). Say that h(x) = Z Ti€;

€K
where r; € R. Again, for any ¢ € K, we may choose a finite subset K; C [ suci that
hop(e;) € R, Let us call K/ = KU(U K;). Then, for any i € K, we can find elements
i€k

rij € R such that hop(e;) =3, rije;. Thus we get that

h(x) = hph(z) = hp(> rie) = > rihwled) = > i Y rijey).

ieK ieK €K  jeK;

So if we call ¢ : RE) — R the endomorphism whose matrix with respect to the
basis {e;}jexs is (745), we get that ¢ o h(x) = h(x). Let us enlarge the row vector (7;)x
to a vector in R by setting r; =0if j € K'\ K. We deduce from the above equality
that (r;)jex’ = (7)) jer (1ij)ijers. So if we call I the identity matrix of size K’, then
(rj)jerr (I = (rij)ijerr) = 0,

On the other hand, as we know that Im(h) C (J + S)D, and S is a two-sided ideal of
R, we deduce that all entries of the matrix (r;; + 5); jex’ belong to the Jacobson radical
of R/S and therefore, it is a quasi-regular matrix by [2, Corollary 17.13]. This means that
the matrix Ixs — (155 +5) is invertible in the matrix ring Mg/ (R/S) and thus, the row
matrix (r;)iexr = (04 5) is in Mg/(R/S), i.e. r; € S for any ¢ € K. But this means
that h(z) € SU and, as any simple quotient of F' is a direct summand, we deduce that
x=poh(x) € SF. A contradiction, since we were assuming that = ¢ SF O

In particular, we get the following corollary.

Corollary 3.4. Any projective md-module is semisimple.

4. MAXIMAL SUBMODULES THAT ARE SUPPLEMENTS

In this section we shall study modules whose maximal submodules are supplements, and
we call them ms-modules for short. Clearly any direct summand is a supplement, and
hence md-modules are ms-modules. We shall prove that the converse need not be true in
general.
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It can be verified easily that the properties in Proposition 2.1 and Proposition 2.2 are
also held for ms-modules.

Recall that a module is called coatomic provided that every submodule is contained in
a maximal submodule. First, we shall characterize coatomic ms-modules. Then we will
obtain a characterization of ms-modules over left perfect rings. We begin with following:

Lemma 4.1. Let M be a coatomic module and N be a coclosed submodule of M. Then N
18 coatomic.

Proof. Suppose Rad(N/K) = N/K for some K C N. Then N/K C Rad(M/K) <«
M/K. Then N/K < M/K, and hence N = K because N is coclosed. Therefore N is
coatomic. U

Lemma 4.2. Let M be a module with Rad M = 0. Then M is an ms-module if and only
iof it is an md-module.

Proof. The proof is straightforward. O

Theorem 4.3. Let R be any ring and M be a coatomic R-module. Then M is an ms-
module if and only if the following conditions hold:

(i) Every maximal submodule N of M is coatomic and Rad N = Rad M,

(1) M/ Rad M is semisimple.

Proof. Suppose M is an ms-module and K is a maximal submodule of M. Then K is a
supplement in M, so K is coatomic by Lemma 4.1, and Rad K = K "Rad M = Rad M
by [19, 41.1], this proves (i). Now (i7) follows from Lemma 4.2 and the fact that coatomic
md-modules are semisimple.

Conversely, let K be a maximal submodule of M. Then K/Rad M is a direct summand
of M/Rad M by (ii), so K + L = M and K N L = Rad M for some submodule L C M.
Since K is coatomic and Rad K = Rad M, we have K N L = Rad K < K, that is K is a
supplement of L in M. Hence M is an ms-module. ]

A ring R is called a left max ring if Rad M < M for every left R-module M. Equiva-
lently, R is a left max ring if and only every (nonzero) left R-module is coatomic. R is a
left perfect ring if R is a left max ring and R/ Rad R is semisimple as a left R-module (see
2]). For every module M over a left perfect ring, we have M/ Rad M is semisimple.

Now, from Theorem 4.3 we obtain the following corollary.

Corollary 4.4. Let R be a left perfect ring and M be an R-module. Then M 1is an ms-
module if and only if Rad K = Rad M for every maximal submodule K of M.

An R-module M is called w-projective if for every two submodules U, V of M with
U+V =M, there exists f € End(M) with Im(f) C U and Im(1 — f) C V.

A projective module P together with an epimorphism f : P — M such that Ker(f) < P
is called a projective cover of M. A ring R is semiperfect if and only if every simple left
R-module has a projective cover if and only if the left ( right) R-module R is supplemented
(see [19, 42.6]).
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Proposition 4.5. Let R be a semiperfect ring and M a m-projective R-module. Then M
1s an ms-module if and only if M is an md-module. In particular, R is an ms-module if
and only if it is semisimple.

Proof. Necessity is clear. Now suppose M is an ms-module and let N be a maximal
submodule of M. Then by hypothesis M = N + L and NN L < N for some L C M.
Since R is semiperfect, the simple R-module M /N has a projective cover. So that N has
a supplement L' in L by Lemma 4.40 in [16]. Then N and L' are mutual supplements.
Hence N is a direct summand of M by [3, 20.9]. 0

5. EXAMPLE

As we have mentioned, in general an ms-module need not be an md-module. In the
following two lemmas we shall prove the existence of such a module.

Lemma 5.1. Let R be a ring and M be an R-module. Suppose M has a simple submodule
U such that U <M and M /U is semisimple but not simple. Then M is an ms-module but
not an md-module.

Proof. 1t is clear from the hypothesis that Soc(M) = U and U C L for every nonzero
proper submodule L of M. In particular, U is contained in every maximal submodule of
M, and hence U C Rad M. Since Rad M /U = Rad M/U =0, Rad M = U. By the same
argument we have Rad N = U for every submodule N of M which contains U properly.
Let K be a maximal submodule of M. Then M/U = K/U @& T/U for some T'/U C M/U
because M /U is semisimple. We get K +T = M and K NT = U = Rad K. Clearly U is
finitely generated, so K NT = U <« K. Therefore K is a supplement of 7" in M. Hence
M is an ms-module. Since every nonzero submodule of M contains U, K is not a direct
summand of M, i.e. M is not an md-module. [l

Lemma 5.2. Let R be a complete commutative noetherian local ring with mazimal ideal
P. Suppose P is not principal. Then there exists an ms-module over R which is not an
md-module.

Proof. Let U be the simple R-module R/P and E = E(U) be the injective hull of U. Let
V ={e € E| P’ = 0}. Then V is a submodule of E and P(V/U) = 0, so that V/U
is a vector space over R/P. Also P/P? is a vector space over R/P. The dimension of
these vector spaces is the respective composition length. By [18, Corollary p. 154] the
composition length of V/U is the same as the composition length of P/P?. Since P is
not principal, the composition length of P/P? is at least two (see [17, Proposition 9.3]),
so that V/U is not simple. Therefore by Lemma 5.1, V' is an ms-module but not an
md-module. U

Example 5.3. Let R = C[z,y], P = Rz + Ry and S = R/P?. Then S is an artinian
local ring. Let M = Eg(R/P) be the injective hull of the simple S-module R/P. Then
P2M =0, so M is an ms-module but not an md-module by Lemma 5.2.
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Corollary 5.4. Let M be an R-module such that Rad M is a simple essential submodule
of M and M/Rad M = S; & Sy for simple modules Sy and Sy. Then M is an ms-module
but not an md-module.

Note: A concrete example satisfying the hypothesis of Corollary 5.4 can be found in
[15, p. 339].

6. MODULES OVER COMMUTATIVE RINGS

Throughout this section all rings are commutative. In general direct product of simple
modules need not be an md-module. For instance, let F be a field and R = F! where
is an infinite index set. Then R is a direct product of simple R-modules each of which is
isomorphic to F. By [13, p. 264] R is not semisimple. Hence R is not an md-module by
Theorem 3.3.

In case R is commutative and noetherian, we shall prove that an arbitrary direct product
of simple R-modules is an md-module. First we need the following lemma.

Lemma 6.1. Let R be a ring and A be a finitely generated ideal of R. Let X = [ X; be
iel
the direct product of R-modules X;. Suppose that X; = AX; for alli € I. Then X = AX.
Proof. Let A = Ra; + Ras + -+ + Ray, for some k > 1, a; € A(1 < i < k). For every
i € I, we have X; = AX; = oy X; + -+ + arX;. Let © = (2;) € X where z; € X, for
all ¢ € I. By assumption, for every i € I there exists z;; € X;, (1 < j < k) such that
T = a1xy + -+ agxi. Then (x;) € X (1< j <k)and x = ay(xin) + - +ag(zy) € AX.
Hence X = AX. O

Theorem 6.2. Let R be a noetherian ring and let {Ux}rea be a collection of simple R-

modules. Then M = [ Uy is an md-module.
A€A

Proof. Let {P,;};cr be the collection of distinct maximal ideals P; of R such that for every
i € I there exists A € A with P,Uy, = 0. For each ¢ € I let A; = {A € A | P,U, = 0}. Let
K be a maximal submodule of M and P be the maximal ideal of R such that PM C K.

By Lemma 6.1, P = P; for some j € I. Again by Lemma 6.1, if L = ][ U, where
XEA

N =U{A; | i e I\{j}}, then PL = L. Sothat L C K. Now let L' = [] U,. Then
)\EAJ'

P;L' = 0, so that L' is semisimple, also M = L@ L. Then K = L & (K N L') and
KNLis a direct summand of L. Therefore K is a direct summand of M. Hence M is an
md-module. O

Theorem 6.3. For a domain R the following are equivalent.

(1) Every (cyclic) torsion R-module is an md-module.

(2) Ewvery torsion R-module is semisimple.

(3) Ewvery nonzero proper ideal of R is a product of finitely many mazximal ideals and
P? = P for every mazimal ideal P of R.
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Proof. (1) = (2) Let M be a torsion R-module and 0 # m € M. Then Rm = R/I for some
nonzero I C R. By hypothesis, Rm is an ms-module, so R/I is an ms-module. Then R/
is an ms-module as an R/I-module. So R/I is a semisimple R/I-module, and so R/I is a
semisimple R-module. Therefore M = Y  Rm is semisimple. Hence M is an md-module.

meM

(2)=-(1) Clear.

(2) = (3) Let I be a nonzero ideal of R. Since the R-module R/I is torsion, it is
semisimple. Then [ is an intersection of finitely many distinct maximal ideals of R. So [
is equal to the product of these ideals (see [17]). Let P be a maximal ideal of R. Since
R/P? is a torsion module it is semisimple. So P? = Q1Q...Qr where Q1, Qo,...,Qy
are distinct maximal ideals of R. Since Q1Q2...Qr C P, we have ; C P for some j.
Maximality of @); in R implies that ); = P. By renumbering the @);’s, we may assume
that j =1. Then R= P+ Qy...Qy, and so P = P2+ PQ,...Q; = P?, that is P = P2

(3)=(1) Let M be a torsion R-module and m € M. Then Rm = R/I for some nonzero
ideal I of R and I = P{" ... P for distinct maximal ideals Py,..., P, of R, so by the
assumption P = P, foralli =1,... k. Thus R/I 2 R/P, & --- & R/ P is semisimple,
so also is Rm. Therefore M = > Rm is semisimple. U

meM

We characterize md-modules over Dedekind domains. We begin with the following
lemma which is due to Zoschinger. Using this lemma we shall prove that ms-modules
and md-modules coincide over Dedekind domains.

Lemma 6.4. ([22], Lemma 3.3) Let R be Dedekind domain, M be an R-module and V C
M. Then V 1is coclosed if and only if V s closed.

Let M be any module and N C M. A submodule K of M is called a complement of N if
K is maximal in the collection of submodules L of M such that LN N = 0. A submodule T’
of M is called a complement if there is a submodule N of M such that T is a complement
of N. A submodule of M is a complement if and only if it is closed (see [7, p.6]).

Proposition 6.5. Let R be a Dedekind domain and M be an R-module. Then M is an
ms-module if and only if M is an md-module.

Proof. We only need to prove the necessity. Let N be a maximal submodule of M. Since
M is an ms-module, N is a supplement in M. So N is a complement in M by Lemma 6.4,
ie. NNL =0 for some L C M and N is maximal with respect to this property. Now
L # 0 because M N0 = 0. Therefore N + L = M, i.e. N is a direct summand of M. [J

Lemma 6.6. ([1], Lemma 4.4) Let R be Dedekind domain. For an R-module M the
following are equivalent.
(1) M is injective.
(2) M is divisible.
(3) M = PM for every mazimal ideal P of R.
(4) M does not contain any mazximal submodule.

Let R be a Dedekind domain and M be an R-module. For a maximal ideal P of R,
the submodule Tp(M) = {m € M | P"m = 0 for some positive integer n} is called the
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P-primary component of M. If M = Tp(M) for some maximal ideal P of R, then M

is called a P-primary module. For a torsion module M we always have M = @ Tp(M)
PeQ
where 2 is the set of all maximal ideals of R (see [4, 10.6.9]).

The divisible part of a module M is denoted by D(M). By Lemma 6.6, we have
M = D(M) & M’ for some M’ C M. If M is a divisible module, then M has no maximal
submodules, and so Rad M = M. Therefore D(M) C Rad M for every R-module M.

Lemma 6.7. Let R be a Dedekind domain and M be a reduced and P-primary module for
some maximal ideal P C R. Then M is an md-module if and only if M s semisimple.

Proof. Suppose M is an md-module. Then M/ Soc(M) has no maximal submodules by
Proposition 2.5, so P(M/Soc(M)) = M/ Soc(M) by Lemma 6.6, that is PM + Soc(M) =
M and this gives P(PM +Soc(M)) = P?M = PM . Therefore PM is divisible by Lemma
6.6, but M is reduced so that PM = 0. Hence M is an R/P-module, i.e. M is semisimple.

Converse is clear. d

Theorem 6.8. Let R be a Dedekind domain and M be a torsion R-module. The following
are equivalent.

(1) M is an md-module.
(2) M = My & My where M is divisible and My is semisimple.
(3) Every submodule U C M with Rad M C U s a direct summand of M.

Proof. (1)=(2) Let D be the divisible part of M. Then M = D & N for some N C M.

Since N is torsion, we have N = @ Tp(N) and since M is an md-module Tp(N) is also an
PeQ
md-module for every P € € by Proposition 2.1(2). Then Tp(N) is semisimple by Lemma

6.7. Therefore N is semisimple.

(2) = (3) We have Rad M = Rad(M; & M) = Rad M; @ Rad My = Rad M; = M;. Let
Rad M C U C M. Then we get U = M1 UNMs;. Since M, is semisimple My = K@ MNU
fOI‘SOHlngMQ. SOM:Ml@MQZMl@K@MQHU:K@U

(3)=(1) Rad M C P for every maximal submodule P of M. So, by hypothesis, every
maximal submodule of M is a direct summand. Hence M is an md-module. Ul

Lemma 6.9. ([14], Example 6.34) Let R be a domain and M be an R-module. Then the
torsion submodule T(M) is a closed submodule of M.

Corollary 6.10. Let R be domain and M be an R-module. If T(M) and M/T(M) are
md-modules, then M is an md-module.
If R is a Dedekind domain, then the converse also holds.

Proof. By Lemma 6.9, T'(M) is a closed submodule of M. Then M is an md-module by
Proposition 2.4.

If R is a Dedekind domain, then T'(M) is a coclosed submodule of M by Lemma 6.4
and Lemma 6.9. Since every simple submodule of M is torsion, Soc(M) C T (M), so that
T (M) is an md-module by Proposition 2.3. M/T(M) is an md-module by Proposition
2.1(1). O
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Lemma 6.11. Let R be a Dedekind domain and M be a torsion-free R-module. Then M
15 an md-module if and only if M is divisible.

Proof. Suppose M is an md-module and let P be a maximal submodule of M. Then
P& S = M for some simple submodule S of M. Thus S C T(M) = 0,s0 P = M, a
contradiction. Hence M has no maximal submodules, and M is divisible by Lemma 6.6.
Conversely, if M is divisible, then M has no maximal submodules by Lemma 6.6. Hence
M is an md-module. U

Theorem 6.12. Let R be a Dedekind domain and M be an R-module. Then M is an
md-module if and only if

(i) T(M) = M, & My where My is semisimple and M is divisible,

(i) M /T (M) is divisible.

