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ABSTRACT

ELECTRON OPTICS IN GRAPHENE

Negative refraction, also known as Veselago lensing, was first predicted by Victor
Veselago in 1968 (Veselago (1968)). Its unique effect has a great potential for both scien-
tific and technological applications such as superlenses. Unlike the conventional positive
refractive index, focusing effect can be observed by negative refraction. In this thesis,
the focusing effect was investigated theoretically through on n-p junction in graphene.
The opposite chirality of electrons and holes enable the negative refraction where elec-
trons(holes) have their momentum parallel(anti-parallel) to the group velocity. The case
when potential barrier is directed perpendicular to K K’ direction, where K and K’ are
the Dirac points were considered. The Green’s functions were calculated analytically and
derived the susceptibility using the Green’s functions for various positions of the sources
and the receiver at various Fermi energies. The spatial Green’s functions were calculated

analytically and derived the static susceptibility (response function).
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OZET
GRAFENDE ELEKTRON OPTIGI

Negatif kirilma, ayrica Veselago mercekleme olarak da bilinen, Victor Veselago
tarafindan 1968°de (Veselago (1968)) ongoriilmiistiir. Benzersiz etkisi siiperlensler gibi
hem bilimsel hem de teknolojik uygulamalar i¢in biiyiik bir potansiyele sahiptir. Gelenek-
sel pozitif kirilma indeksinin aksine, odaklama etkisi negatif kirilma ile gézlemlenebilir.
Bu tezde, grafende n-p eklemi ilizerinden odaklama etkisi teorik olarak aragtirilmigtir. E-
lektronlarin ve bogluklarin zit kiralitesi, elektronlarin(bosluklarin) momentumlarinin grup
hizina paralel(anti-paralel) oldugu durumlarda negatif kirilmaya olanak saglar. Potansiyel
bariyerin Dirac noktalari olan K ve K’ dogrultusuna dik oldugu durum degerlendirilmis-
tir. Green fonksiyonlar1 analitik olarak hesaplanmistir ve cesitli Fermi enerjilerinde kay-
naklarin ve alicilarin ¢esitli pozisyonlari i¢in Green fonksiyonlar1 kullanilarak duyarlilik
tiiretilmistir. Uzamsal Green fonksiyonlar teorik olarak hesaplanmistir ve statik duyarli-

lik (tepki fonksiyonu) tiiretilmistir.
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CHAPTER 1

INTRODUCTION

Carbon is an extraordinary element in life. It appears in various forms such as
protein. This is the reason of its ability in terms of flexible bonding due to its four valance
electrons. Well-known allotropes of the carbon atom are graphite, diamond and graphene.
Graphene is of great importance to understand the electronic properties of the allotropes
of the carbon atom and synthesized by Novoselov (Novoselov et al. (2004)). It is the two-
dimensional allotrope of the carbon atom and single layer material that has hexagonal
lattice structure with sp? hybridization (also known as honeycomb lattice because of the
shape). Because the behaviour of the mobile electrons in graphene, they treated as mass-
less relativistic particles to comprehend the remarkable electronic properties (Novoselov
et al. (2012); Geim and Novoselov (2007); Choi et al. (2010); Castro Neto et al. (2009)).

Veselago Lens is validation of negative refractive index of a material and first
found by Soviet/Russian physicist Victor Veselago (Veselago (1968)). He found the oc-
currence of the negative index of refraction if the permittivity and the permeability are
negative. After, comfirmation was done by David Smith et al. (R. A. Shelby et al. (2001))
and Pendry (Pendry (2004)) experimentally. Researches show that this effect can be ex-
amined by constructing n-p junction in graphene but also some other variations (Cheianov
et al. (2007); Chen et al. (2016); Reijnders and Katsnelson (2017a); Cserti et al. (2007);
Libisch et al. (2017); Farhi and Bergman (2014); Hills et al. (2017); Lee et al. (2015)). In
this work, Veselago Lens effect is investigated. The motivation is to observe this effect in

graphene theoretically and find the susceptibility.

1.1. Graphene

Lattice structure of the graphene is hexagonal as shown in fig. 1.1 and contains

two sublattices, called A and B, in the unit cell.



Due to the symmetry, sublattices can be chosen arbitrarily. Unit vectors of the

lattice are d; and a, (Kittel (2004); Katsnelson (2012));
L a L a
@ = 5(3,V3) @ = 5(3,~V3) (1.1)

where the distance between two atoms, a, is 1.42 A. Nearest neighbor vectors are

0 vectors in fig 1.1 shows the positions of the nearest neighbor sublattice atoms of B.

51 = —5(1,0) 5 = 5(1,—V3) 5 = 5(1.V3) (12)

A :

Figure 1.1. Honeycomb shape structure of the graphene, sublattices A and B are cyan
and orange colored respectively. Nearest neighbor vectors are indicated as
51, 52, and 53



Reciprocal lattice vectors are shown in fig 1.2 which are;

L L9
1= 2o (LV3) b= (1, —V3) (1.3)

I', M, K and K’ are the special points in terms of high symmetry in the Brillouin

zone as shown in fig. 1.2. K and K’ points have special names called Dirac points and

the vectors show their positions are;

K= (1,—” ) K = (-”7——” ) (1.4)
3a’ 3v/3a 3a’ 3v/3a

by

£ 2

by

Figure 1.2. In momentum space, Brillouin zone has special points K and K’ points
called Dirac points. b; and by are reciprocal lattice vectors in Brillouin
zone.

These points are characteristic of electronic structure of graphene and obtained

by Wallace (Wallace (1947); Bena (2009); Giiclii et al. (2014); Saito et al. (1998); Reich



et al. (2002)) with simple tight-binding model then McClure (McClure (1957)) and Slon-
czewski & Weiss (Slonczewski and Weiss (1958)) developed this model. Tight-binding
model is used to express the nature of unpaired electrons. To do this, following vectors

can be used to describe all real points in the lattice.

