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ABSTRACT

HIERARCHICAL IMAGE CLASSIFICATION WITH
SELF-SUPERVISED VISION TRANSFORMER FEATURES

There are lots of works about image classification and most of them are based on
convolutional neural networks (CNN). In image classification, some classes are more
difficult to distinguish than others because of non-even visual separability. These difficult
classes require domain-specific classifiers but traditional convolutional neural networks
are trained as flat N-way classifiers. These flat classifiers can not leverage the hierarchical
information of the classes well. To solve this issue, researchers proposed new techniques
that embeds class-hierarchy into the convolutional neural networks and most of these
techniques exceed existing convolutional neural networks' success rates on large-scale
datasets like ImageNet.

In this work, we questioned if a hierarchical image classification with self-
supervised vision transformer features can exceed hierarchical convolutional neural
networks. During this work, we used a hierarchical ETHEC dataset and extract attention
features with the help of vision transformers. Using these attention features, we
implemented 3 different hierarchical classification approaches and compared the results

with CNN alternative of our approaches.
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OZET

OZDENETIMLI GORU DONUSTURUCU OZNITELIKLERI iLE
HIYERARSIK IMGE SINIFLANDIRMASI

Gorilinti siniflandirma 1ile ilgili pek ¢ok calisma bulunuyor ve bunlarin ¢ogu
evrigimli sinir aglar1 (CNN) temel alinarak gergeklestirilmistir. GOriintili siniflandirmada,
esit olmayan gorsel ayrilabilirlik nedeniyle bazi siniflart digerlerinden ayirt etmek daha
zordur. Bu zor smiflarin ayrilabilmesi ig¢in, ilgili alana 06zgli siniflandiricilar
gerekmektedir, ancak geleneksel evrisimli sinir aglari, diiz N-yollu siniflandiricilar
olarak egitildigi i¢in siiflar arasindaki hiyerarsik bilgiden yeteri kadar yararlanamazlar.
Bu sorunu ¢6zmek i¢in arastirmacilar, sinif hiyerarsisini evrisimli sinir aglarina dahil
eden yeni teknikler kesfettiler ve bu tekniklerin ¢ogu, ImageNet gibi biiyiik dl¢ekli veri
kiimelerinde mevcut evrigimli sinir aglarinin basari oranlarin1 gegcmektedir.

Bu calismada, 6zdenetimli gorlii doniistiiriicii 6zniteliklerini kullanan bir
hiyerarsik imge siniflandiricinin hiyerarsik evrigsimli sinir aglarini ge¢ip gecemeyecegini
sorguladik. Bu calisma sirasinda hiyerarsik bir ETHEC veri seti kullandik ve goriintii
transformatorleri yardimiyla dikkat oOznitelikleri ¢ikardik. Bu dikkat o6zelliklerini
kullanarak 3 farkli hiyerarsik smiflandirma yaklasimi uyguladik ve sonuglari

yaklagimlarimizin CNN alternatifi ile karsilastirdik.
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CHAPTER 1

INTRODUCTION

In the real world, there are lots of classification problems that we can fit into a
hierarchical domain. For these domains, using a flat classifier means that you are
eliminating the power of hierarchy information. Instead of a flat classifier, using a
hierarchical classifier probably performs better in these kinds of domains. [1] So, the first
question is “Why do we not use hierarchical classifiers a lot if they can outperform flat
classifiers in hierarchical domains?” To be able to answer this question, we first need to
understand the difference between a hierarchical classifier and a flat classifier.

The flat classifier is simple. For a domain that can also fit into a hierarchy, you
can easily create and deploy a single model with some hyperparameter optimization. And
if you have enough data, the results can also be satisfactory. On the other hand,
hierarchical classifiers are more complex to design and to implement. You need to create
multiple classifiers for each level or even for each node. Optimizing all these classifiers
is a difficult problem. If you can properly deploy a hierarchical model, it will likely
outperform the flat classifiers for the same domain [1]. But in the real-world, accuracy is
not the only parameter to determine which approach is better. For a flat classifier, you do
not need to have as much computational power as the hierarchical classifier requires. And
also making a prediction in a flat classifier is generally much faster than using a
hierarchical classifier as it needs to compute more. So we can answer the question like *
If the accuracy difference between flat classifier and hierarchical classifier is acceptable,
then using flat classifier will be a better choice rather than hierarchical classifier due to
high computational cost requirement, optimization difficulty, time consumption and etc.

So, the main problem with hierarchical classifiers is actually based on their
implementations. If we can reduce the computational cost, time, and amount of
optimization parameters, it will be a better alternative to flat classifiers. In this work, we
inspected and analyzed different hierarchical CNN approaches. All these approaches have
the same problems such as the high amount of data requirement, training and optimization

difficulties, time requirements and etc.



In this work, we are focused on outperforming two different hierarchical CNNs
which are Per Level Classifier [2] and Masked Per Level Classifier [2] by using the
ETHEC [3] dataset. Both models have a single CNN for each Level. What we tried to do
is replace these CNNs with K-NNs that are trained with self-supervised vision
transformer features [4]. In CNN there is a probability that shows the classification
results. Similarly in K-NN, there are distances and similarities that represent how close is
the test item to the train items. As you can see, in both CNN and K-NN we can obtain a

metric that allows us to make predictions. K-NN have a great advantage on CNN such as:

o Requires less data
o No training requirement
. Works better in smaller datasets

o Easy to deploy

. Only two parameters for optimization
o Easy to add new classes
o Lower computational cost

All these advantages are solving the main problems of hierarchical CNNs but
there is a problem with our approach. Replacing CNNs with K-NNs is not enough to make
a hierarchical classifier. We need to first convert the similarity metric into a probability
to be able to make a prediction. To do this we add an SVM [5] as the last phase of the
hierarchical classifier.

Also, instead of using the dataset directly, we feed it into a Vision Transformer
[4] to obtain attention. With this attention, we are expecting to increase the overall
accuracy of the proposed approaches as we eliminate most of the outlier features in the
images.

We can say with the proposed methods in this work we are expecting to reduce
the training times, computational cost, optimization difficulties and increase the overall

accuracy for hierarchical classifiers.



CHAPTER 2

THEORETICAL BACKGROUND

In this section, ‘Classification by Machine Learning’, ‘Hierarchical

Classification’ and ‘Vision Transformers’ concepts are mentioned.

2.1 Classification by Machine Learning

Machine learning focuses on creating intelligent systems that learn like a human
and improves their performance based on the amount and structure of the data consumed.

Currently, we can see lots of machine learning applications in banks, online
shopping systems, security systems, social media, and so on. Machine learning provides
us with efficient and reliable solutions to the problems of different industries. [6]

A standard classification algorithm can be divided into three different steps that
are:

Decision Process: The main purpose of a classification algorithm is to make a
prediction. The model will predict an output (ex: a resulting class in classification
problem) based on input data (labeled or unlabeled) with the help of learned features in
the training phase.

Error Function: Error functions are used in the prediction step of the model. The
main objective of the error function is determining the difference between the real result
and models prediction. This function can also be used for benchmarking or evaluating the
model's accuracy. There are many different error functions such as cross-entropy, focal,

Huber, etc. [7]

Model Optimization Process: For training a model we need to minimize the error
rate between model prediction and real results. To be able to do this, during the training
phase we need to update the weights until the model reaches the threshold of the accuracy
[8].

