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ABSTRACT

EMISSION CHARACTERISTICS OF TWO AND THREE LEVEL

SYSTEMS

In this thesis, we mainly focus on the two subjects. Firstly, we investigate the

spontaneous emission from a V-type three-level atom. We mainly study the influence of

quantum interference between the decay processes from the two upper levels to a lower

level to which the upper levels are coupled by the same vacuum modes. The effects of

quantum interference on the spontaneous emission spectrum are studied. These effects

are shown to induce spectral narrowing and a dark line in the spectrum. The influence of

the interference on the upper level populations is also examined. It is seen that the upper

level populations are not simple exponential decays. In the second part of this study, the

fluorescence spectrum of a driven two-level atom is evaluated. Both the resonance and

the off-resonance cases, and the weak and the strong coupling regimes are investigated.
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ÖZET

İKİ VE ÜÇ SEVİYELİ SİSTEMLERİN IŞIMA ÖZELLİKLERİ

Bu tezde başlıca iki konu incelenmektedir. İlk olarak üç seviyeli sistemlerde ken-

diliğinden emisyon fenomeni üzerine çalışılmıştır. Özel olarak V tipi sistemlerde iki

bozunma süreci arasındaki kuantum girişim etkilerine odaklanılmıştır. Bu bağlamda, giri-

şimin kendiliğinden emisyon spektrumu üzerindeki etkileri gösterilmiştir. Aynı zamanda

girişim fenomeninin atomik enerji seviyelerindeki popülasyonlar üzerindeki etkileri de

incelenmiştir. İkinci bölümde ise uyarılmış iki seviyeli atomların ışıma özellikleri ince-

lenmektedir. Bu bölümde zayıf ve güçlü eşleşme rejimleri, hem rezonans hem de rezonans

dışı durumlar için çalışılmıştır.
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CHAPTER 1

INTRODUCTION

In the study of the atom-field interactions, the semi-classical theory assumes that

the field is classical (Jaynes and Cummings (1963), Pauli (1980)). In many cases this

assumption fails to explain experimentally observed results. For example, spontaneous

emission can not be adequately explained by the semi-classical theory and the fully quan-

tum mechanical theory is needed (Shore and Knight (1993)). So, if we want a firm treat-

ment of the decay of an atomic excited state in free-space, it is needed to consider the

interaction of the atom with the vacuum modes of the universe. In this chapter, we are

going to study the interaction of a two-level atom with the quantized radiation field in

free-space (Iqbal et al. (1988)).

In the first section of this chapter, the atom-field interaction Hamiltonian in the

dipole and the rotating wave-approximations is introduced. In the second section, we

introduce the interaction picture which is an intermediate representation between the

Schrödinger picture and the Heisenberg picture. Then, the Wigner-Weisskopf theory

(Weisskopf and Wigner (1930)), for a comprehensive study of the spontaneous emis-

sion, is introduced. The Heisenberg-Langevin method (Boyanovsky and Jasnow (2017))

is more suitable for the calculation of the two-time correlation function 〈σ̂+(t+ τ)σ̂−(t)〉
which is required to calculate the spectrum of the emitted light. So, in the last section, we

calculate the spectrum of the light emitted by a damped two-level atom.

1.1. Atom-Field Interaction Hamiltonian

In the dipole approximation (Rzazewski and Boyd (2004)), the interaction of the

single electron atom and the quantized radiation field Ê can be expressed by the following

Hamiltonian:

Ĥ = ĤA + ĤF − d̂.Ê. (1.1)

In the absence of interaction, ĤA and ĤF are the energies of the atom and the

1



field, respectively, and d̂ is the dipole moment operator. The dipole approximation allows

us to assume that the field is uniform over the whole atom (Kobe (1982)).

If the set {|i〉} constitutes a complete set of atomic energy eigenstates, i.e.,
∑

i |i〉〈i| =
1, then the atomic transition operators can be written as

σ̂ij = |i〉〈j|. (1.2)

The atom energy ĤA and the dipole moment operator d̂ can be expressed in

terms of the atomic transition operators, and it follows from the eigenvalue equation

ĤA|i〉 = Ei|i〉 that

ĤA =
∑
i

Eiσ̂ii. (1.3)

Also the dipole moment operator is

d̂ =
∑
i,j

|i〉〈i|d̂|j〉〈j| =
∑
i,j

dijσ̂ij, (1.4)

where the factor dij = 〈i|d̂|j〉 being the dipole moment operator matrix element between

states |i〉 and |j〉.
The Hamiltonian operator for the free-field can be written in terms of the creation

and annihilation operators as

ĤF =
∑
k

�ωk(â
†
kâk +

1

2
) (1.5)

and after dropping the zero-point energy term, it becomes

ĤF =
∑
k

�ωkâ
†
kâk (1.6)
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In the dipole approximation, the electric field operator can be evaluated at the po-

sition of the atom (Barnett and Radmore (1997)). For the atom placed at the origin, the

electric field operator is

Ê =
∑
k

ekEk(âk + â†k) (1.7)

where ek is the unit polarization vector, and Ek = (�ωk/2ε0V )1/2.

Now, by substituting Eqs. (1.3), (1.4), (1.6), and (1.7) into Eq. (1.1) we obtain the

following Hamiltonian:

Ĥ =
∑
k

�ωkâ
†
kâk +

∑
i

Eiσ̂ii + �

∑
i,j

∑
k

gijk σij(âk + â†k), (1.8)

where

gijk = −dij.ekEk
�

, (1.9)

for convenience, we assume dij to be real.

Now, we consider a two-level atom with the excited state |e〉 and the ground state

|g〉. Then, for dij = dji = d, we have

gk = gegk = ggek . (1.10)

The Hamiltonian in Eq. (2.8) becomes

Ĥ =
∑
k

�ωkâ
†
kâk + (Eeσ̂ee + Egσ̂gg) + �

∑
k

gk(σ̂eg + σ̂ge)(âk + â†k). (1.11)

By using (Ee − Eg) = �ω0 and σ̂ee + σ̂gg = 1, the second term can be written as

Eeσ̂ee + Egσ̂gg =
1

2
�ω0(σ̂ee − σ̂gg) +

1

2
(Ee + Eg). (1.12)
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The projectors |e〉〈e|, |e〉〈g|, |g〉〈e|, and |g〉〈g|, and their combinations are the only

possible operators for our two-level atom. As usual, these operators are used in the form

of the Pauli operators

σ̂3 = |e〉〈e| − |g〉〈g| (1.13)

σ̂+ = |e〉〈g| (1.14)

σ̂− = |g〉〈e|, (1.15)

The first operator is a Hermitian operator while the second and the third constitutes

a Hermitian conjugate pair such that σ̂+ = σ̂†
−, and these operators satisfy the following

commutation relations:

[σ̂−, σ̂+] = −σ̂3 (1.16)

[σ̂−, σ̂3] = 2σ̂−. (1.17)

In the matrix form, the operators σ̂3, σ̂+, and σ̂− are given by

σ̂3 =

⎡
⎣1 0

0 −1

⎤
⎦ , σ̂+ =

⎡
⎣0 1

0 0

⎤
⎦ , σ̂− =

⎡
⎣0 0

1 0

⎤
⎦ . (1.18)

The σ̂3 operator is the atomic inversion. The σ̂+ and σ̂− operators are the atomic

transition operators. The σ̂+ operator takes the atom from the ground state to the excited

state whereas the σ̂+ takes the atom from the excited state to the ground state.

By using these operators and ignoring the constant energy term in Eq. (1.12), the

Hamiltonian in Eq. (1.11) can be rewritten as

Ĥ =
∑
k

�ωkâ
†
kâk +

1

2
�ω0σ̂3 + �

∑
k

gk(σ̂+ + σ̂−)(âk + â†k). (1.19)

The interaction part in the above equation contains four terms. The term σ̂+âk

corresponds to the case in which the atom makes a transition from the ground state to the
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excited state whereas a photon of mode k is destroyed. The term σ̂−â
†
k corresponds to the

opposite case. For these two cases, the energy is conserved. The term σ̂+â
†
k corresponds

to the case in which the atom makes a transition from the ground state to the excited state

and a photon is created. In this situation, the system gains energy nearly equal to 2�ω. For

the term σ̂−âk, the process is reversed, and the system loses energy, approximately equal

to 2�ω. These two terms are the energy non-conserving terms. Then, dropping these

terms corresponds to the rotating-wave approximation (Irish (2007), Gerry and Knight

(2004)). So, the Hamiltonian in Eq. (1.19) becomes

Ĥ =
1

2
�ω0σ̂3 +

∑
k

�ωkâ
†
kâk + �

∑
k

gk(σ̂+âk + â†kσ̂−). (1.20)

The interaction of a single two-level atom with a multi-mode field is described by

the Hamiltonian in eq. (1.20).

1.2. Interaction Pictures

In quantum mechanics, the dynamics of a system is examined by several equiv-

alent pictures, or descriptions. They are connected to each other by unitary transforma-

tions. Interaction pictures represent the descriptions between the Schrödinger and the

Heisenberg pictures. In the Heisenberg picture, the state is time independent and all the

dynamics are contained within the operators. On the other hand, the state evolves while

the operators are time independent in the Schrödinger picture. In some of the interaction

pictures which are called as the Schrödinger interaction pictures, the dynamics associated

with the free evolution is contained within the operators, while evolution arising from the

coupling is contained in the state, and vice versa for the pictures known as the Heisenberg

interaction pictures. (Barnett and Radmore (1997)).

