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Şamil Şirin

July 2022
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ABSTRACT

FIBER OPTIC CURRENT SENSOR INTERROGATED BY
PHASE-SENSITIVE OPTICAL TIME-DOMAIN REFLECTOMETER

In this thesis, a novel method for current sensing using an FBG-assisted Phase-

Sensitive Optical Time Domain Reflectomter (Phase-OTDR) with Mach-Zehnder Inter-

ferometer is proposed. The detrimental effect of the intrinsic linear birefringence of the

sensing fiber is solved by calibration. An FBG pair is written at the two ends of the

spun fiber coil to eliminate phase fading and increase the measurement accuracy. A

simulation tool was developed to study the feasibility of the approach and the sensor

performance by a well-established Phase-OTDR model with the Jones formalism. The

effects of bending- and FBG-induced linear birefringence are investigated as well as the

impact of the detector noise.
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ÖZET

FAZA-DUYARLI ZAMAN BÖLGESİNDE OPTİK GERİ YANSITICI İLE
SORGULANAN FİBER OPTİK AKIM SENSÖRÜ

Bu tezde, Faza-Duyarlı Zaman Bölgesinde Optik Geri Yansıtıcı (Faz-OTDR) ile

akım ölçümü için Mach-Zehnder İnterferometreli, Fiber Bragg Izgara-Destekli yeni bir

metod önerilmiştir. Algılayıcı fiberin kendi iç doğrusal çiftkırınımının olumsuz etkisi

kalibrasyonla giderilmiştir. Faz sönümlenmesini ortadan kaldırmak ve ölçüm doğru-

luğunu arttırmak için spun fiberden oluşan sarımın başına ve sonuna bir çift fiber Bragg

ızgara (FBG) yazılmıştır. Yaklaşımın fizibilitesi ile sensör performansını çalışabilmek

amacıyla iyi bilinen bir Faz-OTDR modeli ve Jones formalizm kullanılarak bir simülasyon

aracı geliştirilmiştir. Bununla, bükülme ve FBG kaynaklı doğrusal çiftkırınımın etkileri

ve dedektör gürültüsünün tesiri incelenmiştir.
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CHAPTER 1

INTRODUCTION

There are numerous techniques to measure electrical current that have been evolved

for decades. Among them, optical current sensors draw a particular interest due to their

small size, lightweight, and good insulating ability. Therefore, a particular focus will be

placed on the optical current sensing techniques in this part.

1.1. Overview of physical principles behind current sensing

techniques

Ohm’s Law is the most known current measurement method. A simple shunt

resistor can provide a resolution of 10s of µA and be used to detect currents up to a few

amperes. It has low cost, small size, linear and fast response, but its power dissipation

grows with the square of current amplitude which may result in excessive heat generation.

Besides, it must interfere the circuit of the current by direct contact, leading unexpected

circuit response, if the circuit design cannot handle the sensor resistance and the potential

parasitic effects (Ramsden, 2006a).

The principles other than Ohm’s Law are based on sensing the magnetic field

around the current avoiding direct contact with the conductor 1. One of them is the Hall

effect which exploits the Lorentz force generated by the magnetic field on a thin metal

strip. It produces a potential difference between two sides of the strip proportional to the

magnetic field strength (Ramsden, 2006a). The performance of Hall effect-based sensors

is mostly determined by the complexity of the transducer circuit. Simpler circuits provide

lower cost as well as less power consumption but suffer from poor linearity and slow

response. As the complexity increases, response time and linearity get better, while the

sensing range is narrowed. This type of sensor is mostly used for direct current (DC)

1Ampere’s Law states that current flowing through a wire creates a magnetic field around itself so that
the line integral of the field strength around a path enclosing the current gives the current magnitude.
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measurement.

For alternating current (AC) measurement, Current Transformer (CT) and Ro-

gowski Coil (RC) are well-established transducers that are often used to monitor high

currents. Both rely on Faraday’ s law of induction which states that varying magnetic flux

enclosed by a path generates an electromotive force around that path (Ramsden, 2006b).

CT differs from RC by having a magnetic core. It provides better sensitivity but also

brings higher cost and possibility of saturation or magnetic hysteresis. (Samimi et al.,

2015).

There are also studies on alternative methods based on magnetostriction and mag-

netoresistance. The materials owning these properties experience shape (magnetostric-

tion) or resistance change (magnetoresistance) as a response to magnetic field. Thus,

those changes can be measured and be related to the field intensity. This kind of materials

commonly suffers from hysteresis (Cubells-Beltran et al., 2011) which can be reduced by

magnetically or electrically biasing magneto-resistive element (Vopálenský et al., 2004),

and applying physical pressure on the magneto-strictive material (Satpathi et al., 2005).

Both the methods can measure direct or alternating currents below 1 kA (Cremonezi et al.,

2013; Slatter et al., 2019), but magneto-strictive ones cannot go beyond kHz range (Lopez

et al., 2019; Zhang et al., 2012) while there are reported magneto-resistive-based config-

urations that can sense up to 1 GHz (Slatter et al., 2019). Magneto-resistive elements

are interrogated by an external electrical circuit, while magneto-strictive sensors can be

interrogated by fiber-optic based passive strain sensors (Lopez et al., 2019; Masoudi and

Newson, 2014).

Besides the methods mentioned above, there are optical current sensors that ex-

ploit magneto-optic materials. Their underlying principle is known as Faraday effect

which states that if a magneto-optic material is under magnetic field, it rotates the linear

polarization axes of propagating light in the element by an angle that is proportional to the

magnitude of magnetic field parallel to the light direction. The proportionality factor is

described by a wavelength dependent constant called "Verdet constant" (Saleh and Teich,

2007). It depends on the magneto-optic characteristic of the material and is desired to

be high for a measurable response to magnetic field. Crystals of terbium gallium garnet

(TGG) are widely preferred Faraday rotators due to their high Verdet constants (Kumari

and Chakraborty, 2018). However, to detect the amount of Faraday rotation correctly,

2



polarization of light must be kept unperturbed until detection, which is difficult if the

transmission medium (e.g., optical fiber) is birefringent. Bulk-glass optical sensors are

less affected by the birefringence since they guide light through free-space (Ning et al.,

1995). Nonetheless, they require stringent conditions to provide critical-angle reflection

at each reflecting surface (Woolsey et al., 1997). Additionally, they cannot be mounted

and maintained as practically as fiber optic-based sensors. With the development of

fiber manufacturing techniques and fiber-compatible components, promising solutions to

overcome the detrimental effects of the fiber birefringence are discovered. Thus, a vast

majority of the published studies on optical current sensors have employed optical fibers

as guiding medium for the last decade.

Optical fiber itself is a magneto-optic material, so it can be used as the sensing

element besides the transmission purpose, enabling "all-fiber" configurations. Although

its main constituent, fused silica has a relatively low Verdet constant, it can be coiled

around the current carrying conductor so that the light experiences Faraday effect for

much longer distances. Alternatively, doping the fiber with rare earth atoms such as

terbium and europium enhances Verdet constant, however, for many configurations, the

trade-off between the sensitivity and the maximum measurable current must be considered

such that the maximum Faraday rotation must be small (less than 2π) to maintain linearity

(Huang et al., 2015, 2016).

Figure 1.1. Basic polarimetric FOCS configuration

3



Fiber optic current sensors (FOCS) detect Faraday rotation angle via polarimetric

or interferometric interrogation (Donati et al., 1988). Basic polarimetric FOCS setup is

composed of a polarizer and an analyzer (polarizer behind the detector) besides the light

source, detector, and optical fiber as seen in the Figure 1.1 (Papp and Harms, 1980).