Machine learning algorithms have been classified in many ways in the literature.

Mainly, it is divided into supervised and unsupervised learning. However, with the



progress and development of technology and algorithms, there are additions to these two
main points. In addition to these, the methods can be listed as semi-supervised,
reinforcement, transudative reasoning, online, and active learning. According to
Brownlee, learning styles were examined under four headings such as supervised,

unsupervised, semi-supervised, and reinforcement learning [9].

2.1.1 Supervised Learning

It is a learning method in which the effect and interaction of the inputs on the
outputs are observed under the supervision of a supervisor of the training set consisting
of inputs and outputs. The basic element in supervised learning is the existence of a
training set consisting of previous observations and this training set is taught and
introduced to the system by a supervisor. And because of this learning, it is possible to
make the necessary estimation for a sample that has never been introduced before. In this
learning system, all training data is labeled and the model knows which input data is
related to which label so that the relationship between input set and output labels are
learned by the model. The aim of supervised learning is to minimize the error rate between
the prediction and the actual result for each input with the function created from the
learning set. If the difference is more than the predetermined error value, the system
continues training. When the difference reaches the desired range, the training is
completed and ends. After the model reaches the desired level, a new observation that
was not in the training set before is processed by the model, and an attempt is made to
make the closest prediction to the truth. Supervised learning is generally used in
classification and regression-based estimation problems. The algorithms such as Decision
trees [10], SVM [5], K-NN [11], ANN [12], Genetic Algorithms [13] can be described as

supervised learning methods.

2.1.5 Machine Learning Steps

There are certain basic steps to be followed in the face of a problem that is desired
to be solved by making use of machine learning. It is important to implement these steps
to solve the existing problem successfully and at the desired time. The steps to be

followed in this process are as follows [14]:



o Defining the Problem

o Data Analysis

o Data Preparation

o Selecting the Model

o Evaluation of the Model

o Using the Model

2.1.5.1 Defining the Problem

The first step to be taken in the problems to be solved with machine learning is to
define the problem in the best way and to clearly state what the goal is to be achieved
with the solution. Because a project or problem that is not well defined or whose purpose
is not clear will create a severe problem for the researcher who will work on it, in reaching
a conclusion about how to draw a path. This will put the researcher in a difficult position
to reach the desired result.

At this step, along with the purpose of the problem, the success criterion and the
current situation should be well defined. Because it is important to know which criteria
and output will be taken into account in order to correctly interpret the outputs obtained

as a result of machine learning.

2.1.5.2 Data Analysis

The second step in the application of machine learning is to obtain data suitable
for the problem. Data for learning can be provided in 2 ways. First of all, the desired data
about the problem can be accessed from existing data warehouses and databases.
Secondly, the researcher's own questionnaire, debate, certain measurements, etc. related
to the problem. data groups that can be obtained through studies.

The researcher examines the data obtained at this stage in general terms. Issues
such as format, quantity, and several data are reviewed. In addition, it should be checked
whether the main feature to be used in the model is met by that data set. .g; If age is an
important field in the study, but the data collected does not reflect the entire age range,
that data set can be changed, or the desired age distribution should be reached with new

additions.



2.1.5.3 Data Preparation

After obtaining the necessary data for machine learning, the data should be made
available to machine learning algorithms. In this sense, the obtained data needs to be pre-
processed. These are data cleaning, data integration and transformation, and data
reduction. Which of these operations will be used depends on the data set.

During the data cleaning phase, two basic operations are performed. First, each
data set may contain data that contain inconsistent or erroneous information. The cleaning
process of this data, called noise, is done at this stage. Secondly, it is to convert the data
called missing value into a meaningful expression or to remove it from the data set.
Sometimes different values cannot be measured or overlooked in the data set. These data,
called missing values, can be removed from the data set if they do not affect the study. If
the meaning it adds to the data set is high, the mean value of that feature can be assigned
to those missing values or the most recurring value can be assigned, or the missing values
can be added to the data set with different methods such as using regression.

In the data integration and transformation phase, it is ensured that the expressions
in the same data set need to belong to the same environment. Indicators expressing the
same situation in the data set can be displayed more than once and in different ways.
Since this may cause the result to change by perceiving each expression differently during
the learning phase of the machine, it is ensured that it is converted into a uniform
expression.

The process of reducing the number of data or variables in a way that does not
change the results to process the data more easily and quickly in the learning process is
called data reduction. There are lots of different methods that can be used for reducing
the data.

After the data preprocessing phase, feature engineering studies are carried out
according to the structure of the problem and the data. Normalization and Data Scaling is
one of the prominent processes in feature engineering studies.

Normalization: Numerical variables in the data set to change at different
intervals. Since this numerical difference will increase the effect of large range values on

the result, data normalization is performed. Thus, it is aimed to achieve the best results



by normalizing the variables. For this, different normalization methods such as Z-
transform, minimum-maximum, 0-1 range are used [15].

Data Scaling: It is defined as dividing the entire data by a fixed number. It is to
speed upslope expansion by keeping each of the input values in the same range. In scaling,

a new range is created by dividing the input values by the range of that input variable.

2.1.5.4 Selecting the Model

It is the process of determining the algorithm or technique to be applied in the data
set by deciding which method to achieve the best result by trial and error. It is the stage
where the most suitable models and algorithms that will best analyze the connection
between the variables in the data set are determined. At this stage, more than one suitable
model is determined, and the best result is tried to be achieved by applying it to the data
set. For this reason, the more models and algorithm techniques are determined and

applied, the higher the percentage of yield from the data set.

2.1.5.5 Evaluation of the Model

It is the stage where the quality and impact of the result obtained by measuring
how much of the project or business objectives determined at the beginning are met, is
evaluated before the model becomes widespread. In addition, clear decisions should be
made about the extent to which the points especially emphasized in the problem are
considered and whether the results will be beneficial or not.

At this stage, different models and algorithms applied are compared. The results
obtained are compared and verified with the results of other studies. In addition, in the
evaluation process of the model, it is necessary to evaluate whether the successfully
predicted algorithm can be generalized within itself or not. There are different evaluation
methods such as k-fold cross-validation [16]. With this method, the data is split into k
different parts equally. One at a time of k part is used for testing and k-1 for training. As
a result, k error rates are obtained, and the average of the errors is taken to calculate the

entire forecast error.



2.1.5.6 Using the Model

After the model that will solve the problem in the hands of the researcher is
evaluated and determined, that model is the main model for the problem. Now, that model
can be used very easily, and desired results can be obtained in subjects like the existing
problem or in research. Thus, that determined model will become widespread and will be
the main source of problem solutions. The success rate of the model will vary in

proportion to the rate of benefiting from the model.

2.1.6 Algorithms For Classification

2.1.6.1 K-Nearest Neighbor

The k-nearest neighbor [11], method is a classification method that determines
the class in which the observations will take place and the nearest neighbor according to
the k-value. It is one of the supervised machine learning algorithms that classify based on
the distance between observations or objects. It is used in many fields such as pattern
recognition [17], computer vision [18], data mining [19], statistics [20], cognitive
psychology [21], medicine [22], and bioinformatics [23].

K-nearest neighbor algorithm makes classification with the help of distance or
proximity calculation. In summary, the basis of this classification algorithm is the idea
that "objects that are close to each other in the sample space probably belong to the same
category". The purpose of the algorithm is to assign individuals or objects to
predetermined classes or groups in the most accurate way, by making use of the properties
of these objects. The method also provides a classification of a new observation. With the
help of the learning data set, the observation to be classified is classified in the same data
set with the k closest observations and the most similar ones.