RA = nd, +~mdy +b (1.5)

Rp = ndy + mas (1.6)

a, and @, are the primitive lattice vectors, n and m are integers. The vector be-

tween A and B sublattices is b. The wavefunctions for A and B sublattices can be written

as
1 . .
VAR = — eFFay(F— R 1.7
Ra
]_ MRS —
UB(R) = — BB (F — R 1.8
KM =75 Z (7 — Rp) (1.8)
Rp
The total wavefunction can be written the linear combination of ¥ and W2
U (7) = oW + U2 (1.9)
« and [ can be determined by diagonalizing the Hamiltonian, where the Hamilto-
nian is.

H=2 1v) (1.10)



Here V' (r) is the atomic potential. Therefore, the Hamiltonian is;

(e (wiiae?)
MO\ ey (wpimoe) i

For nearest neighbor approximation, we can assume that € A(E) = 0 and neglect

the onside energies which are <\Ilﬁ|]f[|\11;;‘> and <\Iff\ﬁ\\1!k3>

. 1 s o e o
<\1/;;‘|H|x1/kB> -~ > eZk'(RB_RA)/dQT O(F— ROHOF - By)  (1.12)

Ra,Rp
Because A and B are nearest neighbor atoms, the integral above is constant. The

hopping parameter, which is approximately -2.8 eV can be defined as
t= /d%« V*(F— Ra)H(7 — Rp) (1.13)

Eq. 1.12 and its Hermitian conjugate can be written in terms of hopping parameter

as

<\IJ73\PAI\\IJ/€B> =t Z iR (Rn—Ra) _ 4 <€4E.E 4 emikE-a) 67“;'(5*620 (1.14)

— —

Ra,Rp

ISl

<\IJkB|lEI|\Iff> =t Z iR (Ra—Rp) _ 4 <eim+ etk (b=a) | eiE‘(g_62)> (1.15)

Ra,Rp

where f (k) is defined as

f(];:) = 6—ik~b + e—ik-(l;—[il) + 6—7§k~(5—52) (116)



Energy eigenvalues and eigenfunctions can be found by solving equation below

iy () =i O I (1.17)
5 frk) 0
By (k) = £[tf(k)| (1.18)

(7)) = L ik (Ra), (7 B\ _ ik (RB)f (E) .

() = ERAje (7 — Ba) §§Bje el
— (7 — 1 lE(EA) = é ’Lk‘(RB) *(E) = R 1 20
k( ) m REA € Qﬂ(’l“ A) + REB € ’f(];)’wr B) ( . )

Plus sign refers to the solution for the conduction band and the negative sign refers

-

to the solution for the valence band. If we expand the energy dispersion E(k) around
K = (2r/3a,27/3v/3a) and K’ = (27 /3a, —27 /3v/3a) with ¢ which is k-space vectors

that measured from K and K’ respectively, we get

3

J(E + @)~ —Salg. — ig,) (1.21)

—

3
ﬂK+®%—y@ﬁw0 (1.22)



« 0 e — 1 o
Ex(d) = ~ 34 e =ty (1.23)
qz + gy 0 5
o 0 T+ «
Ex(q) = :—gm e 0y (1.24)
Gz — 1y 0

After diagonalization, eigenenergies and wave functions are found as (with chang-

ing indices + — c and — — v)

3
B@) = +Saltll (129

" 3
EY(q) = —§a\t|!q| (1.26)
e 1 ! 1.27
K= 5 o (1.27)
Y 1 ! 1.28
K= E i (1.28)

6 = arctan(qy,/q,)) is the angle between ¢, and g,. If we introduce the Fermi

velocity, vp = 3|t|a/2h, Hamiltonian for the effective mass can be written as

~

Hg = —ivpg -V (1.29)

Hyr = —ivpa* -V (1.30)



1.2. Veselago lens effect

The Veselago lensing can be investigated by constructing n-p junction as seen
in fig.2.1b and fig.2.1a. This is a boundary between n-type and p-type materials where
n refers to “negative” or electrons and p refers to “positive” or holes respectively. It
can be created with electrostatic gates providing control of local doping (Cheianov et al.
(2007)). In fig. 1.3, ideal lensing effect is shown. When source is at © = —1, expected
focusing is at x = 1. When = < 0, there are electron-like fermions so have positive
group velocity and positive momenta. When = > 0, there are hole-like fermions so have
positive group velocity but negative momenta. On the n-side of the junction, flow of the
electrons is divergent. On the other side of the junction, flow is convergent. That is why
focusing effect can be seen, especially under the symmetric condition that is the source is

at r = —1 and receiveris at x = 1.

Figure 1.3. Veselago lens effect when source is at x = —1.