Linearly polarized input light goes under a Faraday rotation when passing through the

sensing fiber coil. Then, it passes through the analyzer which yields a sinusoidal optical

power at the output. However, polarization-independent power fluctuations of incoming

light due to losses or source itself would corrupt the resulting rotation angle. Thus, it is

better to use relative amplitudes of the polarization components. That can be achieved

by employing two or more analyzers with known relative orientations following a beam

splitter as shown in Figure 1.2. Note that, as the system complexity increases, hardware

imperfections due to imprecisely aligned polarizers (analyzers), unequal splitter ratio,

etc. can cause deviations from ideal sensor response. A straightforward post-processing

algorithm is presented in (White et al., 2010) to reduce such deviations. Another source

of error in FOCS is linear birefringence that can be present in both the transmitting

and sensing optical fibers. As a solution, Faraday mirror which reflects light with a

90◦ orthogonal polarization relative to the input SOP, is placed at the end of sensing

coil, so in the return path of reflected light, the amount of rotation is doubled thanks

to the non-reciprocal nature of Faraday effect while the influence of linear birefringence

reduces. Even though, this method provides an improvement, it cannot totally compensate

the effect of the birefringence in the presence of magnetic field (Gao and Zhao, 2019; Jiao

et al., 2006; Alasia and Thévenaz, 2004; Karabulut et al., 2019; Leysen et al., 2019).

Faraday rotation occurs due to magnetic field-induced circular birefringence of

the sensing element. Thus, when left circularly polarized (LCP) and right circularly

polarized (RCP) waves are sent through fiber simultaneously, they experience different

refractive indices. Consequently, it causes a phase difference proportional to the Faraday

rotation angle which can be detected through interferometric FOCS. In interferometric

approach, linear birefringence is compensated by using either twisted or spun fiber for

sensing coil (see Section 2.2 for details). Kersey and Jackson (Kersey and Jackson,

1986) proposed frequency modulated heterodyne detection with Michelson interferom-

eter. Despite the technology of that time which did not allow an effective compensation

of phase noise, the measured noise was found to be 3 mA/√Hz, providing a sensing
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range up to 100 A. Two years later, Nicati and Robert (Nicati and Robert, 1988) proposed

Sagnac-interferometer with additional intensity measurement before the interference to

solve the stability problem due to fiber birefringence and variations in the intensity of

the injected signal. In 1994, Frosio and Dandliker in cooperation with ABB (Frosio and

Dändliker, 1994) proposed "reciprocal reflection interferometer" with the combination

of high birefringent (hi-bi) fiber, sensing coil (twisted or spun fiber), a quarter-wave plate

(QWP), all-fiber piezoelectric birefringent phase modulator, and a mirror as seen in Figure

1.3. In the same year, almost same configuration was developed independently at Texas

A&M University (Blake et al., 1994). Both configurations employed a low-coherence

source providing good signal stability despite the non-ideal retarders and varying tem-

perature. In the following years Bohnert, et al. in corporation with ABB (Bohnert et al.,

2002) improved the reciprocal reflection interferometer so that obtaining high immunity to

vibrations with frequencies up to 500 Hz and 10g of acceleration as well as to temperature

variation between -40 to 80 degrees. The sensor also offered measurements up to 500 kA

with a percentage error less than 0.1% (Bohnert et al., 2007).

Figure 1.2. Modified polarimetric FOCS, also known as dual-quadrature scheme: It
employs two analyzers and two detectors. Faraday rotation would be
proportional to the difference-sum ratio of detected intensities, which is
independent of initial power of light source.

5



In addition to the approaches referred above, there are studies on magneto-optic

properties of fiber-Bragg grating (FBG) for magnetic field sensing purpose (Wu et al.,

2013; Caucheteur et al., 2017; Peng et al., 2012; Orr and Niewczas, 2011; Caucheteur

et al., 2006). Yet, except the systems combined with magnetic fluids (Zheng et al., 2013;

Zhang et al., 2016), the number of experiments in this approach is insufficient and they

have relatively poor resolution compared with the sensing range.

Figure 1.3. Reciprocal reflection interferometer proposed by (Frosio and Dändliker,
1994)

1.2. Distributed current sensing via backscattering techniques

The configurations mentioned in the previous section allow for detection of total

Faraday rotation. On the other hand, "all-fiber" systems have the advantage of distributed

or quasi-distributed sensing via backscattering techniques. They allow monitoring Fara-

day rotation along the sensing fiber. Distributed sensing technologies exploit Rayleigh,

Brillouin, or Raman scattering. In Brillouin and Raman scattering, there is an interaction

of light waves with large scale acoustic phonons and vibrational/rotational modes of

molecules, respectively, which results in scattered waves with shifted frequencies (Mua-

nenda et al., 2019). On the other hand, Rayleigh scattering is an elastic process caused

by silica molecules. Distributed Optical Fiber Sensors (DOFS) detect the back-guided
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portion of the scattered signal, referred to as "backscatter", as a function of time or

frequency. The backscattered signal carries information about power loss, refractive

index variation or optical path length change occurred somewhere along the path of the

backscattered signal, by means of its certain properties such as intensity, polarization,

phase, and frequency as shown in Figure 1.4.

Figure 1.4. Reflectometric-based interrogation techniques: Optical Time Domain
Reflectometry (OTDR), Phase-Sensitive OTDR (ϕ-OTDR), Polarization-
Sensitive OTDR (POTDR), Brillouin Optical Time Domain Analysis
(BOTDA), Brillouin OTDR (BOTDR) and Raman OTDR (ROTDR).

Besides the environmental sensing applications, backscattering techniques are also

employed for fiber characterization including the determination of polarization mode

dispersion, attenuation, etc. Wuilpart, et al. (Wuilpart et al., 2000) proposed Polarization-

Sensitive Optical Time Domain Reflectometry (POTDR) for distributed measurement of

fiber birefringence and noted the potential application of this technique for magnetic field

sensing. In the last decade, the mathematical model for POTDR-based ultra-high current

sensing (up to orders of mega-amperes) was established and the feasibility of using it

for International Thermonuclear Experimental Reactor (ITER) fusion reactor was studied

(Wuilpart et al., 2011; Aerssens et al., 2012; Motuz et al., 2019). The performance of the

technique was experimentally validated on the Tore Supra fusion reactor (Wuilpart et al.,

2017, 2018).
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Distributed current sensing by POTDR does not rely on small angle approximation

as in the most polarimetric and interferometric configurations. It permits monitoring how

much rotation accumulates gradually as a function of distance z. Thus, total Faraday

rotation can even be greater than 2π provided that the spatial resolution is high enough.

Therefore, it is a promising approach for high-current measurements as an alternative to

Rogowski coil (Aerssens et al., 2012).

As a summary, physical principles are given together in the Figure 1.5.

Figure 1.5. Physical principles of current sensors

1.3. Motivation of this Thesis

Recently, distributed sensing based on Phase-Sensitive OTDR (ϕ-OTDR) has be-

come a trending research area as well as a commercialized technique. It is mostly used for

monitoring acoustic signals that causes a strain change on the optical fiber. Nonetheless,

it is not limited to strain sensing since any perturbation that induces a variation in the

refractive index or in the optical path length causes phase change in the backscattered

signal. For example, in 2015, ϕ-OTDR was proposed for distributed birefringence mea-

surement, but the proposed system was not capable of discriminating linear and circular

birefringence (Soto et al., 2015). In 2021, ϕ-OTDR with pulse compression was presented

for linear birefringence measurement (Chen et al., 2021).

Current measurement based on Faraday effect is nothing but circular birefringence

measurement in a dynamic manner, so ϕ-OTDR can be a promising candidate for dis-

tributed current sensing when designed with proper optical polarization components. It

would have all the advantages that a FOCS has such as light-weight, small size, and

robustness. Besides, it can provide distributed sensing so that multiple current carrying
8



conductors can be monitored by a single fiber line at the same time.