K-nearest neighbor method has many advantages such as giving clear and
effective results [24], ignoring missing observations in continuous variables [25], having
the option to evaluate missing observations in the categorical variable, the answer variable
being categorical, continuous, or a combination of the two, and having few assumptions
because it is a non-parametric method also, the disadvantages of the algorithm are that

the number of k, which gives the number of nearest neighbors, is required, it is affected



by the selected distance measure, and there is no certainty about which distance measure
to use [26].

The k-nearest neighbor algorithm is used to classify observations according to
their similarity to other phenomena [27]. It was developed as a way of recognizing data
patterns without exact matching to learned patterns. Similar observations are close to each
other (adjacent) and dissimilar observations are far apart. Therefore, the distance between
two observations is a criterion that determines the dissimilarity. The distances of a new
observation from the observations in the model are calculated. This observation is
assigned to the most repetitive/similar category. The algorithm steps are:

o The distance of the new observation to all the observations in the data set

1s calculated,

° These distance values found are listed,
° k observations with the smallest distance are selected,
o The category with the most repetitions (majority voting) in k observations

becomes the class value

- -~

- S~ Classe B

Figure I K-NN with different k values [28]



2.1.6.2 Support Vector Machine

SVM is one of the supervised learning algorithms. The main principle is finding the
optimum hyperplane in multi-dimensional space for classification [29] or regression [30] tasks.
There can be multiple hyperplanes so for selecting the optimum hyperplane we need to select
the maximum margin area. There can be multiple hyperplanes so for selecting the optimum
hyperplane we need to select the maximum margin area.

There are two types of margins that are soft and hard margins. In the soft margin, there
can be some points in the margin area which can be called outliers contrary to that the hard
margin works if only the points can be separated linearly. To be able to select the optimum
margin, we can use the C parameter. If the C is going high, the margin area becomes smaller.
Also If the model overfits decreasing C can be a solution.

In some big and complicated datasets using a low number of dimensions in SVM
cannot be enough for good classification results. To be able to solve that, points are multiplied

with a function called Kernel Function [31].

Maximum.
T 4 margin
E: N

S
~

-
< >

Figure 2 Optimal hyperplane [32]

2.1.6.3 Artificial Neural Networks

Artificial neural networks (ANN [12]) try to create a new system by imitating the
structure of biological nerve cells in the human brain and creating learning and decision-
making mechanisms with these systems. Artificial neural networks, like the human brain,
have a learning mechanism and a decision-making mechanism based on the information

they learn.
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The task of an artificial neural network is to create an output set by training itself
from the given input set. For this process, artificial neural networks are trained with a
training set of the related problems and become able to solve the expectations related to
the related problems [33] .

Learning occurs in artificial neural networks. They may make similar decisions in
similar situations. They can even give information about unseen examples after learning.
They can recognize and classify images.

Although artificial neural networks are extremely useful, they also have many
disadvantages. The use of the trial-and-error method while determining the network
structure complicates the training process and cannot guarantee that the network structure
found is the most correct solution. There is no end of education rule. Although it is
considered sufficient for the training to be completed, it does not guarantee that the result

is the best result. [34]

2.1.6.4 Deep Learning

Deep learning can be described as an evolved version of artificial neural networks
[35]. Since the number of neurons is low in the first artificial neural network models, only
simple learning takes place. In order to solve complex problems with artificial neural
networks, the number of layers must be increased. Thus, the decision mechanism is also
deepened

Because the computational methods in deep learning require a lot of mathematical
processing power, the CPU architecture is insufficient. Recently, graphics processing unit
(GPU) systems have been used for deep learning. Thanks to the GPU architecture, very
large data can be used for training [36]. Training with big data has a positive effect on the
results. Therefore, the power of GPU systems directly affects the result. Recently, many
big technology companies have been working on deep learning, realizing live and
working projects in this field, and investing heavily in this field [37].

Deep learning, when trained, learns its distinguishing features by looking at many
inputs given. In the feature learning stage, which consists of layers, the lower-level layers
have less distinctiveness, while the upper-level layers formed by the merger of the lower
levels have more distinctiveness. Because the layers at the lower level form an

infrastructure for the layers at the upper level.
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Deep learning is a complex artificial neural network that contains multiple hidden
layers [38]. In deep learning, each input layer is trained on different data depending on
the previous output layers. As the network gets deeper, more complex features can be
learned. Because the features of previous layers are transferred to the next layer and these
features are combined. The peculiarity of deep networks is that they learn hidden
undiscovered structures in datasets. The greater number of hidden layers in the network,
the deeper the network becomes.

In deep learning, a hierarchy can be created by passing low-level features to higher
levels to obtain high-level features. In this hierarchy, there can be multiple levels that
need to be trained individually. Deep learning can learn from different types of property
representations. For example, for an image, properties such as density vector per pixel,

edge clusters, special shapes can be said to represent.

2.1.6.5 Transfer Learning

The use of pre-trained models as initial parameters for a different task is called
transfer learning [39]. This method is frequently used in some machine learning problems.
With the applied transfer learning method, the designers had the opportunity to both save
time and obtain high accuracy rates. Complex models are difficult to design. With the
proposed transfer learning, it is possible to achieve higher performance with a smaller
dataset.

There are application differences between classical machine learning and transfer
learning. In classical machine learning, all problems are tried to be solved by starting the
parameters randomly. Transfer learning, on the other hand, uses pre-trained models used
in the solution of different problems as a starting parameter for the solution of the desired
problems and provides solutions with faster and higher performance.

Transfer learning is divided into three main groups inductive, transductive, and
unsupervised. While making this distinction, it is considered whether the task and data to
be solved are labeled. The type of learning in which the source and target problems are
different from each other is inductive learning. In this type of learning, the applications
from which the data are obtained are not important. Pre-trained networks need to transfer
their parameters to solve different problems. The target and source tasks of the designers

may differ from each other. Along with retraining using pre-trained networks in CNN, a

12



weight update method with the fine-tuning method should be developed. Solving existing
problems with deep learning requires a lot of data. So that the number of data should be
large to eliminate the overfitting problem. With the transfer learning method, transfer
learning is used instead of training the network with random initial values. With this

method, training of CNN structures is provided effectively with fewer data.
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Figure 3 Traditional Machine Learning vs Transfer Learning [40]

2.2 Hierarchical Classification

Most of the research in machine learning is based on standard flat classification
which is binary or multiclass classification problems. In real-world actually, most of the
problems are actually hierarchical classification problems. In these problems, we can fit

classes into a tree or DAC to obtain a hierarchy.

o
0 o 0
O O 6O 600 O O O

Figure 4 Tree structure (left) and DAG structure (right) [41]

There is no such thing as a standard way to generate a hierarchical classification
model. In most cases, these models are domain-specific so it is hard to evaluate the same
classifier in different domains. However, the most common hierarchical classification

strategies are One-Against-One and the One-Against-All strategies.
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We can differ hierarchical classification in multiple criteria's that are:

Type of structure: There are two types of structures that are a tree or DAG. In
figure 6 both of these structure types are shown. The main difference between tree
and DAG is that DAG nodes can have more than one parent but the tree structure
can not.