Proof. Suppose M is an md-module. Then T'(M) is an md-module by Corollary 6.10,
so T'(M) has the desired decomposition by Theorem 6.8. Hence M /T (M) is divisible by
Lemma 6.11.

To prove the converse, let N be a maximal submodule of M. Then by (ii) we have
N +T(M) = M. Since M, is divisible, My C RadM C N,so M = N+T(M) = N + M.
Then N + S = M for some simple submodule S C M;. We have N NS = 0 because S is a
simple submodule. Therefore NV is a direct summand of M. Hence M is an md-module. [J
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RAD-SUPPLEMENTED MODULES

ENGIN BUYUKASIK, ENGIN MERMUT, AND SALAHATTIN OZDEMIR

ABSTRACT. Let 7 be a radical for the category of left R-modules for a ring R. If M is a 7-
coatomic module, that is, if M has no nonzero 7-torsion factor module, then 7(M) is small in
M. If V is a T-supplement in M, then the intersection of V' and 7(M) is 7(V). In particular,
if V' is a Rad-supplement in M, then the intersection of V' and Rad(M) is Rad(V'). A module
M is T-supplemented if and only if the factor module of M by P-(M) is 7-supplemented where
P, (M) is the sum of all 7-torsion submodules of M. Every left R-module is Rad-supplemented
if and only if the direct sum of countably many copies of R is a Rad-supplemented left R-module
if and only if every reduced left R-module is supplemented if and only if R/P(R) is left perfect
where P(R) is the sum of all left ideals I of R such that RadI = I. For a left duo ring R,
R is a Rad-supplemented left R-module if and only if R/P(R) is semiperfect. For a Dedekind
domain R, an R-module M is Rad-supplemented if and only if M/D is supplemented where D
is the divisible part of M.

1. INTRODUCTION

All rings considered in this paper will be associative with an identity element. Unless oth-
erwise stated R denotes an arbitary ring and all modules will be left unitary R-modules. By
R-Mod, we denote the category of left R-modules. Unless otherwise stated, 7 is a radical on
R-Mod. For fundamentals on module theory, see for example [17], [4] and [30]. Let R be a ring
and M be an R-module. Denote by X < M that X is a submodule of M. As usual, Rad M
denotes the radical of M and J(R) denotes the Jacobson radical of the ring R. A submodule
K of M is called small in M (denoted by K < M) if M # K + T for every proper submodule
T of M. For an index set I, MU denotes as usual the direct sum @icrM. The set of natural
numbers is denoted by N. See [30, §41] and the recent monograph [10] for results (and the defi-
nitions) related to (weak) supplements and (weakly) supplemented modules. Given submodules
K < L < M, the inclusion K < L is called cosmall in M if L/K <« M/K (see [10, 3.1]).
A submodule L < M is called coclosed in M if L has no proper submodule K for which the
inclusion K < L is cosmall in M (see [10, 3.6]).

We shall investigate some properties of Rad-supplemented modules and in general 7-supple-
mented modules where 7 is a radical for R-~Mod. The motivation for considering Rad-supple-
ments (coneat submodules) and 7-supplements in general is given in the next section. One of
the main questions we shall answer is when are all left R-modules Rad-supplemented. In the
investigation of this problem, the notion of radical modules, reduced modules and coatomic
modules turn out to be useful; see [32, pp. 47]. In the definitions and properties for reduced
and coatomic modules, instead of Rad, we can use any (pre)radical 7 on R-Mod (see Section 3),
and these will be useful in the investigation of the properties of T-supplemented modules. For
a module M, the sum of all radical submodules of M is denoted by P(M), that is, P(M) is the
sum of all submodules U of M such that Rad U = U. For submodules U and V of a module M,
the submodule V is said to be a Rad-supplement of U in M or U is said to have a Rad-supplement
VinMifU+V =M and UNV < RadV. A module M is called a Rad-supplemented module if
every submodule of M has a Rad-supplement in M. See also [29]; Rad-supplemented modules
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are called generalized supplemented modules there. In Section 6, we shall prove that every left
R-module is Rad-supplemented if and only if R/P(R) is left perfect. In [9], it is proved that the
class of Rad-supplemented rings lies properly between those of the semiperfect and the semilocal
rings. We show that a left duo ring R is Rad-supplemented as a left R-module if and only if
R/P(R) is semiperfect. Whenever possible the related results are given in general for a radical
T for R-Mod. See [1] and [10, §10] for some properties of T-supplements and 7T-supplemented
modules. We shall investigate some further properties of 7-supplemented modules in Section
4. For some rings R, we shall also determine when all left R-modules are T-supplemented in
Section 5. We are also going to study the property RadV = V N Rad M for a submodule V'
of M. It is known that this holds if V' is a supplement in M (see [30, 41.1]) and moreover if
V is coclosed in M (see [10, 3.7]). We show that this property also holds when V is a Rad-
supplement in M (Corollary 4.2); in general for a radical 7 for R-Mod, we show that if V is
a 7-supplement in M, then 7(V) = V. N7(M). It is clear that every supplemented module is
Rad-supplemented. But the converse implication fails to be true. For example, the Z-module Q
is Rad-supplemented but not supplemented. Since Rad Q = Q (see for example [17, 2.3.7]), Q is
Rad-supplemented (by Proposition 4.5-(i)). But Q is not supplemented by example [10, 20.12].
In Section 7, we understand this example clearly and describe Rad-supplemented modules over
Dedekind domains using the structure of supplemented modules over Dedekind domains which
was completely determined in [32].

For definitions and elementary properties of preradicals, see [26, Ch. VIJ, [6] or [10, §6]. A
preradical T for R-Mod is defined to be a subfunctor of the identity functor on R-Mod. Let
7 be a preradical 7 for R-Mod. The following module classes are defined: the preradical or
(pre)torsion class of T is

T, ={N € R-Mod | 7(N)= N}
and the preradical free or (pre)torsion free class of T is
F,={N € R-Mod | 7(N) = 0}.

T is said to be idempotent if 7(7(N)) = 7(N) for every R-module N. 7 is said to be a radical
if 7(N/7(N)) = 0 for every R-module N. For the main elementary properties that we shall
use frequently for a (pre)radical, see for example [10, pp. 55]. For R-modules K < M, we
always have (7(M) + K)/K < 7(M/K). If moreover 7 is a radical and K < 7(M), then
T(M/K) =7(M)/K [26, Ch. VI, Lemma 1.1]. When we consider a ring R as a left R-module,
we already have that A = 7(gR) is a left ideal of R; indeed it is a two-sided ideal of R [26, Ch.
VI, §1, Examples (3), pp. 139] so that we can consider the quotient ring R/A which we shall use
in the results for 7-supplemented modules. For a free R-module F, the property 7(F) = 7(R)F
is easily obtained. This also holds for projective modules. See also [13] and [7] for some related
concepts in torsion theories (mostly for a hereditary preradical).

2. CONEAT SUBMODULES AND RAD-SUPPLEMENTS

Neat subgroups of abelian groups (introduced in [15, pp. 43-44]) have been generalized to
modules in [28, 9.6] (and [27, §3]). The class of coneat submodules has been introduced in [21]
and [3]: A monomorphism f : K — L is called coneat if each module M with Rad M = 0 is
injective with respect to it, that is, the Hom sequence

Hom(L, M) — Hom(K, M) — 0

is exact. See [21, Proposition 3.4.2] or [10, 10.14] or [1, 1.14] for a characterization of coneat
submodules. This characterization will be the particular case 7 = Rad in Proposition 2.1 and
this is the reason for considering Rad-supplements and in general 7-supplements given below.
For more results on coneat submodules see [21], [3], [10, §10 and 20.7-8], [1] and [24].

Proper classes of monomorphisms and short exact sequences were introduced in [8] to do
relative homological algebra. In [27, Remark after Proposition 6], it is pointed out that sup-
plement submodules induce a proper class of short exact sequences (the term ‘low’ is used
for supplements dualizing the term ‘high’ used in abelian groups). [12] uses the terminology
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‘cohigh’ for supplements and gives more general definitions for proper classes of supplements
related to another given proper class (motivated by the considerations as pure-high extensions
and neat-high extensions in [14]). For the definition and properties of proper classes, see [25],
[20, Ch. 12, §4], [28] and [22]. We shall follow the terminology and notation as in [10, §10]
and [1] since we will mainly refer to these for r-supplemented modules and Rad-supplemented
modules.

Denote by Egyp, the class of all short exact sequences induced by supplement submodules;
that is Egyyp is the class of all short exact sequences

f g

0 A B C 0

of R-modules and R-module homomorphisms such that Im(f) is a supplement in B. Then as
mentioned above, the class Egy, forms a proper class, see for example [10, 20.7]. Every module
M with Rad M = 0 is Egypp-injective that is M is injective with respect to every short exact
sequence in Egyp,. Thus supplement submodules are coneat submodules by the definition of
coneat submodules. In the definition of coneat submodules, using any radical 7 instead of Rad,
the following result is obtained. It gives us the definition of a 7-supplement in a module because
the last condition is like the usual supplement condition except that, instead of UNV <« V,
the condition U NV < 7(V) is required.

Proposition 2.1. (see [10, 10.11] or [1, 1.11]) Let T be a radical for R-Mod. For a submodule
V < M, the following statements are equivalent.

(i) Every module N with 7(N) = 0 is injective with respect to the inclusion V — M
(ii) there exists a submodule U < M such that

U+V=MandUNV =7(V);
(iii) there exists a submodule U < M such that
U4+V=MandUNV < 7(V).
If these conditions are satisfied, then V 1is called a T-supplement in M.

The usual definitions are then given as follows. For submodules U and V' of a module M,
the submodule V is said to be a 7-supplement of U in M or U is said to have a T-supplement
Vin MifU+V =Mand UNV < 7(V). A module M is called a 7-supplemented module if
every submodule of M has a 7-supplement in M. We call M totally T-supplemented if every
submodule of M is 7-supplemented. A submodule N of M is said to have ample T-supplements
in M if for every L < M with N + L = M, there is a 7-supplement L' of N with L' < L. A
module M is said to be amply T-supplemented if every submodule of M has ample T-supplements
in M.

For 7 = Rad, the above definitions give Rad-supplement submodules of a module, Rad-
supplemented modules, etc. By these definitions, a submodule V' of a module M is a coneat
submodule of M if and only if V' is a Rad-supplement of a submodule U of M in M.

3. T-REDUCED AND T-COATOMIC MODULES,
AND THE LARGEST T-TORSION SUBMODULE P, (M)

Let 7 be a preradical for R-Mod and let M be an R-module. By taking 7 instead of Rad
in the definitions of reduced and coatomic module definitions in [32, pp. 47], we define the
following;:

(i) M is said to be a 7-torsion module if 7(M) = M, that is M is in the pretorsion class
T,.
(ii) By Pr(M) we denote the sum of all 7-torsion submodules of M, that is,
P(M)=> {U<M|7(U)=U}
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(iii) M is said to be a 7-reduced module if it has no nonzero 7-torsion submodule, that is,
for every submodule U of M, 7(U) = U implies U = 0; equivalently, 7(U) # U for every
nonzero submodule U of M. Clearly, M is 7-reduced if and only if M is P,-torsion
free, that is, P;(M) = 0.

(iv) M is said to be a 7-coatomic module if it has no nonzero 7-torsion factor module,
that is, for every submodule U of M, 7(M/U) = M /U implies U = M; equivalently,
T(M/U) # M/U for every proper submodule U of M.

For 7 = Rad, P;(M) will be denoted by just P(M), a Rad-torsion module is called a radical
module, a Rad-reduced module will be called a reduced module and a Rad-coatomic module
will be called a coatomic module following the terminology in [32]. Coatomic modules appear
in the theory of supplemented, semiperfect, and perfect modules. See [32, Lemma 1.5] for
some properties of reduced and coatomic modules. For the structure of coatomic modules over
commutative Noetherian rings see [33]; the Noetherian assumption is needed to have that every
submodule of a coatomic module over a commutative Noetherian ring is coatomic [33, Lemma
1.1].

For completeness note the following elementary properties of Pr(M):

Theorem 3.1. Let 7 be a preradical for R-Mod and let M be an R-module.

(i) P; is an idempotent preradical.

(ii) If M < N for a module N, then Pr(M) < 7(N). In particular, P;(M) < 7(M).

(iii) 7(Pr(M)) = P-(M), that is, P;(M) is T-torsion, and so by its definition P;(M) is the
largest T-torsion submodule of M.

(iv) If P-(M) <V for a submodule V' of M, then P.(M) < (V).

(v) Pr(r(M)) = Pr(M)

(vi) The pretorsion class of Pr equals the pretorsion class of T and the pretorsion free class
of Pr contains the pretorsion free class of T:

Tp, =T, and Fp. DF,.

(vii) Moreover, if T is a radical, then the factor module M/P;(M) is T-reduced, that is,
P.(M/P;(M)) =0 and so P: is an idempotent radical.

Remark 3.2. In general, given any class A of modules, a preradical T is defined by setting for
each module NV,

T (N) =Y {Imf|f: A~ Nin RMod, A € A}.

and if A is a pretorsion class, then 7% is an idempotent preradical (see for example [10, 6.5-6]).

In our case, the preradical P, is equal to 7* when the pretorsion class A = T, the torsion
class of 7. See also [26, Ch. VI, §1]; P; is the largest idempotent preradical that is smaller
than 7 and see [26, Ch. VI, Exercise 4, p. 157] for the properties Theorem 3.1-(iii,v). Since P:
is an idempotent radical when 7 is a radical, it gives a torsion theory for R-Mod with torsion
class Tp. = T, and torsion free class Fp.. By the results in [26, Ch. VI, §2], the properties for
T-torsion and 7-reduced modules in the following Proposition 3.4 are obtained because 7-torsion
modules equate with P-torsion modules and 7-reduced modules form the torsion free class Fp, .

Remark 3.3. See [13, pp. 29,63] for the definitions and properties of 7-dense submodules of
a module and T-cotorsionfree modules for a hereditary idempotent preradical 7 on R-Mod:
A submodule N of a module M is said to be 7-dense in M if M/N is 7-torsion, that is,
T(M/N) = M/N, and a module M is said to be 7-cotorsionfree if it has no proper T-dense
submodules. Our definition of 7-coatomic module coincides with 7-cotorsionfree module but
in our case, T need not be idempotent or hereditary. Observe that since being 7-torsion is the
same with being P--torsion and P: is an idempotent preradical, the idempotent assumption is
not a problem. But in our case 7 is not assumed to be hereditary; in particular, Rad is not
hereditary. The properties for 7-cotorsionfree modules given in [13] hold under this hereditary
assumption. For example, arbitary direct sum of 7-cotorsionfree modules is 7-cotorsionfree when
4



T is a hereditary idempotent preradical but in our case, for just an (idempotent) preradical T,
arbitrary direct sum of 7-coatomic modules need not be 7-coatomic.

Note also the following properties of 7-reduced and 7-coatomic modules which are easily
proved:

Proposition 3.4. Let 7 be a preradical for R-Mod.

(i) The class of T-torsion modules is closed under quotients and direct sums. Moreover, if
T 48 a radical, then the class of T-torsion modules is closed under extensions.
(ii) The class of T-reduced modules is closed under submodules, direct products and direct
sums.
(iii) Ewvery factor module of a T-coatomic module is T-coatomic.
(iv) The class of T-reduced, respectively T-coatomic, modules is closed under extensions, that

is, if

0 A B C 0

is a short exact sequence of modules such that A and C are T-reduced, respectively
T-coatomic, then B is also T-reduced, respectively T-coatomic.

Proposition 3.5. Let 7 be a radical for R-Mod. If a module M is T-coatomic, then 7(M) < M.

Proof. Suppose 7(M) + L = M for some submodule L < M. Since M/L = (r(M)+ L)/L <
7(M/L), we obtain M/L = 7(M/L). This gives L = M since M is T-coatomic. Hence 7(M) <
M. (]

4. T-SUPPLEMENTED MODULES

Throughout the rest of the paper, 7 denotes a radical on R-Mod (where R is an arbitrary
ring). See [1] and [10, §10] for properties of 7-supplements and 7-supplemented modules. In
this section, we shall see some other properties of T-supplemented modules. We shall frequently
use the fact that any factor module of a 7-supplemented module is 7-supplemented [1, 2.2(2)].

Theorem 4.1. If V is a T-supplement in a module M, then 7(V) =V N71(M).

