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Ozet

Bu projede gegirgen ince bir malzeme ile kaplanmig bir cismin ve/veya fizik-
sel ozelliklerinin birkac diizlem dalga ile sabit bir frekansta aydinlatilarak
bulunmasi problemi ele alinmugtir. Iteratif regiilarize Newton metodu ve
dogrusal olmayan integral denklem tabanli ¢egitli tersini alma algoritmalar
onerilmigtir. Sinir deger problemlerinin klasik Newton iterasyonlari ile ortaya
¢ikan ¢oziimleri matris vektor ¢arpimlari ile yerdegistirildigi i¢in hesaplama
agisindan metodlar etkindir. Sentetik veri iiretmek icin spektral olarak has-
sas bir diiz problem ¢6ziimii detayli olarak sunulmustur. Diiz problem ¢6ziim
metodunun ve kaplama bulma metodunun uygulanabilirligi sayisal 6rneklerle
gosterilmektedir.

Anahtar kelimeler: integral denklemler, ters problemler, spektral metod-
lar, GESK, kiiresel harmonikler, Tikhonov regiilarizasyonu, Fréchet tiirevi,
Newton-tipi metodlar
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Abstract

In this project the problems of reconstruction an obstacle coated with a thin
layer of an penetrable material or/and its physical properties from measure-
ments for a few incident plane waves at a fixed frequency are considered.
Several inversion methods based on an iteratively regularized Newton-type
method and nonlinear integral equations are proposed. The methods are ef-
ficient from the computational point of view since the solutions of boundary
value problems appearing in the classical Newton iteration are replaced by
matrix-vector products. To generate synthetic data a detailed description of
a spectrally accurate method for the direct problem is presented. The feasi-
bility of the direct solution method and the coating reconstruction method
is illustrated by numerical examples.

Keywords: integral equations, inverse problems, spectral methods, GIBC,
spherical harmonics, Tikhonov regularization, Fréchet derivative, Newton-
type methods
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Chapter 1

Introduction

The generalized impedance boundary conditions (GIBC’s) are used to model
obstacles coated with a thin layer of a penetrable material, obstacles with
corrugated surfaces or to model more accurately imperfectly conducting ob-
stacles. These boundary condition were introduced in 1940s in the area of
electromagnetic for modeling of an electromagnetic wave propagation over
irregular terrains, Senior and Volakis (1995). Since then GIBC’s are used
for simplifying the analytical solutions or reducing the cost of numerical
solutions for problems involving complex structures not only in electromag-
netics Duruflé et al. (2006) but also in many other disciplines, in particu-
lar, three-dimensional acoustic problems, Antoine et al. (2001); Antoine and
Barucq (2005); Haddar et al. (2005); Bourgeois and Haddar (2010); Kateb
and Le Louér (2016).

The inverse problems we are interested in are to determine the surface
impedance functions or/and boundary shape of an obstacle from the knowl-
edge of the far field pattern for a few incident plane waves. This problem
appears in practical application such as NDT for detecting porosity, recon-
struction of surface roughness or coating thickness, Aslanyiirek and Sahintiirk
(2014), for modeling related to stealth technology or antennas, Bourgeois
et al. (2011). Additionally, it is motivated by the need to minimize the wave
reflected by the obstacle in some directions what can be achieved by intro-
ducing a coating on the surface of the obstacle. The GIBC we are considering
is written as follows

Ju

m +ik(A — Divp Grad)u =0, onT
v

where Grad and Div are surface gradient and surface divergence operators

1
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on the surface I and v is the outward unit normal vector to T

The literature overview for the inverse GIBC related problems in two
dimensions reveals the following research results. In the case of Leontovich
boundary condition, i.e. u = 0, the problem for reconstruction the impedance
and the shape of the obstacle is well-studied, see e.g. Liu et al. (2007). The
numerical solution for the general case u # 0 was investigated by Bourgeois
et al. (2011); Bourgeois and Haddar (2010) with the aid of variational for-
mulation for the solution of the direct problem and by Kress (2018) with
the solution method completely based on the boundary integral equations.
Assuming that the boundary I is also unknown the variational approach was
extended to the simultaneous reconstruction of the shape and the impedance
functions, Bourgeois et al. (2012). A closely related inverse scattering prob-
lems with generalized oblique derivative boundary condition was considered
in Wang and Liu (2015) and the linear sampling method was developed for
the shape reconstruction, Wang and Liu (2016).

Regarding the inverse GIBC related problems in three dimensions the
currently available literature is scarce. For the inverse impedance problem a
nonlinear boundary integral equation approach was proposed in Ivanyshyn
and Kress (2011) for the case of Leontovich boundary condition. Further-
more, the theoretical study on the boundary integral equation methods for
the direct scattering problem with generalized impedance boundary condi-
tion was recently undertaken by Kress (2016).

During this project we developed reconstruction algorithms based on an
iteratively regularized Newton-type method and nonlinear boundary integral
equations. Extending the study of Ivanyshyn and Kress (2011) to the second
order boundary condition we employ an analogue of the Huygens’ principle
for GIBC for deriving a system of nonlinear integral equations equivalent to
the inverse problem and propose several ways of its stable solution.

The report is organized as follows. In Chapter 2 we formulate a di-
rect boundary value problem for the Helmholtz equation with GIBC in 3D,
present its analytical solution for a special case and a spectrally accurate
method for its numerical solution. Additionally, we develop a numerical
method for the modified Helmholtz equation with GIBC in 2D. Chapter
3 is dedicated to the inverse problems under consideration. In particular,
the question of uniqueness is addressed and iterative inversion schemes are
proposed. Chapter 4 is allocated for the detail descriptions for the imple-
mentation of the proposed methods and for the validation of the methods by
numerical examples. Discussions and outlook are summarized in Chapter 5.
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Chapter 2

Direct boundary value problems
with GIBC

In this chapter we review known results for the direct problems, find ana-
lytical solutions for special cases and develop numerical solution methods.
Whereas the direct and inverse problems for the Helmholtz equation with
GIBC in 2D is well-studied, there are fewer results for the Helmholtz BVP
in 3D. In addition to the Helmholtz equation in 3D we mention some re-
sults to the closely related problems such as Laplace equation in 3D and the
modified Helmholtz equation in 2D.

2.1 Helmholtz equation in 3D

To generate synthetic data for the inverse problem we firstly review the known
results for the direct problem. Mathematically, the direct scattering prob-
lem for an obstacle with generalized impedance boundary condition can be
stated as follows. Let D C R? be a simply connected bounded domain with
boundary I'. Given the incident plane wave u’(z) = e**¢ with wave number
k > 0 and the direction of propagation d the scattering problem consists in
finding the total field u = u® +u such that u satisfies the Helmholtz equation

Au+ku=0 inR*\ D, (2.1)
the generalized impedance boundary condition (GIBC)

? +ik(A — Divp Grad)u =0, onT (2.2)
v
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where Grad and Div are surface gradient and surface divergence operators
on I and v is the outward unit normal vector to I'. For brevity of notations,
we introduce the differential operator

G(A, p;u) = ik(A — Div pu Grad)u.