Depth of hierarchy: There are 2 different methods to implement a hierarchical
classification. The first method is always classifying the leaf node and the other
one is stopping classification in any level of hierarchy

Structure exploring: Current research generally focused on top-down
approaches but there are lots of different approaches such as flat-classification,
local classification, global classification and etc.

Flat Classification Approach: This is a simple approach for hierarchical

classification problems. In this approach, the model predicts only leaf node classes so that

this approach ignores the class hierarchy.

Figure 5 Flat, multi-class classification approach [41]

Local Classifier Per Node Approach: This approach is one of the popular

approaches in hierarchical classification approaches. In this approach, for each node on

the hierarchy, there is a binary classifier that needs to be trained individually.
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Figure 6 Local classifier per node approach circles are classes and rectangles are

binary classifiers. [41]

Local Classifier Per Parent Node Approach: In this approach, for each parent

node in the hierarchy, there is a multi-class classifier that predicts the child nodes.

Figure 7 Local classifier per parent node approach. Circles are classes and

squares are multi-class classifiers [41]

Local Classifier Per Level Approach : In this approach for each level in the

hierarchy, there is a single multi-class classifier.
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Figure 8 Local classifier per level approach circles are classes rectangles are

multi-class classifier [41]

Global Classifier Approach : Although there are different local approaches that
work well for hierarchical classification problems, there is another approach that uses a
single classifier for the entire model. There are some major advantages for using this
model such as the size of models described before are much bigger than this approach

model.

Figure 9 Global classifier approach [41]
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2.3 Vision Transformers

Vision transformers [4] have become popular in recent years and emerged as an
alternative to CNN. As CNN's are currently state of the art in computer vision for image
classification tasks, vision transformers outperform CNN in terms of computational cost
and accuracy.

Transformer architecture is mostly used in NLP [42] and Vision tasks [43]. The
attention feature is generally used with CNNs or used to substitute certain aspects of CNN
while keeping their entire composition intact. There is no certain rule about the
dependency on CNNs. There is some research that applies vision transformers directly to
images for classification tasks. Vision Transformers have achieved highly competitive
performance in image classification [44], image segmentation [45], and object detection
[46].

Vision transformers accept input images as image patches like word series in
NLP. CNN's are using pixels as input but vision transformers split images into some
special visual tokens. T first split images into patches and then embeds each of them. The
resulting positional embedding becomes an input to the transformer encoder.

In ViT there is a layer called the self-attention [47] layer. This layer makes it
possible to embed information globally across the image. The model also learns how to
reconstruct the image during the training phase. The encoder includes some different
structured layers that are:

e Multi-Head Self Attention Layer: This layer concatenates attention outputs to the
related dimensions.
e Multi-Layer Perceptron Layer: This layer contains two-layer with Gaussian Error

Linear Unit

e Layer Norm: This layer is added to each block and it does not include any new

dependencies. With this layer training time and performance will be improved.
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Figure 10 Images with attentions. [47]

Self-attention [47] is one of the most important blocks of vision transformers. It
helps the network to learn hierarchies and alignments present inside the input dataset. The
workflow of a vision transformer is like:

e Generate fixed-sized patches from images

e Flatten the patches and obtain a vector

e Create linear embeddings from patch vectors

e Include positional embeddings

e Give resulting sequence to transformer encoder
e Pre-Train the ViT model

e Fine-Tuning

There is no work done before that combines the vision transformers, similarity
and hierarchy information for image classification. But there are some similar works that
covers some of the technologies that we used in our work.

Decision-making is important in some critical areas such as medical and military.
Behnaz Gheflati and Hassan Rivaz [44] proposed a method for classifying breast cancer
using Vision transformers. As there are not much data in their domain, they applied the
transfer learning method to the pre-trained ViT and compared the results with the CNN
approaches. As we can see from their approach, ViT architecture achieved comparable
performance with other CNN approaches.

Jun Wang et al. [48] also proposed an architecture that integrates ViT into fine-

grained visual categorization problems. They designed a module that selects the important
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tokens based on the self-attention scores from each transformer layer and obtains local,

low and mid-level information.

Vision Transformer (ViT) Transformer Encoder

MLP
Head

Transformer Encoder
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Figure 11 ViT architecture [49]



CHAPTER 3

EXPERIMENTS

3.1 Used Technologies

All the technologies that are used during this study are listed below:

Python: Python is an interpretive language, meaning it can be run without the
need for compilation, unlike languages such as C and C++. In Python you do not
need to code as much as C or C++ because most of the data structures and tools
are already defined. With the help of python we can create programs faster.
PyTorch: PyTorch is the Python library [50] for building deep learning models
that leverage the power of graphics processing units. It is to build deep neural
networks in tensor computations and tape-based auto grade systems with powerful
GPU acceleration support. One of the main reasons behind the success of PyTorch
is that it is purely Pythonic and can build neural network models without any
problems. PyTorch, which uses graphics processing units in projects, is extremely
popular today with the flexibility and speed it provides due to its structure.
NumPy: NumPy is a library that is used in most of the ML tasks because of easy
multidimensional array operations.
DINO: This is a project that is developed by the Facebook Al team, to train Vision
Transformers (ViT) with no supervision [47].
Ubuntu: Ubuntu is an open source and free operating system developed based on
the Linux kernel.
Hardware:

o MSI VGA GEFORCE RTX 2080TI

o MSIMEG X570 ACE AM4

o AMD RYZEN 9 3950X

o CORSAIR 32GB (2x16GB) DDR4 4000MHz RAM

o CORSAIR 960 GB MP510 NVMe SSD
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3.2 Dataset Description

The real-world dataset named “ETH Entomological Collection (ETHEC)” [3] is
handled during this study. The dataset contains images of Lepidoptera specimens with
their taxonomy tree. There is an imbalance in the number of images per class and also in
the taxonomical trees. The authors of the dataset wanted to represent real-world scenarios
and make the dataset mode realistic compared to ImageNet which has balanced classes.

This imbalanced makes the image classification task more challenging and realistic.

family subfamily

0 2500 5000 7500 10000 12500 15000 17500 20000 0 2000 4000 6000 8000 10000

genus specific_epithet

I

] 1000 2000 3000 4000 5000 2%0 500 750 1000 1250 1500 1750 2000

Figure 12 Image distribution over labels and classes. [2]

The dataset contains which contains 41.350 images and 712 classes have 4
different levels of hierarchy that are :
e Level 1:6 Family class
e Level 2:21 Sub-Family class
e Level 3:135 Genus class

e Level 4:550 Species class
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family Papilionidae Nymphalidae Nymphalidae
sub-family Papilioninae Limenitidinae Nymphalinae

genus Papilio Neptis Nymphalis

species Papilio machaon Neptis rivularis Nymphalis polychloros

Figure 13 Example images with their levels. [2]

The images in the dataset are collected from ETH Entomological Collection.
During the digitization process, all the texts, marks, barcodes and etc. are removed to
eliminate unwanted information. The images are center cropped with dimension 448 x

448 and the authors provide detailed metadata information for 4 levels of the hierarchy.