The aim of this Thesis is to evaluate the feasibility of ϕ-OTDR-based current

sensing via simulations on MATLAB. The Thesis is organized as follows: Chapter 2

covers the fundamentals of polarization in optical fiber, fiber Bragg gratings, and the

working principles of POTDR and ϕ-OTDR techniques. In Chapter 3, development of

the ϕ-OTDR simulator tool based on modular programming is described in detail. In

Chapter 4, obtained results from the simulator are presented and discussed. Lastly, in

Chapter 5, the work in the Thesis is summed up and projections are stated.
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CHAPTER 2

THEORETICAL BACKGROUND

This chapter explains the basics of polarization in optical fibers, fiber Bragg grat-

ing (FBG) sensors, and principles of optical time-domain reflectometry techniques to

provide an adequate technical background required to follow the work presented in this

Thesis.

2.1. Mathematical Description of Polarization

A monochromatic light wave traveling in an optical fiber can be described by its

associated electric field vector perpendicular to the propagation direction (in a homoge-

neous medium and under the weakly guiding approximation (Saleh and Teich, 1991)). If

the wave propagates along the z direction of a Cartesian coordinate system, the electric

field lies on the x-y plane (polarization plane). In general, it is described by

~E (t, z) = R
{

[Exx̂ + Eyŷ] exp
[
j2πf

(
t− z

c

)]}
(2.1)

where Ex and Ey are complex amplitudes, f is the optical frequency, c is speed of light

in vacuum and x̂ and ŷ are unit vectors along x and y directions. As time t starts from an

arbitrary point t0, and increases until t = t0 + 1/f , tip of the vector ~E (t) draws either a

line, an ellipse, or a circle on the polarization plane as seen in Figure 2.1. Then, state of

polarization (SOP) of the light wave is said to be either ’linear’, ’elliptical’ or ’circular’,

accordingly.Then, state of polarization (SOP) of the light wave is said to be either ‘linear’,

‘elliptical’ or ‘circular’, accordingly.

Since both the x and y components have common complex exponential time-

dependent term, Ex and Ey are sufficient to describe a SOP. Thus, omitting the complex

exponential, Equation 2.1 can be written in a 2-dimensional vector form:
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Figure 2.1. Polarization states: Arrows denote the sense of rotation

~E =

Ex
Ey

 (2.2)

which is known as Jones vector. Here, relative phases and amplitudes of Ex andEy define

a unique SOP. Therefore, Jones vector can be normalized by the total power |Ex|2 +

|Ey|2. For further simplicity, normalized Jones vector also can be scaled by the phase of

x component arg {Ex} such that:

Ex
Ey


(
|Ex|2 + |Ey|2

)
exp [j arg {Ex}]

=

 ax

ay∠∆φ

 (2.3)

where ax = |Ex|
|Ex|2+|Ey |2

, ay = |Ey |
|Ex|2+|Ey |2

and ∆ϕ = arg {Ey} − arg {Ex}.

Sign of the phase difference ∆ϕ indicates the sense of rotation for an observer who

looks toward the approaching beam 1. If it is positive (negative), the tip of the electric field

rotates clockwise (counter-clockwise) along the ellipse, which is called right-elliptical

polarization (left-elliptical polarization) and abbreviated as REP (LEP).

Linear and circular SOPs are indeed special cases of elliptical SOP, so the follow-

ing parameters defining a general ellipse are needed to be related to the three terms, ax,

1Physicists define the sense of rotation according to right hand rule, so they assume the observer looks
towards the leaving beam, which is the opposite of the accepted convention by engineers.
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ay and ∆ϕ, in the normalized Jones vector in Equation 2.3:

• the ellipticity e; defined as the ratio of the semi-minor axis (denoted by b) to the

semi-major axis (denoted by a) with a positive or negative sign depending on the

sense of rotation.

• the azimuth θ; defined as the angle between the major axis of the ellipse and the

x-axis.

Two additional parameters α and χ are needed to be defined as follows:

α = tan−1 (ay/ax) (2.4)

tan (χ) = e = ±b/a (2.5)

The parameter χ is defined in the range of [−π
4
, π

4
], so the ellipticity is defined

between -1 and 1. The parameter α relates χ to ∆ϕ by the following equation so that it

can be used to find the ellipticity e by Equation (2.5):

sin (2χ) = sin (2α) sin(∆ϕ) (2.6)

The azimuth θ is related to ∆ϕ via α again, as in the following equation:

tan (2θ) = tan (2α) cos(∆ϕ) (2.7)

The mentioned ellipse parameters are illustrated in 2.2.

Elliptical SOP can converge to linear or circular SOP. In the former case, the

ellipticity approaches zero. This leads the tip of electric field vector to move on a straight

line. It happens when either ∆ϕ is equal to any integer multiples of π or α becomes zero
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by setting one of ax or ay to zero. In the latter one, the ellipticity is 1 or −1 and ∆ϕ is an

odd multiple of π
2
. That forces α to be an odd multiple of π

4
which consequently results

in ax = ±ay. Eventually, the field tip follows a circular path. Such a light is said to be

right-circularly polarized (RCP) or left-circularly polarized (LCP) depending on the sign

of ellipticity.

Figure 2.2. Illustration of a general ellipse and its parameters

In real life, monochromatic light does not exist, in other words, a light wave must

have a non-zero optical bandwidth (linewidth). Thus, overall electric field is a combi-

nation of many fields associated with the corresponding frequencies in the spectrum.

If their directions are totally irregular, intensity of linear polarized components would

be equal in all directions, even if the light is passed through an arbitrary retarder with

an arbitrary azimuth (Prakash and Chandra, 1971). In this case, overall polarization is

unpredictable, and the light is said to be "unpolarized", as in the example of sunlight.

In general, however, polarization is neither completely deterministic nor totally random.

In other words, it is "partially polarized" as in the case of light emitted by a narrow-

band (quasi-monochromatic) laser source (Born and Wolf, 1999). For the optical system

demonstrated in this Thesis, probe pulse is modelled as totally polarized monochromatic

wave since the lasers with almost single frequency (sub-kHz linewidth) are available on

the market.
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2.2. Optical Fiber Polarization Properties

When light enters a single-mode optical fiber, it splits into two orthogonally po-

larized modes (eigenmodes) with propagation constants β1 and β2. Ideally, the constants

are equal so that both the modes experience same refractive index and called degenerate

modes. In practice, however, they slightly differ from each other due to imperfect circular

shape of the fiber core cross section, non-uniform stress distribution on the core and

inhomogeneous dopant concentration. As the orthogonal modes propagate down the fiber,

their phases change differently due to unequal propagation constants. After one meter of

propagation length, their phase difference changes by an amount of β2 − β1, which is

defined as birefringence. The phase difference changes by 2π after a certain propagation

length, called beat length (LB) and defined as:

LB =
2π

β2 − β1

(2.8)

If the eigenmodes are linearly polarized, the fiber is said to exhibit "linear bire-

fringence". In some fibers, polarization eigenmodes would be circularly orthogonal (one

is RCP and the other is LCP) causing circular birefringence, which originates from twist-

induced photo-elastic effect and the Faraday effect that occurs in the presence of a mag-

netic field parallel to the propagation direction. In general, both linear and circular

birefringence, can exist together, leading to elliptical birefringence.

In standard single mode fibers (SSMF), birefringence distribution is not uniform

due to the imperfections coming from the manufacturing process like varying core-shape

and stress distribution along the fiber. Also, the external perturbation like bends, twists,

pressure and change of temperature affect the birefringence distribution in a random

manner. Consequently, eigenmodes alter through the fiber causing energy transfer be-

tween modes, which is called polarization mode coupling (PMC). For how much length

the eigenmodes remain unaltered is represented by coupling length (LC) which varies

between 5 and 500 meters for SSMF.