The unitary transformations connect the Schrödinger interaction pictures to each

other. The expectation values of the observables must be independent of the picture in

which it is evaluated. For an operator Â, for example, the expectation value in a state

|ψ〉 is given by 〈ψ|Â|ψ〉. By the use of an unitary operator Û , the transformation to a
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Schrödinger interaction picture is attained. In this picture, while the state is

|ψ1〉 = Û |ψ〉, (1.21)

the operator Â becomes ÛÂÛ †. Then, the invariance of the expectation value results from

Û † = Û−1, that is,

〈ψ1|ÛÂÛ †|ψ1〉 = 〈ψ|Û †ÛÂÛ †Û |ψ〉 (1.22)

= 〈ψ|Û−1ÛÂÛ−1Û |ψ〉 (1.23)

= 〈ψ|Â|ψ〉. (1.24)

In order to obtain the interaction picture Hamiltanian, we use the Schrödinger

equation

i�
∂|ψ〉
∂t

= Ĥ|ψ〉, (1.25)

and the condition that |ψ1〉 obeys the transformed Schrödinger equation

i�
∂|ψ1〉
∂t

= V̂|ψ1〉. (1.26)

By substituting eq. (1.21) into eq. (1.26), we have

i�

(
˙̂
U |ψ〉+ Û

∂|ψ〉
∂t

)
= i�

˙̂
U |ψ〉+ ÛĤ|ψ〉 = V̂Û |ψ〉. (1.27)

To obtain the above expression we have used eq. (1.25), and from this expression

the interaction picture Hamiltonian is

V̂ = UĤU † + i�
˙̂
UU †. (1.28)
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Now, as an example we transform the Hamiltonian

Ĥ =
1

2
�ω0σ̂3 +

∑
k

�ωkâ
†
kâk + �

∑
k

gk(σ̂+âk + â†kσ̂−). (1.29)

This is the Hamiltonian that we obtain in the previous section, and we want to

transform it into a Schrödinger interaction picture in which the interaction picture Hamil-

tonian does not contain the free evolution term both for the atom and the field. In order to

achieve this we use the corresponding unitary transformation:

Û = exp

{
i

�

(
1

2
�ω0σ̂3 +

∑
k

�ωkâ
†
kâk

)
t

}
. (1.30)

By using the Baker-Hausdorf lemma: for any two operators Â and B̂,

eαÂB̂e−αÂ = B̂ + α[Â, B̂] +
α2

2
[Â, [Â, B̂]] + ..., (1.31)

we can easily see that

Û âÛ † = âe−iωkt (1.32)

Û σ̂+Û
† = σ̂+e

iω0t. (1.33)

Now we write the corresponding interaction picture Hamiltonian as follows

V̂ = �

∑
k

gk

(
σ̂+âke

−iΔkt + â†kσ̂−eiΔkt
)
, (1.34)

where Δk = ωk − ω0 is the detuning between the atomic transition frequency and the kth

mode of the field.

If we consider, now, a Heisenberg interaction picture in which time dependence

arising from the coupling is carried by the operators, and for an operator Â with no explicit
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time dependence the equation of motion given by

˙̂
A =

i

�

[
V̂ , Â

]
. (1.35)

In the above equation, V̂ is obtained from eq. (1.28). As mentioned previously, the

time dependence is partly contained within the state, too. We will work in the Heisenberg

interaction picture later in the subsequent sections.

1.3. Wigner-Weisskopf Theory

For the case of an excited atom in free-space, there are infinitely many modes

that it couples. Due to the coupling to the modes, the atom spontaneously and irreversibly

decays to a lower energy level. In this case, the dynamics is well described by the Wigner-

Weisskopf theory (Stenholm and Suominen (1930)).

Here, we are aiming to solve for the evolution of the atom-field system which is

described by the Hamiltonian

Ĥ =
1

2
�ω0σ̂3 +

∑
k

�ωkâ
†
kâk + �

∑
k

gk(σ̂+âk + â†kσ̂−). (1.36)

It is convenient to work in the interaction picture. So, the corresponding Schrödinger

interaction picture Hamiltanian is given in eq. (1.34):

V̂ = �

∑
k

gk

(
σ̂+âke

−iΔkt + â†kσ̂−eiΔkt
)
. (1.37)

The initial state vector is

|ψ(0)〉 = |e〉 ⊗ |0〉. (1.38)
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Time evolution of the state vector is governed by the Schrödinger equation:

i�
∂|ψ(t)〉

∂t
= V̂|ψ(t)〉. (1.39)

At time t > 0, the state vector can be written as

|ψ(t)〉 = C1(t)|e〉 ⊗ |0〉+
∑
k

C2(t)|g〉 ⊗ |1k〉. (1.40)

By substituting the eqs. (1.37) and (1.40) into eq. (1.39), we obtain the equations

of the motion for the probability amplitudes

Ċ2(t) = − i

�
(〈e| ⊗ 〈0|) V̂|ψ(t)〉 = −i

∑
k

gke
−i(ωk−ω0)tC1(t) (1.41)

Ċ1(t) = − i

�
(〈g| ⊗ 〈1k|) V̂|ψ(t)〉 = −igke

i(ωk−ω0)tC2(t). (1.42)

By formally integrating the eq. (1.42), we have

C1(t) = −igk

∫ t

0

e−i(ωk−ω0)t′dt′, (1.43)

and putting this into eq. (1.41) will yield the following integro-differential equation

Ċ2(t) = −
∑
k

g2k

∫ t

0

e−i(ωk−ω0)(t−t′)C2(t
′). (1.44)

In the case of an excited atom interacting with a single free-space mode, the set

of coupled first-order differential equations for the amplitudes, under the assumption that

the coupling is weak, so that the initial state population changes very little, will be solved

by adopting a perturbative approach. This leads us to end up with the famous Fermi’s

Golden rule. However, an atom in free-space is an open quantum system in which the

atom couples to the continuum of modes. In this case, perturbation approach must be
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abandoned. The dynamics is well described by Wigner-Weisskopf theory.

Here, we want to describe the evolution in free-space. The free-space can be imag-

ined to be a cubic cavity of side length L. Then, by taking the boundaries of the cavity

to infinity, the sum over a discrete set of modes becomes an integral over a continuum of

modes. By using the density of states concept, the number of modes can be counted. For

example, the number of modes in a volume d3k of k-space is given by D(�k)d3k where

D(�k) is the density of modes.

The quantization in a cubical box of side length L will impose periodic boundary

conditions. In the x-direction, for example, the plane waves must satisfy the condition

eikxx = eikx(x+L), (1.45)

and it follows that

kx =
2π

L
nx; nx = 0,±1,±2, ... (1.46)

For the y- and z-directions, the same boundary conditions will give

ky =
2π

L
ny; ny = 0,±1,±2, ... (1.47)

kz =
2π

L
nz; nz = 0,±1,±2, ... (1.48)

Thus, the discrete set of modes are

k =
2π

L
(nx, ny, nz), (1.49)

and a set of integers (nx, ny, nz) specifies a normal mode of the field apart from the

10



polarization. Then, the density of modes is

D(k) =
1mode(

2π
L

)3 =
V

(2π)3
. (1.50)

Thus, the summation over the discrete modes can be replaced by an integral as

following ∑
k

=

∫
D(k)d3k. (1.51)

In spherical coordinates, the volume element d3k becomes

d3k = k2sinθdθdφdk = k2dΩdk, (1.52)

where dΩ is the element of solid angle. By using the expression k = ωk/c the Eq.(1.44)

can be transformed into

∑
k

=

∫
D(�k)

ω2
k

c3
dΩkdωk =

∫
D(ωk)dΩkdωk, (1.53)

where D(ωk) is the mode density in frequency in a shell of k-space of radius ωk/c. Thus,

in the continuum limit

Ċ2(t) = −
∫ ∞

0

dωkD(ωk)

(∫
dΩk

∑
μ

g2μ(k)

)∫ t

0

dt′e−i(ωk−ω0)(t−t′)C2(t
′). (1.54)

The summation over μ takes into account the different polarizations of the modes.

Thus, the polarization average is defined to be

g2(ωk) ≡
∫

dΩk

∑
μ

g2μ(k) =
1

�2

(
�ωk

2ε0V

)∫
dΩk

∑
μ

(d.ek)2 , (1.55)

where
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∑
μ

(d.ek)2 = sin2(θk) (d)2 . (1.56)

Now, we rewrite the eq. (2.44) as

Ċ2(t) = −
∫ ∞

0

dωkg2(ωk)D(ωk)

∫ t

0

dt′e−i(ωk−ω0)(t−t′)C2(t
′). (1.57)

In obtaining Eq. (1.57) we have assumed that the atomic dipole moment is point-

ing along the z-direction, and the angle between the wave-vector �k and the dipole moment

is θk.

1.3.1. Wigner-Weisskopf (Born-Markov) Approximation

Other than the dipole and the rotating-wave approximations, we have made no

approximations, so far. Therefore, the eq. (1.57) is exact up to the dipole and the rotating-

wave approximations. A much more essential approximation will be introduced here. Be-

fore this, we give two fundamental assumptions that the approximation based on. Firstly,

we assume that the coupling is weak so that C2(t) varies much more slower than ω0. The

other assumption is that the continuum is very broad, and changes very little in time scales

that contribute to the integral.

In eq. (1.57), the exponential factor oscillates very fast for all times t′ < t due

to the broad continuum. Compared to these fast oscillations, C2(t
′) varies very slowly.

Thus, the end-point value of the integral will dominate, where at t′ = t. Therefore, we

replace C2(t
′) by its value at t, that is C2(t). Since C2(t) is independent of the integral

variable, we take it out of the integral. Then, the only value of C2 at t contributes to the

evolution of C2(t), it is independent of the whole history. Now, the eq. (1.57) can be

written as

Ċ2(t) ≈ −
[∫ ∞

0

dωkg2(ωk)D(ωk)

∫ t

0

dt′e−i(ωk−ω0)(t−t′)
]
C2(t). (1.58)
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Again by the same assumption that the continuum is broad so that the exponential

factor oscillates very fast compared to the variation of the probability amplitude, then the

value of the integral vanishes for t >> t′. Therefore, we let the upper limit of the time

integral to go to infinity,

Ċ2(t) ≈ −
[∫ ∞

0

dωkg2(ωk)D(ωk)

∫ ∞

0

dτe−i(ωk−ω0)τ

]
C2(t) (1.59)

≈ −
[∫ ∞

0

dωkg2(ωk)D(ωk)ζ(ωk − ω)

]
C2(t), (1.60)

where

ζ(ω) ≡
∫ ∞

0

e−iωτdτ. (1.61)

However, this is not a convergent function. In order to ensure that the integral

over τ converges, we multiply it by the convergence factor exp(−ετ), and take the limit

as ε → 0+ after evaluating the integral. Thus, the integral in eq. (1.61) becomes

ζ(ω) = lim
ε→ 0+

∫ ∞

0

e−iωτ−ετdτ = lim
ε→ 0+

1

iω + ε
. (1.62)

Seperating the real and imaginary parts of the function inside the limit yields

ζ(ω) = lim
ε→ 0+

[
ε

ω2 + ε2
− i

ω

ω2 + ε2

]
. (1.63)

By using the eq. (A.6) from the Appendix A, we have

lim
ε→ 0+

1

iω + ε
= πδ(ω)− i

P

ω
. (1.64)
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Hence we have

Ċ2(t) = −
[∫ ∞

0

dωkg2(ωk)D(ωk)

(
πδ(ωk − ω0)− i

P

ωk − ω0

)]
C2(t). (1.65)

We can write these as

Ċ2(t) =

(
−iδ − Γ

2

)
C2(t), (1.66)

where δ is the frequency shift in the atomic transition frequency arising from the coupling

to the continuum. The eq. (1.66) has the solution

C2(t) = e−
Γ
2
te−iδtC2(0). (1.67)

The absolute square of the probability amplitude is

|C2(t)|2 = e−Γt|C2(t)|2, (1.68)

where Γ = 2πg2(ωk)D(ωk) is the decay rate. From this equation it is seen that the

upper level population decays exponentially with the rate Γ. In other words, the atom

spontaneously and irreversible emits radiation in to the continuum.