"f8bacTTd-2d46-4fel-beccl-2c781585=2d49™: {
"token": "fBbacT7d-Zd46-4feZ-bcel-2ZcTE1
"image path": "2017_01 30R",

"image name": "ETHZ ENTO01 2017 01 30 0000&4.JPG",
”fami;E“: "Eeaper;iaaa", B -7
"gubfamily": "Heteropterinae",

"genus": "Carterocephalus”,

o

1 5ed49™

wn

v

"specific _epithet": "palaemon",
"subspecific_epithet":
"infraspec c_epithet™: "",
"author™: "{Paf;as, 1771y ",
"country": "Switzerland",
"primary diwvision": "Berm",
"dec lat": 46.9479774284,
"dec_ long™: 7.44743787

"barcode": "ETHZ-EN

'
"egleb231-%4ct-4e5l-a2560-a382d£0fed415": |
"token": "e6leb251-84c6-4e251-a560-a382df0fe415",
"image path": "2017_01 30R",
"image name": "ETHZ ENTO01 2017 01 30 0000&5.JBG",
”fami;g“: "Eesper;iaae”, B - T
"subfamily": "Heteropterinae",
"genus": "Carterocephalus”,
"specific_epithet": "palaemon",
c epithet™: "V,
c_epithet"”:
1llas, 1771)",

mwun

"author":
"country":
"primary divisien": "Zurich",

"Switzerland",

"dec_ lat"™: 47.43205,
"dec long™: B.5634,
"barcode": "ETHZ-ENT0003494"

}f

Figure 14 Example metadata information
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3.3 Data Preprocessing

The dataset is divided into multiple subdirectories that contain unordered data. So
the first step was organizing these datasets. To do that I first create a python script to read
metadata and copy the images into the related train or validation folder. As the metadata

is already split into train and validation, we did not need to split the metadata.

2017_01_30R - - -
2017 02_26R bl
2017._02_27R
ETHZ ENTO1 201 ETHZENTO1.201  ETHZ ENTO1.201  ETHZ_ENTO1_201
2017_02_28R 7_01_30 000064 7 01_30_000D6S 7 01_30_000066 7_01_30_000067
2017_03_02R
2017 03_D6R w w L L
2017 03_10R
2017 03_13R  ETHZENTO1.201  ETHZ ENT01.201  ETHZENTO1.201  ETHZ ENTO1 201
7_01_30_000071 7_01_30_000072 7.01_30_000073 7.01_30_000074
2017 03_14R
2017 03 15R
T w w - w
2017 03_16R
2017 03 17R
ETHZ ENTO1 201 ETHZENTO1.201  ETHZ ENTO1.201  ETHZ_ENTO1_201
2017 03_18R 7_01_30_000073 7_01_30_000079 7_01_30_000020 7 01_30_000081

Figure 15 ETHEC dataset folder unorganized

The organized dataset contains 36.283 images for the train folder and 5067 images
for the validation folder. The dataset contains unequal image distribution. After splitting
the dataset into train and validation sets, some of the classes have only 2 or 3 images for
training.

For each level of the hierarchy, I prepared different datasets without any
augmentation to be able to make some experiments. As the training and validation images
are the same (obtained from metadata file), the difference between these datasets is the
output classes. The prepared datasets are:

e ETHEC-Fam: Level-1 of the hierarchy. There are 6 classes that
are family.
e ETHEC-Sub: Level-2 of the hierarchy. There are 21 classes that

are sub-family.
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e ETHEC-Gen: Level-3 of the hierarchy. There are 135 classes that

are genus.

e ETHEC-Spec: Level-4 of the hierarchy. There are 550 classes

that are species

Table 1 Prepared datasets for experiments. “Level” represents the level of hierarchy.

“Num. Classes" represent the total number of classes in that level of hierarchy. “Train

images” and “Valid images” represent the number of images for training and validating.

“Min Image” represents the number of minimum images in a single class of the related

level of hierarchy. “Max Image” represents the number of maximum images in a single

class of the related level of hierarchy. As you can see, there are lots of differences in the

number of images between classes even they belong to the same level of hierarchy.

Dataset Num. Train Valid Min. Max.
No Level
Name Classes | Images | Images | Image | Image
ETHEC-
1 L1 6 36.283 5.067 113 16.063
Fam
ETHEC-
2 L2 21 36.283 5.067 2 8.716
Sub
ETHEC-
3 L3 135 36.283 5.067 1 3.933
Gen
ETHEC-
4 L4 550 36.283 5.067 1 489
Spec

3.4 Obtaining Attention

In this study, instead of using image pixels for classification, we intend to use

visual attention. To be able to do this, we used the DINO repository which provides us
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with a self-supervised vision transformer. There are different ViT architectures that DINO

[47] provides us.

Table 2 DINO ViT model parameters. [47]

model blocks dim heads #tokens #params im/s

ResNet-50 - 2048 - - 23M 1237
ViT-S/16 12 384 6 197 21IM 1007
ViT-S/8 12 384 6 785 2IM 180
ViT-B/16 12 768 12 197 85SM 312
ViT-B/8 12 768 12 785 85SM 63

We used the ViT-S/16 model for our experiments. The model implements a multi-
head attention technique and you can see the 6 different self-attention masks and

heatmaps for the same image in Figure 20 and Figure 21.
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Figure 16 Self-attention mask of a butterfly for 6 different heads. Image a
represents mask for head 1, image b represents mask for head 2, image c represents
mask for head 3, image d represents mask for head 4, image e represents mask for head

5, and image f represents mask for head 6
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Figure 17 Self-attention heatmap of a butterfly for 6 different heads. Image a represents

heatmap for head 1, image b represents heatmap for head 2, image ¢ represents heatmap for
head 3, image d represents heatmap for head 4, image e represents heatmap for head 5, and

image f represents heatmap for head 6

3.4 Experiments

All the experimental results are discussed in this section. To be able to compare
our results, we selected a reference paper that uses the same dataset and implements
hierarchical classification on CNN-based approaches. They implemented 3 different
approaches called Per-Level (PLC), Marginalization classifier (MC) and Masked Per-
level classifier (M-PLC) [2]. Each approach implements different hierarchical

classification techniques.

3.4.1 K-Nearest Neighbor Experiment With ViT Features

In this experiment, we just developed a simple K-NN that accepts ViT features as
an input. With that, we aimed to question if the ViT features of different hierarchy levels

of the ETHEC dataset can be classified successfully by a K-NN. With the help of

similarity metric, we can calculate top k neighbors.
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Figure 18 Experiment-1 diagram. An image first feed into the ViT and then

obtained Feature Vector feed into the K-NN to obtain image class.

ETHEC-Fam:

ETHEC-Fam is the first dataset that represents the first level of the hierarchy.
Classes of this level contain a higher number of images rather than the other levels of
hierarchy. Table 3 shows that the K-NN with ViT features worked well with the ETEC-
Fam dataset.

Table 3 ETHEC-Fam results on K-NN with ViT features.

Experiment No K Value Top 1 Top 5
1 5 %99.62 %99.92
2 10 %99.52 %99.96
3 15 %99.42 %99.96
4 20 %99.38 %99.96
ETHEC-Sub:

ETHEC-Sub is the second dataset that represents the second level of the hierarchy.
Table 4 shows that the K-NN with ViT features worked well with the ETEC-Sub dataset.

Table 4 ETHEC-Sub results on K-NN with ViT features.

Experiment No K Value Top 1 Top 5
1 5 %98.79 %99.78
2 10 %98.75 %99.84
3 15 %98.53 %99.86
4 20 %98.36 %99.86
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ETHEC-Gen:
ETHEC-Gen is the third dataset that represents the third level of the hierarchy.
Table 5 shows that the K-NN with ViT features worked well with the ETEC-Gen dataset.