The scattered field has also to satisfy the Sommerfeld radiation condition

lim r <aali - ikus) =0, r=]lx| (2.3)

T—00

uniformly with respect to all directions. The Sommerfeld radiation condition
guarantees the following asymptotic behavior of the scattered field

N ORI

uniformly in all directions with the far field pattern u., defined on the unit
sphere S?, Colton and Kress (2013b).

2.1.1 Well-posedness

Due to Kress (2016) we have the following well-posedness for the boundary
value problem (2.1)-(2.3).

Theorem 2.1 Let D C R3 be a bounded domain with a connected boundary
U of Hélder class C**. Assume X € C'(T'), p € C*(T') with Re, Rep >0
and || > 0. Then there exists a unique solution u € HE (R3\ D) to (2.1)-
(2.3).

Proof. For the sake of completeness, we recall the ideas of proof presented in
Kress (2016, 2018). Since ulp € H2(I') GIBC has to be understood in the
weak sense

0
/r (na—z + ikAnu 4 1kn Grad n - Grad u) ds=0, Vne H%(F)- (2.4)

By Rellich’s lemma, (Colton and Kress, 2013b, Theorem 2.13), the direct
problem has at most one solution provided ReA, Reu > 0.
The solution is represented as the combined layer potential

wi) = [ o)+ 75 o) s, « € B\ D, p e 1),

4
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1 eikla—yl

—— x # yis the fundamental solution to the Helmholtz
A |z —y|’

where ®(x,y) =

equation in R3.
Substituting it into GIBC (2.2) and using the jump relations of layer
potentials yields equivalence of (2.1)—(2.3) to the integro-differential equation

i

. . . ou
o —K'vo—iTp -G\ p; Sp +ip +iKp) =2

ay F+ g( 7:u7u|f‘)7

where S and K are the single- and double-layer potential operators, corre-
spondingly are defined by

(Se)() = / B (2, y)ply) dsy). (2.5)

(Ke)a) =2 [ To oty ds(y), (2.6)

and K'p = a{;@f, Ty := aK“’ are their normal derivatives. The operator

0(z,y)

(K )w) =2 [ Tlo) dsty .7

T

is adjoint to the operator K with respect to L? bilinear form. The statement
is completed by showing that the modified Laplace-Beltrami operator ¢
— Div Grad ¢ + ¢ is an isomorphism from H%(F) onto H_%(F), employing
boundedness of S, K : H3(I') — Hz(T') in the case I' being of Hélder class
C*>, Kirsch (1989), using compact embedding IH%(F)e_}H,%(F) and finally
applying the Riesz theory. a
Newly the following existence result was proved under the weaker conditions
on the boundary and the surface impedance functions, Colton and Kress (to

appear).

Theorem 2.2 Let D C R? be a bounded domain with a connected boundary

I of Hilder class C**. Assume X\ € C(T'), u € CHT ) with Re), Rey >0

and || > 0. Then there exists a unique solution u € Hy!(R?\ D) ={u €
Hioo(R*\ D) s ulr € HY(T)} to (2.1)-(2.3).
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2.1.2 Boundary Integral Equation Method

We seek the scattered field u® € HZ_(R3\ D) in the form of a single-layer
potential

w(@) = [@e)eds). ©eB\D, (2.9
r
1 eilc|ac—y|
where ®(x,y) = EH, x # y is the fundamental solution to the Helmholtz

equation in R? and ¢ € Hz(T'). Substituting the total field to the boundary
condition (2.2) and using the jump relations for the single-layer potential,
Colton and Kress (2013b), we obtain the following integro-differential equa-
tion

ou’

ov

It is shown, Kress (2016), that the operator A(\, ;) : H2(T') — H~2(T")
defined by

o —K'o—G\ u;Sp) =2

+26(\, pu'lr) (2.9)
r

AN s p) = — K'o = G(A, 115 Sp) (2.10)
has a bounded inverse provided k? is not a Dirichlet eigenvalue for the neg-
ative Laplacian in D. Hence, our synthetic data u,, € L*(S?) can be found
as following
1
T 4m

A~

Uoo ()

/e‘iki'ygp(y) ds(y), x:= L €S2
r

R

2.2 Analytical solutions

In this section we present analytic solutions to the exterior boundary value
problems for the Helmholtz and Laplace equation with GIBC in the case of
a ball and constant surface impedance functions.

2.2.1 Helmholtz BVP with constant impedances

Let D be a ball of radius R centered at the origin and let A\, ;1 be constants
such that ReA >0, Reu > 0, |u| > 0.

To start, we use the facts that spherical harmonics form a complete or-
thonormal system in L?(S?) and that any radiating solution can be rep-
resented in terms of spherical Hankel functions of the first kind AL and
spherical harmonics Y,", Colton and Kress (2013b).

6
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Theorem 2.1 The functions {Y" : |m| <n,n € NU{0}} are complete in
L3(S?); i.e. every function f € L*(S?) can be expanded into a generalized
Fourier series in the form

f= ZZ (£, Y @)Y,

n=0 m=—n

The series can also be written as

o0

F@) = 3= Cn+ 1) [ fP - o)ist). e

n=0
The convergence has to be understood in the L*-sense.
Theorem 2.2 Let k > 0 and u € C* (R*\ B[0, R]) satisfy Au + k*u = 0
in the exterior of the ball of radius R centered at the origin, B[O, R]. Fur-

thermore, assume that u satisfies the Sommerfeld radiation condition (2.3).
There exist unique o' € C,|m| <mn,n=0,1,2,3,... with

ZZahlkr m(E), r>R, ieS

n=0 m=—n

The series converges uniformly with all of its derivatives on compact subsets

of R3\ B0, R].

ey 4

Figure 2.1: Spherical coordinates

Since p is a constant we can rewrite

Dives p1Gradgs Y,"(2) = 11/ R*A2Y,"(R3),

7
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where Ag2 is the Laplace-Beltrami operator
1 9 [.  oud,o) 1 0%u(h, ¢)
— 6 :
sin 0 06 [Sm o0 TS d¢?

Substituting the Jacobi-Anger expansion for an incident plane wave

eihREd — WZ Z " (KR)Y™(2)Y.™(d)

n=0 m=—n

ASQU(Q, QZ5) =

with incident direction d to the generalized boundary condition (2.2) and tak-
ing into account that the spherical harmonics are eigenvalues of the Laplace-
Beltrami operator, i.e.

Divge p1Grads Y,"(2) = —n(n+1) u/R*Y,™(RZ)
we obtain an equation for the unknown coefficients.

(kjp(kR) + ik (\jn(kR) + pn(n + 1)j.(kR)/R?))
kR (kR) + ik(ASY (KR) + pn(n + RS (kR)/R?)

" = —4i"Y " (d)

By the following we find the expression for the unknown far field patter.