In polarization applications, fibers are usually expected to maintain input SOP

along the fiber, but PMC prevents it even if the initial SOP is aligned with one of the
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eigenmodes. Thus, Polarization Maintaining Fiber (PMF) is designed to intentionally

introduce permanent high linear birefringence (corresponding to a beat length in the

few millimeters range) so that the effect of externally induced birefringence becomes

comparatively insignificant. Coupling length of PMFs is shown to be in the range of tens

of kilometers.

Applications based on Faraday effect relies on determining the magnetic field

induced circular birefringence. It requires fiber to have capability of holding circular

SOP. However, PMFs can maintain only linear SOP, and they are insensitive to externally

induced birefringence originated not only from random perturbation but also from mag-

netic field. Therefore, low birefringent (low-bi) fibers are more sensitive to Faraday effect.

On the other hand, PMC may constitute a serious limitation in low-bi fibers as mentioned

above. As a solution, a compromise between PMC and sensitivity can be reached through

elliptical birefringent fibers. They rely on rotating the linear polarization axes so that the

linear birefringence oscillates between a small negative and positive value (Laming and

Payne, 1989). The axes can be rotated by twisting a solidified optical fiber. Twisted fibers

have two disadvantages. Firstly, twist rate is restricted by the breakage limit of fiber. As

a rule of thumb, it must not exceed 3 twists per meter, which restricts its effectiveness

for the linear birefringence compensation (Griffioen and Glaesemann, 2017). Secondly,

twists tend to loosen up by time and temperature variation. To avoid these problems, fiber

axes can be rotated during the drawing process of fiber which results in what is called a

"spun fiber". Spin rate can reach hundreds of radians per meter. Besides, it is more stable

in the presence of temperature variation. Also, spinning the fiber before it gets solidified

prevents photo-elastic effect-induced circular birefringence. Therefore, spun fibers are

commonly used for current-sensing applications.

Transfer matrix for a medium that relates the input Jones vector to the output Jones

vector is called Jones matrix. Birefringence properties of a fiber may not be uniform along

its whole length, so it can be considered as a concatenation of uniformly birefringent short

sections. Jones matrix of kth section with a length of z is given as

Jk(z) =

cos ∆k + j sin ∆k

∆k
R{Bk} sin ∆k

∆k
[−Ωk + j I{Bk}]

sin ∆k

∆k
[Ωk + j I{Bk}] cos ∆k − j sin ∆k

∆k
R{Bk}

 (2.9)
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where ∆k =
√

Ω2
k +BkB∗k . Ωk is the effective rotation and Bk is the effective linear

retardance (for details, see Section 3.4.2) (Dandu et al., 2022). Then, the overall transfer

matrix of whole fiber can be found by the multiplication of those Jones matrices, in the

passing order of light through them.

2.3. Poincaré Sphere

Poincaré Sphere is an extremely useful tool to visualize how a SOP evolves along a

birefringent medium. Its principles are related to Stokes formalism which is an alternative

mathematical description of light polarization. On Poincaré Sphere, any SOP can be

represented by a dot as illustrated in Figure 2.3. All the linear SOPs lay on the equator.

V and H points are vertically and horizontally aligned linear polarizations, respectively.

Right and left circular polarization states correspond to the north and south poles denoted

as RC and LC. Elliptical SOPs are in between the poles and the equator.

Figure 2.3. Several SOPs are represented as dots on the Poincaré sphere.

A birefringent medium can be defined by its orthogonal eigenmodes. Since the

orthogonal SOP pairs are antipodal to each other on Poincaré Sphere, a birefringent

medium is represented by an axis called birefringence axis, that is passing through its

eigenmodes which are antipodal points. How an initial SOP changes due to birefringence
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is determined by simply rotating the initial dot along that birefringence axis on the sphere

surface. For example, a SOP that is initially linear (on the equator) remains linear (but

with a different azimuth) if it is exposed to a circular birefringence, since the sphere

rotates around the RC-LC axis. If the birefringence is 2π, sphere would do a full rotation

so that the final SOP will be same with the initial SOP.

2.4. Optical Time Domain Reflectometry (OTDR)

An optical pulse propagating in a single mode fiber continuously experiences

Rayleigh scattering due to refractive index fluctuations along the fiber. Optical Time

Domain Reflectometry (OTDR) is a measurement technique that measures the power

of the back-guided portion of Rayleigh scattering as a function of time. OTDR also

refers to the instrument using this technique. Its principle is illustrated in Figure 2.4.

The modulator converts continuous light sent by the broadband optical source into an

optical pulse with a waveform determined by the signal generator. Circulator guides

the pulse to the fiber under test and the backscattered signal to the receiver. Using the

information of time delay between the sent pulse and the detected signal, power of the

signal backscattered from a particular region of fiber can be identified.

Figure 2.4. OTDR schematic: black arrows represent propagating pulse while red ones
do backscattered signal
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Signal received by the detector at a time instant is indeed the superposition of

many waves backscattered from a section of fiber covered by half of the pulse which

is sometimes referred to as "resolution cell". Its length is called "spatial resolution",

corresponding to the half the pulse length. If there happens to be two events causing a

remarkable power fluctuation in the backscattered signals at two points separated by less

than the spatial resolution on the fiber, they cannot be distinguished from each other.

2.4.1. Phase-Sensitive OTDR (ϕ-OTDR)

Phase of Rayleigh backscattered waves are sensitive to the environmental effects

around the fiber. Therefore, phase measurement based on a similar principle to that of

OTDR, known as Phase-Sensitive OTDR (or ϕ-OTDR), is commonly used for various

sensing purposes such as vibration, strain, and temperature. Its main difference from

conventional OTDR is the narrow linewidth of the optical source so that the coherence

length becomes longer than the pulse width. In conventional OTDR, since the coherence

length is very short, phases of superposed waves are uncorrelated from each other, causing

the overall phase term to vanish at the detector. On the other hand, by virtue of the

coherent interference, ϕ-OTDR keeps phase information of backscattered signals.

ϕ-OTDR operates by shooting pulses into fiber one after another, with a constant

time gap called repetition period, τrep. The repetition period must be long enough to

avoid signals belonging to different pulses to travel in the fiber simultaneously. Power

trace obtained from each shot is a function of position (also called "fast time") indicating

from which part of the fiber the signal with corresponding intensity scattered back. The

traces can be organized along a third dimension in the order of pulse shooting instants,

which consequently creates a new axis called "slow time". The resulting graph as seen in

Figure 2.5 is useful to follow dynamic variations in both fast and slow time.

Jagged appearance of Rayleigh backscattering power trace comes from the ran-

dom phase and amplitude of the scattered signals. Yet, that randomness is peculiar to

the fiber and remains the same under identical conditions of interrogation (no frequency

drift, pulse shape alteration, etc. from trace to trace) and stable environmental conditions

(no change in temperature, strain, etc.). When a section of the fiber is subject to a

perturbation such as strain, it induces a refractive index variation along the perturbed
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region. Thus, light backscattered from anywhere ahead of the perturbed region inevitably

experiences a phase change that is proportional to the total refractive index variation. For

this reason, the main purpose in ϕ-OTDR is to extract the differential phase which is

the difference of phases belonging to the signals backscattered from before and after

the perturbed region. Interferometric ϕ-OTDR systems such as Mach Zehnder (MZ)

supported ϕ-OTDR inherently obtain the differential phase by physically interfering the

backscattered signals coming from consecutive fiber sections. Its details are discussed in

the next section.