1.4. The Damped Two-Level Atom

In this section, we discuss the behaviour of a two-level atom with coupling to a

bath of harmonic oscillators (Foerster (1972)). In the case that the oscillators represent the

electromagnetic field modes, we notice that the damping mechanism represents the spon-

taneous emission. Due to the coupling to the bath of harmonic oscillators, initially pure

atomic state rapidly becomes mixed. There exist so many works that treat this problem

in the density operator approach due to the coupling to the bath. We treat this problem

in the Heisenberg picture since it provides to obtain equations of motion for the atomic
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operators which are describing the dynamics of the atom (Barnett and Radmore (1997)).

The corresponding Hamiltonian describing a two-level atom coupled to the quantized

electromagnetic modes is

Ĥ =
∑
k

�ωkâ
†
k(t)âk(t) +

1

2
�ω0σ̂3(t) + �

∑
k

gk[σ̂+(t)âk(t) + â†k(t)σ̂−(t)]. (1.69)

and the equal-time commutation relation for the field operators is
[
â(t), â†(t)

]
= 1. The

Hamiltanian written above is expressed in symmetric order so that the effects of the vac-

uum field as well as the radiated field on the dynamics are included. From this Hamilto-

nian we derive the interaction picture Hamiltanian. By imposing the unitary operator

Û = exp

{
i

�

(
1

2
�ω0σ̂3 +

∑
k

�ω0â
†
kâk

)
t

}
, (1.70)

we end up with the following interaction picture Hamiltonian

V̂ =
∑
k

�Δkâ
†
k(t)âk(t) + �

∑
k

gk[σ̂+(t)âk(t) + â†k(t)σ̂−(t)], (1.71)

where Δk = ωk − ω0. Then, by using the Heisenberg equation of motion, we obtain the

equations of motion for the atom and the field operators:

˙̂σ− =
i

�
[V , σ̂−] = i

∑
k

gkσ̂3(t)âk(t), (1.72)

˙̂σ+ =
i

�
[V , σ̂+] = −i

∑
k

gkâ
†
k(t)σ̂3(t), (1.73)

˙̂σ3 = −2i
∑
k

gk[σ̂+(t)âk(t)− â†k(t)σ̂−(t)], (1.74)

˙̂ak = −iΔkâk(t)− igkσ̂−(t), (1.75)

˙̂a†k = iΔkâ
†
k(t) + igkσ̂+(t). (1.76)

The excitations in the bath arising from its interaction with the atom are assumed
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to be so small so that the state of the bath may be approximated by its initial state (Mol-

low and Miller (1969)). In order to describe the atomic dynamics, we need to obtain the

expectation values of the atomic operators. Thus, we start by formally integrating the eqs.

(1.75) and (1.76). We have:

âk(t) = e−iΔktâk(0)− igk

∫ t

0

e−iΔk(t−t′)σ−(t′)dt′, (1.77)

â†k(t) = eiΔktâ†k(0) + igk

∫ t

0

eiΔk(t−t′)σ+(t
′)dt′. (1.78)

Now we wiil put the eqs. (1.77) and (1.78) into eqs. (1.72), (1.73), and (1.74) that

will yield the following expressions for the atomic operators:

˙̂σ−(t) = i
∑
k

gke
−iΔktσ̂3(t)âk(0)

+
∑
k

g2k

∫ t

0

e−iΔk(t−t′)σ̂3(t)σ̂−(t′)dt′, (1.79)

˙̂σ+(t) = −i
∑
k

gke
iΔktâ†k(0)σ̂3(t)

+
∑
k

g2k

∫ t

0

eiΔk(t−t′)σ̂+(t
′)σ̂3(t)dt

′, (1.80)

˙̂σ3(t) = −2i
∑
k

{[gke−iΔktσ̂+(t)âk(0)

− ig2k

∫ t

0

e−iΔk(t−t′)σ̂+(t)σ̂−(t′)] + h.c.}. (1.81)

The first terms in each above equation can be expressed in terms of the Langevin

operator

F̂ (t) = −i
∑
k

gke
−iΔktâk(0), (1.82)

and its Hermitian conjugate

F̂ †(t) = i
∑
k

gke
iΔktâ†k(0). (1.83)
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Then the Eqs. (1.79) to (1.81) becomes

˙̂σ−(t) = −σ̂3(t)F̂ (t) +
∑
k

g2k

∫ t

0

e−iΔk(t−t′)σ̂3(t)σ̂−(t′)dt′, (1.84)

˙̂σ+(t) = −F̂ †(t)σ̂3(t) +
∑
k

g2k

∫ t

0

eiΔk(t−t′)σ̂+(t
′)σ̂3(t)dt

′, (1.85)

˙̂σ3(t) = 2σ̂+(t)F̂ (t) + 2F̂ †(t)σ̂−(t)

− 2
∑
k

g2k

[∫ t

0

e−iΔk(t−t′)σ̂3(t)σ̂−(t′)dt′ + h.c.

]
. (1.86)

Now, in the continuum limit, the above equations become

˙̂σ−(t) = −σ̂3(t)F̂ (t)

+

∫ ∞

0

g2(ωk)D(ωk)dωk

∫ t

0

e−iΔk(t−t′)σ̂3(t)σ̂−(t′)dt′, (1.87)

˙̂σ+(t) = −F̂ †(t)σ̂3(t)

+

∫ ∞

0

g2(ωk)D(ωk)dωk

∫ t

0

eiΔk(t−t′)σ̂+(t
′)σ̂3(t)dt

′, (1.88)

˙̂σ3(t) = 2σ̂+(t)F̂ (t) + 2F̂ †(t)σ̂−(t)

− 2

∫ ∞

0

g2(ωk)D(ωk)dωk

[∫ t

0

e−iΔk(t−t′)σ̂3(t)σ̂−(t′)dt′ + h.c.

]
.

(1.89)

Up to now our calculation has been exact, other than the dipole and the rotating

wave approximations. From now on we make the Born-Markov approximation, and we

derive the equations of motion in a more compact form.
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We start by rewriting the equations (1.87) to (1.89) as following

˙̂σ−(t) = −σ̂3(t)F̂ (t) +

∫ t

0

dt′K(t− t′)σ̂3(t)σ̂−(t′), (1.90)

˙̂σ+(t) = −F̂ †(t)σ̂3(t) +

∫ t

0

dt′K∗(t− t′)σ̂+(t
′)σ̂3(t), (1.91)

˙̂σ3(t) = 2σ̂+(t)F̂ (t) + 2F̂ †(t)σ̂−(t)

− 2

[∫ t

0

dt′K(t− t′)σ̂+(t)σ̂−(t′) + h.c.

]
, (1.92)

where the kernel K(t− t′) is given by

K(t− t′) =
∫ ∞

0

dωkg
2(ωk)D(ωk)e

−i(ωk−ω0)(t−t′), (1.93)

and it is the Fourier transform of the ωk-dependent coupling constant, weighted by the

density of states. For example, the value of ˙̂σ− depends on the values of σ̂− at all earlier

times. However, if the kernel is sharply peaked at t′ = t then only values of t′ close to t

contributes to the integral in (1.90). Because the density of states is very broad, and the

coupling varies slowly, the kernel will be sharply peaked at t = t′. In other words, the

atom-field correlation time is very small. That is to say atom-vacuum correlations lose

memory. This is the Markov approximation. In the Markov approximation, we replace

the value of σ̂−(t′) by its value at t′ = t. Thus, the integral in (1.90) becomes

∫ t

0

dt′K(t− t′)σ̂3(t)σ̂−(t′) = σ̂3(t)σ̂−(t)
∫ t

0

dt′K(t− t′) = σ̂−(t)
∫ t

0

dτK(τ). (1.94)

In the Markov approximation, the kernel K(τ) is a sharply peaked function at

τ = 0. Thus, the integral in (1.94) must be independent of its upper limit τ = t. For the

evaluation of the integral, the upper limit should be allowed to tend to infinity. In order to

satisfy the convergence of the integral, the convergence factor is inserted exp(−ετ). After

the integration has been performed, we let the ε → 0+. The integral in (1.94) becomes

lim
ε→ 0+

∫ ∞

0

(∫
g2k(ωk)D(ωk)e

−i(ωk−ω0)(t−t′)dωk

)
dτ
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= lim
ε→ 0+

−i

∫
g2k(ωk)D(ωk)

(ωk − ω0)− iε
dωk

= πg2k(ω0)D(ω0)− iP

∫
g2k(ωk)D(ωk)

(ωk − ω0)
dωk = Γ + iδω. (1.95)

The coupling to the quantum electromagnetic vacuum gives rise to a term −Γσ̂−(t)

and a shift in the frequency of atomic transition by δω. For convenience we set this fre-

quency shift to zero, and practically, this can be realized by moving to an interaction

picture in which the zero of energy is chosen to be the shifted energy.

Now consider the eq. (1.90). After making the Born-Markov approximation, it

becomes

˙̂σ−(t) = −Γσ̂−(t)− σ̂3(t)F̂ (t). (1.96)

The same goes for the eqs. (1.91) and (1.92), after the Markov approximation they

become

˙̂σ+(t) = −Γσ̂+(t)− F̂ †(t)σ̂3(t) (1.97)

˙̂σ3(t) = −2Γ [σ̂3(t) + 1] + 2F̂ †(t)σ̂−(t) + 2σ̂+(t)F̂ (t) (1.98)

Each of the equations in (1.96) to (1.98) consists of a damping term and a Langevin

term which is a multiplication of the Langevin operator (or the Hermitian conjugate of the

Langevin operator) by the atomic operators. The expectation values of the atomic opera-

tors give the properties of the atom at any given time. Therefore, its sufficient to obtain

the equations of motion for the expectation values of the atomic operators. However, due

to the multiplication of the Langevin operator by the atomic operators, the solution of the

equations of the motion is not possible because the atomic operators themselves depends

on the Langevin operator. That is, we do not know how to deal with the expectation

value of this product. The decorrelation of the product, for example, can be made, that

is 〈σ̂3(t)F̂ (t)〉 	 〈σ̂3(t)〉〈F̂ (t〉. However, if the field is at finite temperature, the decorre-
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lation of the product will result to neglect the part of the influence of the field. In order

to solve this problem, we proceed by first formally integrating eqs. (1.96), (1.97), and

(1.98). This gives

σ̂−(t) = e−Γtσ̂−(0)−
∫ t

0

e−Γ(t−t′)σ̂3(t
′)F̂ (t′)dt′ (1.99)

σ̂+(t) = e−Γtσ̂+(0)−
∫ t

0

e−Γ(t−t′)F̂ †(t′)σ̂3(t
′)dt′ (1.100)