Theorem 2.3 The far field pattern of the radiating solution to the Helmholtz
equation with the expansion

Z Z a™ iV (k|z|) Y7 (), & € S?
n=0 m=—n
15 given by the uniformly convergent series

Uy = kzznﬂ Z a'y".

m=—n

2.2.2 Laplace BVP with constant impedances

In order to cover the case of a very small wave number, the Laplace equation
is added to the project study. Consider the following boundary value problem
with GIBC

Au=0 in R*\D

8
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ou

%‘F()\—MAF)UZ.]C, on I
u(z) =o(1), |x]— o0

Using the the weak form of the boundary condition we obtain and Green’s
theorem

/ |Vul? dx +/ (Au|* + p| Gradsz u|?) ds =0
D I

and hence the stated BVP has at most one solution for positive impedances.
Using separation of variables and Theorem 2.1 we find hat the solution is
represented by

00 l

u(r,0,¢) =Y > By (6,¢)

=0 m=—1

with the coefficients given below

27
/ / f(8,9)Y;™ (6 Y™ (0, ¢) sin 0dpdd
—(14+ 1D)R™ED=L L ARFD (1 4 1) R D

L —

2.3 Modified Helmholtz equation in 2D

Let D be simply connected and bounded domain in R? with boundary dD.
We denote by v the unit normal vector directed into exterior of D. Given
g€ H 2(dD),u > 0 and A > 0 find a solution v € H%(D) to

Au—FKku=0 in D (2.11)

with wave number £ > 0, that satisfies

ou d du
Em +k ()\ - %p%) =g ondD (2.12)

In the weak sense (2.12) can be considered as

/ (ga— + kAU + ku—cd—) ds= [ Cgds, V(e H?*(OD) (2.13)
op \"0 ds d oD
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u, A € CY(D) and % is tangential derivative and s is arc length. The deriva-

tive d% with respect to arc length in (2.12) has to be understood in weak

sense.

This problem arises in implicit marching schemes for the heat equation,
in Debye—Huckel theory, and in the linearization of the Poisson—Boltzmann
equation Juffer et al. (1991); Liang and Subramaniam (1997); Russell et al.
(1989).

2.3.1 Boundary Integral Equation Method

We seek solution in the form of a single layer potential
u(r) = / O(z,y)e(y)ds(y), ze€D,
oD
where o € H2(0D) and

1
O(z,y) = gKO(k\l‘ -y

is fundamental solution of modified Helmholtz equation in R?

Ko(z) = — (111% +a) Io(x) +2§: ngk(x)

with Euler constant o = .5772156... and K, Iy are modified Bessel func-
tions. The boundary condition (2.12) is satisfied provided ¢ solves the bound-
ary integral equation

1 d d
K'o+ = il — 92.14
90+290+k‘(A dsuds)&p g (2.14)

where S : H-2(0D) — H2 (D) and K’ : H2(8D) — H~2(9D) are bounded
integral operators defined by

(S)(x) = 2 / Baa)e)isl). € oD

and

(W) = [ D)

o) PWdsly), e dD.

10
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Theorem 2.1 For each g € H’%(aD), the boundary integral equation (2.14)
has a unique solution ¢ € H%@D)

Proof. The boundary value problem (2.11)-(2.12) has at most one solution.
Assume that ¢ € H2(9D) and define

d2
Arp=—Sp+ Spds
d82 oD
1dup A 1
Agp = —-Sp = —5p — —(K'o+9)— [ Se¢
p ds I I oD

The operator A, : H2(9D) — H~2(dD) is invertible with a bounded inverse
and the operator Ay : H2(0D) — H~2(dD) is compact. Uniqueness of BVP
yields u = 0 in D. Taking the boundary trace of u we obtain ¢ = 0. The
proof is completed by Riesz theorem. O

Assume that the boundary 9D, of the bounded domain D € R? is analytic
and has a 2w —periodic parametric representation of the form

0D = {2(t) = (21(t), (1)) : 0 < t < 21} (2.15)

where z : R — R? is analytic and 27-periodic with |2/(t)| > 0 for all £. We
denote ¢ := ¢ o z. The boundary integral equation (2.14) contains integrals
with smooth kernel, a weakly singular and a strongly singular kernel. We
split off each of this singularity with the aim to compute the corresponding
integral analytically. Fo instance, we represent the tangential derivative of
the single-layer potential in the form

d(S(Z)(t) _ ﬁ/o ﬂcotT;tgo(T)’Z/<T>’dT+/o 7rL(t7T)gp(zf,7')‘2/(7')|d7'

where

- T

t
L(t,7) = Li(t,7) In (4 sin? ) + Lo(t, 7)
and Ly, Ly are smooth. The second tangential derivative of the single-layer
operator with aid of partial integration reduces to
d2 S t 1 2 _t 27
S _ 1 "7
0

ey 5 (P (T)]) dr + i N(t, 7)e(r)]2'(7)ldr

11
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where NV is a weakly singular kernel with the logarithmic singularity. The
parametrized form of the integral equation (2.14) can be summarized in the
following compact form

Te+ By =g, (2.16)

where T is bounded from HP™'[0,27] — HP[0,27],p > 0 and has a bounded
inverse T-' : H?[0,27] — HP'[0,27]. The operator B : HPT'(0,27] —
HP?[0,27] can be seen to be compact since all kernels are either continuous or
weakly singular. Hence from the Riesz theory (Kress, 2014, Corollary 3.6),
T + B has bounded inverse and it is injective, therefore the solution exists.
For details we refer to Ivanyshyn Yaman and Ozdemir (to appear).

12
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Chapter 3

Inverse Problems

The inverse problems we are concerned with are formulated as following.

(IP1)

(IP2)

(IP3)

3.1

Reconstruction of surface impedance functions

Given the shape I" and the location of the obstacle D and the far
field pattern u, for several incident plane waves determine the surface
impedance functions A and p.

Reconstruction of the shape of the obstacle

Given the location of the obstacle D, the surface impedance functions
A and p and the far field pattern u., for several incident plane waves
determine the shape I' of the obstacle D.

Reconstruction of the shape and the properties of the obstacle

Given the location of the obstacle D and the far field pattern u., for
several incident plane waves determine the surface impedance functions
A and p and the shape I'.

Uniqueness

Before starting to solve the inverse problem we need to figure out what is
the minimal number of far field patterns to guarantee the uniqueness of the
solution. Due to the result of Bourgeois, Chaulet, Haddar Bourgeois et al.
(2012) it is known that both the shape and the impedance functions are
uniquely determined by the far field patterns for an infinite number of in-
cident waves with distinct incident directions and one fixed wave number.

13
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The more suitable result for the numerical methods was recently found by
Cakoni and Kress, Cakoni and Kress (2013); Kress (2018), in the case of two
dimensions. They have shown that three far field patterns corresponding to
the scattering of plane waves with different incident directions uniquely de-
termine the impedance function for a given shape I'. Unfortunately, there is
no straightforward conclusion for the uniqueness in three dimensions. More-
over, extending the counter example given in Kress (2018), we can show
non-uniqueness for the inverse impedance problem with finite number of far
field patterns corresponding to incident spherical wave.

Let D be a ball of radius R centered at the origin and let A\, i be constants
such that ReA >0, Rep > 0, |p| > 0. We consider incident spherical waves
u'(x) = ju(k|z))YA(2), |¢| < n, n € IN where j, is the spherical Bessel
function and Y is the spherical harmonic of n degree and ¢th order. The
corresponding total fields are given by

ug(w) = (ju(klz]) = an hi) (kl2])) Y(T).