Table 5 ETHEC-Gen results on K-NN with ViT features.

Experiment No K Value Top 1 Top 5
1 5 %94.61 %98.20
2 10 %94.07 %98.79
3 15 %93.54 %98.91
4 20 %92.75 %98.85

ETHEC-Spec:

ETHEC-Spec is the last dataset that represents the last level of the hierarchy. As
expected, Table 6 shows that the results of the K-NN with ViT features are not high as
upper-level datasets in the hierarchy.

Table 6 ETHEC-Spec results on K-NN with ViT features.

Experiment No K Value Top 1 Top 5
1 5 %82.92 %92.73
2 10 %81.72 %94.43
3 15 %80.24 %94.80
4 20 %79.00 %94.78

Table 7 Comparison of datasets wrt. Scores

Dataset K Value Top 1 Top 5

ETHEC-Fam 10 %99.52 %99.96
ETHEC-Sub 15 %98.53 %99.86
ETHEC-Gen 15 %93.54 %98.91
ETHEC-Spec 15 %80.24 %94.80

Table 7 shows us that K-NN performance decreased as we went through lower
levels. This kind of effect is actually predictable. In some classes (especially in lower
levels of hierarchy), the amount of data is really low and this data problem decreases the

overall accuracy of the model.
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3.4.2 Per-Level Classifier Experiments

In this experiment, we implemented a similar architecture to Per-Level Classifier
called VA-PLC and VM-PLC. The main principle for this architecture is that for every
level of hierarchy there is a classifier, and the entire model predicts L different labels in
which L is the number of levels in the hierarchy.

Basically, in our approach, there is a K Nearest Neighbor classifier for each level
that is trained with vision transformer features. We used this K-NN classifier to obtain
cosine similarities for each level. Then we concatenated these similarity vectors into a
single vector and feed to an SVM as an input for the final decision.

For this approach, the first step was obtaining vision transformer features of the
entire dataset. As we have four different levels in the hierarchy, we prepared four different
oriented feature set from the same vision transformer for each level. To do this we feed
the ETHEC-Fam, ETHEC-Sub, ETHEC-Gen, and ETHEC-Spec datasets into a vision

transformer and saved the obtained feature arrays like the diagram below.

Dataset -
e i el ass “
[n,602112 ]
1- Feed Data To ViT H
V -
Self-Supervised
ViT

L Repeated for each

- . ¥ | ienacn(] 00548, 00345, 00413
2- Obtain Feature Array | [0.0200, -0.0804, 0.0163
[0.0279, 00389, 0.0153

level

3 H

Feature Array [: . :] =

3- Save All Features H
5

Figure 19 Obtaining ViT features for each level of the hierarchy

As the datasets for each level of the hierarchy are organized in a different way,

the obtained feature arrays are not sorted. As we want to obtain the similarity value of a



single image in the dataset for each level, unsorted arrays make calculations difficult and

the search operation consumes lots of time.

v L e see “ “ e > soe L
Label:5 Label:2  Label : 4 Label : 0 Label : 107 Label : 71 Label : § Label : 68
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Label: 13 Label:8  Label: 15 Label : 20 Label : 438 Label : 501 Label : 98 Label : 257
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Level 2 Feature Array |= == Level 4 Feature Array ===

Figure 20 Unsorted ViT Feature arrays for each level

To be able to sort all of these features, we created the feature sorter module that

sort the Level 2, Level 3, and Level 4 feature array with respect to the orientation of the

Level 1 feature array (Figure 21).

:1 Sorted Feature
:.I Arrays

[: OO &

Unsorted Feature [: S ¥ .| Feature Sorter | ~

. ]ZD:>
Figure 21 Feature sorter module

After sorting all the feature arrays for each level into a single orientation, we can
easily apply matrix operations as all the indexes of these feature arrays are belongs to the

same image in the dataset (Figure 22).
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Figure 22 Sorted ViT feature arrays for each level



After obtaining sorted feature arrays, the next step was obtaining the similarity
vectors. The term similarity vector is that, for all items in the validation dataset, we obtain
a similarity vector that holds the cosine similarity value of the item in the validation
dataset to all items in the training dataset. In cosine similarity, the returned values are
located between 0 and 1. If two feature vectors are completely different the function

returns 0 otherwise if two vectors are identical then it returns 1 [29] .

A-B
Sim(A, B) = COS(Q) = W ;

Figure 23 Cosine similarity formula
To be able to obtain this similarity vector, we prepared the Feature To Similarity

Module (Figure 24).

@Q\
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é{?‘ é‘e%
< Feature To &
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Feature Array [: . :] = Similarity | ——> [' 2 '] s So'rted
[n,384] Module = = = | Similarity Array
d [n,36283]
3- Obtain SLA
# of items in train dataset
K; Sorted Label Array
+ -« Similarity 1o 8 nodé in tain set } [I] 36283] - Repeated fOI’ E&Ch

level

# of items in train dataset

Figure 24 Feature to Similarity module

The Feature To Similarity Module calculates the similarity array based on a K-
NN classifier's similarity metrics for each level in the dataset. The module outputs 2

different arrays that are Sorted Similarity Array (which holds the similarity values) and
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Sorted Candidate Array (which holds the label of each similarity value in the Sorted

Similarity Array). These arrays are saved into a file for future steps to be able to save

some time.
tensor([[0.9265, 0.9259, 0.9261, ..., 0.6709, 0.7230, 0.6603],
[0.9259, 0.9685, 0.9985, ..., 0.7084, 0.7567, 0.6709],
[0.9261, 0.9985, 0,9923, ... 0.7045, 0.7547, 0.6666],
Sorted [: . :] =
fobaeed "a [0.6709, 0.7084, 0.7045, .., 0.9523, 0.9611, 0.9064],
Similarity Array [0.7230, 07567, 0.7547, ..., 0.9611, 0.8863, 0.8998],

[n,36283] [0.6603, 0.6709, 0.6666, ..., 0.9064, 0.8998, .09125T])

tensor(([0, 0,0, ..., 5,5, 5],

[0,0,0, .. 5,5.5),
[0,0,0, .5,5.5],

Sorted | —
Label Array L= == 000 555
0.0, 5,551

[n,36283] 10,00,

Figure 25 Sorted Similarity And Label Array for Level 1 dataset

As you can see from the figure above there are multiple similarity values for a
single label. What we want to obtain is a single similarity value for each label. To be able
to eliminate the other similarity values we prepared 2 different approaches that are:

o Average Similarity Per Label
o Maximum Similarity Per Label

The main difference between these approaches is that in the Average Similarity
Per Label approach we calculated the average of all similarities that belongs to the same
label but in the Maximum Similarity Per Label approach, we just select the maximum

similarity value for each label.