σ̂3(t) + 1 = e−2Γt

×
(
σ̂3(0) + 1 + 2

∫ t

0

e2Γt
′
[
σ̂+(t

′)F̂ (t′) + F̂ †(t′)σ̂−(t′)
]
dt′

)
,

(1.101)

and we continue by substituting these into (1.96) to (1.98) and then taking the expectation

value of each equation gives

〈 ˙̂σ−(t)〉 = −Γ〈σ̂−(t)〉 − 2

∫ t

0

e−2Γ(t−t′)

×
[
〈σ̂+(t

′)F̂ (t′)F̂ (t)〉+ 〈F̂ †(t′)F̂ (t)σ̂−(t′)〉
]
dt′, (1.102)

〈 ˙̂σ+(t)〉 = −Γ〈σ̂+(t)〉 − 2

∫ t

0

e−2Γ(t−t′)

×
[
〈F̂ †(t)F̂ †(t′)σ̂−(t′)〉+ 〈σ̂+(t

′)F̂ †(t)F̂ (t′)〉
]
dt′, (1.103)

〈 ˙̂σ3(t)〉 = −2Γ [〈σ̂3(t)〉+ 1]− 2

∫ t

0

e−Γ(t−t′)

×
[
〈F̂ †(t′)σ̂3(t

′)F̂ (t)〉+ 〈F̂ †(t)σ̂3(t
′)F̂ (t′)〉

]
dt′. (1.104)

We can continue to repeat the above two steps which are formal integration and

back-substitution, and this leads to equations containing higher-order correlation func-

tions. The correlations functions represent the influence of the field, as modified by the

atom, in turn modifying the atomic dynamics. Since the influence of the atom on the

field is small, the higher-order corrections can be neglected by making the decorrela-

tion of the correlation functions at this stage. That is, we can approximate, for example,

〈σ̂+(t
′)F̂ (t′)F̂ (t)〉 by 〈σ̂+(t

′)〉〈F̂ (t′)F̂ (t)〉, and similar expressions for the other correla-
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tions functions. With this approximation, the equations of motion become

〈 ˙̂σ−(t)〉 = −Γ〈σ̂−(t)〉 − 2

∫ t

0

e−2Γ(t−t′)

×
[
〈σ̂+(t

′)〉〈F̂ (t′)F̂ (t)〉+ 〈F̂ †(t′)F̂ (t)〉〈σ̂−(t′)〉
]
dt′, (1.105)

〈 ˙̂σ+(t)〉 = −Γ〈σ̂+(t)〉 − 2

∫ t

0

e−2Γ(t−t′)

×
[
〈F̂ †(t)F̂ †(t′)〉〈σ̂−(t′)〉+ 〈σ̂+(t

′)〉〈F̂ †(t)F̂ (t′)〉
]
dt′, (1.106)

〈 ˙̂σ3(t)〉 = −2Γ [〈σ̂3(t)〉+ 1]− 2

∫ t

0

e−Γ(t−t′)

×
[
〈F̂ †(t′)F̂ (t)〉+ 〈F̂ †(t)F̂ (t′)〉

]
〈σ̂3(t

′)〉dt′. (1.107)

As it can be seen from the above equations, the influence of the field is given by

the correlation functions for the Langevin operators which are determined by the initial

state of the field.

For a thermal field, the correlation functions can be determined by using the fol-

lowing expectation values for the initial field operators at thermodynamic equilibrium:

〈âk(0)〉 = 〈â†k(0)〉 = 0 (1.108)

〈âk(0)âk′(0)〉 = 〈â†k(0)â†k′(0)〉 = 0 (1.109)

〈â†k(0)âk′(0)〉 = n̄kδkk′ (1.110)

〈âk(0)â†k′(0)〉 = (n̄k + 1)δkk′ . (1.111)

Then the lowest order non-zero correlation functions are

〈F̂ †(t′)F̂ (t)〉 =
∫

g2(ωk)D(ωk)n̄(ωk)e
−i(ωk−ω0)(t−t′)dωk (1.112)

〈F̂ (t)F̂ †(t′)〉 =
∫

g2(ωk)D(ωk) [n̄(ωk) + 1] e−i(ωk−ω0)(t−t′)dωk. (1.113)

By substituting the eq. (1.112) into (1.105) to (1.107) and once more making the
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Markov approximation, we have

〈 ˙̂σ−(t)〉 = −Γ [2n̄(0) + 1] 〈σ̂−(t)〉 (1.114)

〈 ˙̂σ+(t)〉 = −Γ [2n̄(0) + 1] 〈σ̂+(t)〉 (1.115)

〈 ˙̂σ3(t)〉 = −2Γ {[2n̄(0) + 1] 〈σ̂3(t)〉] + 1}. (1.116)

From the above equations, it is clear that the rate of decay of the atomic dipole

is enhanced by a factor 2n̄(0) + 1, where n̄(0) is the mean occupation number of a field

mode with frequency equal to the shifted atomic transition frequency. At the state state it

can be seen from the solution of the equations that the atomic dipole moment is zero, that

is 〈σ̂−(∞)〉 = 〈σ̂+(∞)〉 = 0 and inversion 〈σ̂3(∞)〉 = − [2n̄(0) + 1]−1
.

1.5. Power Spectrum of Emitted Light

In this section, we relate the power spectrum of the emitted light by the atom with

the atomic two-time correlation function.

We start by writing the field annihilation operator âk which is obtained by formally

integrating the corresponding Heisenberg equation of motion, that is,

âk(t) = e−iωktâk(0)− igk

∫ t

0

e−iωk(t−t′)σ−(t′)dt′. (1.117)

We interpret the first term as the contribution from the vacuum fluctuations. Even

in the absence of the atom, this term is present. On the other hand, the second term

represents the contribution coming from the atom, in other words the self-field of the

radiating atom. However, the Heisenberg field operator may be found by substituting the

above annihilation operator into the electric field operator (Mollow (1969)). The positive

frequency component of the electric field operator is

Ê
+
(r, t) =

∑
k

(
�ωk

2ε0V

)1/2

ekâk(t)eikr, (1.118)
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and by substituting âk(t) given in eq. (1.117), we obtain

Ê
+

vac(r, t) =
∑
k

(
�ωk

2ε0V

)1/2

ekâkei(kr−ωt) (1.119)

Ê
+

s (r, t) =
ω2
0

c2r
((ek × d)× ek) σ̂−(t− r

c
). (1.120)

The summation of these two terms gives the total field. By the assumption that the

field is unexcited initially, for both of the vacuum and the thermal fields, the contribution

coming from the eq. (1.119) goes to zero. Thus, we only consider the source field which is

given by (1.120). The spectral intensity of the emitted light per unit solid angle is given by

dI(ω)

dΩ
=

cr2

8π2

∫ ∞

−∞
dτeiωτ 〈Ê+

(r, t)Ê
−
(r, t+ τ)〉s. (1.121)

By substituting eq. (1.120) into the eq. (1.121), one can find

dI(ω)

dΩ
=

ω4
0

8π2c3
| (ek × d)× ek|2S(ω), (1.122)

where

S(ω) =

∫ ∞

−∞
dτe−iωτ 〈σ̂+(τ + t)σ̂−(t)〉s. (1.123)

In obtaning the eq. (1.123), it is assumed that the correlation function depends

only on τ in steady state.

The correlation function in eq. (1.123) can be obtained by using the quantum

regression theorem which the two time expectation values to expectations evaluated at a

single time (Breuer and Petruccione (1985)). We can write the equation of motion for the
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two-time correlation function by using the eq. (1.96) which gives

d

dτ
〈σ̂+(t+ τ)σ̂−(t)〉 = −Γ〈σ̂+(t+ τ)σ̂−(t)〉

− 〈F̂ †(t+ τ)σ̂3(t+ τ)σ̂−(t)〉. (1.124)

From the eq. (1.101), we insert the expression for σ̂3(t + τ) into the last term of

the eq. (1.124) and then we obtain

〈F̂ †(t+ τ)σ̂3(t+ τ)σ̂−(t)〉 = 2〈F̂ †(t+ τ)

(∫ t+τ

0

e[−2Γ(t+τ−t′)]

×
[
σ̂+(t

′)F̂ (t′) + F̂ †(t′)σ̂−(t′)
]
dt′

)
σ̂−(t)〉. (1.125)

In obtaining the eq. (1.125), the fact that σ̂−(t) depends on the Langevin operator

for times prior to t has been employed. That is,

〈F̂ †(t+ τ)σ̂3(0)σ̂−(t)〉 = 〈F̂ †(t+ τ)σ̂−(t)〉 = 0. (1.126)

By making the Born-Markov approximation in (1.125), for a thermal field it be-

comes

〈F̂ †(t+ τ)σ̂3(t+ τ)σ̂−(t)〉 = 2Γn̄(0)〈σ̂+(t+ τ)σ̂−(t)〉 (1.127)

Now, we substitute eq. (1.127) into eq. (1.124) which yields

d

dτ
〈σ̂+(t+ τ)σ̂−(t)〉 = −Γ [2n̄(0) + 1] 〈σ̂+(t+ τ)σ̂−(t)〉, (1.128)

and by solving this equation, we have

〈σ̂+(t+ τ)σ̂−(t)〉 = e−Γ[2n̄(0)+1]τ 〈σ̂+(t)σ̂−(t)〉. (1.129)

The steady state value of 〈σ̂+(t)σ̂−(t)〉 is n̄(0)/(2n̄(0) + 1). We put the steady
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state value of it into eq. (1.129), which gives

〈σ̂+(t+ τ)σ̂−(t)〉 = e−Γ[2n̄(0)+1]τ n̄(0)

2n̄(0) + 1
. (1.130)

By putting eq. (1.130) into eq. (1.123), we obtain the following expression

S(ω) =
2n̄(0)

2n̄(0) + 1
Re

1

iω + Γ [2n̄(0) + 1]
. (1.131)

The normalized spectrum is

S(ω) =
[2n̄(0) + 1] Γ/π

Ω2 + Γ2 [2n̄(0) + 1]2
. (1.132)

In Fig. 1.1, we plot the normalized spectrum of the light emitted by the atom interacting

with the surrounding broad-band field. The spectrum corresponds to the spontaneous

emission from a two-level atom. It is a Lorentzian centered at the atomic transition and

has a width which depends on the temperature of the surronding field.
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Figure 1.1. Spectrum of the emitted light by an atom interacting with broad-band ther-

mal field with n̄(0) = 0 (blue curve), n̄(0) = 1 (red curve), and n̄(0) = 5

(orange curve).
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CHAPTER 2

SPONTANEOUS EMISSION FROM A THREE-LEVEL

ATOM

2.1. Theory

Consider a three-level atom with two upper levels. In the Dirac notation, the upper

levels are labelled by |3〉 and |2〉, and the lower level is by |1〉. The level |3〉 has higher

energy than |2〉.