Substituting the total fields in the generalized impedance boundary condition
(2.2) and recalling that the spherical harmonics are eigenfunctions of the
Laplace-Beltrami operator we find the coefficients

L _kjukR) +ik(A+n(n+1) u/R?) ju(kR) (3.1)
" kY (kR) + ik(A + n(n + 1) p/R2) hD (kR) '

The denominator in (3.1) does not vanish due to Rellich’s lemma and the
assumptions on the impedance coefficients. Hence, we can choose different
combinations of impedances A and p giving the same value of a,, and 2n + 1
linear independent total fields. Uniqueness for (IP1)-(IP3) with finite
number of incident plane waves is an open question in 3D.

Note, this model example demonstrates also another difficulties of the
inverse impedance problem such as nonlinearity and severe ill-posedness.

In the case when the far fields associated to plane waves with all incident
directions are known there is a uniqueness result, Bourgeois et al. (2011),
concerning identification of both the obstacle D and the impedances \, u —
(IP3).
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3.2 Nonlinear boundary integral equations

The main idea of the methods we propose is to replace the solution of the
inverse problems (IP1)—(IP3) by the solution of systems of nonlinear integral
equation. To derive the system we employ Green’s formula, (Colton and
Kress, 2013b, Theorem 2.5), to the scattered field

s/ i 8¢($,y)_8us(y) . . . 3\ =
wo) = [ {5t - W)} as), wer\D

and Green’s theorem to the entire solution u’ and ®(x, )
L 0®(z,y)  Oui(y) } 5y =
O:/{ul — O(z,y) ¢ ds(y), = e€R*\D.
W0 By Y ds) \

Substituting the total field to the boundary condition (2.2) we find its rep-
resentation in terms of the boundary traces, i.e., for x € R3\ D

{5 u) 4 0o GO0 ) | ds). (32
Considering that the influence of a given object on an incident field is de-
scribed by a distribution of the so-called "secondary sources" along the sur-
face we may interpret (3.2) as Huygens’ principle, Colton and Kress (2013b),
for generalized impedance scattering.

As the next step we recall the single- double-layer operators S, K : Hz (T)
H2(I) defined by (2.5) and introduce the far fields for single- and double-
layer operators Seo, Koo : H72(I') — L2(S?) defined by

u(z) = u'(z) + /

T

(Suf)@) 1= 1= [ el dsly).

(Koop) (@) := = | eV E - v(y)e(y) ds(y).
T Jr
From the jump relations for single- and double-layer potentials, the asymp-
totic behavior of the Hankel functions we derive the following theorem which

lays a foundation for the inversion method.

Theorem 3.1 For a given boundary T, an incident field v and the corre-
sponding far field pattern us, assume that the surface impedance functions

15
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A, 1o and the density o satisfy the system of nonlinear boundary integral equa-
tions

p— Ko —SG(\ ) = 2u'r, (3.3)
Koo + Soc G(A, 115 0) = Ueo. (3.4)
Then X\, i are the solutions to the inverse impedance problem (IP1).

Proof

Consider the total field expressed via (3.2). Then its far field uy is repre-
sented by K@+ So G(A, i1; ) and hence the data equation (3.4) guarantees
that the scattered field has a correct far field pattern. Recalling that ¢ = ulr
and taking the Dirichlet trace of (3.2) by the jump relation for layer poten-
tials, Colton and Kress (2013b), we find

20 =2u'lr + o+ Ko+ SG\ 15 9).

Hence the field equation (3.3) ensures the boundary condition (2.2). O
Note, the obtained system is ill-posed due to the data equation which contains
the compact operators with exponentially decreasing singular values.

The analogous theorems hold for the inverse problems (IP2) and (IP3).

3.3 Reconstruction of surface impedance func-
tions
We list several methods to solve the system (3.3)—(3.4), i.e. (IPI).

1. Introducing the new unknown yx = G(\, p; ) we can interpret the sys-
tem as linear which can be solved by the Tikhonov regularization. The
unknown impedance functions are then solved from the above differen-
tial equation.

2. Solving the density ¢ from the field equation and linearizing the data
equation.

3. Reversing the order of the equations in the 2nd method.

4. Simultaneous linearization of both equations with respect to all un-
knowns

16
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The first method resembles in some way the direct approach for the in-
verse problem with the Leontovich boundary condition, Ivanyshyn and Kress
(2011). The overview of the methods 2-4 for the boundary shape reconstruc-
tion can be found for example in (Colton and Kress, to appear, Section 5),
Ivanyshyn et al. (2010). Since the first method was found to be less stable as
compare to the method based on the simultaneous linearization we continue
the study on the latter one, method 4.

In order to investigate the properties of the boundary integral operators
appearing in (3.3)—(3.4) we introduce a bounded linear operator A’(A, u;-) :
H='2(T") — HY*(T') defined by

AN p0) =0 —=Kp—SGA 15 9)

and a bounded linear operator A’_(\, u;-) : H~V/2(T') — L?(S?) defined by

AL\ 159) = Koop + Seo GO, 1590).

Note that the operator A’(\, y; ) is adjoint of the operator A(A, u;-) defined
by (2.10) in the dual system < HY2(I'), H-Y2(I') > with respect to L?
bilinear form. Applying the Fredholm alternative we find that

Theorem 3.1 The operator A'(\, p;-) : H-/2(T') — HY*(T') has a bounded
mnuverse.

Having found the Fréchet derivatives of the operators in (3.3)—(3.4) we
are ready to formulate the fully linearized system. The inverse problem is not
uniquely solvable for one incident plane wave and uniqueness for the finite
number of incident direction is an open problem in three dimensions. Moti-
vated by the uniqueness result in two dimensions we consider the nonlinear
system (3.3)—(3.4) for p > 3 incident plane waves

ub(z) = e*vde d, € §2

Given the current approximation ¢, = u|p, £ = 1,p, A, u the fully linearized
system reads

AN s e) = SG(0,CGoe) = 2uylr — AN ps0), 1 <0< p, (3.5)

for the unknown updates ¢y, n, ¢ of the functions @y, A, u, correspondingly.

17
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In order to apply the Tikhonov regularization we need to investigate
injectivity of the system (3.5)—(3.6)at the exact solution. Unfortunately, this
issue is not resolved yet since it is directly related to the question of unique
reconstruction of the surface impedances. To demonstrate the connection
between the uniqueness issue and the injectivity of the operator in the system
system (3.5)—(3.6) we define a function V, for x € R®\ D by

Vi) =2 [ {20 ) + 0o )00 s b)) + D)0 200 0) s,

where ¢, = w|r is the restriction of the total field corresponding to the
incident plane wave v} to the boundary I'. The equation (3.6) guarantees
Voor = 0, and by Rellich’s lemma we obtain V; = 0 in R*\ D. From the jump
relations for single- and double-layer potentials, Colton and Kress (2013b),
it follows that 1, = 0. From (3.6) and the assumption k? is not a Dirichlet
eigenvalue for the negative Laplacian in D we can conclude that G(n, (; p) =
0, i.e.
(n — Div¢ Grad)p, = 0

This leads us to the unsolved uniqueness problem. Indeed, choosing D to be
a ball of radius R centered at the origin,  and ¢ to be constants, recalling
that the spherical harmonics are dense in L?*(S?) we arrive to the equation

n+n(n+1)¢=0.