Figure 2.5. 3D demonstration of ϕ-OTDR power trace (Hartog, 2017)

2.4.2. Mach Zehnder (MZ) supported ϕ-OTDR

In MZ supported ϕ-OTDR, signals backscattered from two regions which are

denoted in Figure 2.6 as A and B and separated by ∆L, are mixed at the end of the

arms that have a length difference of 2∆L. Assuming the light source to be coherent

enough (coherence length is longer than the arm length difference of MZ), interference

component would be visible in the mixed signal power which is found to be directly

related to the phase difference of the backscattered waves from A and B. To extract the

phase difference, 3 × 3 demodulation scheme is employed since it provides more fading

elimination than direct manipulation on the mixed signal does (Masoudi et al., 2013). For

this reason, MZ interferometer is followed by a 3x3 coupler so that three signals, each
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with a 2π/3 radian phase bias are received by three photodetectors. After that, the phase

is extracted using a trigonometric identity given in Equation (6) of (Masoudi and Newson,

2017b).

Figure 2.6. MZ configuration for detection part of ϕ-OTDR.

One of the most critical parameters in MZ configuration is the length of ∆L. To

achieve the best performance, it must be longer than the perturbed region length P so that

backscatters from sections before and after the perturbation can interfere. On the other

hand, longer ∆L causes the appearance of perturbation in the demodulated phase trace to

expand and occupy a longer region as shown in Figure 2.7.

Figure 2.7. Demodulated phase after MZ interferometer: P is the perturbed region
length, W is the spatial resolution, ϕTOTAL is the total phase change
accumulated all along P , and ∆L is the arm length difference of MZ
interferometer.
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2.4.3. FBG-Assisted ϕ-OTDR

There are several fading mechanisms occurring in ϕ-OTDR that degrades the

performance: modulation instability (MI), polarization, and interference fading (also

known as phase fading). In the scope of this Thesis, the actual limiting factor happens to

be interference fading 2. It arises from destructive interference of Rayleigh backscattered

waves at random points, which leads measured signal power to descend so low that the

phase extraction becomes erroneous.

Proposed solutions in the literature for interference fading consist of modifications

in the interrogator part or in the sensing fiber. The former relies on aggregating multiple

measurements taken by pulses in different frequencies, which increases the sensor com-

plexity and restricts the pulse repetition frequency (Hartog, 2017). The latter one suggests

enhancing backscattered signal power by ultra-weak fiber-Bragg grating (UWFBG) which

is obtained by modifying the refractive index on a small section (∼ 1mm to ∼ 1cm) of

fiber core so that it reflects backwards a portion of a particular wavelength (called Bragg

wavelength) of input light (Zhu et al., 2015). Why they are called "ultra-weak" is due

to their relatively low reflectivity which lays within a range of -50 dB to -20 dB. Yet,

UWFBG reflectivity is still 1 to 5 orders of magnitude more powerful than Rayleigh

backscattering (Tong et al., 2018; Li et al., 2020). The technique that combines ϕ-OTDR

with UWFBGs is called FBG-Assisted ϕ-OTDR. In Figure 2.8, Rayleigh backscattered

signal is seen like an AC noise superposed on the reflected signal from an UWFBG. Note

that the length of UWFBG is assumed to be much shorter than the pulse width so that

the length of the reflected section (between 10th and 12th meters) in the trace is equal to

spatial resolution, W = 2m.

UWFBGs inscribed on the fiber under test, can be interrogated by MZ-supported

ϕ-OTDR. If ∆L is adjusted to be equal to the separation LFBG between a UWFBG pair,

the reflected signals from UWFBGs would interfere and yield a relatively high signal level

at the detectors as illustrated in Figure 2.9.

2MI arises when the input pump peak power is increased too much. In our case, there is no need for high
input power since fiber under test is barely expected to be longer than 1 km. Polarization fading happens in
randomly birefringent fibers where there is no control over SOP of the traveling pulse. In our case, SOP is
always under control since the sensing mechanism is composed of polarization-maintaining components.
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Figure 2.8. FBG-Assisted ϕ-OTDR power trace where UWFBG is at 10th meter.

Figure 2.9. Interference of FBG reflections: If arm length difference is equal to the
distance between UWFBG pairs, reflected signals interfere.
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CHAPTER 3

PROPOSED DESIGN AND MODELLING

As mentioned in Chapter 1, FOCSs use sensing fiber wound around current carry-

ing wire to sense the magnetic field induced by the current according to Ampere’ s Law. It

exploits Faraday effect whose effects on the fiber birefringence were detailed in Chapter

2. In this chapter, FBG-Assisted ϕ-OTDR is proposed to interrogate the current-sensing

fiber. Then, the model is demonstrated by discrete-time mathematical expressions which

are used to develop the simulator tool.

3.1. Design Considerations

ϕ-OTDR is conventionally used to measure polarization-independent differential

phase (phase term that is common for both polarization components) as explained in

Section 2.4.1. In current sensing, however, phase shift of interest ϕ is introduced between

the circular polarization components of probe pulse when the only perturbation source is

magnetic field induced by the current, H . Note that if the sensing fiber is coiled around

the current-carrying wire to constitute a closed loop, the accumulated Faraday phase shift,

ϕ, becomes proportional to the current of interest by Ampere’ s theorem as follows:

ϕ = 2V

∮
H(z)dz = 2V NI (3.1)

where V is the Verdet constant, and N is the number of turns around the current carrying

wire.

Rayleigh backscattered signal will experience Faraday effect twice, which cor-

responds to the multiplication of forward and backward Jones matrices obtained from

Equation 2.9 by substituting Ri = 0, and Ωi = ϕ.
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E0
x

E0
y

 =

cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)

cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)

Ei
x

Ei
y

 (3.2)

E0
x

E0
y

 and

Ei
x

Ei
y

 are Jones vectors of the input and output signal. The input SOP can be

related to the output SOP by:

E0
x

E0
y

 =

Ei
x cos (2ϕ)− Ei

y sin (2ϕ)

Ei
y cos (2ϕ) + Ei

xsin (2ϕ)

 (3.3)

The phase of output electric fields equals to 2ϕ if the input polarization state is

chosen circular i.e., Ei
x = 1, Ei

y = ±j. In other words, probe pulse must be left or right

circularly polarized. Otherwise, there would be a nonlinearity between the applied current

and the phase retrieved by ϕ-OTDR.

For this approach to be valid, linear birefringence must be negligibly small as in

low-bi fiber or spun fiber. Due to the advantages of spun fiber mentioned in the previous

chapter, it is preferred over low-bi fiber in the design.

In conventional application areas of ϕ-OTDR such as pipeline monitoring or in-

trusion detection, true event detection is of first importance, so tolerance range for demod-

ulated phase accuracy is wider than in current measurement applications. Unfortunately,

the problem of fading causes ϕ-OTDR to have percentage error up to 10% which is not

acceptable for a reliable current measurement. As mentioned in Section 2.4.3, fading

noise can be eliminated by FBG-Assisted ϕ-OTDR. Since total Faraday phase shift can

be obtained by interfering the waves backscattered from before and after the coil, an

UWFBG pair can be inscribed ahead and back of the coil.

Another consideration is the perfection of circularly polarized pulse in practice. In

general, ϕ-OTDR is placed far from the sensing coils to ensure thermal, vibrational, and

electro-magnetic isolation due to optoelectronic components in it. In this case, circularly

polarized pulse may need to be transmitted by a long leading optical fiber which is difficult

to be well isolated from environmental effects. Thus, pulse arriving to the sensing coil

cannot have a perfect circular SOP in practice. On the other hand, thanks to polarization
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maintaining fibers, linear SOP is less deformed during the transmission. Our solution is,

therefore, to polarize the pulse linearly (aligned parallel to the slow (x) axis of PMF) by a

polarizer that is inserted before the first coupler so that it can be transmitted up to where

the current sensing part of the fiber starts. Then, it is converted into the circular SOP by a

quarter-wave plate (QWP) spliced with 45-degree and coupled to spun fiber. The resulting

design schematic is shown in Figure 3.1.