Proof. 7(V) < V. N 7(M) always holds. To show the converse we only require to show that
(Vnr(M))/m(V)=0. Since V is a 7-supplement in M, there exists a submodule U < M such
that U+ V = M and UNV = 7(V) by Proposition 2.1-(ii)). Then

M/UNV)=U/UNV))e(V/UNV))=U/r(V)® [V/T(V)).
Since 7 is a radical, we obtain:
T(M/7(V)) =7(U/r(V)) @ 7(V/7(V)) =7(U/7(V)) © 0 =7(U/7(V)).
By properties of a radical, since 7(V) < 7(M), we have:

T(M)/7(V) =7(M/7(V)) =7(U/7(V)), and
Vnr(M))/r(V) = (V/7
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Corollary 4.2. If V is a Rad-supplement in a module M, then
RadV =V NnRad M.

Proposition 4.3. Let K, L, M be modules such that K < L < M.
(i) If K is a T-supplement in M, then it is a T-supplement in L.
(i) If K <7(L) and L/K is a T-supplement in M /K, then L is a T-supplement in M.
(iii) If K is a T-supplement in L and L is a T-supplement in M, then K is a T-supplement
m M.
5



Proof. (i) Since K is a 7-supplement in M, there exists a submodule U < M such that
U+K=MandUNK<7(K). SoL=LNM=LN{U+K)=LnNnU+ K and
(LNU)NK =UnNK <7(K).

(ii) Since L/K is a 7-supplement in M /K, there exists a submodule U < M with K < U
such that U/K+L/K = M/K and (U/K)N(L/K) < 7(L/K). So we obtain U+L = M
and

UNnL)/K=U/K)N(L/K) <7(L/K) =T7(L)/K

by properties of a radical since K < 7(L). Hence U NL < 7(L) and so L is a 7-
supplement (of U) in M.

(iii) Temporarily denote by E the class induced by 7-supplement submodules; that is E is
the class of all short exact sequences

0—>A-t.p ¢

C 0

of R-modules and R-module homomorphisms such that Im(f) is a 7-supplement in B.
For such a short exact sequence in the class E, f is said to be an E-monomorphism.
By Proposition 2.1, the class E is the proper class injectively generated by all modules
M such that 7(M) = 0. By the definition of proper classes, the composition of two
E-monomorphisms is an E-monomorphism (see [10, 10.1]). If K is a 7-supplement in
L and L is a 7-supplement in M, then the inclusions K — L and L — M are E-
monomorphisms and so their composition K <— M is also an E-monomorphism, that

is, K is a T-supplement in M.
O

Proposition 4.4. Let M be a module and let N, K be submodules of M such that M = N+ K.
If K is T-supplemented, then K contains a T-supplement of N in M.

Proof. Since K is T-supplemented, the submodule N N K of K has a 7-supplement in K, that
is, there exists a submodule L < K such that (NN K)+ L =K and (NNK)NL < 7(L). Then
M=N+K=N+(NNK)+L=N+Land NNL=(NNK)NL<7(L). Hence L is a
T-supplement of N in M. O

It is trivial to show that:

Proposition 4.5.

(i) Every T-torsion module is T-supplemented.
(ii) The module P.(M) is T-supplemented for every module M.

Theorem 4.6. If a module M is T-reduced and T-supplemented, then M is T-coatomic, Rad M =
T(M) and M is weakly supplemented.

Proof. Let U be a proper submodule of M. Since M is 7-supplemented, there exists a submodule
V < M such that U+V = M and UNV < 7(V). So we have 7(V/(UNV)) =7(V)/(UNV) by
properties of a radical. We also have 7(V') # V since M is 7-reduced, and so 7(V)/(UNV) #
V/(U NV). Therefore, using the fact that M/U = (U +V)/U =2 V/(U NV) we obtain

T(M/U)=Zr(V/(UNV)=7(V)/(UNV)#V/(UNV),

or equivalently, 7(M/U) # M /U, that is, M is T-coatomic. By Proposition 3.5, 7(M) < M and
hence 7(M) < Rad M. By [1, 2.2(3)], M /7(M) is semisimple since M is T-supplemented. Then
Rad(M/7(M)) =0 and so Rad M < 7(M). Thus Rad M = 7(M). Since Rad M =7(M) < M
and M is a semilocal module (that is M/ Rad M = M /7(M) is semisimple), we obtain that M
is weakly supplemented by [19, Theorem 2.7]. O

Theorem 4.7. If M is a T-supplemented module, then Rad M < 7(M), and

Rad(M/ P, (M)) = 7(M/P,(M)) = 7(M)/ P, (M).
6



Proof. By [1, 2.2(3)], M/7(M) is semisimple and so Rad(M/7(M)) = 0 which gives Rad M <
7(M). The module M/P.(M) is T-supplemented as a factor module of the 7-supplemented
module M. Since M/P;(M) is t-reduced, Rad(M/P;(M)) = 7(M/P-(M)) by Theorem 4.6.
By properties of a radical, 7(M/P;(M)) = 7(M)/P-(M). O

Proposition 4.8. The following are equivalent for a module M and a submodule K < P.(M):

(i) M is T-supplemented;
(i) M/K is T-supplemented;
(iii) M/P,(M) is T-supplemented.

Proof. Since every factor module of a 7-supplemented module is T-supplemented, (i) = (ii) =
(7i7) are clear. To prove (iii) = (i), take U < M. By hypothesis, there is a submodule V' < M
such that P.(M) <V,

(U + Pr(M))/Pr(M)] + [V/Pr(M)] = M/ Pr(M)
and

UNV+P(M))/Pr(M) = [(U+ P-(M))/Pr(M)]N[V/Pr(M)]
T(V/Pr(M)) = 7(V)/Pr(M).

IN

Note that the last equality holds by Theorem 3.1-(iv). So we have U+V = M and UNV < 7(V).
That is V is a 7-supplement of U in M. O

Corollary 4.9. The following are equivalent for a ring R:

(i) every R-module is T-supplemented;
(ii) every free R-module is T-supplemented;
(iii) every T-reduced R-module is T-supplemented.

Proof. (i) = (i) and (i) = (¢i7) are clear. (i7) = (i) follows since every module is an epimorphic
image of a free R-module and being 7-supplemented is preserved under passage factor modules.
To prove (i1i) = (i) take an R-module M. Since M/P;(M) is 7-reduced, we obtain that
M/ P, (M) is T-supplemented by the hypothesis. So M is 7-supplemented by Proposition 4.8. [

Proposition 4.10. If V is a T-supplement in a module M and V is T-coatomic, then V is a
supplement in M.

Proof. Since V is a 71-supplement in M, there exists U < M such that U + V = M and
UnNV < 7(V). Since V is 7-coatomic, we have by Proposition 3.5 that 7(V) < V. Then
UNV <7(V) <V and so V is a supplement in M. O

Proposition 4.11. If M is a T-reduced module that is totally T-supplemented, then M is totally
supplemented.

Proof. Since being 7-reduced is inherited by submodules, it is enough to prove that M is supple-
mented. Let U < M and V be a 7-supplement of U in M. Then U+V = M and UNV < 7(V).
By hypothesis, V is 7-supplemented and 7-reduced. So by Theorem 4.6, V is 7-coatomic. Then

7(V) < V by Proposition 3.5. Therefore U NV <« V and so V is a supplement of U in M.
Hence M is supplemented. O

Clearly supplemented modules are Rad-supplemented and so we obtain the following:

Corollary 4.12. If M is a reduced module, then M is totally Rad-supplemented if and only if
M is totally supplemented.



5. WHEN ARE ALL LEFT R-MODULES T-SUPPLEMENTED?

In this section, we shall characterize the rings all of whose (left) modules are T-supplemented
for some particular radicals 7 including Rad.

An epimorphism f : P — M is said to be a projective cover if P is projective and Ker f < P.
A property that we shall use is that if P is projective and P/U has a projective cover, then U
has a supplement V in P such that V is a direct summand of P and hence projective (see [30,
42.1]). A ring R is called left perfect if every left R-module has a projective cover. Recall that,
a subset I of a ring R is said to be left T-nilpotent in case for every sequence {ay}7°, in I there
is a positive integer n such that a; ---a, = 0. A ring R is said to be a left max ring if every left
R-module has a maximal submodule, equivalently Rad(M) < M for every left R-module M.
A ring R is said to be a semilocal ring if R/J(R) is a semisimple ring (that is a left (and right)
semisimple R-module), see [18, §20]. Semilocal rings are also referred to as rings semisimple
modulo their radical (see [4, §15, pp. 170-172]). For a semilocal ring R, Rad M = JM for every
left R-module M where J = J(R) (see for example [4, Corollary 15.18]). By a characterization
of left perfect rings by Bass, as in for example [4, Theorem 28.4], a ring R is left perfect if and
only if R is a semilocal ring and J(R) is left T-nilpotent if and only if R is a semilocal left max
ring. A ring R is called left semiperfect if every finitely generated left R-module has a projective
cover. A ring R is (left or right) semiperfect if and only if the left (or right) R-module R is
supplemented (see [30, 42.6]).

An epimorphism f : N — M is said to be a 7-cover if Ker f < 7(N). If moreover N
is projective, then f is called a projective T-cover. A ring R is called left 7-perfect if every
left R-module has a projective 7-cover. These rings are studied in [5] and [31] for the radical
7 = Rad, and in [23] for a larger class of preradicals. A ring R is called left 7-semiperfect if
every finitely generated left R-module has a projective 7-cover. The relation between 7-cover
and 7-supplements is the following:

Proposition 5.1. [1, 2.14] For an R-module L and U < L, the following are equivalent:
(i) L/U has a projective T-cover;
(ii) U has a T-supplement V' which has a projective T-cover.

It is clear from the definitions and Proposition 5.1 that, if R is a left 7-(semi)perfect ring
then every (finitely generated) left R-module is 7-supplemented. But the converse need not be
true, for example when 7 = Rad; see Example 6.2.

Lemma 5.2. If R is a ring that is a T-reduced left R-module and if the free left R-module
F = RW) is 7-supplemented, then 7(R) is left T-nilpotent.

Proof. Since Pr(R) = 0 and P-(F) = (P-(R))™ = 0, F is 7-reduced. Then F is T-coatomic by
Theorem 4.6, and so by Proposition 3.5

T(R)F = (1(R))M = 7(F) < F.
Therefore 7(R) is left T-nilpotent by [4, Lemma 28.3]. O

Theorem 5.3. If R is a ring that is a T-reduced left R-module, then the free left R-module
F = RW) s 7-supplemented if and only if R is left perfect and 7(R) = J(R).

Proof. Suppose F = R®) ig r-supplemented. Then R is 7-supplemented as a direct summand
of F. Since R is also 7-reduced by hypothesis, we obtain 7(R) = J(R) by Theorem 4.6. By
Lemma 5.2, J(R) = 7(R) is left T-nilpotent. Since R is T-supplemented, R/J(R) = R/7(R) is
semisimple by [1, 2.2(3)]. Hence R is left perfect by [4, Theorem 28.4]. Conversely suppose R is
left perfect and 7(R) = J(R). Let U < F = RN Since R is left perfect, every left R-module,
and in particular, F'/U has a projective cover. Then by [30, 42.1]), U has a supplement V in
the free module F' such that V is a direct summand of F'. Since F is free, its direct summand
V is projective. So 7(V)) = 7(R)V by properties of radicals. Since V' is a supplement of U in
M, U+V =Mand UNV <« V. SoUNV < Rad(V). Since R is a left perfect ring, it is a
8



semilocal ring and so Rad(V) = J(R)V. Thus UNV < Rad(V) = J(R)V = 7(R)V = 7(V).
Hence V is a 7-supplement of U in M. O

Note that the above proof for the converse implication works for every free left R-module F',
not necessarily countably generated. Moreover, since every factor module of a 7-supplemented
module is T7-supplemented and every module is isomorphic to a factor module of a free module,
we have:

Corollary 5.4. If R is a ring that is a T-reduced left R-module, then every (free) left R-module
is T-supplemented if and only if R is left perfect and T(R) = J(R).

It is easy to see that a radical 7 on R-modules is also a radical on R/P;(R)-modules since
every R/P;(R)-module can be considered as an R-module (with annihilator containing P (R)).
We shall use this fact in the proof of the following theorem:

Theorem 5.5. For a ring R with P(R) < J(R) , the following are equivalent.

(i) every left R-module is T-supplemented;

(ii) every free left R-module is T-supplemented;

(iii) the free left R-module F = RN is T-supplemented;

(iv) the quotient ring R/P-(R) is left perfect and T(R) = J(R).

Proof. (i) < (ii) follows by Corollary 4.9. (i7) = (iii) is clear.

(iii) = (iv): Since F is T-supplemented, so is its factor module F = F//P.(F) = (R/P;(R))™.
The R-module F' can be considered as an R/P;(R)-module and 7 can be considered also as a
radical on R/P;(R)-modules. By Theorem 5.3, since R/P,(R) is T-reduced, we obtain that the
quotient ring R/P-(R) is left perfect and

~(R/P,(R)) = J(R/P,(R)).

Then by properties of radicals, 7(R/P-(R)) = 7(R)/P-(R) and J(R/P;(R)) = J(R)/P:(R)
since P-(R) < J(R) by hypothesis. Hence 7(R) = J(R).

(iv) = (i1): By properties of radicals, since Pr(R) < 7(R) = J(R) by hypothesis, we obtain
for the left perfect quotient ring S = R/P-(R) that:

7(5) = 7(R/Pr(R)) = 7(R)/ Pr(R) = J(R)/ Pr(R) = J(R/P-(R)) = J(5).

By Corollary 5.4, every free S-module is 7-supplemented, where we consider 7 also as a radical
on S-modules. Let F be a free R-module. Then F = RY for some index set I. By Proposition
4.8, it is enough to prove that F = F/P.(F) = S () is 7-supplemented. But this holds since F'
can be considered as a free S-module. O

6. WHEN ARE ALL LEFT R-MODULES RAD-SUPPLEMENTED?

Using the results of the previous sections for 7 = Rad, we obtain the following characterization
of the rings R over which every R-module is Rad-supplemented. Of course, more work still
remains to understand P(R) and the condition that R/P(R) is left perfect.

Theorem 6.1. For a ring R, the following are equivalent.

(i) every left R-module is Rad-supplemented;
) every reduced left R-module is Rad-supplemented;
(iii) every reduced left R-module is supplemented;
) the free left R-module RM) is Rad-supplemented;
)

Proof. (i) < (iv) < (v) is obtained by Theorem 5.5 since P(R) < Rad(R) = J(R). (i) < (i)

follows by Corollary 4.9. (iii) = (i7) holds since supplemented modules are Rad-supplemented.

To prove (i) = (i7i) , take any reduced left R-module M. Then every submodule of M is also

reduced and Rad-supplemented by hypothesis (ii). So M is a reduced module that is totally

Rad-supplemented. By Corollary 4.12, M is totally supplemented and hence supplemented. [
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The following is an example of a ring R that is not left perfect (and so not left Rad-perfect
by [23, Theorem 1.5]) but where all R-modules are Rad-supplemented.

Example 6.2. Let k be a field. In the polynomial ring k[z1,z2,...] with countably many
indeterminates x,, n € Z*, consider the ideal I = (23,23 — 1, x% — X9,...) generated by z?
and xiﬂ — x, for each n € Z*. In the quotient ring R = k[z1,22,...]/I, the maximal ideal
M = (z1,22,...)/I of R generated by all T, = x, + I, n € Z", is the unique maximal ideal of
R. This is because, if K is any maximal ideal of R, then E% =0¢€ K and so 71 € K since K is
a prime ideal. Now Eg =71 € K and so T9 € K. By induction, we obtain f?l =Z,-1 € K and
s0 T € K for all n € Z". Therefore K = M, as desired. Since T,, = 75, for every n € Z*t, we
obtain M = M2. So Rad M = M and hence P(R) = M. Since the ring R/P(R) = R/M is a
field (and so perfect), every R-module is Rad-supplemented (by Theorem 6.1). By [4, Lemma
28.3], M = J(R) is not (left) T-nilpotent, and so R is not a (left) perfect ring.

In [9], it is proved that the class of rings that are Rad-supplemented lies properly between
the classes of semilocal rings and semiperfect rings. Recall that a ring R is said to be a left duo
ring if every left ideal of R is a two-sided ideal. We shall characterize the left duo rings R that
are Rad-supplemented left R-modules. Firstly, we need the following lemma:

Lemma 6.3. If R is a left duo ring and J, A, B are left ideals of R such that A+ B = R and
ANB=JANJB, then ANB = J(AN B).