Since 1 and ( are the unknown updates, we cannot put positivity restriction
on their real or imaginary parts and hence there is a nontrivial solution.

The remedy to this might lie in a special choice on incident directions.
However, there is no solution available at the moment and this issue will be
closed automatically once the uniqueness question is resolved.

3.4 Investigation of inverse solution methods
for a ball

For a special case of a radially symmetric incident wave we derive a system
of nonlinear equation for the unknown radius R and the unknown scattered
field on the boundary.

We consider a superposition of plane waves and by Funk-Hecke formula

we obtain sk
/ ehed gg(q) = ATSORI] g
S2

||
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Scattering of this incident field

u'(z)

_ sink|x|

|z]

by a ball of radius R generates a radially symmetric scattered field for con-
stant impedance functions. The scattered field is equal constant C' on the
sphere, consequently Ag2u = 0 and the system of integral equations simplifies

to
(I - K= Sik\C =2u'| _, (3.7)

(Koo + Soo ikA)C' = e (3.8)

Using this fact and Green’s theorem for spherical Bessel functions uy =
Jo(k|z|) we find, (Colton and Kress, 2013b, Section 2.4),

0P (x,2z)  Oug(2) o e — 0.4
/|Z:R {UO(Z> ) o) @ )}d (2)=0,x>R (39

and by Green’s formula applied to spherical Hankel functions of the first kind
vo(2) = h{" (k|z|) we obtain

00 (x, 2) _87}0(2) s ) — ol L
/|z:R {”“(Z) ) o) T >}d (2) = w(x),a] > R. (3.10)

Taking the difference between (3.9) multiplied by vy and (3.10) multiplied by
up and noting that

1

Jo(B)yo(t) — Jo(t)yo(t) = ) (3.11)
we find that
1 .
s /IZ:RQD(I,Z)CZS(Z) = jo(kR)R" (k|z]), |z| > R. (3.12)
, sint (1) et
Due to jo(t) = - and hy ' (t) = e have
)
sin kR e**lz!

d(x,2)ds(z) = R————, |x| > R.
/.Z_R< Jis(e) = RIS

Since the single-layer potential can be continuously extended up to the bound-

ary we have
sin kR e'*F

k R

S1=2R
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Taking the difference between (3.10) multiplied by wu{, and (3.9) multiplied
by v, we have

/Riag)if;;—) (o (k2D yo(k|2]) — yo(K|2])do(k|2]))ds(2) = jo(kR)ve(x)

and due to (3.11) we find that

i 0®(x, 2 y
 k2R? /lRﬁdS(Z) = # (kR (k|z]), |z >R

and
ikR

K1 =2(kRcoskR — sinkR) GR .

Furthermore, from the asymptotic behaviors of the fundamental solution
and spherical wave functions we find the values of the far field operators
applied to a constant

Sl = RsmkkR, K1 = kRcoskR — sin kR

In this way, a system of nonlinear boundary integral equations (3.7)-(3.8) for
the unknown radius and the unknown constant density is reduced to

sin kR

(1-2f(R)e*) C = 2 7

f(R)IC = uy,

1
where f(R) = kR(coskR + ME sin kR) — sin kR.

The two-by-two system of algebraic equations is linear with respect to C
and nonlinear with respect to R. We rewrite the system in the operator form

2sin kR

R
f(R)C

_ ikR _
F(C.R) = [0.u)’, F(C.R) = | (172 C
The operator F' is twice continuously differentiable for R # 0,

(1 o 2f(R>€sz) _2Cfl<R)esz o 2czkf<R)esz o 2kRCos k}f;fsin kR

f(R) Cf(R)

20
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detF’(C, R) _ Cf/(PL) +2f(R) (Zka(R)esz—F kRcoskR — SlnkR)

R2
Considering the case of the exact solution, i.e. C' found from (3.7) using
the symbolic computations we find that det F[’C’R] # 0. By the Newton-

Kantorovich theorem, Kantorovich (1948); Ciarlet and Mardare (2012), the
Newton method for this model example converges quadratically.

3.5 Reconstruction of the boundary shape and
impedances

In this section we propose several iterative scheme for the shape and impedance
functions reconstruction.

We will assume that the surface I' is C*®-smooth, homeomorphic to the
unit sphere S? and has a star-shaped representation

[:=T,={z2)=r@)i:1c8S*

with 7(Z) > 0 for # € S* and the Jacobian of the transformation r is given
by

J, = r/r? 4 | Gradg 7[2.

The subscript r indicates the nonlinear dependence of the operators on the
boundary shape. Similar to results presented in Section 3.2. we derive
a system of nonlinear integral equation equivalent to the inverse problem
(IP2). We replace the integral operators and the right-hand sides by their
parametrized form, e.g.

1 Ciklr(@)a—r(9)9)|

S(ryp)(@) = o T EE =00 () J.(§)ds(9), & e S

We use the following transformation

(Gradru) o z = [Dz*] 7 Gradg:(u o 2),

(Divpv) o 2 = Ji Divg: (J;[Dz] ™! (v o 2)),

T

with Dz the total derivative which maps the tangent plane to S? to the tan-
gent plane to " and the operator [Dz*]~! maps the cotangent plane to the unit
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sphere S? to the cotangent plane to the given surface I. The parametrized
version of the operator G takes the form

wamaz(M@—jia

The first group of methods is based on the direct integral equations.

Divge (J,(2)p(2) Gradse @(i))) .

3.5.1 Method based on the direct integral equation ap-
proach

The system of nonlinear boundary integral equations then reads
¢ — K(r, ) = S(r,G(r,¢)) = 2u'(r), (3.13)
KOO(T7 30) +SOO(T7G(T7 90» = Uoo- (314)
Firstly, we would like to note the difference in the Fréchet differentiabil-
ity of the boundary integral operators w.r.t. impedance functions and shape.
Although, the inverse problem for impedance reconstruction (IP1) is nonlin-
ear, the integral operators occurring in the proposed method are linear with
respect to each impedance. The situation is different for the differentiability
w.r.t. the shape, since all integral operators are defined over the unknown

boundary.

The Fréchet differentiability of the boundary integral operators in (3.13)-
(3.14) is obtained by proving the Fréchet differentiability of their kernels,

Potthast (1994). By this result, the exact representations of the derivatives
of nonlinear integral operators with respect to shape are found.

Theorem 3.1 The operator S : C3(S%,R) x H~Y/2(S?,C) — HY*(S?,C) is
Fréchet differentiable and the first derivatives at r in the direction q € C3(S?)
is a bounded linear integral operator from H~Y/2(S? C) to H/*(S?,C) defined
by

! i 1 I ) 1 ik|r(2)2—r(9)y
S'(r,p;9)(2) = %/82 o(9) (Zk— i )e’ﬂ (2)2—r ()3l

— —— J () ds(y
r@) — )il (9)ds(9)
1 etklr(2)2—r(9)9)| (8) 7a(@) - 5 ds(3)
+— ~\ ~ r4 S )
o Jeo Ir(@)a — r(g)p)| T TV
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where

L) 1
o)

Jq(z) = (r(2)q(z) + Gradsz () - Gradsz ¢(%)) .