1.3. Susceptibility

Susceptibility is related to the response of a system to external perturbations (Wolf-
gang and Anupuru (2016)). In this study, the effect of the perturbation is investigated
by constructing n-p junction with different potential values. Specifically, a perturba-
tion which act as a source on n-type side and the response to the perturbation on the
p-type side is observed. The effect of perturbation V(7”) on electron density can be cal-
culated as follows from the Dyson equation (Sherafati and Satpathy (2011); Jishi (2004))
G=G"+GVG

n(7) = no(7) + / & (V) (1.31)

Charge density is defined as

Ep
2
nulf) = = / dE ImG,,(F,F, E) (132)

—00

exchange interaction between electrons which are located at (1, ) and (v, r’) can

be calculated by finding the charge difference on,,(7) as follows
on,, () = ——Jm/dE/d3 "G BTG, (P T E) (1.33)

here sublattice indices denoted by x and v, r and 7’ are the positions of the mag-

netic centers. Susceptibility can be obtained by én,, () /dV, (i)

Xl 7) = %———m / B G B, E) (3



CHAPTER 2

SUSCEPTIBILITY CALCULATIONS

Standard susceptibility for a spin-independent perturbation is written in terms of

unperturbed retarded Green’s functions (Sherafati and Satpathy (2011))

Ep
2
x (7, 7) :——/dE Im[G (7,7, E)G°(#, 7, E)] 2.1)
T

—0o0

G" is the spin-independent Green’s function. For the graphene, we can write the

susceptibility as

Ep
2
X (7, 7) = - / dE Im[Ggy(F,F’,E)GSu(F’,F, B)] (2.2)

w1 and v refer to A or B sublattice indices, r and r’ are the lattice positions on
the sublattice ;2 and v, respectively. Real-space Green’s functions can be determined by

integrating the momentum-space Green’s functions

G (77 E) = — [ &k FTTGO (K, E) (2.3)
QBZ !

where G° = (E +in — Hy) ™', 7 and 7’ are the positions of the atoms. Integral in
eq. 2.3 for small energies can be written as

GO ('r_‘: ,,7/’ E) - d?k 6@‘E~(F—F’)[GO ([{v” E)ei[?.(;:_,,-:/) + GO (}_(),7 E)eif(’/'(f"—??/)]

224 nv

(2.4)

here K and K’ are the Dirac points.

10



In this problem, we have non-homogeneous differential equation as;

(E — Hg)G(F — ') = 6(7 — ") (2.5)

Solutions of this non-homogeneous differential equation is Green’s functions as a

2% 2 matrix

GAA GAB
G(F — ) = (2.6)
GBA GBB

In this problem, low-energy Hamiltonian can be written around K and K’ points

as

. 0 VpP_
Hy = vpd - = P 2.7)
VFP+ 0
R 0 VFD
Hy' = vpd* 5= P (2.8)
"UF]a_ 0

Matrices are the Dirac matrices in two dimensions. Since the effective mass of
electrons in graphene is zero, this leads to the Klein tunneling. This means that elec-
trons act like massless Dirac fermions. Under the effect of potential which is simply step

potential, Hamiltonian can be written as

R Vo oupp_
Hi =V + vpd - j— P (2.9)
UFﬁ+ 4
. Vo upp
Hir =V +opd* = b (2.10)
Upﬁ_ Vv

11



The problem can be divided into two based on the step potential barrier as seen in

fig 2.1a.

V(r) = 2.11)

— x>0

(b)

Figure 2.1. (a) The incident conduction electron is transmitted as a valance elec-
tron whose momentum is in opposite direction to its group velocity. (b)
Schematic representation of step potential. Dirac cone for electrons is left
side of the barrier (called n-doped or electron-like region), that for holes is
right side of the barrier (called p-doped or hole-like region).

12



The non-homogeneous equation for G44 can be written as

. 1 ) L
(E—V)G* — |UF|2P—WP+GAA = §(F —7")
where
0= 0,1+ 0,)
p= ]5:1:i + ﬁyj
R Vo wupp_
e = FP
VED+ 4
where
ﬁ— = ﬁx — 1Py
]34— = Ax + Zﬁy
E-V —vpﬁ_
(F—Hg) =
—vppy E -V
E—-V —vpp_ GA4 GAB §(7 —7) 0
—vppy E -V GBA GBB 0 o(r'— ")

We have four equations for Green’s Functions below

(E— V)G —vpp_GP = 5(7 — )
(E—-V)GP —upp_GPB =0
—vpp G 4+ (B - V)GPA =0

—vppp G+ (B = V)GPB = §(7 — )

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
(2.17)

(2.18)

(2.19)

(2.20)
(2.21)
(2.22)

(2.23)

13



FEnergy

Vo/2
Ce it

Aeiqx

—iq'x iqx
(& e

Q
8

—Vo/2

Figure 2.2. Figure shows schematic representation of step barrier potential. Transmit-

ted and reflected waves have wave vectors ¢ on the p-type side and ¢’ n-type
side respectively.

If we solve for G44 we get

R r L
(E = V)G — Jor|*p- WIMGAA =0(r"—17) (2.24)

For the conditions below in one-dimension, Green’s functions can be found in
three regions also shown in fig. (2.2) as

e >0z’ <0,

E —V)G4A — —'Q—k#—“%—ﬁ E)GAA = 6(x — 2’ 2.25
( )Gx (2333 ’)(E—V)( ZaxH)K—(af z’) (2.25)

14



r>0 G = Acw

' <x<0 G‘;‘é = Bel1'® 4 Q'

x<z' <0 G#'=De "

Boundary conditions are;

(1) z=ua'
8G§‘(A r=x"+¢
(m) aiL‘ rx=x'—¢
(iid) z =0
' 8G}A}A r=0-¢
=0
<ZU) ax r=0—c¢€

After some algebra, G?}A can be found as;

GAA _ (E? - VTQ>
B R (kY +iB(g+ q') + it (g —q'))
G‘;}f‘ = - (E2 - VT)
2ok (kV +iE(q+q') +i%(q—q'))
Where;

e

iqr—iq’x

iqr—iq’x

/

/

(2.26)
(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

15



To find Green’s function for K and K’ points, stationary phase approximation

method (Reijnders et al. (2018)) is used around k£ = 0 point.