Proof. Clearly J(ANB) < AN B. Conversely let x € ANB =JANJB. Since A+ B =R, we
have a +b = 1 for some a € A and b € B. Then v = wa+xband x = ), ;sia; = >, p tib;
where I, I’ are finite index sets, a; € A, b; € B and s;,t; € J. Now we have,

wb = sia;b € J(AB) and za = _t;bia € J(BA).

el el
Since R is a left duo ring we have AB < AN B and BA < ANB. Sox = xa+ zb €
J(BA)+ J(AB) < J(ANB). Thus AN B < J(AN B). O

Theorem 6.4. If R is a left duo ring such that P(R) = 0, then R is a Rad-supplemented left
R-module if and only if R is semiperfect.

Proof. If R is semiperfect, then R is a supplemented, and so a Rad-supplemented, left R-module.
Conversely, suppose R is a Rad-supplemented left R-module. Then R is semilocal and R is an
amply Rad-supplemented left R-module by [1, 2.2(3) and 2.6(2)]. Let A’ be a left ideal of R.
Since R is an amply Rad-supplemented left R-module, A’ has a Rad-supplement B in R, and
B has a Rad-supplement A < A’in R. SoR=A'"+B=A+ B, AnB < A'NnB < RadB and
ANB <RadA. Thus AN B = (RadA)N (Rad B). Let J = J(R). Then ANB=JANJB =
J(ANB) by Lemma 6.3. Since R is a semilocal ring, Rad(ANB) = J(ANB). Then ANBis a
Rad-torsion submodule of R and so AN B < P(R) = 0. This gives that R = A @ B. Therefore
JB < J < R implies that Rad(B) = JB < B since B is a direct summand of R. Hence B
is a supplement of A’ in R. This shows that R is a supplemented left R-module and so R is
semiperfect (see [30, 42.6]). O

Theorem 6.5. For a left duo ring R, the following are equivalent:

(i) R/P(R) is semiperfect;

(ii) the left R-module R is Rad-supplemented;
(iii) every finitely generated free left R-module is Rad-supplemented;
(iv) every finitely generated left R-module is Rad-supplemented.

Proof. (i1) = (vit) follows by [1, 2.3(2)]. (¢i7) = (iv) holds since every finitely generated module
is an epimorphic image of a finitely generated free module and Rad-supplemented modules are
closed under epimorphic images. (iv) = (i7) is clear.

(7) = (7i): Since the quotient ring S = R/P(R) is semiperfect, R/ P(R) is a Rad-supplemented
left S-module and so a Rad-supplemented left R-module. Then the left R-module R is Rad-
supplemented by Proposition 4.8.

10



(79) = (i): The factor module R/P(R) is also a Rad-supplemented left R-module. So the
ring S = R/P(R) is a Rad-supplemented left S-module with P(S) =0 and so S = R/P(R) is
semiperfect by Theorem 6.4. O

Note that all implications except (i) = (i) of Theorem 6.5 hold for any ring R, while the
implication (i) = (i) raises the question whether a Rad-supplemented ring R with P(R) = 0
is necessarily semiperfect.

7. RAD-SUPPLEMENTED MODULES OVER DEDEKIND DOMAINS

Over Dedekind domains, divisible modules coincide with injective modules as in abelian
groups. Note that for a module M over a Dedekind domain R, M is divisible if and only if
Rad M = M, and this holds if and only if M is injective; see for example [2, Lemma 4.4]. This
is the motivation for the definition of reduced modules in general. A module over a Dedekind
domain is reduced if it has no nonzero divisible submodules. As in abelian groups (see for
example [11, Theorem 21.3]), any module M over a Dedekind domain possesses a unique largest
divisible submodule D and M = D & C for a reduced submodule C' of M (see [16, Theorem
8]); this D is called the divisible part of M. Following the terminology in abelian groups, an
R-module M over a Dedekind domain is said to be bounded if rM = 0 for some nonzero r € R.

The structure of supplemented modules over Dedekind domains is completely determined in

[32]:

Theorem 7.1. [32, Theorem 2.4. and Theorem 3.1] Let R be a Dedekind domain with quotient
field K # R. Let M be an R-module.

(i) Suppose R is a local Dedekind domain, that is, a discrete valuation ring (DVR) with
the unique prime element p. Then M is supplemented if and only if M = R* ® K* @
(K/R)° @ B for some R-module B, where a, b, ¢ are nonnegative integers and p"B = 0
for some integer n > 0.

(ii) Suppose R is non local. Then M is supplemented if and only if M is torsion and
every primary component of M is a direct sum of an artinian submodule and a bounded
submodule.

Part (i) of the above theorem for Rad-supplemented modules is obtained as follows:

Theorem 7.2. Let R be a DVR with quotient field K # R, and p be the unique prime element.
Then M is Rad-supplemented if and only if M = R*® K @ (K/R)Y) @ B for some R-module
B, where a is a nonnegative integer, I, J are arbitrary index sets and p" B = 0 for some integer
n0.

Proof. (=): If M, is the divisible part of M, then there exists a reduced submodule My of M
such that M = My & M,. Since M> is also Rad-supplemented, it is coatomic by Theorem 4.6.
Then by [32, Lemma 2.1], My = R*@® B, for some nonnegative integer a and a bounded module
B. Since M is divisible, M; = KD @ (K/R)(Y) for some index sets I and J (see [16, Theorem
7).

(«<): The module N = K @ (K/R)Y) is divisible, and so Rad N = N. Then N is
Rad-supplemented by Proposition 4.5. By Theorem 7.1, the module R* @& B is supplemented,
and hence Rad-supplemented. Therefore the direct sum R* @ K) @ (K/R)) @ B is Rad-
supplemented. O

Over commutative Noetherian rings we have:

Proposition 7.3. Let R be a commutative noetherian ring and M be a reduced R-module.
Then M is Rad-supplemented if and only if M is supplemented.

Proof. Suppose M is Rad-supplemented. Then M is coatomic by Theorem 4.6, and so every

submodule of M is coatomic by [33, Lemma 1.1] since R is a commutative noetherian ring. Let

U be a submodule of M and V be a Rad-supplement of U in M. Then V is coatomic, and so

UNV <RadV <« V. Thus V is a supplement of U in M. The converse is clear. O
11



Since the structure of supplemented modules is known by Theorem 7.1, it is enough to
characterize Rad-supplemented modules in terms of supplemented modules. Note that for an
R-module M where R is a Dedekind domain, P(M) equals the divisible part of M.

Theorem 7.4. Let R be a Dedekind domain and M be an R-module. Then M is Rad-supple-
mented if and only if M/P(M) is (Rad-)supplemented.

Proof. Since R is a Dedekind domain, M has a decomposition as M = P(M) @ N for some
reduced submodule N of M. If M is Rad-supplemented, then N = M/P(M) is also Rad-
supplemented. Since N is reduced, N is supplemented by Proposition 7.3. Conversely, suppose
N = M/P(M) is Rad-supplemented. By Proposition 4.5-(ii), the submodule P(M) is already
Rad-supplemented. Therefore M = P(M) @ N is Rad-supplemented as a sum of two Rad-
supplemented modules. O

These characterizations can be used to give examples of Rad-supplemented modules which
are not supplemented.

Example 7.5. Let R be a Dedekind domain with quotient field K # R. The R-module
M = KU is Rad-supplemented for every index set I. If R is a local Dedekind domain (i.e. a
DVR), then M is supplemented only when [ is finite. If R is a non-local Dedekind domain,
then M is not supplemented for every index set I, since M is not torsion.
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THE PROPER CLASS GENERATED BY WEAK SUPPLEMENTS

R. ALIZADE, Y. DURGUN, Y. DEMIRCI, AND D. PUSAT-YILMAZ

1. INTRODUCTION

It is well-known that the class Suppl of short exact sequences determined by supplement
submodules is proper in the sense of Buchsbaum (see [7], 20.7). In this paper we study
three classes of short exact sequences: Small, S and WS determined by small submodules,
submodules that have supplements and weak supplement submodules respectively. These
classes are not proper in general, so we study the least proper classes containing them,
that is the proper classes generated by these classes (see [14]). It turned out that for
a hereditary ring R they generate the same proper class VWS and this proper class can
be obtained by natural extension of WS. We study injective, projective, coinjective and
coprojective objects of WS. Note that injective and projective objects of this class coincide
with the injective and projective objects of Small, S and WS (see [14]). We prove that
WS is coinjectively generated, so by Proposition in [3] gl. dim WS < 1 over a hereditary
ring. We also describe WS in terms of supplement submodules: A is a WS-submodule of
B iff there is a submodule C' of B such that A 4+ C = B and AN C is coatomic. We end
the paper with some relations between WS and coneat submodules.

2. PRELIMINARIES

Let P be a class of short exact sequences of R-modules and R-module homomorphisms.
If a short exact sequence

(1) E:0—>A—sp—tsc—s)

belongs to P, then f is said to be a P-monomorphism and g is a P-epimorphism (both
are said to be P-proper and the short exact sequence is said to be a P-proper short exact
sequence.). A short exact sequence E is determined by each of the monomorphism f and
epimorphism ¢ uniquely up to isomorphism.

Definition 2.1. The class P is said to be proper (in the sense of Buchsbaum) if it satisfies
the following conditions ([5], [10], [12]):

P-1) If a short exact sequence E is in P, then P contains every short exact sequence
isomorphic to E .

P-2) P contains all splitting short exact sequences.

P-3) The composite of two P-monomorphisms is a P-monomorphism if this composite

is defined.
1
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P-3’) The composite of two P-epimorphisms is a P-epimorphism if this composite is
defined.

P-4) If g and f are monomorphisms, and g o f is a P-monomorphism, then f is a
P-monomorphism.

P-4’) If g and f are epimorphisms, and g o f is a P-epimorphism, then g is a P-
epimorphism.

The set Extp(C, A) of all short exact sequence of Ext(C, A) that belongs to P is a

subgroup of the group of the extensions Ext},(C, A).

Proposition 2.2 ([11], Proposition 1.7). An R-module N is P-coinjective if and only if
there is P-monomorphism from N to an injective module 1.

Corollary 2.3 ([11], Proposition 1.8). If 0 A B C 0 is a short exact
sequence in a proper class P and B is P-coinjective, then A is also P-coinjective.

Proposition 2.4 ([11], Proposition 1.12). An R-module M is P-coprojective if and only
if there is a P-epimorphism from a projective R-module P to M.

Let M and J be classes of modules over some ring R. The smallest proper class k(M)
(resp. k(J)) for which all modules in M (resp. J) are coprojective (resp. coinjective) is
said to be coprojectively (resp. coinjectively) generated by M (resp. J).

Definition 2.5. For a proper class P of short exact sequences of R-modules, the global
dimension of P is defined as

gl.dim P = inf{n : Ext""'(C, A) = 0 for all A and C in R-modules}.
If there is no such n, then gl. dim P = oc.

Definition 2.6. For a proper class P of short exact sequences of R-modules, the injective
dimension of a module A with respect to P is defined by the formula

inj. dim A = inf{n : Ext"**(C, A) = 0 for all C in R-modules}.
Proposition 2.7 ([3]). If R is a hereditary ring, then inj.dim A < 1 for every proper class
P and P-coinjective module A.

Proposition 2.8 ([3]). If k(J) is closed under extensions, then gl.dimk(J) < gl.dim R
for every coinjectively generated class k(J).

Corollary 2.9 ([3]). If R is a hereditary ring, then inj. dim k(J) < 1 for every coinjectively
generated class k(J).

For more information about coprojectively and coinjectively generated proper classes see
[1], [2] and [3].  The following propositions give the relation between projective (resp.
injective) modules with respect to a class £ of short exact sequences and with respect to
the proper class < £ > generated by €.

Proposition 2.10 ([14], Propositions 2.3 and 2.4).

(a) m(E) =7(< € >)
(b) (&)=< E>).
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3. THE LEAST PROPER CLASS CONTAINING WS

Let S be the class of all short exact sequences (called by Zoschinger k-elements in [15])

f g

(2) E:0 A B C 0

such that Im f has a supplement in B, i.e. a minimal element in the set {V C B |
V +1Im f = B}. We denote by WS the class of short exact sequences (2), where Im f has
(is) a weak supplement in B, i.e. there is a submodule K of B such that Im f + K = B
and Im f N K < B and by Small the class of short exact sequences (2) where Im f < B.

If X is a Small-submodule of an R-module Y, then Y is a supplement of X in Y, so X
is S-submodule of Y. If U is a S-submodule of an R-module Z, then a supplement V' of U
in Z is also a weak supplement, therefore U is a YWS-submodule of Z. These arguments
give us the relation Small C § C WS for any ring R. Neither of classes Small, S and
WS need be a proper class in general as shows the following example.

Example 3.1. Let R = 7Z and consider the composition # o o of the monomorphisms
o 27 — Z and (B : Z — Q where a and [ are the corresponding inclusions. Then

the short exact sequence 0 27, gea Q Q/2Z——0 is in Small, but the short exact

sequence 0 27—2>7. 727 0 is not in WS as 27 has not a weak supplement
in 7Z.

This example shows that Extyys(+,-) is not a subfunctor of Ext(-,-) since the elements
from WS are not preserved with respect to the first variable. We extend the class WS to
the class WS, which consists of all images of WS-elements of Ext(C”, A) under Ext(f, 14) :
Ext(C’, A) — Ext(C, A) for all homomorphism f : C' — C’. We will prove that WS
is the least proper class containing WS. To prove that WS is a proper class we will use
the Theorem 1.1 in [9] that states that a class P of short exact sequences is proper if
Extp(C, A) is a subfunctor of Extg(C, A), Extp(C, A) is a subgroup of Extz(C, A) for
every R-modules A, C' and the composition of two P-monomorphisms (P-epimorphisms)
is a P-monomorphism (P-epimorphism).

Definition 3.2. A short exact sequence FE : () A B C 0 1is said
to be extended weak supplement if there is a short exact sequence
E:0 .y B’ C’ 0 such that Im f has (is) a weak supplement

and there is a homomorphism g : C — C’ such that E = ¢*(E’), that is there is a
commutative diagram:
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The class of all extended weak supplement short exact sequences will be denoted by
WS. So Extyyg(C, A) = {E:0 A B C 0 | E = g*(F) for some
E -0 A B C’ 0 ewWSandg:C—C'}.

Lemma 3.3. If f: A — A, then f. : Ext(C, A) — Ext(C, A’) preserves WS-elements.

Proof. Let E : 0 A B C 0 be a short exact sequence in the class WS and
f:A— A’ be an arbitrary homomorphism. We have the following diagram with exact
rows:

0 A B c 0:EF
oo
0 A C 0:E

where E; = f.(E).

If V is a weak supplement of Im« in B, then Ima+V = B and ImanNV < B. Then
f'(V)+1Ima’ = B’ by push out diagram and f'(V)NIma' = f'(ImanV) <« f'(B) C B'.
So E; € WS. O

Lemma 3.4. If f : A — A’, then f. : Ext(C, A) — Ext(C, A) preserves WS-elements.

Proof. Let E: 0 A B C 0 be a short exact sequence in the class WS and
f: A— A’ be an arbitrary homomorphism. Then F = g*(E’) for some

E 0 A By Ch 0 € WS and a homomorphism g : C' — (. There-
fore By = f.(E) = foog*(E') = g* o f.(F') = g*(E}) where B} = f.(E’) € WS by Lemma
3.3, and so g*(E}) = E; € WS. O

Lemma 3.5. For every homomorphism g : C' — C, the homomorphism g* : Ext(C, A) —
Ext(C’, A) preserves WS-elements.

Proof. Let E: 0 A B C 0 be a short exact sequence in the class WS and
g : C'" — C be an arbitrary homomorphism.Then F = f*(E;) for some E; € WS and
homomorphism f : C' — Cy. Therefore E' = g* o f*(E;) = (f o g)*(E1). Since E; € WS,
E e WS. O

Corollary 3.6. Every multiple of a WS-element of Ext(C, A) is again a WS-element.
Proposition 3.7. If £y, Ey € Extyys(C, A), then By @ Ey € Extyys(C & C, Ad A).