The operator S'(r,-;¢) is linear w.r.t. ¢ and it represents a linearization of
S(r,+) in the sense that

IS(r + ¢, ) = S(r, ) = S'(r, 03 Dl 17252y = 0llallE2s2))-

Recalling the operator

G(r,p)(z) = ()\(92’) - Divge (J,(2)p(2) Gradse gp(fc))) :

1
i (2)

we find its Fréchet derivative G represented by

G'(r,p;q)(2) = JQI(:E) J}q(#) Divee (J(&) () Gradse (i)
—ﬁ Divee (J}q(&)p(2) Gradse ¢(2)).

Similarly we find the parametrization and the derivatives of the operators
Seo, K, Keo-

The Fréchet derivative operators are bounded and linear in the corre-
sponding Soboles spaces inherited from the original nonlinear operators.

By the same token as reconstructing the surface impedance functions we
can generate the following four iterative schemes for (IP2).

1. Solving the density ¢ from the field equation and linearizing the data
equation with respect to r

2. Reversing the order of the equations in the 2nd method.

3. Simultaneous linearization of both equations with respect to ¢ and
r. We note that by introducing the new unknown x = G(\, ;@) the
linearized system simplifies substantially.

Combining the results for shape and impedance problems several iterative
scheme for (IP3) can be constructed, e.g.
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1. Introducing the new unknown x = G(\, u;¢) we can can find the un-
knowns shape via one of the stated above methods. The unknown
impedance functions are then solved from the above differential equa-
tion.

2. Simultaneous linearization of both equations with respect to all un-
knowns.

3. Using the data for 1-2 incident directions solving the density ¢ from
the field equation and linearizing the data equation with respect to r.
Then updating the impedance functions employing the remaining data
and one of the method presented for (IP1).

3.5.2 Method based on the indirect integral equation
approach

Recalling the ideas presented in Section 2.2.1, we seek the scattered field
u® € H2 (R?*\ D) in the form of a single-layer potential

loc

w(z) = / B(z,y)o(y) ds(y), =R\ D.

Substituting the total field to the boundary condition (2.2) and using the
jump relations for the single-layer potential, Colton and Kress (2013b), we

can prove that a system of integro-differential equations is equivalent to
(IP2).

Theorem 3.2 For given surface impedance functions X\, i, an incident field
u and the corresponding far field pattern us, assume that the surface I' and
the density ¢ satisfy the system of nonlinear boundary integral equations

ou'’ ;
¢ = K'p =G\ i Sp) =2 5| +2G(A, s rlr)
Vir
Soclf = Uso

Then T is the solution to the inverse impedance problem (IP2).

Proof
Consider the total field expressed via the single-layer potential. Then its far
field u., is represented by S, and hence the data equation guarantees that
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the scattered field has a correct far field pattern. Taking the Dirichlet and
Neumann traces of the total fields by the jump relation for layer potentials,
Colton and Kress (2013b), we find that the field equation ensures the bound-
ary condition (2.2). O

To simplify the computations we introduce a new variable ¢ = J, and the
corresponding operators S, S, K, e.g.

~ 1 PP
Sl )] = _/ e Oy (g) ds(g), & €S
47 S2
The parametrized system of nonlinear integro-differential equations reads
¥ _ K'(r, 1) — G(r,S(r, 1)) = 2 Ou +2G(r;u'|r,), (3.15)
Jr 8y T,
Soc(7, 1) = s

Theorem 3.3 The operator So : C*(S*,R) x H™'/2(S?,C) — L*(S?,C) is
Fréchet differentiable and the first derivatives at v in the direction q € C3(S?)
is a bounded linear integral operator from H~Y?(S? C) to L*(S? C) defined
by
& . —ik —ikE (DD 5 (NS (A .
S b)) = o [ eI g()g0() dsli)
§2

Recalling that the boundary integral equation (2.9) is uniquely solvable,
Kress (2016), we obtain that (3.15) is uniquely solvable and the following
theorem can be stated, which justifies application of the Tikhonov regular-

ization.

Theorem 3.4 Assume that k* is neither Dirichlet nor Neumann eigenvalue
of the negative Laplacian in D, the boundary 0D can be parametrized as
follows

oD = {r(2)z, 2 € S*}
and ¥ be a solution to (3.15). Then the equation
SL(riq) =0

has only the zero solution among three times differentiable and periodic func-
tions.
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Proof. Using the idea of parallel surfaces, Colton and Kress (2013a) and
extending results of Ivanyshyn and Kress (2006); Ivanyshyn and Johansson
(2008) to three dimensions it is possible to search the update in the form
G(z)v(z) instead of q(#)Z. The proof then follows the ideas presented in
Ivanyshyn and Johansson (2008). Consider the double-layer potential

ola) = [ v(r(0) - erad, Bla. () 0)7(3) ds).

Due to the assumption of the theorem it has a vanishing far field pattern.
Hence, by Rellich’s lemma we can conclude that v vanishes outside of D.
The potential v solves the homogeneous Neumann problem in D and
therefore vanishes identically in D by our assumption on k. By the jump
relations we obtain 1§ = 0 on S?. Consequently, by smoothness of § we have
Gg=0on S O

To summarize, we presented several iterative schemes for each of the
problem (IP1)-(IP3) and investigated the question of injectivity for the op-
erator of the linearized problem. In the case of unknown surface impedance
function the injectivity cannot be established due to the lack of uniqueness
results for the problem under consideration. In the case of shape problem
the injectivity is settled for the iterative scheme based on the linearization
of the data equation.
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Chapter 4

Numerical implementations and
examples

In this chapter we described detailed implementation of the considered prob-
lems in 2D and 3D.

4.1 Numerical implementation for the solution
of the direct GIBC problem in 2D

The boundary integral equation is solved by a collocation method using P,
a trigonometric interpolation operators a projection, trapezoidal and the fol-
lowing quadrature rules (see Kress (2014))

2 2n—1

T—1 n
cot —5— 9= 3 Tu(t)e(t)")

27 Jo

2n—1

o)~ 3 B(te(t”)

2n—1

p(r) = Y Tult)p(t”)

1 [ —t
— In 4 sin? T
2m Jo 2

1 2w

tT—t
— co
2m Jo 2
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with the quadrature weights given by

-1
1 1 .
le = Eﬁ m cos m( t—t( )) - Ecosn(t—tl(» ))
1= 1 1
§ : (n) (n)
ﬁ E OSmt—t )—ﬁCOSTL(t—ti )
(n)
n) t—1;
TQZ {1—cosnt—t( ))}cot ‘

Recalling the error estimate for the trigonometric interpolation

C 1
1P = bl < —IIBll,, 0<q<p, 5> (4.1)

for all ¢ € HP?[0,2n] and some constant C' depending p and ¢ (see (Kress,
2014, Theorem 11.8)), we establish the following theorem

Theorem 4.1 Let ¢, be an approximate solution found by the collocation
method and ¢ be the exact solution to (2.14). Then

llon = @llpr1 < C(||Pag — gllp + | PuBuy — Boll,)
for some constant C depending on p > %

In case of analytic functions data and the boundary, the interpolation error
decays exponentially.