Figure 3.1. Proposed current sensing system

3.2. Jones Analysis of the Proposed Design

Assuming that PMF has a constant linear birefringence δ0 aligned with the input

polarizer (φ=0) and a length of L0, the total retardance becomes R = δ0L0. From

Equation 2.9, its Jones matrix becomes:

JPMF =

ejδ0L0/2 0

0 e−jδ0L0/2

 (3.4)

Jones matrix of QWP that is aligned with 45 degrees can be derived from again

Equation 2.9, regarding it as a fiber section with a retardance of 90 degrees. The resulting

matrix becomes
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JQWP =
1√
2

1 j

j 1

 (3.5)

Assuming the input probe pulse is x-polarized, SOP of the signal arriving to spun

fiber, Vinsp can be obtained as RCP:

Vinsp = JQWP × JPMF ×

1

0

 = A0

1

j

 (3.6)

where A0 = 1√
2
ejδ0L0/2.

Since the spun fiber is ideally circular birefringent, SOP of the back-reflected

signals from first (one before the coil) and second (one after the coil) FBGs would be

maintained circularly polarized. The signal reflected from the second one would be

carrying the Faraday phase shift ϕ. When they arrive at the intersection of spun fiber

and QWP, their Jones vector expressions would be

Voutsp1 = A1 ·

1

j

 (3.7)

Voutsp2 = A2 ·

1

j

 ej2ϕ (3.8)

where A1 and A2 are complex constants related to A0, FBG parameters and transmission

parameters of spun fiber. After passing through QWP in the backward direction, the

SOPs will be linear, so PMF will transmit them to 3× 3 coupler almost without any SOP

deformation. Jones vector of the signals that arrive at 3× 3 coupler can be given by

Vback1 = JQWP × Vback1 = Â1

0

1

 (3.9)
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Vback2 = JQWP × Vback2 = Â2

0

1

 ej2ϕ (3.10)

where Â1 and Â2 are complex constants related to A1, A2, transmission parameter of

QWP, couplers and the PMF. After the interference at 3 × 3 coupler, phase difference

between Vback1 and Vback2, appears in the amplitude of the detector outputs along with the

2π/3 rad phase offsets such as:

P1 = K +M cos (α + 2ϕ)

P2 = K +M cos

(
α + 2ϕ− 2π

3

)
P3 = K +M cos

(
α + 2ϕ+

2π

3

) (3.11)

where α = ∠Â2 −∠Â1. Note that the only pulse to pulse varying parameter in the phase

difference is ϕ. Thus, α can be measured when the current is off.

After removing the DC termK = P1+P2+P3

3
, phase can be extracted using trigono-

metric identities as follows:

ϕext =
1

2

[
arctan

(
P2 − P3√

3P1

)
− α

]
(3.12)

Finally, ϕext is multiplied by a scale factor 1
2V N

according to Equation 3.1 to get

the current of interest.

3.3. Sensor Calibration

The sensing principle described in the previous section ignores the linear bire-

fringence. However, spun fibers available on the market are manufactured from high-

birefringent preforms to minimize the externally induced linear birefringence due to pack-

aging, bending, etc. Therefore, the scale factor becomes a function of the applied current,
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which results in a nonlinear relation between ϕext and I . In order to suppress this nonlin-

earity error, we propose a calibration process that takes place by interrogating at least one

known current with ϕ-OTDR to obtain a scale factor K(I0) as the ratio of the calibration

current I0 to the resulting phase ϕ(I0):

K(I0) =
I0

ϕ (I0)
(3.13)

Let Ix to be the current to be measured, so the demodulated phase is ϕ(Ix). When

K(I0) is used to convert the demodulated phase ϕ(Ix) to the current i.e., K(I0)ϕ(Ix),

the error; defined as the normalized difference between measured to the applied current

would become:

ε =
Ix −K(I0)ϕ(Ix)

Ix
(3.14)

Substituting Ix with K(Ix)ϕ(Ix), the error is found out to be the error between the

scale factors i.e.:

ε =
K(Ix)−K(I0)ϕ(Ix)

K(Ix)
(3.15)

This error can be reduced by calibrating with as many current amplitudes as

possible. Thanks to the fast response of ϕ-OTDR, sweeping the current from minimum

to maximum value in the sensing range allows a quick (less than a second) and precise

(around 1 A sampling rate) calibration in a wide range (0-100s of kA), if the source is

capable of a linear sweeping in a controllable manner. If such a source is not available, an

alternative method is to determine the scale factors for only a few currents and approxi-

mate the scale factor as a linear function of the applied current.

3.4. Simulator Tool Development

There are a few studies on the development of mathematical model for ϕ-OTDR,

in the literature (Liokumovich et al., 2015; Masoudi and Newson, 2017a; Wojcik, 2006;
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Kocal, 2021; Brown, 2017), but none of them explicitly demonstrates how to include the

polarization effects. In this section, first, one-dimensional impulse response model for

ϕ-OTDR is presented. Then, the polarization effects are taken into account and lastly,

FBGs are included.

3.4.1. Backscattering Model without Polarization Effects

ϕ-OTDR model without polarization effects is implemented mostly based on the

approach demonstrated in (Liokumovich et al., 2015). According to this approach, fiber

is considered in one dimension and divided into subparts, so called "scattering interval",

with equal length of D. A vast number of microscale Rayleigh scatterers lying inside

each interval are represented by a single milli-scale scattering center which has a random

amplitude ak with Rayleigh distribution and a random position zk with uniform distri-

bution between the boundary positions of its scattering interval as shown in Figure 3.2.

For the model to be valid, D must be much smaller than the spatial resolution so that the

statistical properties of Rayleigh backscattering still hold (Masoudi and Newson, 2017a).

Figure 3.2. Pulse and fiber models. Pulse is assumed to be moving rightward.

Assuming the variation of attenuation due to the random position of scattering

centers in each interval is negligible, the fiber model can be represented in discrete domain
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as follows:

Fib[k] =
N∑
i=1

ai exp {2jβzi}δ [k − i] (3.16)

where k is the discrete index, N is the number of scattering centers, β is the

propagation constant and δ[x] is the discrete Dirac delta function that equals to 1 or 0 if x

is zero or non-zero, respectively. Distribution of ai obeys Rayleigh with a mean of µa:

µa =

√
πBRD

4
(3.17)

where BR is the Rayleigh backscattering coefficient, equal to 3.2× 10−8m−1 for a single

mode fiber at 1550 nm (Beller, 1998).

Pulse is modelled by m spatial electric field elements so that the resolution cell

coversm scattering centers at once, as illustrated in Figure 3.2. The elements are complex

numbers with an amplitude E[k] decided by the peak power and the shape (waveform).

Their phase is assigned by assuming that the coherence length of the pulse is much higher

than the pulse width (phase information of each element remains perfectly correlated).

Noting that the physical distance between adjacent elements of pulse is 2D rather than D

(due to round-trip time), resulting model can be expressed in discrete form as follows:

Pulse[k] =
m∑
i=1

E [i] exp {−2jβiD}δ[k − i] (3.18)

Note that the first index of pulse (Pulse[1]) enters the fiber first. Therefore, the backscat-

tered electric fieldEF [k] can be found by the discrete convolution of Fib[k] and Pulse[k]:

EF [k] = Fib[k] ∗ Pulse[k] (3.19)

which can be expressed in open form as:
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EF [k] =
N∑

u=m

m∑
i=1

au−i+1E [i] exp {2jβzu−i+1 + 2jβiD}δ [k − u] (3.20)

For simplicity, backscattering occurred before the pulse entirely entered the fiber

is ignored, so u starts from m.

Then, the backscattered signal intensity can be calculated as:

I [k] = |EF [k]|2 exp{−2αkD} (3.21)

where α is the attenuation constant1. If electric field amplitude |EF | is assigned as the

square root of the input pulse power, the intensity calculated in Equation 3.21 corresponds

to power.