Proof. Let Ey, Ey € Extyys(C, A), then there exist a submodule V; in B; such that V;+ A =
B;and VN A< B;, 1 =1,2. Then

El@EQOHA@AHBl@BQHO@OHOGWS
since (AQA)+(VidVs) = Bi® By and (A9 A)N(VidV,) = (ViNA)D(VeNA) < Bi®B,. O
Corollary 3.8. The WS-elements of Ext(C, A) form a subgroup.
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Proof. Let Ey, By € Extyyz(C, A). We have the following commutative diagram with exact
rows:
EZOE: 00— ADA—B&B——CaC—=0

| |

Ei®FE,:0— A9 A—B @B, —C®C), —0
where Fy and E, are the image of short exact sequences £} and EY from WS respectively.
E] & EY is WS-element by Proposition 3.7 and so E; @ Fj is WS-element. Since Ey + Ey =
Va(E1® Es)Ac where A¢ : ¢ — (¢, ¢) is the the diagonal map and V4 : (a1, as) — aj+as
is the codiagonal map, E; + E5 is in WS by Lemma 3.4 and Lemma 3.5. U

Now by Theorem 1.1 in [9] to prove that WS class is a proper class it remains only
to show that the composition of two WS-monomorphisms (or epimorphisms) is a WS-
monomorphism (or epimorphism). Firstly we prove some useful results.

Lemma 3.9. Let A C B C C be R-modules. If A is direct summand in B and B has a
weak supplement in C', then the short exact sequence 0 A C C/A 0 s in

WS.

Proof. Let B = A& B’. We have the following commutative diagram with exact rows and
columns:

0 0
E,:0—A——A®dB —B —0
:
Ey: 0 A C By 0
o c’
0 0
Es

By the codiagonal map V¢ : (c1, c2) — ¢ + ¢o and the monomorphism fa4 & fp :
(a, V') — (f(a), f(b')), we have the following commutative diagram with exact rows:

fAa®fp
E,:0—AoB *~2C0aC—>B &D—0

e

Es:0—= A B C c’ 0
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Since Ej is in WS, E] is in WS. By the monomorphisms fa4 & 1p : (a, b') — (f(a), V)
and 1c @ fp : (¢, V') — (¢, f(')), we have the following commutative diagram with exact
rows:

fa®lyg
Ey:0—=A® B~ CoB By 0
|
fa®fpr

E:0—=AcB“2C®C—>B,&D—0

El is in WS, by Lemma 3.5. Finally, the following diagram is commutative with exact
rows and by Lemma 3.4, Fs is in WS.

fa®lyg
Ey:0—=A@ B~ C@®B —> B —0

llA@OB/ l

Ey: 0 A C By 0

g

Lemma 3.10. The composition of an Small-epimorphism and a WS-epimorphism is a
WS -epimorphism.

Proof. Let f : B — B’ be a small epimorphism and h : B — C be a WS-epimorphism;
i.e. we have a commutative exact diagram:

0 0
K=—K
hof
0 A B C 0:E
f
0 Al B = 0: B,
0 0
Ey

with Ey € Small and E; € WS. Then without of loss generality we can assume that
K <« B and A/K has a weak supplement in B/K. So there is a submodule D/K of B/K
such that D/K + A/K = B/K and (DN A)/K < B/K. Therefore we have A+ D = B
and AN D < B, i.e. A has a weak supplement in B. O
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Lemma 3.11. Let R be hereditary ring. For a WS class of short exact sequences of R
modules, the composition of an Small-epimorphism and a WS-epimorphism is a WS-
epimorphism.

Proof. Let f : B — B’ be a small epimorphism and h : B" — C be a WS-epimorphism;
i.e. we have a commutative exact diagram:

0 0
K K
hof
0 A B C 0:E
o
0 Al B > 0: B,
0 0
Ey

with Fy € Small and E; € WS. Then there is a commutative diagram with exact rows
and with E3 € WS:

h

0 A’ B’ C 0:E;
0 A By Cy 0:Ej3

Since R is hereditary the homomorphism
Ext!'(1¢,,9) : Ext'(Cy, A) — Ext'(Cy, A')

is an epimorphism therefore

E; = Ext'(1¢,,9)(Es)
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for some FEj:0 A Bs Cy 0. Then we have the following commutative
exact diagram:

0 0
0 0
K K
/ /
Ker f =————=Ker f
0 A B C 0:F
77
0 A g Bs | & 0: Ey
0 A " B’ JF C 0:E;
1 L s
0 A B, . 4 0: Es
0 0
0 0 E,
E
Since K = Ker f < B, u is Small epimorphism. Therefore v ou is a WS-epimorphism by
Lemma 3.10, i.e. £y € WS. Then E € WS. O

Theorem 3.12. If R is a hereditary ring, WS is a proper class.

Proof. By Lemma 3.4, Lemma 3.5, Corollary 3.8, Exty;5(C, A) is an E-functor in the sense
Buttler and Horrocks (1961). By Theorem 1.1 in [9], it is sufficient to show that the compo-
sition of two WWS monomorphism is a WS monomorphism. Let f: A — Bandg: B — C
be WS-monomorphisms. Then for the short exact sequence Es : 0 B—1-C F 0 e

WS we have Ey = h*(E}) for some El : 0 B C’ F’ 0 € WS and homo-
morphism h : F' — F’. Therefore we have a commutative diagram with exact rows and
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columns:
0 0
0 0
0 A B D 0:Ey
U1/ 1/
0 A B D 0:E
Ve
0 A C D’ 0:F
F'——— F’
v
F F
0 0
0 B, 0 By
Es Es

where Fy and Es are images of E) and Ej respectively under the first variable. Now for

the short exact sequence Ej : 0 A-1.p D 0 € WS we have E; = u*(E})

for some FEj :0 A B, D, 0 € WS and homomorphism u : D — Ds,.
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Therefore we have a commutative diagram with exact rows and columns:

0 0
0 0
0 A B D, 0:F
1 L7 1
0 A B D 0:F
0 A (& Dy 0:E"
S A
0 A c’ D, 0:F
F’ F’
e Ve
Fr=— F
0 0
0 EY 0 EY
E} E}

where EY = v, (EY), BY = u.(E}). Without lost of generality we can assume that A < By <
(. Since E} € WS, there is a submodule K of B; such that A+ K = B; and ANK < Bjy.
Then A/(ANK)® K/(ANK) = B;/AN K, that is, A/(AN K) is direct summand in
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B1/(ANK). Then we have the following diagram with exact rows and columns:

0 0
0 0
0 Ar?K AﬁlK Dy 0: EY
ARy /
0 A By Dy 0:FE;
0 T E Dy 0:E"
S
0 A Ch Ds 0:E"
F’ F’
/ /
F’ F’
0 0
0 EY 0

1"
E 2

where ! : A — A/(ANK) and ¢ : By — B;/(AN K) are canonical epimorphisms,
E! = ol(E}), EY = 02(EY). Since Efy € WS, Ej and EY' are in WS. By Lemma 3.9,
E" € WS. By 3 x 3 Lemma Kerw = Kero? = AN K < C,. Therefore by Lemma 3.11
E" € WS. Now E = (yoxz)*(E") € WS by Lemma 3.5. O

Corollary 3.13. If R is hereditary, then (Small) = (S) = (WS) =WS.

Proof. The equivalence (Small) = (§) = (WS) had been proved in [8]. Since (WS)
is the least proper class containing WS and WS is contained in the proper class WS,
(WS) € WS. Conversely, let E:0 A B C 0 € WS. Then there
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exists a short exact sequence E' in WS such that the following diagram is commutative.

0 A B C 0:E
0 A B’ c’ 0:FE

Then E' € (WS) and since (WS) is proper class, E € (WWS) and we have that WS C (WS).
This completes the proof. ]

4. HOMOLOGICAL OBJECTS OF WS

In this section, R denotes a Dedekind domain which is not a field and K denotes its field
of fractions, we will denote the set of maximal ideals of R by €.

4.1. Coinjective Modules With Respect to WS.

Lemma 4.1. Let R be a Dedekind ring. For an R-module A the following are equivalent:

(i) A is WS-coinjective.
(i) There is a submodule N of A such that N is small in the injective hull A of A and
A/N is injective.
(iii) A has a weak supplement in its injective hull A.

Proof. (i = ii) Let E be WS-element. By definition of WS, E is an image of a WS-
element, say Ey, such that ¢*(E;) = E. Then, there exist a submodule V' of B such that
A+V =Band ANV < B. Since epimorphic image of a injective module is injective,
A/ANYV which is direct summand of a epimorphic image of A is injective. And since A is
essential in its injective hull A, o is a monomorphism. So A is an injective submodule of
B’ and, A is a direct summand of B’ ,and so ANV < A. Then we obtain the following
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commutative diagram where E', 5 € Small and Ey, B3 € Split.

0 0
0 0
/A nv /A nv
ANV ANV
0 A i ! C
e e )
0 A B , 4
P
0 /Al / | )
0 A’ B, 4
0 0
0 0 Ey

OZEg

13
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(12 = 1i1) By the hypothesis, we obtain the following diagram where F € Small and
E1 S Split.

0 0
N——N
~ f
0 A i C 0
7
0 Al B - 0: B,
0 0
E

Then ~ is a Small-epimorphism and ¢ is a Split-epimorphism. So f = § oy is WS-
epimorphism by Lemma 3.10.
(140 = i) By Proposition 2.2, since every WS-element is an WS-element. O

Definition 4.2. A module M is said to be coatomic if Rad(M /U) # M /U for every proper
submodule U of M or equivalently every proper submodule of M is contained in a maximal
submodule of M.

Lemma 4.3. [18], Lemma 2.1 | For an R-module M the following are equivalent:

(i) M has a weak supplement in its injective hull M.
(ii) There is an injective module I containing M such that M has a supplement in I.
(ii1) There is an extension N of M, such that M is a direct summand in N and N has
a supplement in its injective hull N.
(iv) M has a dense coatomic submodule.

Proposition 4.4. [17],Proof of Lemma 3.3] Let A, B be R-modules and A C B. Then
A < B if and only if A is coatomic and A C Rad B.

Proposition 4.5. If there is a Small-monomorphism from a module A to any module A’,
then A is a WS-coinjective module.

Proof. Without of loss generality we can assume that A < A’. Then A is small in injective
hull A’. Thus A is WS-coinjective by Proposition 2.2. O

Corollary 4.6. Every coatomic module is a WS -coinjective.

Proof. Every coatomic submodule is small in its injective hull by Proposition 4.4. Then
by Proposition 4.5, every coatomic module is a WS-coinjective. U
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The converse of Corollary 4.6 is not true in general. For example the Z-module Q is a
weakly supplemented module and every submodule of Q is WS-coinjective. If we assume
that every proper submodule of QQ is coatomic, then we come to the conclusion that Q is
hollow. But Q is not hollow and so @ has a YWS-coinjective proper submodule which is not
coataomic. And also the group of p-adic numbers, .J,, is WS-coinjective but not coatomic.

Proposition 4.7. Let R be a domain. Then every bounded R-module is VWS -coinjective.

Proof. Let B be a bounded R-module and I be an injective hull of B. We will show that
B <« I. Suppose B+ X = [ for some X C [I. Since B is bounded, there exists 0 # r € R
such that rB = 0. Then [ =7l =rB +rX = rX, since [ is divisible. Therefore X = I
and so B < I. I is (Small)-coinjective, since it is injective. Then B is (Small)-coinjective
by Corollary 2.3. O

Lemma 4.8. [8], Lemma 4.5 ] Let S be a DVR, A be a reduced torsion S-module and B
be a bounded submodule of A. If A/B is divisible, then A is also bounded.

Lemma 4.9. Let M 1is torsion and reduced module over a Discrete Valuation Ring . Then
M is WS-coinjective iff M s coatomic.

Proof. (=)Since M is WS-coinjective, M has a dense coatomic submodule N by Lemma
4.3. Since M is torsion , N is torsion. Since N is coatomic, N = B + R" with p"B =0
for some n € N [15]. Since N is torsion R" = 0 and N is bounded. By Lemma 4.8, M is
bounded and so it is coatomic.

(«<)Since any coatomic module is small in its injective hull, it is (Small)-coinjective and
also it is WS-coinjective. O
Definition 4.10. A module M is called radical-supplemented, if Rad(M ) has a supplement
in M.

Zschinger proved that If M has a weak supplement in its injective hull, then T'(M) is
radical-supplemented and there exists n > 0 with p—Rank(M/T(M)) < n for all maximal
ideals p in [18]. From this we obtain the following Corollary by Proposition 2.2.

Corollary 4.11. If M is a WS-coinjective, then T (M) is radical-supplemented and there
exists n > 0 with p — Rank(M /T (M)) < n for all mazimal ideals p .

Zoschinger proved that the class of R-modules, which have a weak supplement in their
injective hull is closed under factor modules and group extensions. This class contains all
torsion-free modules with finite rank in [18]. From this we obtain the following Corollary
by Proposition 2.2.

Corollary 4.12. The class of R-modules, which WS-coinjective is closed under factor
modules and group extensions. This class contains torsion-free modules with finite rank.

Corollary 4.13. FEwvery finitely generated module is WS -coinjective.
Proof. Every finitely generated module is small in its injective hull. O

Theorem 4.14. Let J be a class of modules which WS-coinjective. Then, k(J) = WS.
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Proof. (2) Let E; be a WS-element. Then, there is a WS-element FEy such that the
following diagram is commutative.

0 A B C 0:E;
L
0 A Bl Cl 0: Eg

There exist a submodule V' of B; such that A+ V = B; and ANV < B;. So, we obtain
the following diagram.

0 0
ANV ANV
f
0 A B Cy 0: By
/
0—=A/ANV —= B/JANV Cy 0 € Split

0 0

If we apply the functor Hom(C, ), we obtain the following

0 — Hom(C;,ANV) — Hom(C4, A) —— Hom(C, A/ANV) ——

L Ext(CLANV) L Ext(Cy, A) — L Ext(Cy, AJAN V) = 0

Then, f, is epimorphism and so there exist £5 € Ext(C;, AN V) such that f.(FEs)

Es.
Since the following square is commutative:

*

Ext(Cy,ANV) —2

Ext(C,ANYV)

fx

Ext(C), A) a

Ext(C, A)
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g* o f«(E3) = Ey = f.0g*(E3). Hence, we obtain the following diagram.

).
nv B C 0: L&

SR N 1 s
0 f A B C 0: Ey
0 J/ EL/ 01% 0: B

Since ANV < By, ANV is WS-coinjective by Proposition 4.5. Then E € k(J) and since
k(J) is subfunctor, Ey € k(J).
(C) E(J) C WS is trivial. O

By the Propositions 2.7 and 2.8, we obtain that the following Corollaries:
Corollary 4.15. The global dimensionof WS is gl. dim WS < 1.
Corollary 4.16. inj.dim A < 1 for every WS-coinjective module A.

4.2. Injective Modules with Respect to WS.

Corollary 4.17. Qver a Dedekind domain R, YWS-injective modules are only the injective
R-modules.

Proof. Let M be a WS&-injective module and I be any ideal of Dedekind domain R.
Since R is Dedekind domain, R is noetherian ring and so [ is finitely generated.

E:0 1 ! R R/I 0 in WS by Corollary 4.13. Since M is WS-injective

module; for every homomorphism « : I — M, there exists a homomorphism & : R — M
such that & o f = a. We have the following commutative diagram,

(3) E: 0 I R R/I 0

Since for any left ideal I of R-homomorphism: I — M can be extended to an R-
homomorphism: R — M, then M is injective R-module by Baer’s criterion ([13], Theorem
3.3.5). O

We obtain the following Corollary by using Proposition 2.10 from Corollary 4.17.

Corollary 4.18. WS-injective modules are only the injective R-modules.
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4.3. Projective and Coprojective Submodules with Respect to WS. For WS-
projective modules, we obtain the following criteria:

Lemma 4.19. If C is any module such that Extg(C, A’") = 0 for every coatomic module
A’ then C is an WS-projective module.

Proof. An R -module C is P-projective if and only if Extp(C, A) = 0 for all R-modules A.

Let E:0 A B C 0 be a short exact sequence in the class WS. In Proof

of Theorem 4.14, it was shown that every elements of WS is an image of a short exact
sequence with starting a coatomic module such as

O A, Bl C O . E1
I
0 A B C 0:F

where f is a monomorphism from a coatomic module A’ to A.
Since A’ is coatomic module, E; is in Split with respect to our assumption. Then
E = f.(E1) = 0. This completes the proof. 0

Corollary 4.20. Fvery finitely presented module is YWS-coprojective.