Figure 2.1. Representative scheme of the atomic model considered in this chapter. It

represents a three-level atom in V-type configuration in which the two up-

per levels are coupled by the same vacuum modes to the lower level, re-

spectively. The energy of the level |3〉 is higher than the energy of the level

|2〉 by �δ.

The same vacuum modes couples the two upper levels to the lower level. In the

dipole and the rotating-wave approximations, the Schrödinger picture Hamiltonian de-

scribing the atom-field system consists of the two terms. The first one corresponds to the

free-evolution of the atom and the field in the absence of interaction. The second term is
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called as the interaction Hamiltonian, and comes into play in the presence of interaction.

That is,

H = H0 +HI , (2.1)

and each term is given by the following expressions

H0 = �ω21|2〉〈2|+ �ω31|3〉〈3|+
∑
k

�ωkâ
†
kâk (2.2)

HI = �

∑
k

gk,2

[
âk|2〉〈1|+ â†k|1〉〈2|

]

+ �

∑
k

gk,3

[
âk|3〉〈1|+ â†k|1〉〈3|

]
(2.3)

where H0 contains the free-atom and the free-field Hamiltonians.From the free-field Hamil-

tonian zero-point energy term has been omitted since it does not contribute to the dynam-

ics of the system. The term HI is the energy of the interaction between the atom and the

modes of the universe in the vacuum state. For convenience we work in the interaction

picture. The Schrödinger interaction picture Hamiltonian describing the system consists

of the atom and the vacuum modes is

V = �

∑
k

g
(2)
k [σ̂12âke

i(ω21−ωk)t + σ̂21â
†
ke

−i(ω21−ωk)t]

+ �

∑
k

g
(3)
k [σ̂13âke

i(ω31−ωk)t + σ̂31â
†
ke

−i(ω31−ωk)t], (2.4)

where the frequency difference between the states |2〉, |3〉 and |1〉 are ω21 and ω31, re-

spectively. The creation (annihilation) operators for the kth vacuum mode of frequency

ωk is â†k (âk), and k stands both for the polarization and the momentum of the modes of

the vacuum. Here, g
(2,3)
k are the coupling constants between the kth mode of the vacuum

and the atomic transitions from the states |3〉 and |2〉 to |1〉, and they are assumed to be

real. The interaction Hamiltonian is responsible for the spontaneous emission of the atom

initially in the upper levels. The initial state of the atom-field system can be written as

|ψ(0)〉 = α(0)|2〉|0〉+ β(0)|3〉|0〉. (2.5)
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The time evolution of the state vector is given by the Schrödinger equation

i�
d

dt
|ψ(t)〉 = V|ψ(t)〉. (2.6)

The state vector at time t is

|ψ(t)〉 = α(t)|2〉|0〉+ β(t)|3〉|0〉+
∑
k

γk(t)â
†
k|0〉|1〉. (2.7)

By substituting the Eqs. (2.7) and (2.4) into Eq. (2.6), we can obtain

d

dt
α(t) = −i

∑
k

g
(2)
k γk(t)e

i(ω21−ωk)t (2.8)

d

dt
β(t) = −i

∑
k

g
(3)
k γk(t)e

i(ω31−ωk)t (2.9)

d

dt
γk(t) = −ig

(2)
k α(t)e−i(ω21−ωk)t − ig

(3)
k β(t)e−i(ω31−ωk)t. (2.10)

By formally integrating Eq.(2.10), we obtain

γk(t) = −ig
(2)
k

∫ t

0

α(t′)e−i(ω21−ωk)t
′
dt′

− ig
(3)
k

∫ t

0

β(t′)e−i(ω31−ωk)t
′
dt′. (2.11)

Substituting Eq. (2.11) into Eqs. (2.8) and (2.9), we have

d

dt
α(t) = −

∑
k

g2k2

∫ t

0

α(t′)ei(ω21−ωk)(t−t′)dt′

−
∑
k

gk2gk3

∫ t

0

β(t′)e−i(ω31−ωk)tei(ω21−ωk)tdt′ (2.12)

d

dt
β(t) = −

∑
k

g2k3

∫ t

0

β(t′)ei(ω31−ωk)(t−t′)dt′

−
∑
k

gk2gk3

∫ t

0

α(t′)e−i(ω21−ωk)t
′
ei(ω31−ωk)tdt′. (2.13)
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By making the Born-Markov approximation in the continuum limit, we obtain

d

dt
α(t) = −Γ2

2
α(t)− p

√
Γ2Γ3

2
β(t)eiδt (2.14)

d

dt
β(t) = −Γ3

2
β(t)− p

√
Γ2Γ3

2
α(t)e−iδt (2.15)

p =
d21.d31

|d21||d31| = cos(θ) (2.16)

Γ2 = 2π
[
g
(2)
k (ω21)

]2
D(ω21) (2.17)

Γ3 = 2π
[
g
(3)
k (ω31)

]2
D(ω31) (2.18)

δk = ωk − 1

2
(ω3 + ω2) (2.19)

where δ is the difference between the frequencies of the upper levels. In obtaining the

eqs. (2.14) and (2.15), it has been assumed that the δ is much more smaller than the

frequencies of the upper levels ω21 and ω31, that is δ << ω21, ω31. Also, we have assumed

that the dipole moments of the two transitions are parallel to each other.

By making the transformations

α(t) = α̃(t)eiδ/2t (2.20)

β(t) = β̃(t)e−iδ/2t, (2.21)

the eqs. (2.14) and (2.15) becomes

d

dt
α̃(t) = −

(
Γ2

2
+ i

δ

2

)
α̃(t)−

√
Γ2Γ3

2
β̃(t) (2.22)

d

dt
β̃(t) = −

(
Γ3

2
− i

δ

2

)
β̃(t)−

√
Γ2Γ3

2
α̃(t). (2.23)

We write this system of coupled linear differential equations in the equivalent

vector-matrix form as

d

dt

⎡
⎣α̃(t)
β̃(t)

⎤
⎦ =

⎡
⎣−A −Γ

−Γ −B

⎤
⎦
⎡
⎣α̃(t)
β̃(t)

⎤
⎦ , (2.24)
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where

A =
Γ2

2
+ i

δ

2
(2.25)

B =
Γ3

2
− i

δ

2
(2.26)

Γ =

√
Γ2Γ3

2
. (2.27)

We propose an exponential solution in the vector-matrix form to the system of

differential equations in (2.20). Therefore, our ansatz is

v(t) = veλ
′t =

⎡
⎣v1
v2

⎤
⎦ eλ

′t. (2.28)

By putting this equation into (2.20), we obtain the following eigenvalue equation

(D − λ′I)v = 0. (2.29)

The eigenvalues are

λ1,2 =
−(A+B)±√

(A+B)2 − 4(AB − Γ2)

2
, (2.30)

and we found the corresponding eigenvectors as

v1 =

⎡
⎣ 1

−A−λ1

Γ

⎤
⎦ , v2 =

⎡
⎣ 1

−A−λ2

Γ

⎤
⎦ . (2.31)
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Then, we obtain the solution for α(t) and β(t) as

α(t) =
[
C1e

S1t + C2e
S2t

]
e−

Γ2
2
t (2.32)

β(t) = − 2√
Γ2Γ3

[
C1S2e

S1t + C2S2e
S2t

]
e−(iδ+

Γ2
2 )t (2.33)

where

C1 =
α(0)S2 + 0.5

√
Γ2Γ3β(0)

S2 − S1

(2.34)

C2 =
α(0)S1 + 0.5

√
Γ2Γ3β(0)

S1 − S2

(2.35)

S1,2 =
1

2

(
λ±

√
λ2 + Γ2Γ3

)
(2.36)

λ =
1

2
(Γ2 − Γ3) + iδ. (2.37)

2.2. Evolution of the Upper-Level Populations

In the previous section, we have derived probability amplitudes for the upper two

states in a general form. From eqs. (2.28) and (2.29), the populations of the upper levels

can be obtained which are given by |α(t)|2 and |β(t)|2, respectively.

For the case of δ �= 0, the upper-level populations go towards to zero in the long

time limit. For example, if we consider the case in which δ >> Γ1,Γ2, the exponential

factors of the last terms of eqs. (2.14) and (2.15) can be ignored. Then, the equations

leads to the exponentially decaying populations. On the other side, for the case of δ <<

0.5 (Γ1 + Γ2), it is shown in the Appendix-B that the real parts of Si − 0.5γj (i,j=1,2) are

negative. When we evaluate the upper level population for the latter case, we also end-up

with the exponentially decaying population.

In Fig. 2.2, we plot the upper level populations. The level |2〉 is initially empty.

However, as time evolves, its population firstly increases and then tends to zero. On the

other hand, the population of the level |3〉 tediously decreases to zero. Because the two
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decay channels interfere so that the initially empty level increases before tending to zero

(Zhu et al. (1995)).
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Figure 2.2. Upper level populations in time. Initially populated state is |3〉, and its

population ρ33 (red curve) tediously tends to zero. The population of the

level |2〉, ρ22 (black curve), which is initially empty first increases due to

the transferred population from level |3〉, and then tends to zero. ( δ = Γ3

and Γ2 = 0.5Γ3).

We also plot the population of the initially empty level |2〉 for some small values

of δ. For all values of δ, population reaches a maximum value a little less than 0.25. These

results are shown in Fig. 2.3 For example, for δ = 0.1Γ3, the maximum value is 0.244. It

is also seen that as delta increases the maximum value of the population of the level |2〉
decreases.

The population in the initially empty level |2〉 oscillates in time for some situa-

tions. These oscillations tends to zero after several cycles. On the other hand, the popu-

lation in the other upper level, level |3〉, is also oscillates. In Fig. 2.4 the population of

the upper level |2〉 is plotted for δ = 5Γ3 and Γ3 = Γ2, it shows the oscillations of the

population.
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Figure 2.3. Maximum value of temporary population in level |2〉 for three different

values of δ, δ = 0.1Γ3 (blue curve), δ = 0.2Γ3 (red curve), and δ = 0.3Γ3

(orange curve) (Γ3 = Γ2).

0 1 2 3 4 5 6
t

0

0.005

0.01

0.015

0.02

0.025

22

Figure 2.4. Illustration of the oscillation of the population in level |2〉 (δ = 5Γ3 and

Γ2 = Γ3).
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In order to see the dependence of the total population of the two upper levels to

their frequency shift δ, we plot the total upper level populations as a function of time for

different delta δ values with the same Γ3 and Γ2 values. Results are presented in the fol-

lowing figure. As seen in Fig. 2.5 the total population decay is not an exponential decay.
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Figure 2.5. Total upper level population in time for a few different values of δ. δ =

0.1Γ3 (blue curve), δ = 0.5Γ3 (red curve), and δ = 2Γ3 (orange curve)

(Γ3 = Γ2).