3.4.2. Jones Matrix of Optical Fiber

A common approach for modelling a fiber is to consider it as "a series of fiber

elements" each with uniform polarization properties and equal length. Each element

can be modelled by Jones matrix in Equation 2.9. Retardance Bk and rotation Ωk must

be related to the physical parameters of the kth element such as its length (`), intrinsic

birefringence (δk), spin rate (ξk) and Faraday phase shift per unit length (θk = dϕ
dz
|z=k`).

If the only linear birefringence is intrinsic, the effective retardance is expressed by:

Bk =
Rk

2
ej2φk (3.22)

where φk is the azimuthal angle of intrinsic birefringence. Rk, Ωk and φk are defined as

(Barlow et al., 1981):

1Attenuation is usually included in Equation 3.16, but implicitly assuming that the attenuation does not
change significantly along the resolution cell, it can be added while calculating intensity.
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Rk = 2 arcsin

 δk

2

√
δ2k
4

+ (ξk − θk)2
sin

(
`

√
δ2
k

4
+ (ξk − θk)2

) (3.23)

Ωk = ξk`+ arctan

 θk − ξk√
δ2k
4

+ (ξk − θk)2
tan

(
`

√
δ2
k

4
+ (ξk − θk)2

) (3.24)

φk =
(2k − 1) ξk`− Ωk

2
+ q0 (3.25)

where q0 is the azimuth at the beginning of the fiber.

Assuming the operation wavelength is 1550 nm, bending the fiber with a radius

of r induces an external linear birefringence bBk that is 2.162× 10−3/r2. Another external

linear birefringence source is FBG, since during its inscription, one side of the fiber is

exposed to UV light more than the other side. Consequently, it brings an FBG-induced

birefringence bFk that is generally between 40.54− 405.4 rad/m. They can be included in

the Jones matrix by updating the effective retardance as:

Bk =
Rk

2
ej2φk +

bBk `

2
ej2q

B
k +

bFk `

2
ej2q

F
k (3.26)

where qBk and qFk are the azimuthal angles of bending- and FBG-induced birefringence,

respectively.

The scope of this thesis does not include the effect of fiber twists on the results.

Also, in general, twist can be avoided more easily Therefore, it is not included in the

model, but its expression can be found in (Dandu et al., 2022).

For backward Jones matrix, sign of ξ is reversed, so forward and backward Jones

matrices of unspun and untwisted fibers are the same. Yet, we will denote the forward

and backward Jones matrices of kth section with
−→
Jk(`) and

←−
Jk(`) for clarity.
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3.4.3. Revised Backscattering Model with Polarization Effects

For PMF, scattering intervals with length D in the backscattering model can be

assumed to have uniform polarization characteristic. Thus, we can choose the element

length as ` = D. Then the Jones matrix of kth scattering interval can be denoted as
−→
Jk(D)

and
←−
Jk(D) for forward and backward directions. Light with Jones vector Vi arriving at the

scattering center with position zk in the kth element experiences first k − 1 consecutive

intervals and a partial section of kth interval with a length of zk − (k − 1)D. Eventually,

its resulting state of polarization becomes
−→
Jk (zk − (k − 1)D)×

−−→
Jk−1 (D)× . . .

−→
J2 (D)×

−→
J1 (D)Vi. Therefore, the transfer matrix for the forward propagation up to kth interval

can be defined as an array of 2× 2 matrices as follows:

−→
T [k] =

N∑
u=1

−→
Ju (zu − (u− 1)D)×

−−→
Ju−1 (D)× . . .

−→
J1 (D) δ [k − u] (3.27)

Similarly, a transfer matrix for the reverse direction can be written as:

←−
T [k] =

N∑
u=1

←−
J1(D)×

←−
J2(D)× . . .

←−
Ju(zu − (u− 1)D)δ[k − u] (3.28)

Eventually, overall transfer matrix T [k] can be defined as T [k] =
←−
T [k]×

−→
T [k].

Fiber model can be rewritten by including the transfer matrix into Equation 3.16:

Fib[k] =
N∑
i=1

aiT [i] exp {2jβzi}δ [k − i] (3.29)

Pulse with two polarization components can be expressed as a 2-D array with a

size of 2×m:
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Pulse[k]2 =
m∑
i=1

Ex[i]
Ey[i]

 exp {2jβiD}δ[k − i] (3.30)

Then, the resulting electric field can be obtained by a similar operation described

in the first part. In this case, however, the convolving points will be corresponding to a

2× 2 matrix and a 2× 1 vector.

EF [k] =
N∑

u=m

m∑
i=1

Fib [u− i+ 1]× Pulse [i]δ [k − u] =

EFx[k]

EFy[k]

 (3.31)

If there is not a polarization splitting before the detection, the intensity becomes:

I [k] = |EFx [k] + EFy [k]|2 exp {−2αkD} (3.32)

For spun fibers, however, spin pitch, defined as 2π
ξ

, must be much smaller than

`. In our design, scattering interval length and spin pitch are comparable to each other,

so the condition of ` � D must be satisfied. Therefore, the intervals are separated into

micro segments as illustrated in Figure 3.3.b and Jones matrix of each segment is found

from Equation 2.9. The number of micro-segments must be high enough for the model to

converge towards the true Jones matrix of the interval. The optimum number for this study

is decided to be 250, regarding both the computational efficiency and the convergence

rate.

3.4.4. Adding FBG to the Model

Rayleigh backscattering in FBG-inscribed intervals is negligible compared to the

FBG reflection. Thus, the scattering center in an FBG-inscribed interval is canceled and

an FBG reflection center is placed at the end of the interval. Since FBG length is assumed

2Pulse is a 2×m matrix, so Pulse[k] represents its kth column which is a 2× 1 vector.
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to be shorter than an interval length, FBG reflection amplitude is a function of FBG length

(LFBG) rather than the interval length i.e.:

r =
−κ sinh(αLFBG)

σ̂ sinh (αLFBG) + jα cosh(LFBG)
(3.33)

where α =
√
κ2 − σ̂2; κ = π

λ
δn ; σ̂ = δ+ σ; δ = 2πneff

(
1
λ
− 1

λB

)
; σ = 2π

λ
δn;λ

is the wavelength, and δn is the index modulation.

In our proposed sensor setup FBGs are inscribed on spun fiber which is modelled

by micro-segmenting. FBGs cover only few micro segments due to their short length.

Since their positions are deterministic, they are assumed to be at the end of the interval that

they are written on. Thus, FBG-induced birefringence is included in the Jones matrices

of the micro segments covered by them as illustrated in Figure 3.3.c.

Figure 3.3. Scattering interval models for a) PMF, b) spun fiber, c) spun fiber with an
FBG inscribed on the interval in the middle. Yellow dots represent the
scattering centers. Red dot represents FBG reflection center.
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CHAPTER 4

RESULTS AND DISCUSSION

In this chapter, results obtained from the simulation tool are presented and dis-

cussed.

4.1. Tracing the SOP via Poincaré Sphere

Fiber models are verified by drawing the evolving SOP on the Poincaré Sphere

as light travels forward and scatters back. When x-polarized input light is sent through

two spun fibers with the same beat length of 5 m and spin pitches of 2 m and 0.5 m,

its SOP evolves in forward direction as illustrated with pink trace in Figure 4.1. After it

backscatters from 4th meter, its SOP evolves in backward direction drawn in light blue.

Red, orange, and blue dots show the initial, after forward propagation and final SOPs.

The results match up with a previous study on modelling spun fiber (Jovicic, 2020).

Figure 4.1. Change of SOP as light propagates forward and backscatters.
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The design in Section 3.1 consists of PMF, QWP, and spun fiber which are con-

nected successively. Their parameters are given in Table 4.1.