Proof. Let a finitely presented module F. There is a epimorphism from a projective module
Pto F, f: P— F. Since F is finitely presented, P and Ker f is finitely generated. Thus
Ker f is WS-coinjective by Corollary 4.13. Then F' is WS-coprojective by Proposition
2.4. 0

4.4. Coinjective Submodules with Respect to WS over DVR. In the following part
R is always a discrete valuation ring with quotient field K # R and the maximal ideal (p).

Corollary 4.21. If M/ Rad(M) is simple, M is WS-coinjective.

Proof. Zschinger proved that if M/Rad(M) is simple, then M has a supplement in every
extension N with N/M is torsion in [17]. Since every module is essential in its injective
hull, M is essential in F(M) and also E(M)/M is torsion. So M has a supplement in its
injective hull. Then M is WS&-coinjective by Proposition 2.2. U

Theorem 4.22 ([17], Theorem 3.1). For an R-module M the following are equivalent:

(a) M is radical-supplemented.

(b) Rad™(M) = Rad"™ (M) is finitely generated for some n > 0.

(¢) The basic-submodule of M is coatomic.

(d) M = T(M) & X where the reduced part of T(M) is bounded and X/Rad(X) is
ﬁmtely generated.

Lemma 4.23 ([17], Lemma 3.2). (a) The class of radical-supplemented R-modules is
closed under factor modules, pure submodules and extensions.
(b) If M is radical-supplemented and M /U is reduced, then U is also radical-supplemented.
(¢) Every submodule of M is radical-supplemented if and only if T(M) is supplemented
and M /T (M) has finite rank.
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By Lemma 4.1, Theorem 4.22 and Lemma 4.23, we obtain the following Corollary.

Corollary 4.24. For an R-module M the following are equivalent:

(a) M is WS-coinjective.

(b) M is radical-supplemented.

(¢) M = T(M) ® X where the reduced part of T(M) is bounded and X/Rad(X) is
finitely generated.

(d) The class of WS-coinjective R-modules is closed under factor modules, pure sub-
modules and extensions.

(e) Every submodule of M is WS-coinjective if and only if T(M) is supplemented and
M/T(M) has finite rank.

5. COATOMIC SUPPLEMENT SUBMODULES

Throughout this chapter all rings are hereditary rings, unless otherwise stated. In this
chapter, we define the notion “coatomic supplement” and give some results about the
relation between coatomic supplement and supplement submodules.

Let U be a submodule of an R-module M. If there exists a submodule V' of M such that
M =U+V and UNV is coatomic then U is called a coatomic supplement of V in M. We

study the class ¥ of o-exact sequences where an element E : 0 A—>B C 0
of Extr(C, A) is called o-exact if Im o has a coatomic supplement in B.

Lemma 5.1. If f: A — A, then f. : Ext(C, A) — Ext(C, A’) preserves o -element.

Proof. Let E: 0 A B C 0 is a short exact sequence in Ext(C, A) and
f: A— A’ be an arbitrary homomorphism. The following diagram is commutative with
exact rows.

0 A———>B C 0:E
| v
0 A’ B’ C 0:FE;

where f.(E) = E;. If V is a coatomic supplement of Im« in B, then Ima + V = B and
V NIma is coatomic. Then f/(V) + Ima’ = B’ by pushout diagram and f/(V)NIma' =
f'(VNIm ) is coatomic, since V NIm « is coatomic and homomorphic image of a coatomic
module is coatomic. O

Lemma 5.2. If g: C" — C, then g* : Ext(C, A) — Ext(C’, A) preserves o-elements.

Proof. Let E : 0 A B C 0 is a short exact sequence in Ext(C, A) and
g : ¢! — C be an arbitrary homomorphism. The following diagram is commutative with
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exact Tows,
0 A o B’ 5 C’ 0: El
|
0 A P B 3 C 0: &

where ¢*(E) = Ej.

Let V be a coatomic supplement of Ker 3 in B, i.e. Ker+V = B and V N Kerg
is coatomic. Then ¢'~'(V) + Ker 8/ = B’ by pullback diagram. Since ¢’ induces an iso-
morphism between D' = ¢'~}(V) N Ker ' and D = V N Ker 3 and epimorphic image of
coatomic module coatomic, D’ is coatomic. ]

Corollary 5.3. Every multiple of a o-element of Ext(C, A) is again a o-element.
Theorem 5.4. The class ¥ of o-elements coincide with the class WS of WS -elements.

Proof. Assume that A has a coatomic supplement in B, then there exists a submodule V' of
B such that B= A+ V and ANV is coatomic. So, the following diagram is commutative
with exact columns and rows:

0 0
ANV ANV
0 A B C 0:F
v
0—=A/ANV —= B/ANV *—~(C—=0:F,

0 0

Clearly « is Split-epimorphism and since coatomic module is WS-coinjective, 7 is WS-
epimorphism. Then, the composition avoy is an WS-epimorphism. So, F is a WS-element.
To prove the converse, let E € WS, then there is F; in the class WS such that the following
diagram is commutative with exact rows:

«

0 A B C 0:E
0 A p cr 0:E

If V is weak supplement of Ima’ in B’, then Ima/ +V = B’ and Ima/ NV <« B’ and so
Im o’ NV is coatomic by Proposition 4.4. By Lemma 5.2, E is o-element. U
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Let R be a discrete valuation ring with quotient field K # R and the maximal ideal
(p). If A is a coatomic submodule of B, then it does not need to be small in B, but, since
B/ Rad(B) semisimple, from

X/Rad(B) @ (A+ Rad(B))/Rad(B) = B/ Rad(B)
nevertheless follows that X + A = B with X N A small in B. So, every coatomic submodule
has a weak supplement in every extension.

Lemma 5.5. WS form a proper class over the Discrete Valuation Ring .

Proof. Assume that A has a coatomic supplement in B, then there exists a submodule V' of
B such that B= A+ V and ANV is coatomic. So, the following diagram is commutative
with exact column and rows:

0 0
ANV =——=—=A4ANV
0 A B C 0:F
v
0—=A/ANV —= B/ANV *—~(C—=0:E,

0 0
Since A NV is coatomic, v is WS-epimorphism. Then, the composition «a o v is WS-
epimorphism. So, E is WS-element. O
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CONEAT SUBMODULES OVER DEDEKIND DOMAINS

RAFAIL ALIZADE AND ENGIN MERMUT

ABSTRACT. We deal with two proper classes defined by means of complements (closed sub-
modules) and supplements in modules and their relations with the neat and coneat short ex-
act sequences of modules. For a Dedekind domain W, if Rad W = 0, then the proper class
CoNeatw_moa is strictly between Supplw_moa and Complw-aod. When Rad W # 0, still
Supplw-mod # CoNeatw-mod, but CoNeatw smod = Neatw-rmoa = Complw-roa. If W is a
Dedekind domain such that Rad W = 0 and W is not a field, then the functors Extsuppiy,_ o4

and Extconeaty_aoq are not factorizable as W-Mod x W-Mod M W-Mod s W-Mod
for any functor H : W-Mod — W-Mod. Neat submodules of a torsion module over a
Dedekind domain coincide with its coneat submodules. Complw_a04-coprojectives are only
torsion-free W-modules.

1. INTRODUCTION

Throughout this article, by a ring we shall mean an associative ring with unity; R will denote
such a general ring, unless otherwise stated. We shall consider unital left R-modules; R-module
will mean left R-module. R-Mod denotes the category of all left R-modules. Z denotes the ring
of integers. Group will mean abelian group only. By W, we denote a commutative Dedekind
domain. All definitions not given here can be found in [7], [28] and [3].

A submodule A of a module B is said to have a complement in B if there exits a submodule
K of B maximal with respect to K N A = 0. A submodule A of a module B is said to be a
complement in B if A is a complement of some submodule of B. It is said that A is closed
in B if A has no proper essential extension in B and it is known that closed submodules and
complements in a module coincide (see [7, §1]).

Dually, a submodule A of a module B is said to have a supplement in B if there exits a
submodule K of B minimal with respect to K + A = M; equivalently K + A= M and KN A
is small(=superfluous) in K (which is denoted by K N A < K, meaning that for no proper
submodule X of K, KNA+ X = K). A submodule A of a module B is said to be a supplement
in B if A is a supplement of some submodule of B. Unlike complements a submodule of a
module may not have any supplements. If every submodule of a module has a supplement, then
it is said to be a supplemented module. For the definitions and related properties see [28, §41]
and [5].

We deal with complements (closed submodules) and supplements in unital R-modules for an
associative ring R with unity using relative homological algebra via the known two dual proper
classes of short exact sequences of R-modules and R-module homomorphisms, Complraoq and
Suppl pamod, and related other proper classes like Neatpaoq and Co-Neat gatod. Complratod
[Supplraod] consists of all short exact sequences

0— AT op 9 0 .0

of R-modules and R-module homomorphisms such that Im(f) is a complement [resp. supple-
ment| in B. Neatgpod [CoNeat gaoq] consists of all short exact sequences of R-modules and
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R-module homomorphisms with respect to which every simple module is projective [resp. every
module with zero radical is injective]. In the case of modules over Dedekind domains, we shall
investigate the relation of these proper classes; the inclusion relations among them and when
they are equal. We shall extend some of the results for abelian groups in [2] to modules over
Dedekind domains. See [2, §3] for some of the properties of these proper classes that we shall
use.

[13, Corollary 1 and 6] gives the following interesting result (the equality from [12, Theorem
5] as a Dedekind domain is a C-ring): For a Dedekind domain W,

Supplw-mod € Comply-mod = N eatw mods
where the inclusion is strict if W is not a field. So if A is a supplement in a W-module B where

W is a Dedekind domain, then A is a complement. We shall prove that for a Dedekind domain
W that is not a field,

(i) If Rad W = 0, then

Supplw-pmod & CoNeatw_poa & Neatw-aoa = Compl-aod-
(ii) If Rad W # 0, then
Supplw-mod & CoNeatw_mod = Neatw-aod = Comply-aod-
The proper class Complyy_pamoq is both projectively generated, injectively generated and flatly
generated by simple modules (see [2, Theorem 3.7] and Theorem 3.9). One of the main steps in

the proof is this fact follows from [24, Lemmas 4.4, 5.2 and Theorem 5.1|. Another consequence
of [24, Theorem 5.1] is that for a Dedekind domain W, and W-modules A, C,

Exteomptyy aioa(Cr A) = Extaeatyy aoa (Cs A) = Rad(Exty (C, A)).

(see [2, Theorem 3.8]). But for supplements and coneat submodules, we shall show that this is
not possible if W is a Dedekind domain such that Rad W = 0 and W is not a field: the functors
Extsupptyy aoq a0 Exteonreatyy aq are not factorizable as

FEx
W-Mod x W-Mod —2% W-Mod —> W-Mod

for any functor H : W-Mod — W-Mod. This extends the result for abelian groups given in |2,
Theorem 6.3]. To every proper class A, we have a relative Ext 4 functor and for the proper class
Supplw-mod, this functor behaves badly in this factorizabililty sense unlike for Comply - atod-
For a Dedekind domain W, a partial converse of the inclusion Supplw_-aod € Comply-rmod
is the following: A finitely generated torsion submodule of a W-module is a complement if and
only if it is a supplement (see [2, Theorem 4.1]). We shall show that for a torsion W-module
B, neat submodules and coneat submodules of B coincide.
We also note the coinjectives and coprojectives of these proper classes for a Dedekind domain
W
(1) Comply-pmoq-coinjectives (and so Supplyy_aoq-coinjectives and CoN eatyy_poq-coinjec-
tives) are only injective W-modules.
(2) Complw_poq-coprojectives are only torsion-free W-modules.
(3) If Rad W = 0, then Supply_poq-coprojectives and CoN eatyy . poq-coprojectives are only
projective W-modules.

Neat subgroups of abelian groups (introduced by [15, pp. 43-44]) have been generalized to
modules in [27, 9.6] (and [26, §3]); this is the above definition that we have taken. Dually,
coneat submodules have been introduced in [22] and [2]; as defined above, a monomorphism
f: K — L is called coneat if each module M with Rad M = 0 is injective with respect to it,
that is, the Hom sequence

Hom(L, M) — Hom(K, M) — 0
is exact. See [22, Proposition 3.4.2] or [5, 10.14] or [1, 1.14] for the following characterization
of coneat submodules: For a submodule A of a module B, A is coneat in B if and only if there

exists a submodule K < B such that A+ K = Band ANK < RadA (or AN K = Rad A).
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This is like the usual supplement condition except that, instead of UNV < V (UNV small in
V), the condition U NV < Rad(V) is required. For submodules U and V of a module M, the
submodule V is said to be a Rad-supplement of U in M or U is said to have a Rad-supplement
VinMifU+V =Mand UNV < Rad(V). So a submodule V of a module M is a coneat
submodule of M if and only if V' is a Rad-supplement of a submodule U of M in M. In [5, §10
and 20.7-8] and [1], the properties of 7-supplements are also investigated where 7 is a radical
for R-Mod.

Proper classes of monomorphisms and short exact sequences were introduced in [4] to do rela-
tive homological algebra. In [26, Remark after Proposition 6], it is pointed out that supplement
submodules induce a proper class of short exact sequences (the term ‘low’ is used for supple-
ments dualizing the term ‘high’ used in abelian groups). See also [5, 20.7] for a proof of that.
[13] uses the terminology ‘cohigh’ for supplements and gives more general definitions for proper
classes of supplements related to another given proper class (motivated by the considerations
as pure-high extensions and neat-high extensions in [14]). For the definition and properties
of proper classes, see [25], [21, Ch. 12, §4], [5, §10], [1], [27] and [23]. The terminology and
notation for proper classes are given in the next section.

2. TERMINOLOGY AND NOTATION FOR PROPER CLASSES

Let A be a class of short exact sequences of R-modules and R-module homomorphisms. If a
short exact sequence

(1) 0—Atop 0o

belongs to A, then f is said to be an A-monomorphism and ¢ is said to be an A-epimorphism
(both are said to be A-proper and the short exact sequence is said to be an A-proper short
exact sequence.). The class A is said to be proper if it satisfies the following conditions (see Ch.
12, §4 in [21] or [27] or [25]):

(1) If a short exact sequence E is in A, then A contains every short exact sequence isomor-
phic to E .

(2) A contains all splitting short exact sequences.

(3) The composite of two A-monomorphisms is an A-monomorphism if this composite is
defined. The composite of two A-epimorphisms is an A-epimorphism if this composite
is defined.

(4) If g and f are monomorphisms, and g o f is an A-monomorphism, then f is an A-
monomorphism. If g and f are epimorphisms, and g o f is an A-epimorphism, then g is
an A-epimorphism.

For a proper class A of R-modules, call a submodule A of a module B an A-submodule of
B, if the inclusion monomorphism i4 : A — B, ig(a) = a, a € A, is an A-monomorphism. We
denote this by A <, B.

An important example for proper classes in abelian groups is Purez-aoq: The proper class
of all short exact sequences (1) of abelian groups and abelian group homomorphisms such that
Im(f) is a pure subgroup of B, where a subgroup A of a group B is pure in B if ANnB =nA
for all integers n (see §26-30 in [9] for purity in abelian groups). The proper class Purezaqod
forms one of the origins of relative homological algebra; it is the reason why proper classes are
also called purities (as in [23], [11], [12], [13]).

Denote by A a proper class of R-modules. An R-module M is said to be A-projective [A-
injective] if it is projective [resp. injective] with respect to all short exact sequences in A, that is,
Hom(M,E) [resp. Hom(E, M)] is exact for every E in A. Denote all A-projective [A-injective]
modules by 7(A) [resp. ¢(A)]. For a given class M of modules, denote by 7~ 1(M) [~} (M)],
the largest proper class A for which each M € M is A-projective [resp. A-injective]; it is called
the proper class projectively generated [resp. injectively generated] by M. A right R-module
M is said to be A-flat if M is flat with respect to every short exact sequence E € A, that is,
M ® E is exact for every E in A. Denote all A-flat right R-modules by 7(.A). For a given class
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M of right R-modules, denote by 771(M) the class of all short exact sequences E of R-modules
and R-module homomorphisms such that M ® E is exact for all M € M. 771(M) is the largest
proper class A of (left) R-modules for which each M € M is A-flat. It is called the proper class
flatly generated by the class M of right R-modules. When the ring R is commutative, there
is no need to mention the sides of the modules since a right R-module may also be considered
as a left R-module and vice versa. An R-module C is said to be A-coprojective if every short
exact sequence of R-modules and R-module homomorphisms ending with C' is in the proper
class A. An R-module A is said to be A-coinjective if every short exact sequence of R-modules
and R-module homomorphisms starting with A is in the proper class A. See [25, §1-3,8] for
these concepts in relative homological algebra in categories of modules.