So far we have dealt with the non-zero frequency shift case (i.e. δ �= 0). Now, we

examine the case for δ = 0. In this case, the eqs. for the probability amplitudes become

α(t) = C1 + C2e
S2te−

Γ2+Γ3
2

t (2.38)

β(t) = −
(
Γ2

Γ3

)1/2

C1 +

(
Γ3

Γ2

)1/2

C2e
S2te−

Γ2+Γ3
2

t (2.39)

If C1 is not zero, upper level populations may not completely decay. In other

words, some of the upper level populations may be trapped.
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2.3. Power Spectrum of Emitted Light

The spectrum of the spontaneously emitted light by the atom is the Fourier trans-

form of the following field correlation function (Narducci et al. (1990)):

〈Ê−
(t+ τ)Ê

+
(t)〉t→∞ = 〈ψ(t)|

∑
k,k′

b̂†k(t)b̂k(t)e
iωk(t+τ)e−iωk′ t|ψ(t)〉t→∞. (2.40)

By substituting the eq. (2.7) into (2.40), one can show that the spectrum is pro-

portional to |γk(∞)|2, where |γk(∞)| is given by:

γk(∞) =
g
(1)
k C1 (1− 2S1/Γ3)

S1 − 0.5Γ3 − i(0.5δ − δk)
+

g
(1)
k C2 (1− 2S2/Γ3)

S2 − 0.5Γ3 − i(0.5δ − δk)
(2.41)

where δk is the detuning between the vacuum mode and the central frequency (from the

middle point of the two upper levels to the lower level, as depicted in Fig. 2.6).

Figure 2.6. Schematic representation of the three-level atom considered in this section.

The dashed black line is located at the middle of the energy difference of

the upper levels.
(
δk = ωk − 1

2
(ω3 − ω2)

)
.

35



One can obtain the spectrum by taking the absolute square of the eq. (2.41):

S(ωk) ∝ |γk(∞)|2. (2.42)

The spectrum of the spontaneously emitted light in the case of a two-level atom

is a Lorentzian (Auffeves et al. (2008)) with a peak located at the atomic transition fre-

quency. For the three-level atom, the population of the initially occupied level (level

|3〉) partially passes to the other level (level |2〉). Due to the transferred population, the

spectrum of the light for the three-level atom case is expected to be different from the

two-level atom case. As the time evolves, the population in level |2〉 eventually decay to

the lower level. Therefore, a major difference between the two types of spectrum, is the

frequency components at the transition frequency from level |2〉 to |1〉. In Fig. 2.7, we

plot the spontaneous emission spectrum for both the two-level atom and the three-level

atom. It is easily seen that the weight of the transitions between level |2〉 and |1〉 is larger

for the three-level atom case.

If the spectrum of the emitted light by the three-level atom is just the addition

of the two spontaneous decay processes, it can be said that the spectrum consists of two

peaks located at the two transition frequencies. However, the spectrum does not consist of

the two-peaks located at the transition frequencies from the levels |2〉 and |3〉 to the level

|1〉. Therefore, due to the strong interference between the two decay channels, the spec-

trum of the spontaneous emission from a three-level atom is not a two-peak distribution

(Li et al. (2010)). In Fig. 2.7, it can be seen that the spectrum of the three-level atom (blue

curve in Fig. 2.7) contains a dark line (Fano (1961), Zhu et al. (1995)). Indeed, one can

show that γk(∞) = 0 when the frequency of the emitted light ωk is equal to the transition

frequency from level |2〉 to |1〉, while the initially populated state is level |3〉.
Let us assume that the atom is initially in level |3〉, and we want to evaluate Bk(∞)

at ωk = ω2 in this case δk = −0.5δ. By substituting δk = −0.5δ into Eq. (2.41), we obtain

γk(∞) =
g
(1)
k C1 (1− 2S1/Γ3)

S1 − 0.5Γ3 − iδ
+

g
(1)
k C2 (1− 2S2/Γ3)

S2 − 0.5Γ3 − iδ
, (2.43)

and by using the following relations S1S2 = −Γ3Γ2/4 and S1 + S2 = 0.5 (Γ3 − Γ2) + iδ
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the Eq. (2.43) can be written as following:

γk(∞) =
4g

(1)
k C1S1 (−S2 − 0.5Γ2) /Γ3Γ2

S1 − 0.5Γ3 − iδ

+
4g

(1)
k C2S2 (−S1 − 0.5Γ2) /Γ3Γ2

S2 − 0.5Γ3 − iδ

=
4g

(1)
k (S1C1 + S2C2)

Γ3Γ2

. (2.44)

By inserting the initial conditions, α(0) = 1 and β(0) = 0, into the Eqs. (2.34)

and (2.35), one can see that S1C1 + S2C2 = 0 which yields γk(∞) = 0. This tells us that

at ωk = ω2 a dark line appears in the spectrum.

Figure 2.7. Spectrum of the light emitted spontaneously by a three-level atom (blue

curve) for δ = 0.6Γ3, and Γ2 = 0.1Γ3, and by a two-level atom (red curve)

with decay rate Γ3.

The decay rate of the initially empty level, in our case the level |2〉, determines the

width of the dark line. Thus, for an atom initially in the state |3〉 with the same Γ3 and δ

but different Γ2, the spontaneous emission spectrum is plotted in Fig. 2.8. It is obvious
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that as the decay rate of the initially empty level increases the width of the dark line also

increases. If one of the decay rates Γ3 or Γ2 tends to zero the dark line will be narrower

and narrower, and the spectrum becomes a Lorentzian.
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Figure 2.8. Dependence of the width of the dark line in the spontaneous emission spec-

trum of a three-level atom to the decay rate Γ2. δ = Γ3, and Γ2 = 0.5Γ3 (

blue curve ), Γ2 = 0.05Γ3 ( red curve).

As we mentioned previously that the decay rate of the corresponding upper level

transition determines the width of the dark line. As the decay rate of the level increases,

the width of the dark line increases too. In the previous example, we consider a decay rate

for level |2〉, the state that determines the dark line width, so that the ratio Γ2/Γ3 much

more smaller than 1. This is because to see a clear dark line. Instead, if we choose Γ2 of

the same order or even larger than Γ3, the dark line width will be big enough to narrow

the spectrum. In Fig. 2.9, the spectrum is plotted for three different values of the ratio

Γ2/Γ3, and it is seen that as the ratio increases the width of the dark line increases at the

same time the width of the spectrum becomes narrower as the ratio increases.

So far, we have assumed that the initially only one of the upper level is populated.

In order to make a more comprehensive analysis, we present in Fig. 2.10, the results for

some initial conditions corresponding an atom in a superposition of the upper-levels.
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Figure 2.9. Narrowing of the spectrum by increasing the ratio Γ2/Γ3. Blue curve

(Γ2/Γ3 = 0.01), red curve (Γ2/Γ3 = 0.5), orange curve (Γ2/Γ3 = 2), and

δ = Γ3 .
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Figure 2.10. Spectrum of the emitted light for three different initial conditions: α(0) =

1, β(0) = 0 (blue curve), α(0) = 0.5β(0) (red curve), and α(0) = β(0)

(orange curve). (δ = 2Γ3,Γ2 = Γ3) .
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CHAPTER 3

FLUORESCENCE SPECTRUM OF A TWO-LEVEL ATOM

In this chapter, we aim to evaluate the spectrum of the light that is scattered by

a two-level atom driven by a monochramatic classical field. Here we have assumed an

isolated atom that is constant in position. Thus, the relaxation of the atom to equilib-

rium with the driving field results from the coupling between the atom and the quantized

electromagnetic modes into which the atom radiates (Mollow and Miller (1969)).

In this model, the contribution of the inelastically scattered light to the spectrum

is shown. The source of the inelastic contribution is the alteration of the atomic energy

levels by the driving field. However, in the weak driving limit case, the elastic component

substantially dominates. The inelastic contribution appears as the driving field intensity

increases. When the Rabi frequency Ω becomes comparable to the atomic decay rate,

the inelastic components contribute significantly. In the limit that Ω >> Γ, the inelastic

components dominates over the elastic component. The spectrum has three peaks centred

at the frequency ω of the driving field, and at the frequencies ω ± Ω of the displaced

frequency of the field. The widths of these peaks are proportional to the atomic decay rate

Γ. This spectrum famously known as the Mollow triplet which is theoretically described

first by the B. R. Mollow in 1969 (Mollow (1969)). The Mollow triplet first observed in

atomic beams.

3.1. Equations of Motion

In this case, we consider the model in which a two-level atom driven by a monochro-

matic classical field of the form

E(t) = E0cos(wt), (3.1)
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which oscillates near resonance with one of the atomic transition frequencies. In the

dipole and the rotating-wave approximations, the coupling between the atom and the driv-

ing field is

ĤI = −d̂.E(t) (3.2)

= −d.E0 (σ̂+ + σ̂−) cos(ωt) (3.3)

= −d.E0

2

(
σ̂+e

−iωt + σ̂−eiωt
)
, (3.4)

and the Heisenberg picture Hamiltonian describing the system is given by

Ĥ =
1

2
�ω0σ̂3(t) +

∑
k

�ωkâ
†
k(t)âk(t)

+ �

∑
k

gk[σ̂+(t)âk(t) + â†k(t)σ̂−(t)] +
�Ω

2

[
σ̂+(t)e

−iωt + σ̂−(t)eiωt
]
. (3.5)

Figure 3.1. Schematic representation of the driven two-level atom. |2〉 corresponds to

the state with higher energy, and ω0 is the frequency difference between

the states |2〉 and |1〉. Ω is the Rabi frequency (represents the frequency of

the induced transitions) of the external driving field. ω is the frequency of

the incident field.

Since, in the Heisenberg picture, the operators are time dependent (Sakurai and

41



Tuan (1994)), we write all the operators in the Hamiltonian in Eq. (3.5) in time dependent

form. The gk is the coupling strength, and Ω is the Rabi frequency, and they are given by

the following expressions

gk = −d.ek
(

�ωk

2ε0V

)1/2

(3.6)

Ω = −d.E0

�
. (3.7)

In order to get ride of the time dependent exponential factors in the last term of

the above Hamiltonian, the transformation with Û = exp
(
iω
2
tσ3

)
into an interaction

picture introduces the time dependence exp(iwt) in the third expression. To cancel this

time dependence, a further transformation with Û = exp
(
iωt

∑
k â

†
kâk

)
is made. The

resulting Hamiltonian for this system is

V̂ =
1

2
�Δσ̂3(t) +

∑
k

�Δkâ
†
k(t)âk(t)

+ �

∑
k

gk[σ̂+(t)âk(t) + â†k(t)σ̂−(t)] +
�Ω

2
[σ̂+(t) + σ̂−(t)] , (3.8)

where Δ = ω0 − ω and Δk = ωk − ω.