[ae rw=e [T ) 237

= GH(x>0,X <0) = / dk PG (2.38)

where Sj and S5 are in eq (A.98) and (A.99) respectively

Gal(x > 0,x < 0) =

(2.39)
J (=)’ J (2+%)
<E2 B VT2> 7L2v%, 77,21)% i 2171, .
e
7202 7202
Gl(x > 0,x <0) = - -
) ) E-Y . ) E+Y
hQU% ((—ZE — Z%) ( FLQU%) + (iE — z%) ( o 2%) )
(2.40)

After interchanging the positions of the source and receiver, we can calculate the

Green’s functions for K and K’ points as

16



(;//LA o (122 . liz)

+ E eiqm’_iq/m .
G;(/ E 42

glar'—iq'x 2.42
W22 (kV +iE(g+q') +i%(q— ) o4

Where;

(2.43)
Up

(2.44)

241
x _ i o7 :
J(E+%) J(E-%)
h2v2
Gyl (x' <0,x>0) =

F 521}%
. . _% 2 ‘ ‘ E+% -
h*v?, ((—ZE — 2%) ( h%%) + (iE — z%) ( h%%) )
(2.45)

2
x 2 n 7 .
J(E+%) J(E%)
GEi(x <0,x>0) = 7

17



Below the potential value E' < —V//2, particles act as hole-like fermions. Green’s

functions for K and K’ points are;

G?(A _ (E2 - VTQ) ez‘qx—iq’z’ (2.47)
W05 (—kV +iE(q+q') +i%(q—q"))
(B2 - 1) iz iz’
Gl = 4 — glar—ia’e (2.48)
T RR(RV +4E(q + q') +i% (g —q"))
Where;

_ V)2
q:—\/—(E 22) — k2 (2.49)

K 2
4 = _\/M T (2.50)

G (x> 0,x <0) =

_V)? V)2
h*vZ ((—iE —i¥) (EHQ—?) + (—iE +i%) @)

18



4 x o z
[CEIRNICEY
AA ’ h202 FLQ’U%,
GK/(X>O,X <O): 2 5
h22 —'E—'K ( 2) —iE -V (E+%)
vi | (=i ig) 702, + (—iE+15) 202,
(2.52)

After interchanging the positions of the source and receiver, we can calculate the

Green'’s functions for K" and K’ points as

G/AA _ (E2 B VTQ) eiqm’—iq’as (2 53)
K R (—kV +iE(q+q') +i% (g —q"))
(B2 - 1) o
G/AA _ 4 etar'—iq'w (254)

B R (kY +iE(g +q') +i%(q — ¢"))

Where;

AL
q:—\/—(E 22) — k2 (2.55)

)% 2

19



J () J (%)
K20 K20
Gal(x < 0,x > 0) = a r
2 . -V ( _K)2 - -V (E+Z>2
v | (—iE —i%) thfQF + (—iE 4 i) h%?%
(2.58)
Other component of the Green’s function which is BA(AB) is

Goa = U _gaa 2.59

Koy (2.59)
2

After calculating all the Green’s functions, which all are same, we can find the
susceptibility by simply considering four of them. Although we need to evaluate the
integral by summation of those from —oo to —V//2 and from —V//2 to E, since all the

Green'’s functions are the same, we can take it directly from —co to Fp.

Er
2
x=—=Im / dE 4G4 (x> 0,x’ < 0)G4M(x" < 0,x > 0) (2.60)

(5 (528)
Ep ’[/ <E2 . VTQ) e v hvp r= hvp r
=1Im / dE (2.61)
. ol (BE(x —2') + Y(z + 7))
Result contains exponential integral and can be seen as
, Z'e—QiV(ac—&—ac’) (ei((2E(:v—:L”)+V(ac+:v’)))) (1 _ QZE(.T . l'/) + ’LV(.CL' + $/>>)
=1Im
X 833 (v — 2/)3 2.6
ie 2V @) (41 200'Ei (i(2B(x — @) + V(w + /)" '
8h v (x — )3 .
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where the exponential integral is defined as

3 "
Bi(¢) = / du (2.63)

When we look at graphs (fig. 2.3 to fig. 2.8), susceptibility we found is as ex-
pected. Our results are supported by literature (Cheianov et al. (2007); Reijnders and
Katsnelson (2017a); Reijnders and Katsnelson (2017b)) .When the receiver position is
symmetrical to the source position and E» = 0 focusing effect is strongly felt. By chang-
ing Fermi energy, effect is getting weaker but still focusing occurs. By interchanging the
positions of the source and receiver, similar effect can be seen. Fig 2.9 and 2.10 shows the
focusing effect with respect to Fermi energy when the position of the source is changing.
On fig 2.11 and 2.12, the contribution with various position and Fermi energy values to

the susceptibility can be seen.

Susceptibility versus Position
‘ T T T

E =-050
E =-040
E =-0.30
E
E

E;=0.10
E =020+
E;=0.30

=-0.20 E. =040 |

Jm

Figure 2.3. Graph shows susceptibility with respect to position (index in the x-axis is
changed from 7 to x) with various ' values. Strongest contribution is at
x = 1 when the source is at 2’ = —1. Scaling is as follows: [ = hvg/V/,
E=E/V,T=aV/hp, T =2'V/hvp
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Susceptibility versus Position
T T T 1 T T

0.25 T

|
0.2 | |
|

4
(=020
f
1

Figure 2.4. Graph shows susceptibility with respect to position (index in the x-axis is
changed from 7 to x) with various I/ values. Strongest contribution is at
x = 10 when the source is at 2’ = —10. Scaling is as follows: [ = hvg/V/,
E=E/V,7=2V/hwp, @ = 2'V/hvg

Susceptibility versus Position
T T T T T

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 2.5. Graph shows susceptibility with respect to position (index in the x-axis
is changed from 7 to x) with various E/r values. Strongest contribution
is at x = 0.3 when the source is at ' = —0.3. Scaling is as follows:
l=hvp/V,E=E/V,T=aV/hvp, T = 2'V/hvp
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Susceptibility versus Position (changing Ef values)