For a proper class A and R-modules A, C, denote by Exth(C, A) or just by Ext 4(C, A), the
equivalence classes of all short exact sequences in A which start with A and end with C, i.e. a
short exact sequence in A of the form (1). This turns out to be a subgroup of Extz(C, A) and
a bifunctor ExtYy : R-Mod x R-Mod — Ab is obtained which is a subfunctor of Ext}, (see Ch.
12, §4-5 in [21]).

Using the functor Ext 4, the A-projectives, A-injectives, .A-coprojectives, A-coinjectives are
simply described as extreme ends for the subgroup Ext4(C, A) < Extr(C, A) being 0 or the
whole of Extr(C, A):

(1) An R -module C is A-projective if and only if
Ext4(C, A) = 0 for all R-modules A.
(2) An R -module C is A-coprojective if and only if
Ext4(C,A) = Extr(C, A) for all R-modules A.
(3) An R -module A is A-injective if and only if
Ext4(C, A) =0 for all R-modules C.
(4) An R -module A is A-coinjective if and only if
Ext4(C, A) = Extr(C, A) for all R-modules C.

Note also the following property that we shall use for the coprojective modules with respect
to an injectively generated proper class:

Proposition 2.1. ([25, Proposition 9.4]) If A is an injectively generated proper class of R-
modules, then for an R-module C, the condition Ext}q(C, J) =0 for all A-injective J is equiv-
alent to C' being A-coprojective.

More directly:

Proposition 2.2. If A = :71(M) for a class M of R-modules, then for an R-module C, the
condition Ext}{(C, M) =0 for all M € M is equivalent to C' being A-coprojective.
Proof. Suppose C is a A-coprojective module. Let M € M. Take an element [E] € ExthL(C, M):

E: 0 M B C 0

Since C' is A-coprojective, E € A. Then E splits because M, being an element of M, is A-
injective as A = =1 (M). Hence [E] = 0 as required. Thus ExtkL(C, M) = 0.
Conversely, suppose for an R-module C, ExtL(C, M) = 0 for all M € M. Take any short
exact sequence E of R-modules ending with C"
E: 0 A B C 0

Applying Hom(—, M), we obtain the following exact sequence by the long exact sequence con-
necting Hom and Ext:

0—— Hom(C, M)—— Hom(B, M)—— Hom(A, M)—— ExtkL(C, M) = 0
So Hom(E, M) is exact for every M € M. This means E € :71(M) = A. O

For a proper class A of R-modules, let us say that Ext 4 is factorizable as

Ezxtp
R-Mod x R-Mod —= Ab —— Ab ,
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if it is a composition H o Extg for some functor H : Ab — Ab: the diagram

Ext 4

R-Mod x R-Mod

% %
Ab

is commutative, that is, for all R-modules A, C,
Ext4(C,A) = H(Extg(C, A)).

When the ring R is commutative, since the functor Extr can be considered to have range
R-Mod, we say that Ext 4 is factorizable as

Ab

Ex
R-Mod x R-Mod —% R-Mod — R-Mod ,
if it is a composition H o Extg for some functor H : R-Mod — R-Mod: the diagram

Ext 4

R-Mod x R-Mod R-Mod
m /
R-Mod

is commutative, that is, for all R-modules A, C,
Ext4(C, A) = H(Extr(C, A)).

3. THE PROPER CLASSES Supplr-mod, Complamod, Neatrasoq AND Co-Neat pasoq FOR A
RING R

We have,
Neatpaoa = m *({all semisimple R-modules})
7Y ({M|Soc M = M, M an R-module}),
where Soc M is the socle of M, that is the sum of all simple submodules of M. Dualizing this,
we have defined the proper class Co-Neat gatoq as said in the introduction by
CoNeatrpog = ¢~ ' ({all R-modules with zero radical})
= Y({M|Rad M =0, M an R-module}).

If A is a CoNeatpaog-submodule of an R-module B, denote this by A < B and say that A
is a coneat submodule of B, or that the submodule A of the module B is coneat in B.

Every module M with Rad M = 0 is Supplr.aeq-injective that is M is injective with respect
to every short exact sequence in Supplp.atoq. Thus supplement submodules are always coneat
submodules by the definition of coneat submodules. For any ring R (see [2, Proposition 3.5]),

Supplpamod € CoNeatppgog € ¢~ ({ all (semi-)simple R-modules}).

Proposition 3.1. Given an R-module A, denote by E(A) the injective envelope of A. Then
the monomorphism

f:A — E(A)® (A/RadA)
r +— (z,z+RadA)
is a CoNeat g pmod-monomorphism and E(A) @ (A/ Rad A) is CoNeat g aoq-injective.
Proof. From the module B := E(A) @ (A/Rad A), we clearly have a projection B — A/Rad A
and any map A — M, with Rad M = 0, factors through A — A/ Rad A. O

Corollary 3.2. An R-module M is CoNeat gaoq-injective if and only if it is a direct summand
of a module of the form E ® A, where E is an injective R-module and A is an R-module with
Rad A = 0.

5



Proof. (<) is clear since a module with zero radical is Co:Neatgaoq-injective, and injective
modules are of course CoN eat g_ao4-injective.

(=): By Proposition 3.1, we can embed any R-module M as a CoN eat gaqoq-submodule into a
CoNeat paqoq-injective module of the form E @ A, where E is an injective R-module and A is
an R-module with Rad A = 0:

M<, E®A and E® AisCoNeatrpmod-injective.
If M is a CoNeat gaqoq-injective R-module, then M is a direct summand of E @& A. O

Proposition 3.3. [25, Lemma 6.1] Let A be a submodule of an R-module B and iy : A — B
be the inclusion map. For a right ideal I of R, ANIB = IA if and only if

1R/ I®ia

R/I® A

R/I® B
18 monic.

A ring R is said to be a left quasi-duo ring if each mazimal left ideal is a two-sided ideal.
Lemma 3.4. [13, Lemma 3| Let R be a left quasi-duo ring. Then for each module M,

RadM = () PM,
P < RR

max.

where the intersection is over all maximal left ideals of R.
Proposition 3.5. Let R be a left quasi-duo ring. Then,
CoNeatgpatoq C 7 H({R/P|P mazimal left ideal of R})
Proof. The proof is the proof in [13, Proposition 1] where it has been shown that
Supplpamod € 7 F({R/P|P maximal left ideal of R}).
Take a short exact sequence E € Co-Neat patod:

E: 0—s=A-lop % 0 .9

Without loss of generality, suppose that A is a submodule of B and f is the inclusion homo-
morphism. So A is a coneat submodule of the module B. By Proposition 3.3, to end the proof
it suffices to show that AN PB = PA for each maximal left ideal P of R.

Since A is a coneat submodule of B, there exists a submodule K of B such that A+ K = B
and AN K < RadA. Then,

ANPB = ANPA+K)<ANn(PA+PK)=PA+ANPK
< PA+ANK < PA+RadA = PA,

where the last equality follows from Lemma 3.4, since each maximal left ideal is assumed to be
a two-sided ideal. So AN PB < PA, and since the converse is clear, we obtain AN PB = PA
as required. O

Proposition 3.6. [13, Proposition 4] Let R be a ring that can be embedded in an R-module S
such that RadS = R. Then:

(i) For each module M, there erists a module H such that Rad H = M.
(ii) If, in addition, the R-module S/R is semisimple, then an essential extension H of the
module M such that H/M is a semisimple module can be taken such that Rad H = M.

A module M is said to be a small module if it is a small submodule of a module containing
it, equivalently if it is a small submodule of its injective envelope. See [19] for small modules.
A ring R is said to be a left small ring if R, considered as a (left) R-module, is a small
R-module, equivalently R is small in its injective envelope E(R). It is noted in [20, Proposition
3.3] that a ring R is left small, if and only if, Rad E = F for every injective R-module E, if and
only if, RadE(R) = E(R).
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Proposition 3.7. [13, Corollary 5| If R is a ring that can be embedded in an R-module S such
that RadS = R and S/R is a semisimple R-module (and R is essential in S), then R is a
left small ring, so Rad E = E for every injective R-module E and in particular no injective
R-module is finitely generated.

Proposition 3.8. A left quasi-duo domain which is not a division ring is a left small ring.

Proof. Let R be left quasi-duo domain which is not a division ring and E be an injective R-
module. Since F is injective, it is also a divisible R-module (by for example [6, Proposition
4.7.8]). Since R is not a division ring, any maximal left ideal P of R is nonzero and so PE = FE
as F is divisible. By Lemma 3.4,

Rad E = ﬂ PE = ﬂ E = E.
P < RR P < RR

max. max.

O

A ring R is said to be semilocal if R/ Rad R is a semisimple ring, that is a left (and right)
semisimple R-module. See for example [18, §20]. Such rings are also called as rings semisimple
modulo its radical as in [3, in §15, pp. 170-172].

Theorem 3.9. If R is a semilocal ring, then
CoNeatpaoq =t ({all (semi-)simple R-modules}).

Proof. For any ring R, the left side is contained in the right side by [2, Proposition 3.5]. We
prove equality for a semilocal ring R. By [3, Corollary 15.18], for every R-module A, A/ Rad A is
semisimple. So every R-module M with Rad M = 0 is semisimple. Conversely, every semisimple
R-module has zero radical (for any ring R). Hence,

{M|Rad M =0, M an R-module} = { all semisimple R-modules }.
So,
CoNeatppods = ¢ *({M|RadM =0, M an R-module})
= 1 '({ all semisimple R-modules }).
The reason for the equality
v~ ({all semisimple R-modules}) = ¢! ({all simple R-modules})

comes from the characterization of semilocal rings in [3, Proposition 15.17]: every product of
simple left R-modules is semisimple. Denote :~!({all semisimple R-modules}) shortly by A and
1~!({all simple R-modules}) shortly by A’. Clearly A C A’. Conversely, it suffices to show that
every semisimple R-module M is injective with respect to the proper class A’. Since M is a
semisimple R-module, M = @,., Sx for some index set A and simple submodules Sy of M.
Then M < N :=]],cp Sx- The right side N is also a semisimple R-module (by [3, Proposition
15.17]). So its submodule M is a direct summand of N. But N, being a product of simple
modules which are injective with respect to the proper class A’, is injective with respect to
proper class A’. Then so is its direct summand M as required. U

In [8], Complp.aod-coinjective modules have been called absolutely complement modules and
Compl g.pod-coprojective modules have been called absolutely co-complement modules. Sim-
ilarly, Supplr.roq-coinjective modules have been called absolutely supplement modules and
Suppl . Mmod-coprojective modules have been called absolutely co-supplement modules in [8]. For
some properties of these modules, see [8, Chapters 3-4].

Remember the construction of an injective envelope of a module. It is seen from this con-
struction that a module is injective if and only if it has no proper essential extension, that is, it
is a closed submodule of every module containing it (see for example [21, Proposition II1.11.2]).
Since closed submodules and complement submodules of a module coincide, that means the
following:
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Theorem 3.10. (by [8, Proposition 4.1.4]) Complp pmoq-coinjective modules are only injective
modules.

Dually, Suppl pr0q-coprojectives are only projectives if the ring R has zero Jacobson radical:

Theorem 3.11. If Rad R = 0, then Supplr.aod-coprojective modules are only projective mod-
ules.

Proof. Suppose M is a Suppl p.aoq-coprojective module. There exists an epimorphism g : F' —
M from a free module F. So, for H := Kerg and f the inclusion homomorphism, we obtain
the following short exact sequence

E: 0—=H-1or % p— o0

Since M is Supplgaoqg-coprojective, E is in Supplratoq- S0, H is a supplement in F. Clearly,
Rad H < Rad F. Since Rad F' = JF for J := Rad R, the Jacobson radical of R (by for example
[18, Proposition 24.6-(3)]), we obtain that Rad F = 0 as J = 0 by our assumption. Hence
Rad H = 0. Then the short exact sequence E € Supplratoq splits since modules with zero
radical are Suppl g aoq-injective by [2, Proposition 3.5]. Then, F' = H @ M, and so M is also a
projective module. O

This proof, in fact, gives the following:

Theorem 3.12. If Rad R = 0, then CoNeatgrpoq-coprojective modules are only projective
modules.

4. THE PROPER CLASS Co-Neaty aoq FOR A DEDEKIND DOMAIN W

Throughout this section, let W be a Dedekind domain and suppose it is not a field to exclude
the trivial cases. Note firstly the following properties of Dedekind domains that we shall use.

Proposition 4.1. (by [6, Proposition 10.6.9]) Any torsion W-module M over a Dedekind do-
main W is a direct sum of its primary parts in a unique way:

where for each nonzero prime ideal P of W (so P is a mazximal ideal of W),
Mp = {z € M|P"x =0 for somen € Z*}
1s the P-primary part of the W-module M.

For a nonzero prime ideal P of a Dedekind domain W, we say that a W-module M is P-
primary if M = Mp.

Proposition 4.2. Let W be a Dedekind domain, P be a nonzero prime ideal of W and M be
a P-primary W-module. Then Rad M = PM.

Proposition 4.3. Let W be a Dedekind domain which is not a field. For an injective W -module
E, RadE =F.

Proposition 4.4. Any nonzero torsion module over a Dedekind domain has a simple submodule.

Theorem 4.5. (by [17, Theorem 3| and [16, Theorem 2-(b)], or by [10, Theorem VI.1.14])
Projective modules over Dedekind domains which are not finitely generated are free.

Proposition 4.6. For a Dedekind domain W which is not a field, the following are equivalent:
(i) Rad W # 0,

(il) W is semilocal,

(iii) W has only finitely many mazimal ideals,

(iv) W is a PID (principal ideal domain) with only finitely many mazimal ideals.
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Proposition 4.7. [10, Exercise 1.5.5-(c)] For a commutative domain R, an ideal J of R and
any R-module M,

Extgr(J /R, M) = M/JM,
if J is an invertible ideal.
Corollary 4.8. For a Dedekind domain W, a nonzero ideal J of W and any W-module M,
Extw (W/J,M) = M/JM

Proof. Since W is a Dedekind domain, the nonzero ideal J of W is invertible. So, the result
follows from Proposition 4.7 since J~1/W = W/J by [24, Lemma 4.4]. O

We will show that if Rad W = 0, then the proper class CoNeaty_aoq is strictly between
Supply-moq and Complyy-aoq. When Rad W # 0, still Supply-mod # CoNeatyy_poq, but
CoNeatw.-pmoa = Neatw_poa = Comply_soq. To prove that Supply_poa & CoNeatw - pmods,
we will follow mainly the proofs in [13, Theorems 6-7, Propositions 4-5] for the Dedekind domain
W, which simplifies some steps and for which some missing steps in [13, proofs of Theorem 6
and Proposition 5] can be done.

For a Dedekind domain W, the proper class Complyy_aoq is injectively generated by simple
W-modules:

Proposition 4.9. For a Dedekind domain W,
Comply_poa = ¢~ *({W/P|P mazimal ideal of W}).
Proof. Denote Complyy_am0q shortly by C:
C = Y({M|M is a homogenous semisimple W-module}).
Let C’ be the proper class
C' = 7' ({W/P|P maximal ideal of W}).

Clearly C C C’. Conversely, it suffices to show that every homogenous semisimple W-module
M is injective with respect to the proper class C’. Since M is a homogenous semisimple -
module, M = @, S\ for some index set A and simple submodules Sy of M such that for
some maximal left ideal P of R, Sy = R/P for every A € A. Then M < N := [[,c, Sx. Since
PN = 0, N may be considered as a vector space over the field W/P. If « is the dimension
of the W/ P-vector space N, then N is isomorphic to a direct sum of a copies of W/P. So N
is a homogenous semisimple W-module. Since N is semisimple, its submodule M is a direct
summand of N. But N = [],c5 S, being a product of simple modules which are injective with
respect to the proper class C’, is injective with respect to proper class C’. Then so is its direct
summand M as required. O

Proposition 4.10. For a Dedekind domain W,
Supply_mod € CoNeatw _pmoa € Neatw aod = Complyaod-
Proof. By [2, Proposition 3.5], Supplyw_smod C CoNeatw_aoq- By Proposition 3.5,
CoNeatpaoa € 7 ({W/P|P maximal ideal of W}).
By [2, Theorem 3.7], the right side equals Neatw_a1oa = Complyy_mod- O

After two lemmas, we give an example of a CoN eaty_pqog-monomorphism which is not a
Supplyw-soq-monomorphism.