We proceed by writing the Heisenberg equations of motion for the atomic and the

field operators. These are

˙̂σ− = −iΔσ̂−(t) + i
∑
k

�gkâk(t)σ̂3(t) + i
Ω

2
σ̂3(t) (3.9)

˙̂σ+ = iΔσ̂+(t)− i
∑
k

�gkâ
†
k(t)σ̂3(t)− i

Ω

2
σ̂3(t) (3.10)

2 ˙̂σ3 = −i
∑
k

gk

[
âk(t)σ̂+(t)− â†k(t)σ̂−(t)

]
− iΩ [σ̂+(t) + σ̂−(t)] (3.11)

˙̂ak = −iΔkâk(t)− igkσ̂−(t) (3.12)

˙̂a†k = iΔkâ
†
k(t) + igkσ̂+(t). (3.13)
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Now, formally integrating the eqs. (3.12) and (3.13), we have

âk(t) = e−iΔktâk(0)− igk

∫ t

0

dt′e−iΔk(t−t′)σ̂−(t′) (3.14)

â†k(t) = eiΔktâ†k(0) + igk

∫ t

0

dt′eiΔk(t−t′)σ̂+(t
′) (3.15)

and putting into (3.9) to (3.11) and making the Markov approximation will give the fol-

lowing Langevin equations

˙̂σ− = −
(
Γ

2
+ iΔ

)
σ̂−(t)− σ̂3(t)F̂ (t) + i

Ω

2
σ3(t) (3.16)

˙̂σ+ = −
(
Γ

2
− iΔ

)
σ̂+(t)− F̂ †(t)σ̂3(t)− i

Ω

2
σ3(t) (3.17)

˙̂σ3 = 2
[
σ̂+(t)F̂ (t) + F̂ †(t)σ̂−(t)

]
(3.18)

− Γ [σ̂3(t) + 1] + iΩ [σ−(t)− σ+(t)] (3.19)

At this stage, we take the expectation values of the above operators. As mentioned

previously in section 1.4, the decorrelation of the expectation values of the terms that

include the multiplication of the atomic operator with the Langevin operator will throw

away the influence of the temperature. However, we assume here that the temperature is

zero so that we can decorrelate these terms which are exactly equal to zero. Thus, we

obtain the equations of motion for the expectation values of the atomic operators as

〈 ˙̂σ−〉 =
(
−Γ

2
− iΔ

)
〈σ̂−(t)〉+ i

Ω

2
〈σ3(t)〉 (3.20)

〈 ˙̂σ+〉 =
(
−Γ

2
+ iΔ

)
〈σ̂+(t)〉 − i

Ω

2
〈σ3(t)〉 (3.21)

〈 ˙̂σ3〉 = −Γ [〈σ̂3(t)〉+ 1] + iΩ [〈σ−(t)〉 − 〈σ+(t)〉] . (3.22)
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By using the relations

σ̂+ =
1

2
(σ̂x + iσ̂y) (3.23)

σ̂− =
1

2
(σ̂x − iσ̂y) , (3.24)

we can write

d

dτ
〈σ̂x(t+ τ)σ̂−(t)〉 = −Γ

2
〈σ̂x(t+ τ)σ̂−(t)〉 −Δ〈σ̂y(t+ τ)σ̂−(t)〉 (3.25)

d

dτ
〈σ̂y(t+ τ)σ̂−(t)〉 = −Γ

2
〈σ̂y(t+ τ)σ̂−(t)〉

+Δ〈σ̂x(t+ τ)σ̂−(t)〉 − Ω〈σ̂3(t+ τ)σ̂−(t)〉 (3.26)

d

dτ
〈σ̂3(t+ τ)σ̂−(t)〉 = −Γ [〈σ̂3(t+ τ)σ̂−(t)〉+ 〈σ̂−(t)〉]

+ Ω〈σ̂y(t+ τ)σ̂−(t)〉. (3.27)

The above system of equations are called as the optical Bloch equations, and can

be represented in the vector-matrix form as

d

dτ
�C(τ) =

⎡
⎢⎢⎢⎣
−Γ

2
−Δ 0

Δ −Γ
2

−Ω

0 Ω −Γ

⎤
⎥⎥⎥⎦ �C(τ) + �α0 (3.28)

where

�C(τ) =

⎡
⎢⎢⎢⎣
〈σ̂x(t+ τ)σ̂−(t)〉
〈σ̂y(t+ τ)σ̂−(t)〉
〈σ̂3(t+ τ)σ̂−(t)〉

⎤
⎥⎥⎥⎦ , �α0 = −Γ

⎡
⎢⎢⎢⎣

0

0

〈σ̂−(t)〉

⎤
⎥⎥⎥⎦ . (3.29)

According to the assumption that the two-time correlation functions only depend

on the τ at long times (Barnett and Radmore (1997)), we take τ = 0. Therefore, this gives
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the steady state values of the correlation functions as the initial conditions to the above

system of differential equations. That is, at long times we have

⎡
⎢⎢⎢⎣
〈σ̂x(t+ τ)σ̂−(t)〉
〈σ̂y(t+ τ)σ̂−(t)〉
〈σ̂3(t+ τ)σ̂−(t)〉

⎤
⎥⎥⎥⎦ τ=0−−→

⎡
⎢⎢⎢⎣
〈σ̂x(∞)σ̂−(∞)〉
〈σ̂y(∞)σ̂−(∞)〉
〈σ̂3(∞)σ̂∞(t)〉

⎤
⎥⎥⎥⎦ . (3.30)

Now we derive the steady state values of these correlation functions:

⎡
⎢⎢⎢⎣
〈σ̂x(∞)σ̂−(∞)〉
〈σ̂y(∞)σ̂−(∞)〉
〈σ̂3(∞)σ̂−(∞)〉

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1
2
(〈σ̂3(∞)〉+ 1)

−i
2
(〈σ̂3(∞)〉+ 1)

−〈σ̂−(∞)〉

⎤
⎥⎥⎥⎦ . (3.31)

As t → ∞, the rate of change of the expectation values of the atomic operators is

zero, then the eqs. (3.18) to (3.20) becomes

0 =

(
−Γ

2
− iΔ

)
〈σ̂−(∞)〉+ i

Ω

2
〈σ3(∞)〉 (3.32)

0 =

(
−Γ

2
+ iΔ

)
〈σ̂+(∞)〉 − i

Ω

2
〈σ3(∞)〉 (3.33)

0 = −Γ [〈σ̂3(∞)〉+ 1] + iΩ [〈σ−(∞)〉 − 〈σ+(∞)〉] . (3.34)

We solve these equations for 〈σ̂3(∞)〉 and 〈σ̂−(∞)〉, these are found to be

〈σ̂−(∞)〉 = −iΩ
(
Γ
2
− iΔ

)
Ω2 + Γ2

2
+Δ2

(3.35)

〈σ̂3(∞)〉 =
−Γ2

2
−Δ2

Ω2 + Γ2

2
+Δ2

. (3.36)

Up to now, we write all the equations for non-zero detuning case (i.e. Δ �= 0). The

analitical solution for this case is not included in this study. Instead, we present numerical

solution for the case of non-zero detuning at the end of the next section. However, we

solved the problem analitically for Δ = 0.
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3.2. Resonance Fluorescence

The emission of a resonantly excited two-level atom is known as the resonance

fluorescence (Flagg et al. (2009), Field et al. (1975)). For the dressed atom description

of the resonance fluorescence, the following reference might be useful (Cohen-Tannoudji

and Reynaud (1977)).

We start by rewriting the optical Bloch equations which are written in the vector-

matrix form, previously. In this case, for Δ = 0, we have

d

dτ
�C(τ) =

⎡
⎢⎢⎢⎣
−Γ

2
0 0

0 −Γ
2

−Ω

0 Ω −Γ

⎤
⎥⎥⎥⎦ �C(τ) + �α0. (3.37)

The solution to this system of non-homogeneous first order differential equations

have a form given by the following expression

�C(τ) =
3∑

i=1

cie
λiτ |�λi〉+ �α, (3.38)

where λi and |�λi〉 are the eigenvalues and the eigenvectors of the coefficient matrix, re-

spectively. ci’s are the constants need to be determined from the initial conditions which

are given by

⎡
⎢⎢⎢⎣
〈σ̂x(∞)σ̂−(∞)〉
〈σ̂y(∞)σ̂−(∞)〉
〈σ̂3(∞)σ̂−(∞)〉

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1
2
(〈σ̂3(∞)〉+ 1)

−i
2
(〈σ̂3(∞)〉+ 1)

−〈σ̂−(∞)〉

⎤
⎥⎥⎥⎦ . (3.39)

Here we have to write the expressions in eqs. (3.35) and (3.36) for the case of zero
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detuning (i.e. Δ = 0). They are

〈σ̂−(∞)〉 = −iΩΓ
2

Ω2 + Γ2

2

, (3.40)

〈σ̂3(∞)〉 =
−Γ2

2

Ω2 + Γ2

2

. (3.41)

Lastly, the vector �α is the particular solution given by

�α = −A−1�α0, (3.42)

where A−1 is the inverse of the coefficient matrix. Then, the above expression becomes

�α = Γ〈σ̂−(t)〉

⎡
⎢⎢⎢⎣

0

2Ω
Γ2+2Ω2

−Γ
Γ2+2Ω2

⎤
⎥⎥⎥⎦ . (3.43)

The eigenvalues of the coefficient matrix are found to be

λ1 = −Γ

2
(3.44)

λ2,3 = −3

4
Γ± 1

4

√
Γ2 − 16Ω2, (3.45)

and the corresponding eigenvectors are

�v1 =

⎡
⎢⎢⎢⎣
1

0

0

⎤
⎥⎥⎥⎦ , �v2 =

⎡
⎢⎢⎢⎣

0

λ2+Γ
Ω

1

⎤
⎥⎥⎥⎦ , �v3 =

⎡
⎢⎢⎢⎣

0

λ3+Γ
Ω

1

⎤
⎥⎥⎥⎦ . (3.46)

Now, we have to determine the constants ci’s by imposing the initial conditions.