3.4.2.1 Average Similarity Per Label

For this approach, we prepared a module called Average Similarity Per Label
Calculator. This module basically gets the Sorted Similarity Array and Sorted Label
Array as an input and outputs the Average Similarity Array for each level in the hierarchy

(Figure 26).
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Figure 26 Average Similarity Per Label Calculator module
To be able to obtain average similarities, we grouped the similarity values for each
label and calculated their average values. Then we created an Average Similarity Array
that holds a single similarity value for each label. In this approach, there are some
similarity values that can be classified as outliers so to be able to eliminate them we used

K biggest similarity values for each label (Figure 27).
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Figure 27 Average Similarity Per Label Calculator module in detail
In the previous experiment, we trained K-NNs that represent different levels of

hierarchy. For each K-NN we selected the suitable K value with the help of Table 7

Table 8 Trained K-NNs for each level of hierarchy

Dataset K Value K-NN
ETHEC-Fam 10 L1 K-NN
ETHEC-Sub 15 L2 K-NN
ETHEC-Gen 15 L3 K-NN
ETHEC-Spec 15 L4 K-NN




After obtaining the Average Similarity Arrays for each level of the hierarchy, we
need to concatenate these similarity arrays into a single one to be able to obtain a single
feature array that holds all the information for all levels in the hierarchy. To be able to

concatenate these arrays, we created the ASA Concatenation Module (Figure 28).

Level 1 ASA EEE
" “[nLI1]
Level 2 ASA |2+ = -
= o n, .
. ‘L’ Concatenation ] Final ASA
Level 3 ASA |+ =+ Module [n, (L1+L2+L3+L4)]
"~ "[mL3]
Level 4 ASA
" [nL4]

Figure 28 Concatenating Average Similarity Arrays for each level in to a Final

Average Similarity Array

The ASA Concatenation Module basically accepts all Average Similarity Arrays
for each level and merges them in the order of Level 1 to Level 4. The final array holds
the Similarity information for each label in the entire hierarchy which has a length of 713

(Figure 29).
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Figure 29 ASA Concatenation Module

After applying all these steps that are described above, we obtained a Final
Average Similarity Array for each image in the dataset and as we already know their
actual for each level, we trained 4 different SVMs that classify for all different labels in
the hierarchy (Figure 30).
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Figure 30 Training SVM for each level in the hierarchy

After training the SVMs, for each SVM we fed our Final Validation Average

Similarity Array and obtained the L1, L2, L3 and L4 results.
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Figure 31 Validation of the VA-PLC approach
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Figure 32 Confusion matrix of the VA-PLC approach level 1
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Most of the binary classification problems can be evaluated with precision, recall
and F1 score metrics but as our problem is a multiclass classification problem, we need
to calculate the TP, FN, FP and TN values from the confusion matrix.

e TP: True positive, actual value and the predicted value is the same

e FN: False negative, sum of values of all rows except TP

e FP: False positive, sum of values of all columns except TP

e TN: True negative, sum of values of all columns and rows except values of the
related class

For calculating the metrics, we used:

e Precision: tp / (tp + fp)

e Recall: tp/ (tp + fn)

e F1 Score: 2 * (precision * recall) / (precision + recall)

Table 9 VA-PLC Accuracy, Precision, Recall and F1 results

Metric Avarage L1 L2 L3 L4
Accuracy %90,43 %97,43 %96,59 %91,18 %76,54
Precision %67,57 %385,03 %79,97 %64,63 %40,66

Recall %69,44 %96,80 %90,80 %63,97 %43,70

F1 %69,44 %90,92 %83,12 %63,00 %40,74

Table 10 VA-PLC and PLC model results on different levels.

Model m-F1 L1 L2 L3 L4
VA-PLC 990,43 %97,43 296,59 %91,18 %76,54
PLC %90,84 %97,66 296,61 292,04 %77,04

As you can see from the Table 9 VA-PLC can not outperform the PLC model
but obtained quite similar results. In this approach, even we select the best K value for
averaging the top K similarity values, there are still some outlier similarity values that
decrease the overall accuracy. Also as there are unequally distributed data, the precision

and recall values are decreased a lot in level 3 and level 4.
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3.4.2.1 Maximum Similarity Per Label

For this approach, we prepared a module called Maximum Similarity Per Label
Calculator (Figure 33). This module basically gets the Sorted Similarity Array and Sorted
Candidate Array as an input and outputs the Maximum Similarity Array for each level in

the hierarchy.

| tensor([[0.9917, 0.8652, 0.8744, 0.7409, 0.6622, 0.8460],
[0.9858, 0.850, 0.9066, 0.7873, 0.7053, 0.8583],
[0.9983, 0.8497, 0.9031, 0.7874, 0.7026, 0.8565],

[0.8935,0.9520, 0.9463, 0.8528, 0.8385, 0. 9630],
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Figure 33 Maximum Similarity Per Label Calculator Module

To be able to obtain maximum similarities, we grouped the similarity values for
each label and selected the maximum value from them. Then we created a Maximum

Similarity Array that holds a single similarity value for each label (Figure 34).
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Figure 34 Maximum Similarity Per Label Calculator Module in detail



After obtaining the Maximum Similarity Arrays for each level of the hierarchy,
we need to merge these similarity arrays into a single one to be able to obtain a single
feature array that holds all the information for all levels in the hierarchy. To be able to
concatenate these arrays, we created the MSA Concatenation Module which is exactly

the same module as ASA Concatenation Module (Figure 35).
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Level 2 MSA |= ==
] Final MSA
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Figure 35 Concatenating Maximum Similarity Arrays for each level into a Final

Average Similarity Array

The MSA Concatenation Module basically accepts all Maximum Similarity
Arrays for each level and merges them in the order of Level 1 to Level 4. The final array
holds the similarity information for each label in the entire hierarchy which has length of

713 (Figure 36).
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Figure 36 MSA Concatenation Module

After applying all these steps that are described above, we obtained a Final
Maximum Similarity Array for each image in the dataset and as we already know their

actual results for each level, we trained 4 different SVMs that classifies for all different



labels in the hierarchy as we did for the Average Similarity Value Approach before
(Figure 37).
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Figure 37 Training SVM for each level in the hierarchy
After training the SVMs, for each SVM we fed our Final Validation Maximum
Similarity Array and obtained the L1, L2, L3, and L4 results (Figure 38).
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Figure 38 Validation of the VM-PLC approach
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Table 11 VM-PLC Accuracy, Precision, Recall and F1 results

Metric Avarage L1 L2 L3 L4

Accuracy %92,84 %99,74 %98,79 %93,58 %79,25
Precision %76,38 %99,82 %94,16 %69,98 %42,56
Recall %75,62 %98,81 %92,70 %65,56 %45,44
Fl1 %75,40 %99,30 %93,37 %66,37 %42,57

Table 12 VA-PLC, VM-PLC and PLC model results on different levels.

Model m-F1 Ll L2 L3 L4

VA-PLC %90,43 %97.,43 %96,59 %91,18 %76,54
VM-PLC %92,84 %99,74 %98,79 %93,58 %79,25
PLC %90,84 %97,66 %96,61 %92,04 %77,04

As you can see from Table 11 VM-PLC outperforms the PLC model with high
results even in the 4" level. And also, there is an improvement on precision and recall
compare to VA-PLC approach. The precision and recall are still bad in last two levels
that shows us in some classes our model still predicts completely wrong.

There are some problems with this approach that are :

e This approach only exploits the number of levels in the hierarchy
e Not a safe approach. Classification in lower levels is not accurate as higher levels
and as there is no sub-tree relation, the overall accuracy can be affected in a bad

way.