Figure 2.6. Graph shows susceptibility with respect to position (index in the x-axis is
changed from 7’ to x’) with various Fr values. Strongest contribution is at

2’ = —1 when the source is at x = 1. Scaling is as follows: | = hvg/V/,
E=FE/V,T=2V/hp, T = 2'V/hvp

Susceptibility versus Position (changing E' values)
0.25 T T T T

I
E =-0.50 E,=0.10 | |
02 E =-040 E =020 | | -
E =-030 E =030 | |
E,=-0.20 E =040

0.15

Figure 2.7. Graph shows susceptibility with respect to position (index in the x-axis is

changed from 7’ to z”) with various E'r values. Strongest contribution is at

x’ = —10 when the source is at z = 10. Scaling is as follows: | = hvg/V/,

E=E/V,7=2xV/hp, T =2'V/hop



Susceptibility versus Position (changing E values)

20 T T T T T T T

E,=-0.50 E =010
18 F E,=-040 E, =020

E,=-0.30 E, =030
16 E,=-0.20 E =040

E =-0.10 E =050
14k E,=0.00
12} 8

Y
‘ /
10 \\ / |
> j
8 b g il
/ 7 7
6 // -
o

e 4
2 7f,fjjjjf7 — 4
2 I I I I I I I I I
-0.5 0.45 0.4 0.35 0.3 -0.25 0.2 0.15 0.1 0.05 0

Figure 2.8. Graph shows susceptibility with respect to position (index in the x-axis
is changed from 7’ to x’) with various Er values. Strongest contribution
is at ' = —0.3 when the source is at x = 0.3. Scaling is as follows:
l=hvp/V,E=E/V,T=2V/hg, T =2'V/hvp

05 Susceptibility versus Fermi Energy (changing x values)
8 T T T T T T T

x=0.00 x=1.00 x=2.00
x=0.50 x=1.50

Figure 2.9. Graph shows susceptibility with respect to Fermi energy with various x
values. Strongest contribution is at £ = 0. Scaling is as follows: [ =
hop/V,E=E/V,T=aV/hp, T = 2'V/hvp
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Susceptibility versus Fermi
T T

x'=-2.00
X' =-1.50

X =-1.00
X =-0.50

x'=0.00

0.5

Energy (changing x' values)
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|
|
|
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|
|
|
|
|
|
|
|
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+
|
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-0.5 -0.4 -0.3 -0.2 -0.1 0.2 0.3 04 0.5

Figure 2.10. Graph shows susceptibility with respect to Fermi energy with various x’
values. Strongest contribution is at L/ = 0. Scaling is as follows: [ =
hop/V,E=E/V,T=2aV/hgp, T = 2'V/hvp

Susceptibility versus Energy and position (top view)

N

Position

=)

35
| )
| 1.5
| )
. -0.5

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
E

E

Figure 2.11. Graph shows susceptibility with respect to position and Fermi energy with
various = and Ef values. When 2’ = —1, strongest contribution is at
Er = 0and at z = 1. Scaling is as follows: | = hvg/V, E = E/V,
T =aV/hvp, T = 2'V/hvg
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Figure 2.12.

Susceptibility versus Energy and position (top view)

-2 35
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w
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Position
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Graph shows susceptibility with respect to position and Fermi energy with
various " and E values. When x = 1, strongest contribution is at £ = 0
and at 2’ = —1. Scaling is as follows: | = hvp/V, E = E/V,T =
zV/hvp, T = 2'V/hop
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CHAPTER 3

CONCLUSION

In this thesis, we have investigated the effect of Veselago lensing in graphene.
To do this, we have considered n-p junction by considering a step potential barrier. We
located two points for the source and the receiver on the opposite sides of the barrier. We
also see the same effect by interchanging the positions of these two points. Due to the
negative direction of the hole momentum with respect to incoming electron momentum,
focusing effect occurs. After the analytical calculations, we found the Green’s functions.
Using the stationary phase approximation, we found the Green’s functions around K and
K’ Dirac points. Because of the stationary phase approximation around & = 0 points,
we had same AA(BB) components of the Green’s functions for K and K’ points. Unlike
AA(BB) points, Green’s functions for AB(BA) points are slightly different. However,
we obtain the same susceptibility for both AA and AB points for symmetrically placed
source and receiver. We have observed that perfect focusing occurs when the source and
the receiver are equidistant from the barrier at zero Fermi energy. For a given receiver

position, we determine the focusing point for various Fermi energies.
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APPENDIX A

EXPLICIT ANALYTICAL CALCULATIONS OF
SUSCEPTIBILITY FOR GRAPHENE

In this chapter, Green’s function calculations for our problem and that for bulk
graphene are shown explicitly. Then, susceptibility, x is computed from the derived
Green’s functions.

1) In cartesian coordinate, there is non-homogeneous differential equation needs

to be solved.

(E — H)G(F —7') = 6(F — 7) (A1)

Solution of the non-homogeneous differential equation is

GAA GAB
G(r—r1")= oA (BB (A.2)

Corresponding Hamiltonians for the K and K’ points are

Hyi =V 4+ vpd - (A.3)
Hyr =V +opa-p (A.4)
7= (04,0y) (A.5)
7" = (04, —0y) (A.6)
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o’s are the Pauli matrices and p’s are momentum operators.