Let us start by writing the solution in an explicit form by also invoking the initial condi-
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tions as

⎡
⎢⎢⎢⎣

1
2
(〈σ̂3(∞)〉+ 1)

−i
2
(〈σ̂3(∞)〉+ 1)

−〈σ̂−(∞)〉

⎤
⎥⎥⎥⎦ = c1

⎡
⎢⎢⎢⎣
1

0

0

⎤
⎥⎥⎥⎦+ c2

⎡
⎢⎢⎢⎣

0

λ2+Γ
Ω

1

⎤
⎥⎥⎥⎦+ c3

⎡
⎢⎢⎢⎣

0

λ3+Γ
Ω

1

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0

−2iΓ2Ω2

(Γ2+2Ω2)2

iΓ3Ω
(Γ2+2Ω2)2

⎤
⎥⎥⎥⎦ . (3.47)

The above relation leads to the following system of equations

1

2
[〈σ̂3(∞)〉+ 1] = c1 (3.48)

− i

2
[〈σ̂3(∞)〉+ 1] = c2

(λ2 + Γ)

Ω
+ c3

(λ3 + Γ)

Ω
− 2iΓ2Ω2

(Γ2 + 2Ω2)2
(3.49)

−〈σ̂−(∞)〉 = c2 + c3 +
iΓ3Ω

(Γ2 + 2Ω2)2
. (3.50)

By solving the eqs. (3.49) and (3.50), we obtain the following expressions for c2

and c3:

c2 =
iΩ3

[
Γ
√
Γ2 − 16Ω2 + Γ2 − 4Ω2

]
(Γ2 + 2Ω2)2

√
Γ2 − 16Ω2

(3.51)

c3 =
iΩ3

[
Γ
√
Γ2 − 16Ω2 − Γ2 + 4Ω2

]
(Γ2 + 2Ω2)2

√
Γ2 − 16Ω2

. (3.52)

Now,one can write the solution as following:

�C(τ) =

⎡
⎢⎢⎢⎣
〈σ̂x(t+ τ)σ̂−(t)〉
〈σ̂y(t+ τ)σ̂−(t)〉
〈σ̂3(t+ τ)σ̂−(t)〉

⎤
⎥⎥⎥⎦

= c1e
λ1τ

⎡
⎢⎢⎢⎣
1

0

0

⎤
⎥⎥⎥⎦+ c2e

λ2τ

⎡
⎢⎢⎢⎣

0

λ2+Γ
Ω

1

⎤
⎥⎥⎥⎦+ c3e

λ3τ

⎡
⎢⎢⎢⎣

0

λ3+Γ
Ω

1

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0

Γ〈σ̂−(t)〉2Ω
Γ2+2Ω2

−〈σ̂−(t)〉Γ2

Γ2+2Ω2

⎤
⎥⎥⎥⎦ . (3.53)

By considering the relation in eq. (3.23), the two-time correlation function in the
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steady-state can be written as

〈σ+(t+ τ)σ−(t)〉s = 1

2
〈σx(t+ τ)σ−(t)〉s + i

2
〈σy(t+ τ)σ−(t)〉s, (3.54)

the subscript s is used to indicate the steady-state values, where 〈σx(t+ τ)σ−(t)〉 is given

by the first row of the �C(τ) and 〈σy(t + τ)σ−(t)〉 is by the second row. By inserting the

corresponding expressions into the (3.54), we can obtain the two-time correlation function

in the limit as t → ∞, which is

〈σ+(t+ τ)σ−(t)〉s = 1

2
c1e

λ1τ

+
i

2

{
c2e

λ2τ
(λ2 + Γ)

Ω
+ c3e

λ3τ
(λ3 + Γ)

Ω
+

−2iΓ2Ω2

(Γ2 + 2Ω2)2

}
, (3.55)

and then taking the Fourier transform of the two-time correlation function:

S(ω) = 2Re

∫ ∞

0

〈σ+(t+ τ)σ−(t)〉se−iωτdτ, (3.56)

one can find the resonance fluorescence spectrum as

S(ω) =
2πΓ2Ω2δ(ω)

(Ω2 + 2Γ2)2
+

ΓΩ2

2 (Ω2 + 2Γ2) (Γ2 + 4ω2)
−Re

3∑
j=2

i
cj (λj + Γ)

Ω (λj − iω)
. (3.57)

The first term corresponds to the elastically scattered light which is centred on

the atomic transition frequency in the case of resonance fluorescence. In Fig. 3.2, the

contribution due to the other two terms is plotted. These correspond to the inelastic con-

tributions. We plot the spectrum as a function of ω/Γ and the results shown are for the

three distinct values of the Rabi frequency, for Ω = Γ, 3Γ, and 9Γ. For small values of

coupling strength, a single peak dominates as seen in the figure. As the Rabi frequency

Ω increases, further two peaks slowly appear. For the large values of Ω, three nearly

Lorentzian peaks show up. One of them is located at ω = 0, and the symmetrically

separated further two peaks are located at ω = ±Ω.

49



-1
1

-1
0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

/

0

0.2

0.4

0.6

0.8

1

1.2

S
(

)

Figure 3.2. Resonance fluorescence spectrum of a two-level atom (Δ = 0). Weak cou-

pling case: Ω = Γ (blue curve). Intermediate coupling case: Ω = 3Γ (red

curve). Strong coupling case: Ω = 9Γ (orange curve).

3.3. Discussion and Results

In the last part of the previous section, the spectrum for the resonance case have

been discussed. Now, we treat the problem by also including the weak coupling and the

non-resonant cases. As we mentioned previously, for small values of the coupling strength

(i.e. for values that are comparable to the decay rate Γ), we observe a single peak located

at the atomic transition frequency, and as the coupling strength is increased side-bands

begin to appear. In the following, the spectrum is plotted for different detuning Δ values

for the case of weak coupling, i.e. Ω = 0.1Γ, and for Ω = Γ, 5Γ.

In Fig. 3.3, we plot the spectrum for Ω = 0.1Γ which corresponds to the weak

coupling case. While keeping the coupling strength Ω constant, we change the detuning

Δ in order to see the behaviour in the non-resonant excitation case. As it is expected, for

Δ = 0, the central peak dominates over the side-bands. The side-bands do not emerge

in this case. As we increase the detuning, the central peak begins to shrink and at some

value splits into two peaks. In our plot, this splitting is more noticeable for Δ = 0.6Γ.
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Figure 3.3. Fluorescence spectrum of a two-level system in the case of weak coupling

and non-resonant excitation (Ω = 0.1Γ).

In the previous figure, Fig. 3.3, we considered the weak coupling case. Now,

we plot, in Fig. 3.4, the spectrum for Ω = Γ. As the coupling strength is increased,

the contribution from the side-bands becomes apparent. After all, we do not see the

contributions of the side-bands in the resonant excitation case. However, as the detuning

is increased, the side-bands emerge. For Δ = 0.5Γ, it can be seen that the curve tends to

show the side-bands. At the same time, the central peak is suppressed as in Fig. 3.3. For

example, for Δ = 2Γ the central peak is mostly suppressed, and the contributions of the

side-peaks dominate.

In Fig. 3.5, we show a Mollow triplet series plotted for a constant excitation

power (i.e. Ω = 5Γ) with the variation of laser detuning Δ. As seen in Fig. 3.5, the side-

bands always remain spectrally symmetric with respect to the center. The Rabi splitting

increases with increasing detuning Δ (Ulhaq et al. (2012)).
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Figure 3.4. Fluorescence spectrum of a two-level atom for non-resonant and resonant

cases (Ω = Γ).
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Figure 3.5. Fluorescence spectrum for a two-level atom in the strong coupling regime

(Ω = 5Γ), for the resonant Δ = 0, and off-resonant Δ �= 0 cases.
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CHAPTER 4

CONCLUSIONS

In the first part of this thesis, the spontaneous emission from a three-level atom

with two-upper levels have investigated. The comparison to its counterpart of two-level

atom is also included. In the three-level atom case, the additional upper level results in

a dark line in the spontaneous emission spectrum due to the interference between the

two decay processes. The decay rate of the additional upper level in the three level atom

determines the width of the dark line. Larger decay rate results in wider dark lines, and

the width of the central peak in the spectrum decreases as the dark line width increases.

In the second part, the fluorescence spectrum of a two-level atom driven on-

resonance by a classical monochromatic field, and damped through the coupling to the

quantized electromagnetic field modes has been evaluated in the strong coupling regime.

The spectrum corresponds to the three peaks of inelastically scattered light which are

located at the frequencies ω = 0, and ω = ±Ω (Ω is the Rabi frequency). The elasti-

cally scattered light is attributed to the term which includes the delta-Dirac function and

is discarded while plotting the spectrum since the elastic scattering is negligible for the

strong coupling case. In order to see the effect of coupling for the resonance case, we plot

the spectrum for three different values of coupling strength Ω. As the coupling strength

increases, the side-peaks become more apparent and gets further away from the central

peak. In the case of Ω = 9Γ which corresponds to the strong coupling regime, the widths

of the side peaks are 3/2 times the width of the central peak, and the heights of the side-

peaks are one third of the central peak. On the other hand, in order to see the effect of

detuning (i.e. the off-resonance condition), further three plots are included. In the weak

coupling regime side-peaks are not apparent, and as the detuning increases the central

peak shrinks and at some point begins to split into two peaks. For Δ = 2Γ, these peaks

almost completely disappear again. The splitting becomes more apparent for Δ = 0.6Γ

in our plot, for the weak coupling case. However, side-peaks occur for Ω = Δ as the

detuning increases, and the central peak is suppressed.
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APPENDIX A

PRINCIPAL PART INTEGRALS

For a function f(x) that does not have a finite limit at a point, say x0, the integral∫ b

a
f(x)dx is not defined if x0 is a point within the integration range. However, let us

define the principal part integral as

P

∫ b

a

f(x)dx = lim
δ→0

(∫ x0−δ

a

f(x)dx+

∫ b

x0+δ

f(x)dx

)
(A.1)

In most of the situations the limit gives a finite value. But, only the functions f(x) behav-

ing as (x − x0)
−1 at x = x0 will be considered here. Therefore, other way of expressing

the principal part integral is

P

∫ b

a

f(x)dx = lim
ε→0

∫ b

a

(x− x0)g(x)

(x− x0)2 + ε2
dx (A.2)

where f(x) is taken to be g(x)/(x − x0) and g(x) is a finite function in the range of

integration. In eq. (4.2), the limit must be taken after the integral is evaluated.

Now we take into account the integral I which is defined by the limit as ε tends to

0 from above. That is,

I = lim
ε→0+

∫ b

a

g(x)

i(x− x0) + ε
dx. (A.3)

Separation of the real and imaginary parts of the integrand will yield

I = lim
ε→0+

(
−i

∫ b

a

(x− x0)g(x)

(x− x0)2 + ε2
dx+ π

∫ b

a

(ε/π)g(x)

(x− x0)2 + ε2
dx

)
, (A.4)

where the real part is the principal part integral given by eq. (4.2). The imaginary part go

towards to the delta function δ(x− x0) as the limit ε → 0+. Thus, the integral becomes

I = −iP

∫ b

a

g(x)

(x− x0)
dx+ πg(x0). (A.5)
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Therefore, it can be written that

lim
ε→0+

1

i(x− x0) + ε
= −i

P

x− x0

+ πδ(x− x0), (A.6)

equality holds if the terms appear within an integral.
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