4.2 Direct GIBC problem in 2D
Let 0D be parametrized by
2(t) = (2cos(t) — 2cos?(t) + 1, 5sin(t) — cos(t)sin(t)), 0 <t < 27
and the impedance function given by
Az) = —sin(|z|) + 4.5,

p(x) = —2cos(|x|) + 4.5.
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oD

Figure 4.1: Planar domain D

Ezample 1. (Test by the exact solution)

Consider a point source located at z; = (2,0.4). Choose the parameter k = %.
The exact solution is represented by uf(y) = ®(y,21),y € D,z; € R2\ D
and v is an approximate solution. As can be seen from the Table 4.1 the
absolute error at y = (0,0.5) converges exponentially.

Table 4.1: Error analysis, 2D

’ n lu — ul| ‘
& 0.002246206691377
16 0.000143708893458
32 0.000000009790216
64 0.000000000000001

Ezample 2. (Exact solution is unknown)
Let k = 1 and z; = (3,2). The right-hand side is chosen as

g(x) = ®(xy,2), x€ID.

In Table 4.2 we present values of the approximate solution at y = (0,0.5)
for different degrees n of trigonometric interpolation.

29



v

TUBITAK

Table 4.2: Approximate solution, 2D

| 0 u |
8 0.012063279277905
16 0.012284634729342
32 0.012285858740215
64 0.012285858683054
128  0.012285858683054

4.3 Numerical implementation in 3D

To obtain a fully discrete system we apply the fully discrete GGalerkin method
by Ganesh and Graham, Ganesh and Graham (2004), to the parametrized
linear boundary integral equations. The method is based on approxima-
tions by spherical harmonics and converges super algebraically in the case
of smooth boundaries. We start with the numerical integration formula over
the unit sphere for a continuous function, the so called Gauss trapezoidal
product rule,

2n+1 n+1
L u@as@ 33 mrulap) T =70n0). (42
p=0 7=1
7 pT
Hp = ntl ¢p = il 0 = arccos (r,

where ¢, are the zeros of the Legendre polynomial PY, | of degree n + 1 and
v, are the corresponding Gauss-Legendre weights. The formula (4.2) is exact
for the scalar spherical polynomials of order less than or equal to 2n + 1.
This induces the discrete inner product (-, -),

2n+1 n+1

(()017 302)71 = Z Zupyﬂ'<pl(§pﬂ')¢2(§pﬂ'>a
p=0 7=1
on the space of all scalar spherical harmonics Yj;, for j = —[,...,l and
[ =1,2,..., of degree less than or equal to n. We introduce a projection

operator ¢, defined by

n !
b= > (0, Yi)n Y.

1=0 j=—I
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For the numerical approximation of the integral operators with smooth ker-
nels K., So, we apply the Gauss trapezoidal product rule. The singularity in
the weakly singular kernels of the operators K, K, S, is moved by an orthog-
onal transformation 7% to the north pole 1 = (0,0, 1), such that 737 = 7.
For Z = T5 i we have the identity

7 -9l =7 - 2) = [n—Z].

To approximate the resulting integrals we use the modified Gauss trape-
zoidal rule

2n+1 n+1

u(7) N (bpu) (T 0
d ~ I~ = T T P T
[ Fhas@ ~ [ @) =Y S e, z @

p=0 7=1

which is based on the fact that the scalar spherical harmonics are eigenfunc-
tions of the single layer potential on the sphere, Colton and Kress (2013b).

To approximate the surface differential operators we introduce the vecto-
rial spherical harmonics

(1 1 (2) 1
y— Grads: Vj;, Y’ = Curl ;
g My o e
forj=—1,...,land [ = 1,2,... which form a complete orthonormal system

in the spaces of tangent vectors fields LZ(S?). The corresponding projection
operator L, on the space generated by the orthonormal basis of tangential
vector spherical harmonics is defined by

2 n l
Lov =% > @V,
i=1 1=1 j=—I

2n+1 n+1

where (vq|vg), Z Zupy U1(Zr) - 02(Z 7).
p=0 7=1
Both impedance functions are approximated by the scalar spherical har-

monics of degree K, i.e.
K
B Z 15 Yij-

1j,l=1

The main difficulty in calculations arose due to numerical calculations
of surface differential operators for an arbitrary surface. To overcome this
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problem we use the transformation formulas for the surface differential oper-
ators which replace the derivatives over an arbitrary surface by the surface
derivatives over a unit sphere. Recalling the parametrization z : S* — T,

D= {2(7): 7 € $?),

of the surface I' we introduce the total derivative Dz which maps the tan-
gent plane to S? to the tangent plane to I'. The operator [Dz*]~! maps the
cotangent plane to the unit sphere S? to the cotangent plane to the given
surface I". Taking advantage of the following transformation formulas

(Gradr u) o z = [Dz*] ™! Gradgz (u o 2),

(Divpv) oz = Ji Divg: (J.[Dz] (v o 2)),

z

we can reduce substantially the computational (technical) challenge.
Next, the surface differential operator G(A, y;-) can be approximated as
following

Div p Gradg: Vi, =~ Jiz Divge £,, i Grads: V5.
Since
Divg: Gradse = Agz, Divge Curlgz = 0, and AgY); = —I(l +1)Y};
we obtain
(Div u Gradge Yij, Yoy ) = ) (}Y Yw) (1 Grads: Yi|V3)), (—=/p(p + 1)).
pgp=1 7% n

For the representation of the tangential gradient of the spherical harmonics
we refer to Louer (2018).

Considering the inverse shape problem we assume that the unknown
boundary is star-shaped, i.e.

I:={r@7z:2 ¢S,
and we approximate the unknown radial function by real valued spherical
harmonics
N
re Y
1j,l=1
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The fully discrete systems are solved by the conjugate gradient (CG)
method. In the CG algorithm we compute L? adjoint and evaluate norms in
corresponding H*(S?) spaces for s € R which can be characterized by

[e's) l o0 l
H(S) = { =2 > iy, g €C 0 3 (1 )yl < oo} .

1=0 j=—1 1=0 j=—I

4.4 Direct GIBC problem in 3D

We present two examples to demonstrate convergence for the solution of
integral equation based on the single-layer approach (2.8).
Ezample 1.
We consider one very simple domain, i.e. D a unit sphere, and a complicated
domain which has a concave part, e.g. a bean shown on the figure
The impedance functions are A(z) = 23 + 0.2 + isinas, p(z) = 3 + 2.

To test the method we assume that the incident field is given by a point

Z-AXIS

Figure 4.2: 3D bean-shaped domain

source uP(x) = ®(x,x"), where the source x* € D. In this case the boundary
condition is given by
ou® ouP

. .,8 _ P
v F+g()‘7M7U |F)_ v F_'_g()\?:uau |F)

The exact solution is obviously u**(z) = ®(x,2*). In this way we test both
the correctness of the method and the convergence.
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Table 4.3: ||ul, — Poo(z, 2%) || 12(s2)

D — ball D — bean-shape domain

n k=n/2] k=3r/2 k=n/2] k=3r/2
5| 5.1656e-14 | 5.3626e-07 0.0035 0.0161
10 | 7.6864e-16 | 1.6489¢-15 | 2.0547e-04 | 3.2044e-04
20 - — | 1.5697e-06 | 2.2790e-06
40 - — | 6.9326e-11 | 2.2877e-10

The parameter n appears in the dicsretized linear integral equation, i.e.
we have (n + 1)? algebraic equations and the unknown density function is
approximated by spherical harmonics of order less or equal n. The far field
is measured at 2(5 + 1)? points.