0 =0,1+ 6yj
~ \% ?}Fﬁ,
K o A
VpP+ V
where
ﬁ, = ﬁx - Zﬁy
P+ = Pr + 1Dy
R E—-V —vpp_
(E— Hg) =
—vpp+ E-V
E—-V —vpp_ GAA GAB 5(77— F’) 0
—vppy E -V GBA GBB 0 5(F— F’)

We have four equations for Green’s Functions below

(E—-V)G* —

vpp_GBA = §(7 — i)

(E—-V)G*P —vpp_GPP =0

—vppy G+ (B - V)G =0

—vppy G 4+ (E = V)GPP = §(7 — i)

If we solve for G44 we get

(E = V)G — |vp|*p_

For Bulk graphene;

1

(E-V)

PaGAA = 5(7 —

,,?

)

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)
(A.15)
(A.16)

(A.17)

(A.18)
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If there is no potential, V' = 0, and we set for v = 1, then equation becomes

E*GM — (p) + p)GM = ES(7 — ) (A.19)
E? E
A =T G (A.20)

This (equation A.20) is well-known two-dimensional Helmholtz equation (Duffy

(2015); Couto (2013))

E*Gaa — WP (K; + k2)Gan = ES(7 — 7 (A.21)

Taking the Fourier transformation of this equation gives

E2? _ B E 6iE~F”
I (A.22)
B —E eil; 7!
Gaa 5 5 (A.23)
27h (k2 - %)
and then taking the inverse Fourier transformation gives
- 1 e—ik-R
Gan = —5 = /ko—Q (A.24)
o) e
where R = (7 — )
E [, wn [  dk
Gan = ———5 / dke*=F / — A.25
AA (271_)2712700 J k’% +k§ _ 5_22 ( )
[ dk
IR TRy~ %
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o for |k,| > £
E? , E? . E?

There is only one pole inside the contour, which is (z\ [k2 — g—j)

F2
I = 2miRes (z k2 — —2>
h

271

271
_:FQ—
20/ 5 — k2
)
— 2

)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)
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E d/{/‘x iks R s dk’x iks R
Gan = . c q:m/ ‘ (A35)
ike R Qs 0
et — Cos(k,R) +iS g (A.36)
o0 7
E dk, k. [ dk, ks
= Gau = — 27r/ Cos(kR) QZW/M (A37)
A N
_E \ )
i L 2 |
I L
©E E |° E E
k, = %u = dk, = %du k, = %0039 = dk, = —%SinedG
0 ECOS(EUR) X % —ESiRQCOS(ERCOSG)dG
I — h h I — h h
! { %QULF,{}Q ? Zof %\/1—6'0329
- Sin6
X Cos( EuR)du . 2
I, = { (2271) I, = —ZOfCos (%RCOS@) do
I = —2N (5R) L= i34 (£R)
(A.38)
1 T E T E
=——=——=Ny | = +i— — A.
cGu EL (B esa(E0))
E E
=— | Ny|=R)xiJy| =R A.40
e (% (577) i (7)) =
1B ER ER
=— | Jo[ =) +iNy | =— A4l
e (2 (5) = () =
E . ER
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Plus sign is associated with the outgoing wave solution, that is why we need to

pick that solution.

E ER
= Gaa=aif <7)

from (A.15) and (A.16);

—ihoges
Can =
—ih G
Cra=

where

4h? B
E . (ER
Gap = Gpa = ——HY [ ==
AB BA 4h2 1 ( 7 )
a— Gaa Gap
Gpa Gpp
ER E 17(1) (ER
—o=( S e
w7 (BY) i (5F)

(A.43)

(A.44)

(A.45)

(A.46)
(A47)
(A.48)

(A.49)

(A.50)

(A.51)

(A.52)
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2) In polar coordinate;

2 1 8 E ,
E2+h2 %—F;%‘i‘ﬁ@ G:?d(T—T’I>5(¢—¢)
w L s eime
Tor(rar o
E? 0*G 10G m? E
= m + m _ S(r — 1!
- R Cm + or? + r Or r2 Cim 2rhir e

4
AJO<%>, OSTST/

yr=r'

et
i) ()],

/ Er’ , [ Er' 1
7 (5 (50) =45 (57)) = R

(A.53)

(A.54)

(A.55)

(A.56)

(A.57)

(A.58)

(A.59)
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/

(—ZWHAJO' (

: ) + 2nhBH.Y (

(A.60)

then we need to find constants in equation (A.57) and (A.60). To do this we need

to find the Wronskian
J (Er’) H(l) (E_r’) A 0
0\ 0 R _
—omhJy (E) 2xnHyM (£ B L
= W _ 4in?
- Er’
1 "
0 —H" (&)
, (1)
Loomnm (5|
A= B —4ih?
W Er’
) iEHY
T 4n?
Jo (2= 0
by (B L] &
B = W - _ 4ih?
Er’
L EJ,
—~B=|" >
4h
iE & Er Er ,
= GAA—4_h2 Z Im <T<> HD T>) e'me
For vy # 1;

(A.61)

(A.62)

(A.63)

(A.64)

(A.65)

(A.66)

(A.67)
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0 . h2v? 0 .
x>0 Gt = A (A.69)
v <z <0 G#t=DBe"" + Ce’" (A.70)
r<a' <0 Gt =De " (A.71)
Boundary conditions are;
(1) z=ua' (A.72)
AA |T=1"+€
(44) agif - 1 (A.73)
(i) =0 (A.74)
8G}4(A x=04¢
' = A.
(iv) e | 0 (A.75)

There is a discontinuity at x = 0 and potentials, V;’s on each side are; Vj.5, =

—V/2 for x < 0 (when i = left), V,, 5 = V/2 for 2 > 0 (when ¢ = right)

(i) G =Gl (A.76)

/

=  Bel'v 4 Cem'v = peTia's (A.77)

= B’ 4 O — DT = (A.78)



r=x'+€
AA
kG

r=x'—¢

(&) Q;?i9<%34

r=x'+e€
) -1 (A.79)