Lemma 4.11. (by [13, Theorem 7, Proposition 4, Corollary 5]) Let W be a Dedekind domain
which is not a field and Q the field of fractions of W. Let S < @Q be the submodule of the
W -module Q such that S/W = Soc(Q/W). Then:

(i) Rad S =W and S/W is a semisimple W -module,
9



(ii) For a free W-module F' := @ W for some index set A, take the W-module A := @ S.

AEA AEA
Then Rad A = F and A/ Rad A is a semisimple W -module.

Proof. (i) Since S/W = Soc(Q/W), it is clearly semisimple. So Rad(S/W) = 0. Hence
Rad S < W.
Let P be a maximal ideal of W. Since W is not a field, P # 0. So P is an invertible
ideal, that is, for the submodule P~! < @, PP~! = W. Hence P~!/W is a homogenous
semisimple WW-module with each simple submodule isomorphic to W/P. So, P~ /W <
Soc(Q/W) = S/W, which implies that P~ < S. So

W = PP ! < PS.

Then, by Lemma 3.4,

Rad S = ﬂ PS> W.
P < rR

max.

Thus, Rad S = W.
(i) RadA =@, RadS =P, AW = F and A/Rad A = @, (S/W) is semisimple.
(]

Lemma 4.12. (by [19, Lemma 6]) Let W be a Dedekind domain which is not a field and Q
the field of fractions of W. There exists an epimorphism g : F' — Q from a free W-module

F .= @ W for some index set A. The free W-module F' := GB W is not a small W-module,

AEA AEA
and so the index set A is necessarily infinite.

Proof. Let H := Kerg. Then F/H = @Q. By [19, Lemma 6], F' is not a small W-module since
F/H = @ is a nonzero injective module. In fact, this is simply because if F' is a small module,
then F' is small in its injective envelope E(F') by [19, Theorem 1]. So, the quotient module F'/H
is small in E(F)/H. But since F/H = @ is injective, F//H is a direct summand of E(F)/H
which contradicts with F'/H being small in E(F)/H.

Since @ is injective, Rad ) = @ by Proposition 4.3. So the finitely generated submodule
W of Rad@Q = @ is small in Q. If the index set A were finite, then W < @ would imply

F = @ W < @ Q so that F' would be a small module. O
AEA AEA

Example 4.13. (by [13, Proposition 5]) Let W be a Dedekind domain which is not a field and
Q the field of fractions of W. Consider the W-modules

F:=PW=RadAd<A:=FS<PQ=E4),
AEA AEA AEA

where,

(i) S <@ is the W-module given as in Lemma 4.11 such that S/W = Soc(Q/W),

(ii) the free W-module F' := @ W is as in Lemma 4.12 for some infinite index set A such

AEA
that there exists an epimorphism g : FF — @,

(iii) E(A) denotes the injective envelope of A.
Then the monomorphism
f:A — E(A)® (A/RadA)
r +— (z,z+RadA)
is a CoNeaty - poqg-monomorphism but not a Supply_aoq-monomorphism. So Supply_ateq 7#

Co—/\/eatW_Mod.
10



Proof. By Lemma 4.11, Rad A = F. By Proposition 3.1, f is a Co-N eatyya1og-monomorphism
and E(A) @ (A/Rad A) is CoNeatw_aoq-injective.

Suppose for the contrary that f is a Supplyy_rroq-monomorphism.

Let M := f(A) and N := E(A) ® (A/Rad A). Then M is a supplement in N. That means
there exits a submodule K < N such that

M+K=N and MnNnK <M.

Let C :== M NK. Since C < M, C < RadM = Rad f(A) = RadA = F, so C is also a
projective W-module. Suppose C is not finitely generated. Then by Theorem 4.5, C'is free. So,
rank of C' is at most |Al, the rank of F. But, rank of C' cannot be |A| because then C' = F' would
be a small module, contradicting that F' is not a small module by Lemma 4.12. Since rank of
C is strictly less than A, C' has a basis whose cardinality is strictly less than A. Thus C' has
a generating set whose whose cardinality is strictly less than A, if C' is not finitely generated.
But that is also true if C is finitely generated since A is an infinite set. So, in any case, C has
a generating set Y = {y,|y € I'} for some index set I" such that |I'| < |A].

AsC < M,

C <Rad M <Rad N = Rad(E(A) ® (A/Rad A)) = RadE(A) < E(A).
So,

2

(E(A)/C) & (A/Rad A) = (E(A) @ (A/Rad A))/C = N/C = (M + K)/C
= (M/C)e (K/C)

Since the left side is Co:Neaty_aoq-injective, so is the direct summand M/C of the right side.
Hence by Corollary 3.2, M/C is a direct summand of a module of the form F; @ A;, where
Fy is an injective W-module and A; is a W-module such that Rad A1 = 0. So there exists a
submodule X of Fy @ A; such that (M/C) ® X = FE1 @& A;. Then, since radical of an injective
W-module is equal to itself (by Proposition 4.3), we obtain that

((RadM)/C) @ Rad X = (Rad(M/C)) @ Rad X = Rad E; @ Rad A; = E1 &0 = Ej.

So Rad M/C' is an injective module as it is a direct summand of an injective module.

But Rad M = F'is a free W-module of rank |A| and C has a generating set Y = {y,|y € I'}
with |I'| < |A]|. Let {xx|]\ € A} be a basis for the free W-module Rad M. Express each y,
in terms of the basis elements xy, A € A, for Rad M. Let F; be the submodule of the free
W-module Rad M spanned by the basis elements x) which occur with a nonzero coefficient in
the expansion of at least one y,, v € I'. Then Fj has rank < IT'|. Let F» be the submodule of
the free W-module Rad M spanned by the remaining x)’s. Then Rad M = Fy ® F» and F5 # 0
as we have strict inequality for the cardinalities: |I'| < |A]. Since C' < Fy,

This implies that F» is also an injective W-module since Rad M/C' is so. But a nonzero free
W-module is not injective, because radical of an injective W-module is equal to itself (by
Proposition 4.3) but a nonzero free module has proper radical (more generally any nonzero
projective module has proper radical, see for example [3, Proposition 17.14]). This contradiction
ends the proof. O

For a Dedekind domain W which is not a field, CoNeatw-poq = Complyy-poq only when
Rad W # 0:

Lemma 4.14. Let W be a Dedekind domain such that Rad W # 0. Then
Co—/VeatW_Mod = NeatW_MOd = ComplW_MOd.

Proof. The second equality holds for any Dedekind domain W by [2, Theorem 3.7]. Suppose
Rad W # 0. Then by Proposition 4.6, W is a semilocal ring. So by Theorem 3.9,

CoNeaty-aoq = ¢~ ({all simple W-modules}).
11



By Proposition 4.9,
v~ ({all simple W-modules}) = Complyy-sod-
O

Lemma 4.15. Let W be a Dedekind domain which is not a field such that RadW = 0. For
any mazimal ideal P in W, there exits a short ezact sequence E €€ Exty (W/P?, W) which is
in Neatw -pmod = Comply-moa but not in CoNeatw aoq, and hence not in Supplyy -mod-

Proof. By Corollary 4.8, for the ideal J = P? we obtain
Exty (W/P?, W) = Exty (W/J, W) & Exty (J /W, W) = W/JW = W/P?

Denote Comply_mods Suppl-amoq and CoNeatw_poq by C, S and c¢N respectively. By [2,
Theorem 3.8],

Exte(W/P?, W) = Rad(Exty (W/P?,W)) = Rad(W/P?) = P/P* # 0.

But Exts(W/P%2, W) < Extep(W/P?, W) = 0 since RadW = 0 by our assumption (the <
follows since Supply_amoq © CoNeatyw _poq by Proposition 4.10). Take a nonzero element
[E] € Exte(W/P2,W). Then E is in Complyy_aoq but not in CoNeatyy - pod- O

Theorem 4.16. Let W be a Dedekind domain which is not a field.
(i) If RadW =0, then
Supply -amoa & CoNeatw amoa & Neatw aoqa = Complyy aod-
(ii) If Rad W # 0, then
Supply-moa & CoNeatw poa = Neatw aod = Comply aod-
Proof. By Proposition 4.10,
Supplw-pmod € CoNeatw_aoqa € Neatw-aod = Compl-aod-

By Example 4.13, Supplyw-aod # CoNeatyw aod-

(i) If Rad W = 0, then CoNeatyw_amoqa 7 Neatw-smoq = Complyy-amoq by Lemma 4.15.
(ii) If Rad W # 0, then by Lemma 4.14, CoNeaty_aoa = Neatw-amoq = Complyy - mod-

O

Theorem 4.17. Let W be a Dedekind domain. Take a W-module B and a submodule A < B.
Suppose A is a finitely generated torsion W-module. Then A is neat in B if and only if A is
coneat in B.

Proof. By Theorem 4.16, we already have CoNeatyw_roqa € Comply-poa = Neatw-pod- SO
(<) holds for any W-module A. Conversely, if A is a finitely generated torsion W-module and
A is neat in B (so complement in B), then by [2, Theorem 4.1], A is a supplement in B, hence
A is coneat in B since Supplyy_soq € CoNeatw_aoq by Proposition 4.10. O

For a Dedekind domain W, the functor Exteompiy,. .., 15 factorizable as

FEx
W-Mod x W-Mod —2 W-Mod =% W-Mod

by [2, Theorem 3.8], but:

Theorem 4.18. Let W be a Dedekind domain which is not a field such that Rad W = 0. Then
the functors Extsuppiy v 010 Exteoneatyy oq @7€ DOt factorizable as

Extyy H
W-Mod x W-Mod —= W -Mod ——= W-Mod

for any functor H : W-Mod — W-Maod.
12



Proof. Denote Complyy_mmod; Supplw-mod and CoNeaty_ aoq by C, S and cN respectively.
Suppose for the contrary that Exts is factorizable as

Exty H
W-Mod x W-Mod —— W-Mod ——= W-Mod

for some functor H : W-Mod — W-Mod. So for all W-modules A and C, Exts(C,A) =
H(Exty (C,A)). Let P be a maximal ideal of W. In the proof of Lemma 4.15, we have found
that

Exty (W/P2, W)= W/P? and Exts(W/P2,W)=0.
This implies that H(W/P?) = H(Exty (W/P? W)) = Exts(W/P% W) = 0, hence H(W/P?) =
0. But also Exty (W/P?, W/P?) = W/P? by Corollary 4.8. By [2, Theorem 4.1], since W/ P?
is a finitely generated torsion W-module, we obtain

Exts(W/P%,W/P?) = Extc(W/P? W/P?)
= Rad(Exty (W/P?, W/P?) = P(W/P?) = P/P% +0.

So in this case H(W/P?) & H(Exty (W/P?, W/P?)) = Exts(W/P% W/P?) = P/P? # 0. This
contradiction shows that Extsuppiy, .. 15 0t factorizable.

Similarly, Ext.n is not factorizable. In the above proof, just replace S by c¢N. Note that
Exten (W/P2, W) = 0 since Rad W = 0, and

Exten (W/ P2, W/P?) = Exte(W/P?, W/P?)

by Theorem 4.17 as W/P? is a finitely generated torsion W-module and
NeatW_Mod = ComplW_Mod by [2, Theorem 37} [l

The neat submodules of a torsion module over a Dedekind domain coincides with its coneat
submodules:

Theorem 4.19. Let W be a Dedekind domain. Let B be a torsion W-module, and A any
submodule of B. Then A is neat in B if and only if A is coneat in B.

Proof. (<) always holds (for any module B) by Proposition 4.10. Conversely, suppose A is neat
in B. To exclude the trivial cases suppose that W is not a field, so its maximal ideals are nonzero.
To show that A is coneat in B, we must show that for every W-module M with Rad M = 0,
any homomorphism f : A — M can be extended to B. Since B is a torsion W-module, so
is its submodule A, hence f(A) is also a torsion W-module. So, without loss of generality, we
may suppose that M is also a torsion W-module. Decompose A, B and M into their P-primary
parts by Proposition 4.1: A = @p Ap, B = @pBp and M = @p Mp, where the index P
runs through all nonzero prime ideals of W, hence P runs through all maximal ideals of W.
For each maximal ideal P of W, let fp : Ap — Mp be the restriction of f to Ap, with range
restricted to Mp also (note that f(Ap) < Mp). Since 0 = Rad M = @ pRad Mp = Hp PMp
by Proposition 4.2, we have PMp = 0 for each maximal ideal P. So, each Mp is a Neatyw_atod-
injective module by [2, Theorem 3.7]. Suppose each Ap is neat in Bp. Then there exists
fp : Bp — Mp extending fp : Ap — Mp. Define f : B — M, by f(zpbp) = prp(bp)
for each ), bp € @ p Bp = B where bp € Bp for every maximal ideal P. Then f: B—M
is the required homomorphism extending f: A — M:
A=@pAp <. DpBp=B

-~

f@PfPl //fz@PfP
A

Thus, it only remains to show that each Ap is neat in Bp which follows since Neaty_poq is a

proper class: Ap is neat in A as it is a direct summand of A, and A is neat in B. So, Ap is neat

in B as the composition of two N eaty _aoq-monomorphisms is a N eatyy_pqo4-monomorphism

by proper class axioms. Since Ap < Bp < B, we have that the composition Ap — Bp — B of
13



inclusion monomorphisms is a N eatyy - pog-monomorphism, so the first inclusion monomorphism
Ap — Bp must also be a Neaty _aoq-monomorphism by proper class axioms. O

5. COINJECTIVES AND COPROJECTIVES WITH RESPECT TO Complw_mod, SUpplw-sod AND
CONSCLtw_MOd

By Theorem 3.10, we already know that Comply_aoq-coinjectives are only injective W-
modules. Since Suppliy-mod © CoNeatw-roqa © Complyy-aoq for a Dedekind domain W,
we have that Supply_aoq-coinjectives and CoNeaty_aqo4-coinjectives are also only injective
W-modules. By Theorems 3.11 and 3.12, if Rad W = 0, then Supplyy_smoq-coprojectives and
CoNeatyy_poq-coprojectives are only projective W-modules.

Theorem 5.1. For a Dedekind domain W, Comply .aoq-coprojectives are only torsion-free
W -modules.

Proof. Firstly, each torsion-free W-module C' is Complyy_aoq-coprojective because every short
exact sequence

E: 0—sA-1.p "¢

of W-modules is in Comply_amoq: By [2, Theorem 3.7],
Complyy_aod = Neatw_aoq = 7 ({W/P|P maximal ideal of W})

So, it suffices to show that every simple module W/P, where P is a maximal ideal of W,
is projective with respect to [E. But that is clear since the image of a homomorphism « :
W/P — C' is torsion as W/ P is torsion, so there is no homomorphism W/P — C except the
zero homomorphism which of course extends to W/P — B as the zero homomorphism.
Conversely suppose C' is a Complyy_aoq-coprojective W-module. Since the proper class

Comply-mod = ¢~ ({W/P|P maximal ideal of W})

is injectively generated by all simple W-modules (by Proposition 4.9), we know that a W-
module C' is Complyy_poq-coprojective if and only if Ext%,V(C, S) = 0 for all simple W-modules
S by Proposition 2.2. Suppose for the contrary that C is not torsion-free. Hence there exists
0 # ¢ € C such that Ic = 0 for some nonzero ideal I of W. Consider the submodule We of C.
Since We is a torsion module, it has a simple submodule S by Proposition 4.4. Say S = W/P
for some maximal ideal P of W. Consider the short exact sequence

0——>5—Ls0c2o0/5—0

where f is the inclusion homomorphism and ¢ is the natural epimorphism. By the long exact
sequence connecting Hom and Ext, we have the following exact sequence:

..—Ext},(C, S) = 0— Ext}; (S, ) = 0—— Ext#,(C/S,5) = 00— . ..

C 0

Here Exti;(C,S) = 0 because C is Complyy.aoq-coprojective and Exti,(C/S,S) = 0 since
Ext%,v = 0 as W is a hereditary ring. Thus the above exact sequence implies that Ext%/V(S ,S)=0
which is the required contradiction since Extiy(S,S) = Extl, (W/P,W/P) = W/P # 0 by
Corollary 4.8. O
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