Ezample 2.
We set k = /2 and present the far field pattern at two points for an incident
plane wave u’ = e**4 where d = (0,0, 1)

Table 4.4: Convergence for modulus of the far field, |uo|

D — ball D — bean-shape domain
n z=(1,0,0) \ z=(-1,0,0) z=1(1,0,0) \ z=(-1,0,0)
5 1.51567288 0.32517080 1.10434899 0.32497011
10 1.51566786 0.32516661 1.10509488 0.32390658
20 1.51566785 0.32516661 1.10506971 0.32386016
40 - - 1.10506954 0.32386035
4.5 Inverse Problem

We illustrate the feasibility of the method by numerical experiments. The
synthetic data are obtained by solving the boundary integral equation (2.9)
with ngy, = 20 for an ellipsoid and the incident directions (1,0,0), (0,0, 1),
(0,0, —1) depicted on Fig. 4.3. The performance of the method is investigated
on the examples where the impedance functions are linear combinations of a
constant and the function g given by

1

90.9) = T 750’

6 € [0, 7.
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A
Y-AXIS T xAxis ol

surface g

Figure 4.3: The scatterer D and the impedance

The perturbed far field pattern was generated as detailed below

p
oy = tser + O Y [107 < 0%, =002, p=3,
/=1

where O, is a random complex variable with normally distributed real and
imaginary parts. The wave number was chosen k = 7/2 such that the wave-
length 27 /k is of a comparable size to the diameter of the obstacle D since we
consider scattering for frequencies in the resonance region. The discretization
parameters were chosen as follows: n = 15 and K = 5. The regularization pa-
rameters in are selected as an = By = v = o)X, ap = 0.001, y = 10/11.
The indexes for the Sobolev space used in the parametrization of impedance
functions A and p are chosen as sy = 1.1 and s, = 2.1, correspondingly. The
iterations are terminated according to the Morozov’s discrepancy principle
with 7 = 1.001. The reconstructions are obtained from the far field pattern
for 3 incident directions if not stated otherwise.

In the example we consider the case when the imaginary parts Im A, Im p
of the surface impedance functions are known. The sought surface impedance
functions are chosen as following

A=g, p=A
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m
=3
&

3]

;;
IS

N w
[N] w

-

a) Re)\ err = O 030661 Rep, err], = 0.072075
6L 1.1 6l
Wl 1.04 Wl
| -
L 0.92 L
0 0 0.5 1 15 2 25 3
Re)\ erry = O 030138 Rep, err), = 0.071784

Figure 4.4: Reconstruction for A = g, p = A with 3 a) and 6 b) incident
waves

We test the inversion algorithm for the initial guess A\’ = 1, u° = 1. As can be
seen from the Fig. 4.4a) the impedance function X is accurately reconstructed
whereas p is affected by the noise more substantially. Increasing the number
of incident directions to 6 improves slightly the quality of the reconstruction
and reduces the number of iterations, see Fig. 4.4b). Under the plots we
included the relative errors for surface impedance functions, defined by
erry = [[AN — M|g2/[[ M2, err) = ||u™ — pl|r2/||pll 2, where N is the
iteration number.
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Fig. 4.4 illustrates results for noise free data after 7 and 50 iteration
steps. The reconstruction improves when the number of iteration increases.
As can be seen from the figure even in the case of noise free data the second
impedance function needs more iterations to find its accurate reconstruction.

o

IS

w

N

0 0.5 1 1.5 2 25 3 0 0.5 1 15 2 25 3

a) Re), err] = 0.029849 Rep, err], = 0.072111

1.1

3]

IS

w

N

0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 2.5 3

b) Re), err3’ = 0.029287 Rep, err)’ = 0.04222

Figure 4.5: Reconstruction for A = g, 4 = A with 3 incident waves from the
exact data

All the parameters are kept exactly the same although for the accurate
and fast reconstruction of impedance functions we should have decreases the
regularization parameters. Employing the algorithm twice, i.e. finding the

37

1.004

1.0035

1.003

1.0025

1.002

1.0015

1.001

1.0005

1.08

1.02

0.98

0.96



v

TUBITAK

proper initial guess as a constant (K = 0) at the first step, improves the
quality of reconstructions and allows to use a less accurate initial guess.

The algorithm provides accurate reconstructions of the first impedance
function A and satisfactory identifications of y under some restrictions on
the surface impedance functions. In general, in the agreement with results
Bourgeois et al. (2011); Kress (2018) for two dimensional case, we note that
the simultaneous reconstruction of both impedance function is sensitive to
noise, especially the identification of the second impedance function. For
more details we refer to Ivanyshyn Yaman (2019).
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Chapter 5

Discussion and Outlook

In this study we investigated solution of the boundary value problems with
second order boundary condition, the so-called generalized impedance bound-
ary condition. In particular, the numerical solution methods for the direct
boundary value problems based on boundary integral equation were designed
for the Helmholtz equation in 3D and the modified Helmholtz equation in
2D are developed and their feasibility is confirmed by numerical examples.
Analytical solutions are presented for the case of specially chosen bound-
ary shape and impedances. Furthermore, the inverse problems for the shape
and surface impedances are investigated and several iterative inversion algo-
rithms are proposed. The proposed inversion methods are efficient from the
computational point of view since the solutions of boundary value problems
appearing in the classical Newton iteration are replaced by matrix-vector
products.

The reconstruction algorithm for surface impedance is presented with
deep technical details and its feasibility /limitations are demonstrated by nu-
merical examples, (published Ivanyshyn Yaman (2019)). The methods for
reconstruction of coated obstacles, i.e. recovery of impedances and shape of
the obstacle are presented. Moreover, the obtained preliminary results for
the modified Helmholtz equation, (to be submitted ivanyshyn Yaman and
Ozdemir) lays down the foundation for numerical solution of the closely re-
lated inverse problems of recovering the surface properties and/or the shape
of an object from the exterior measurements where the surrounding medium
is both conductive and homogeneous. This problem arises in engineering
science such as heat conduction and electronics. The investigation of the
transmission eigenvalue problem for Maxwell equation (published Cakoni etal
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(2018)) opens a new research direction such as direct and inverse problem
with GIBC for the Maxwell system.

To conclude, the study shows that the surface impedances or boundary
shape can be recovered from finite number of far field patterns and a fixed
wave number. The result is encouraging for tackling an important open
problem of uniqueness, i.e. whether it is possible to uniquely recover the
surface impedance functions with finite number of incident plane waves in
three dimensions.

Papers resulting from the project

e [vanyshyn Yaman O. 2019. “Reconstruction of generalized impedance
functions for 3D acoustic scattering”, Journal of Computational Physics,
392, 444 — 455.

e Cakoni F., Ivanyshyn Yaman O., Kress R., Le Louér F. 2018. “A
boundary integral equation for the transmission eigenvalue problem for
Maxwell equation”, Math. Methods Appl. Sci., 41(4), 1316-1330.

e Ivanyshyn Yaman O., Ozdemir G. “Integral equation methods for mod-
ified Helmholtz equations in two dimensions”, (preprint)
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