(E+ %)

(A.80)

.y - o g’ ! E ¥

S (k)BT — (k4 ig)Ce - (k+ig")De e = hjf)

Up
(A.81)
(iii) =0 (A.82)
= A=B+C (A.83)
= A-B-C=0 (A.84)
. hQU% aG?}A r=0-+¢ . r=0+¢€

(ZU) ((E - Vz)) ( ox r=0—¢ B kGK z=0—¢ - (ASS)

Pk ig— A= T (G BB+ (cig —B)C) =0 (AS6

=y R i’ ~K)C) =0 (AS6)
Wik —ig) ,  WPR(k—ig)) o Bk +ig’)

_ -7 A+ E+D B+ B+ T C=0 (A.87)
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After some algebra, G?}A can be found as;
B2 -V o
GAA _ ( 4 equ—zq x A88
K h%%(—kV—iriE(q—l—q’)—H'%(q—q’)) ( )
B2 - V) o
o | r) iqr—iq's (A.89)
K h%%(kV—l—zE(q—l—q’)—H%(q—q’))
Where;
E—Y)°
q= _\/( h2U22) — k2 (A.90)
F
(A.91)

E+Y)’
ql:\/( h2vg) —/{72

To find Green’s function, stationary phase approximation method is used around

(A.92)

k = 0 point.
E—Y)? E+Y)?
S = — \/( 222) — k2| r— \/( 222) — k2 (I?’
vz g
oS xk 'k
5= — 7+ — o (A.93)
<(Ez;) kz) ((E+22) _ k:2)
h2vF h2v
2 2
28 oot )
= L + L (A.94)
Ok2 V2 3/2 V2 3/2
(E_f) — k2 E+7) — k2
hzv% hzv%
E — 14 2 E + 14 2 1 k‘2 /k,2
S% \/( 222) \/( 222) $,+— z + T (A95)
ir N (N ()
h2v2 h2v2
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[ae rw=e [T s (A.96)

= GG (x> 0,X <0) = / dk PGt (A.97)
where Sy and S, are;
E—Y)? E+Y)?
S(]: ( 5 22) T — ( 5 22) xl (A.98)
vz h vz

(A.99)

GA(x > 0,x < 0) =

Gal(x > 0,x <0) =

(A.101)

42



i)r <0, z'>0,

r>x' >0 G%A:Aeiqx

' >x>0 G}éA = Be'%® 4 Ce "

z <0 G}?;A — De '

Boundary conditions are;

(i) z=ua'
IGIAA r=a'+e
(44) iS =1
aiL‘ r=x'—¢
(iii) z=0
8G/AA r=04-¢€
(1v) £ =0
8x xr=0—c¢
G;éA _ G[lgA

.y . i !
Ae'? = Be'? (e

-1 s ! i
Aeltr — Belt! — Ceia’ =

(A.102)
(A.103)

(A.104)

(A.105)

(A.106)

(A.107)

(A.108)

(A.109)

(A.110)

(A.111)
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r=x'+¢
1AA

r=x'—¢

o (=) (aC;K

r=x'+¢
=1 (A.112)

h21)2 ., ., o
= F [(lq — k)Aequ — (Zq — ]{;)Bezqm . (—Zq . k)ce—qu —1

(E—3%)
(A.113)
. iqr’ . iqz’ . —iqzr’ __ (E B %)
= —(k—iq)Ae'™ + (k —iq)Be"™ + (k +iq)Ce =7 (A.114)
UE
(i) =0 (A.115)
= B+C=D (A.116)
= D-B-C=0 (A.117)
hZ’U% 8G;€4A r=0+¢ " r=0+¢
) — kG, = A.118
(ZU) <(E - V;)) ( Ox r=0—¢ GK r=0—¢ ! ( )
h*v? h*v?
= iq — k)B + (—iqg — k)C) — E(—ig'—k)D=0 (A.119
2,2 _ 2,2 ; 2,2 /
N W (k zq)B_th(k:+2q)C+hUF(k‘+@q)D:O (A.120)

(E~3) (E—3%) (E+Y)
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After some algebra, G }?A can be found as;

2 V2
Gt = — ,<E —7) - gl i’ (A.121)
v (=kV +iEB(q+q') +iv(q —q'))
oLy o
G = ( 4 glar'—ia'e A.122)
R +iB(g+ ) +ig(a— ) (
Where;
(E-%)°
_ 2) 2 A.123
E+Y)’
/ ( 2
=2l 2 A.124

J (e+%)’ J (e-%)’
h2v% 521)2
GAA(x < 0,x > 0) = - :
, , E-Y E+Y%
h%% ((—ZE — Z%) (hQUQQF) + (iE 2‘2/) (h%%) )
(A.125)
( J (5+%)’ J (%)’ )
" h2v2 = h202 x
<E2 _ VTQ) r r Dir___
(&8 i [
521)% hzv2

Gal(x' < 0,x > 0) =

(A.126)
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2
x=——Im [ dE G#(x>0,x' <0)G*(x' < 0,x > 0) (A.127)
: _Vv
2
2,L' (Ei%)mi (E+%)w/
Er 7/ (E2 . VT2> e hvp hvp
=1 dE A.128
m/ ol (B(x —2') + X(z + 7)) ( )
%
B Z'ef2iV(:Jc+z’) (ei((ZE(m—g;/)+V(x+m’)))) (1 o QZE(ZE . LL‘I) + ZV(ZE + :L‘I)))
e 8hv3 (v — 2/)3
o p (A.129)
N ie 2V @) (4V222'Ei (i(2E(x — 2') + V(z +2)) ] 7
87’131)%(37 —')3 v
2
For vy # 1;
Daz>0, 2/<0, —co<E<-%, V>0
(B V)G (=i i v i LieM Zsm—a)) (A130)
— — (=15 — k) (1t = — .
K Ox (E-V)" Oz K
x>0 Gyl=Ae™ (A.131)
v’ <z <0 Gg=DBe" 4+ Ce” (A.132)
x<z' <0 Ggl=De” (A.133)
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Boundary conditions are;