3.4.3 Masked Per-Level Classifier Experiments

In this experiment, we implemented a similar architecture to Masked Per-Level
Classifier which is called VM-MPLC. The main principle for this architecture is that for

every level of hierarchy there is a classifier, and the entire model predicts L different
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labels. The difference from previous approach is that implausible classes are masked so
the model do not need to deal with classes in which their parent classes are not predicted

in upper level of hierarchy.
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Y a 4 /\/\/
\/\_/ O/ \,/\/\/

Figure 40 Example representation of masked classes in different levels of

hierarchy [2]

Basically, in our approach, there is a K Nearest Neighbor classifier for each level
that is trained with vision transformer features. We used this K-NN classifier to obtain
similarities and predictions for each level. Then we eliminated the implausible classes
and merged the masked similarity arrays into a single vector. Similar to previous
approaches we trained 4 SVMs for each level and obtain final results.

For this approach, we used the sorted vision transformer feature arrays for each
level that we obtained from the previous experiment. We updated the Feature to Similarity
Module that we used in our previous experiment so that we can also obtain the K-NN

prediction array as well as Sorted Similarity Array and Sorted Label Arrays (Figure 41).
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Figure 41 Feature to Similarity module
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tensor([[0.9265, 0.9259, 0.9261, ..., 0.6709, 0.7230, 0.6603],
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Figure 42 Feature To Similarity Module Output Arrays

In previous approaches, we do not mask any labels as the hierarchy goes deeper.
In this approach, we will mask the implausible labels. To do this we prepared a module
called Child Filter Module (Figure 43). Basically, this module gets the K-NN prediction
array of the upper level and Sorted Similarity Array of the current level as an input and

outputs the Filtered Sorted Similarity Array for each level of the hierarchy.
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Figure 43 Child Filter Module

For this module, we prepared a map that holds the parent-child relationship. With
this information, we can easily eliminate the nonchild elements in lower levels. To
eliminate these nonchild elements we set their similarity value to 0. With this operation,
the module outputs an array that contains only the child elements similarity values as their

real values and the rest of them are 0 (Figure 44).
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Figure 44 Child Filter Module in detail

After obtaining the Filtered Sorted Similarity Array, We used the Max Similarity
Per Label Calculator (Figure 45) as described in the previous experiment. The only

difference is that the maximum operation is only applied to child elements (Figure 46).
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The rest of this approach is the same as the VM-PLC approach. We used these
Filtered Maximum Similarity Arrays to train SVMs for each level of the hierarchy and
after that, we obtained the L1, L2, L3, and the L4 results.
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Figure 47 Confusion matrix of the VM-MPLC approach level 1

Table 13 VM-MPLC Accuracy, Precision, Recall and F1 results

Metric Avarage L1 L2 L3 L4

Accuracy %92,96 %99,63 %98,81 %94,57 %78,85

Precision %77,65 %99,66 %93,79 %74,87 %42,36

Recall %76,60 %97,77 %93,27 %70,37 %45,00

F1 %76,39 %98,20 %93,51 %71,60 %42,27

Table 14 VM-MPLC results

Model m-F1 L1 L2 L3 L4
VA-PLC 290,43 297,43 996,59 %091,18 %76,54
VM-PLC 992,84 999,74 998,79 993,58 %79,25

VM-MPLC | %92,96 %99,63 %98,81 %94,57 %78,85

M-PLC %91,73 %98,28 %97,01 %92,33 %79,30




3.4.5 Experiment Summary

We have implemented 3 different experiments and compared our results with the
reference paper. In experiments section I described the first two implementations that are
PLC and M-PLC but also there is another implementation called MC which results the

best score in the reference paper.

CNN

-
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Figure 48 Marginalization approach [2]

This approach basically makes the prediction with a probability distribution over
the leaf nodes and the non-leaf node probability is determined by the marginalization
method. We did not implement this approach in our work currently but this will be future
work for us.

V-CNN is an additional experiment that aims to check that if training a deep

learning model with ViT features increases the accuracy.

2-Obtain ViT Fealures

3- Feed Features To CNN - Repeated for each

v level
A

1- Feed Data To ViT

Figure 49 V-CNN approach
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As you can see from the results this approach not worked well. We used a
pretrained ResNet 50 model and trained 4 different model for each level with different

training parameters (Table 16).

Table 15 V-CNN Accuracy and training time results

Dataset Epoch Validation Acc Training Time (min)
ETHEC-Fam 30 %98.36 45
ETHEC-Sub 30 %83.69 45
ETHEC-Gen 50 %52.21 100
ETHEC-Spec 100 %32.6 170

As you can see from the Table 16, hierarchical image classification with self-

supervised Vision Transformer features outperforms traditional hierarchical CNN.

Table 16 Experiment Results

Model m-F1 Ll L2 L3 L4
VA-PLC %90,43 | %97,43 | %96,59 %91,18 %76,54
VM-PLC %92,84 | %99,74 | %98,79 %93,58 %79,25
VM-MPLC | %92,96 | %99,63 | %98,81 %94,57 %78,85
V-KNN %92,95 | %99,52 | %98,53 %93,54 %80,24
V-CNN %66,71 | %98,36 | %83,69 %52,21 %32,6
PLC %90,84 | %97,66 | %96,61 %92,04 %77,04
M-PLC %91,73 | %98,28 | %97,01 %92,33 %79,30
MC %92,23 | %98,87 | %97,58 %92,73 %79,72




Instead of the performance advantages, K-NN approaches that we discussed,

There are some other advantages of K-NN that helps us to develop a hierarchical

classification system that are:

No Training Required: K-NN just stores the training dataset. There is no training or
deriving discriminative functions. It learns while making a prediction. For a hierarchy,
as we need lots of small models, K-NN makes us save lots of time.

New Data Integration: As K-NN does not require any training, we can easily add or
extract data without any major problem.

Easy To Implement: There are only two hyperparameters that we can change that is
K value and similarity formula. For a hierarchy, as we need lots of small models, we
do not need to spend time for fine-tunning as much as CNN fine-tunning.

Also there are some disadvantages that are :

Small datasets: K-NN operates well in smaller datasets like ETHEC but in larger
datasets as the computation cost increases the performance may decrease.

Test and Prediction Times: As K-NN stores the entire training data, when the data
increases the test or prediction time also increases linearly. On the other hand with
the CNN approach, as the number of trainable parameters such as weights is not
dependent on the training dataset size, the prediction times are always the same. This

might be mitigated by using Approximate Nearest Neighbor techniques [51] .
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CHAPTER 4

CONCLUSION AND FUTURE WORK

In this work, we proposed 3 different methods to exceed hierarchical CNNs. The
main problem with hierarchical CNNs is that they require lots of data, computational cost,
training time and etc. Also, they are hard to optimize and deploy. We used K-NNs that
are trained with self-supervised vision transformers to obtain similarities and for the
classification, we trained an SVM for each level. We compared our approaches with the
CNN approaches from our reference paper with respect to accuracy and 2 of our
approaches that are VM-PLC and VM-MPLC outperformed the best CNN-based
approach of the reference paper which is MC.

As we used a K-NN to obtain similarities, there is no need for training. We just
train a simple SVM for each level of the hierarchy. Also, there is no need for training an
SVM for each level of the hierarchy if the problem is just covering only one level of the
hierarchy. So with our approach we solved the problems that are:

e High amount of data requirement
e High training times

e Optimization problems

e Not extendable hierarchy

In the future work, we are planning to improve our approach and implement some
different hierarchical classification techniques such as local classifier per parent node,
local classifier per node, and so on. As we are not using CNNs, number of local classifiers
will be not hard to train and deploy. In literature, local classifiers seem more accurate
than the global ones so with these implementations we are planning to obtain higher

accuracies with bigger datasets.
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