L 0GAA T
(17) |, =1
(iii) =0
aG?}A x=04¢
) =0
(ZU) ai[} r=0—¢

(A.134)

(A.135)

(A.136)

(A.137)

There is a discontinuity at x = 0 and potentials, V;’s on each side are; V.5, =

—V/2 for x < 0 (when i = left), V, ;5 = V/2 for 2 > 0 (when ¢ = right)

(i) Gat| =Gt

= Be'v 4 Qe = peia's

-y il !
= Bel? +(Ce™* —De ™% =0

r=x'+e€
AA

r=x'—e¢

o (=) <8§K

r=x'+e
=1
r=x'—¢

h2 2 N B i Py e
- ((E—fFK)) [(iq' — k)Be''" + (—ig' — k)Ce ' — (—ig’ — k)De~
2

(A.138)

(A.139)

(A.140)

(A.141)

iq’x’] -1

(A.142)
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N S N S ey B E+ Z
S (kg )BT (it ig)Ce 4 (kighDee = )
F
(A.143)
(1ii) =0 (A.144)
= A=B+C (A.145)
= A-B-C=0 (A.146)
h2U2 8GAA r=0-4€ x=04¢
(iv) ( £ ) K — kGt =0 (A.147)
(E - ‘/7') all' r=0—c¢ . x=0—c¢
h*v? h*v
iqg— k)A — iqg' —kYB+ (—iqg' —k)C) =0 A.148
2,2 _ 2,2 it 2,2 /
o hevs(k qu)A+ hvs(k qu )B—l— h*vi(k +iq )C:() (A.149)
(F—-3) (E+35) (E+3)
After some algebra, G?}A can be found as;
B2 - V%) o
GAA _ ( 4 equ—zq T A.150
PR (—kV +iE(g+q') +i% (g — ¢')) ( :
E2_ o
G?}é_ ( 4 ) equ—zq:c (A151)

N hZU%(kV +iE(qg+q') + z%(q —q"))
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Where;

(A.152)

(A.153)

(A.154)

(A.155)

(A.156)

(A.157)

(A.158)

(A.159)
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/ dk e f(k) = ™ \/g fk(2,y)) (A.160)

= GG (x> 0,X <0) = /dk PG (A.161)

Gat(x > 0,x < 0) =

2.2
h=vg,

B}, ((—iE _an S (Cip gy (E*W)

(A.162)

Gal(x > 0,x <0) =

hvg, ((—iE —i%) (G (—iB +i¥) (E*W)

FLQ’U% th%
(A.163)
i)z<0, />0, —c<E<-%Y, V>0
x>a' >0 Gt = A" (A.164)
' >1>0 Gt = Be'" + Ce '™ (A.165)
x<0 G =De "™ (A.166)
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Boundary conditions are;

(i) v=2a (A.167)
8G/AA r=x'+e€

(i4) af; o 1 (A.168)

(ii3) x =0 (A.169)

8G}?A r=04-¢€

' =0 A.170

(iv) or |, ( )

(i) Gt =Gt (A.171)

= A = Beltr' 4 Cemiar (A.172)

= A" — Bt — CleTi =) (A.173)

r=x'+¢

— kG

r=x'—¢

2,2 1AA r=x'+¢
(i4) ((;_”f‘“/)> (‘%;f; ) —1 (A.174)

2.2 N
= ((Ei'i_UFK)> |:(Zq - k)Aeiqx' — (’Lq — k)Beiq:E’ — (_Zq _ k)Cefzq:v —1
2

(A.175)

= — (k—iq)Ae"™ 4 (k —iq)Be'™ 4 (k +ig)Ce ™™ = 22 (A.176)
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(iii) = =0

= B+C=D

= D-B-C=0

r=0-+¢
1AA

r=0—c¢

o (w2h) (8%;

r=0-+¢
=0
r=0—c¢€

 WPop(k —iq) B v (k +iq)

C+ D=0
(F—1%) (B —%) (E+ %)
After some algebra, G244 can be found as;

(B - 1)

G;?A _ 4 eiqa:’—iq’cc

RPvk(—kV +iE(q+q') +i% (g — ¢'))

(B* - 1)

G;?/A _ 4 eiqar’—iq’a:

R (kV +iE(q+q') +i%(q — q'))

(A.177)

(A.178)

(A.179)

(A.180)

(A.181)

(A.182)

(A.183)

(A.184)
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Where;

q=— (E_—%)Q_kQ (A.185)
7121}%
o JEE) k? (A.186)
= 7'121)12; '

G (X <0,x>0) =

(A.187)

GAl(x < 0,x>0) =

(A.188)
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|

ie 2V @) (4202 Fi (i(2E(x — o) + V(z + 2))))

2
x=—-Im / dE  G#Mx > 0,x' < 0)G#(x' < 0,x > 0)
m

—00

<

(%) (E+%)x,>

v 22( r—
— 5 . 2 hvp hvp
2 i <E2 - V—) e

:[m/dE FL3U%‘ (E(I_x/)+%(x—|—x/>)

—00

Z'e—2iV(3:+m/) (ei((2E(ac—:Jc’)+V(m+r/)))) (1 _ 2ZE($ _ x/) + ZV(Q? + {lf/)))

8hv3 (v — 2/)3

v[<

+

8hPvi(z — a)3 e

(A.189)

(A.190)

(A.191)
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