Table 4.1. Fiber parameters

Fibers Length Beat Length Spin Pitch
PMF 10 m 2 mm inf
QWP 5 cm 20 cm inf
Spun Fiber 5 m 1 cm 2.5 mm

When the input is x-polarized, its SOP evolution is simulated as shown in Figure

4.2 with 2.5 mm steps as it propagates forward and guided back by backscattering at the

end of the line.

Figure 4.2. SOP evolution along the proposed fiber line
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Claret red point seen from right indicates the initial horizontally polarized state,

so it is on the H point of Poincaré Sphere. Since PMF maintains the SOP, it does not

move until light arrives at the QWP. As light passes through QWP, its SOP starts to

change as traced by light red points. When it becomes LCP, light is coupled to the

spun fiber, in which it evolves as drawn by light green points. Since the spun fiber has

a comparable linear birefringence with its spin rate, SOP traces the green circle rather

than remaining on LC. Note that the center of the circle marked with a green cross

corresponds to the elliptical birefringence axis of the spun fiber in forward direction. At

the instance of backscattering, SOP is shown with orange point. In backward direction,

SOP evolves along the yellow circle which has a center (indicated with a black cross)

that is symmetrical to the center of the green circle with respect to the intrinsic spun fiber

linear birefringence axis. It is because the forward and backward Jones matrices of spun

fiber differs only by the sign of the effective rotation, assuming no externally induced

birefringence sources are present. The radius of the circles depends on the SOP that light

has when it is coupled to the spun fiber.

The QWP converts the circular-like elliptical SOP coming from the spun fiber into

a linear-like SOP. Since the SOP arrived back the PMF is no longer linearly polarized, it

makes a circle around the vertical birefringence axis. Since the beat length of PMF is

smaller than the simulation step, only 4 points of the circle can be observed as indicated

by blue points in Figure 4.2. Final SOP can be any of the blue points, depending on the

PMF length.

If the intrinsic beat length of the spun fiber is increased to 10 cm, the resulting

SOP evolution is given in Figure 4.3. Final SOP is almost vertically polarized which

provides more accurate and linear sensor response.
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Figure 4.3. SOP evolution along the proposed fiber line

4.2. ϕ-OTDR Simulation Results

In this section, current sensing system via ϕ-OTDR proposed in Section 3.1 is

simulated without FBGs. The design setup is given in Figure 4.4. Fiber parameters are

as in the Table 4.1 except the length of spun fiber that is 20 meters, including the sensing

coil with a radius of 0.1 m and 8 turns. Coil starts at 13th meter and ends at ∼18th meter.

Scattering interval length D is 2.5 mm. Spun fiber is modelled by separating its scattering

intervals to 250 micro-segments as described in the last paragraph of the Section 3.4.3.

Pulse length is 2 m, providing a spatial resolution of 1 m. Imbalanced path length 2∆L is

14 m. Current values during 4 pulse shots are 0, 5, 10 and 15 kA, respectively.

Rayleigh backscattering power trace detected by the three detectors is given in

Figure 4.5.
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Figure 4.4. Sensing setup without FBGs.

Figure 4.5. Rayleigh backscattering power detected by the three detectors.

Backscattered electric field is not calculated as long as pulse is totally in the fiber.

Therefore, first 1 meter (corresponding to the length of resolution cell) of the trace is

filled with zeros. In between 1st and 8th meters, no output comes from the delayed arm of

IMZI, since the imbalanced path length is 14 m. Thus, detectors receive the signal from

non-delayed arm only. Since no interference occurs between the delayed and non-delayed

waves, the interference term M in Equation 3.11 becomes zero and the detected power by

the three detectors are equal in between 1st and 8th meters.
40



The signal arriving at IMZI (before it arrives) is a superposition of many waves

scattered from the different parts of the pulse, which also interfere with each other. This

phenomenon known as "the interference fading" is the reason of the jaggy appearance of

the power trace.

Phase trace given in Figure 4.6 is computed from the detector outputs by Equation

3.12.

Figure 4.6. Demodulated phase trace.

Total Faraday phase shift can be read from the measurement zone, that is between

19th and 21st meters of the demodulated phase trace, as explained in Section 2.4.2. The

reason behind the ripples on the trace is the interference fading. Total Faraday phase

can be obtained by averaging the phase in the measurement zone, which may lessen the

impact of the unwanted fluctuations. The applied and demodulated phases are given in

Table 4.2.

Table 4.2. Comparison of expected and demodulated phase

Current Total Faraday Phase Demodulated Phase Error %
5 kA 0.064 0.0627 2.03
10 kA 0.1280 0.1255 1.95
15 kA 0.1919 0.1882 1.93
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The percentage error is calculated by:

Error% =
ϕTotalFaraday − ϕDemodulated

ϕTotalFaraday
× 100 (4.1)

4.3. FBG-Assisted ϕ-OTDR Simulation Results

In order to mitigate the interference fading noise to increase the accuracy, the

design is updated by including two FBGs before and after the sensing coil. The setup is

illustrated in Figure 4.7. The received power trace is given in Figure 4.8.

The middle peaks in Figure 4.8 correspond to the interference zone that is between

19.5th and 20.5th meters. The dashed rectangle in the trace of 4th shot shows the Rayleigh

backscattering level that is much lower than the reflection level. Also, the intensity

variation along the position axis in the peaks is due to Rayleigh backscattering.

Figure 4.7. Sensing setup when FBGs are included.

The demodulated phase trace is given in Figure 4.9. The FBG interference zone

zoomed-in in the dashed rectangle is free of ripples since the SNR of the received signal

from there is much higher thanks to the FBGs. The phase values in that zone are averaged

to get the total Faraday phase. The comparison of the demodulated and applied phase is

given in Table 4.3.
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Figure 4.8. Backscattered and reflected signal power received by the three detectors.

Figure 4.9. Demodulated phase trace when FBGs are included.

The percentage error fell below 0.5% after FBGs are added. However, these rates

are still too much for electric current applications in general. The remaining error source

is the nonlinearity induced by the intrinsic linear birefringence of spun fiber. Additionally,

there may be external birefringence sources which will be analyzed later.

As explained in Section 3.3, the sensor nonlinearity can be diminished by a cal-

ibration process. Ideally, scale factor as the ratio of applied current to the demodulated
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Table 4.3. Comparison of expected and demodulated phase when FBGs are included

Current Total Faraday Phase Demodulated Phase Error %
5 kA 0.064 0.0639 0.19
10 kA 0.1280 0.1276 0.31
15 kA 0.1919 0.1911 0.43

phase is a function of V and N . However, in hi-bi spun fibers, it is also a function of

applied current as well as the beat length and the spin pitch as shown in Figure 4.10 by

red dots. If the calibration is done with a single current in the middle of the range, it can

be approximated as a constant (like the green dashed horizontal line). However, it can

cause up to 0.5% nonlinearity error between the sensing limits. Calibration with multiple

currents, on the other hand, can provide a more accurate linear approximation. If only

the minimum and maximum currents are used to calibrate, the scale factors between them

can be approximated by a line fitting. Such an approximation, given by blue line, results

in a nonlinearity error up to 0.04%. Regarding the noise and other possible imperfections

during the calibration, it is safer to calibrate with as many currents as possible. Black

line is obtained by calibrating with 5 current values indicated by black crosses, which

suppresses the error below 0.01%.
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Figure 4.10. Linear approximation to the scale factors

4.4. Orientation of FBG and Coil Bending

Scale factor varies with FBG and bending orientation when we include FBG- and

bending-induced linear birefringence. Their effect is examined separately by increasing

current from 4 kA to 16 kA (indicated by different colors).

When FBG angles are swept from 0 to 180 degrees by a step of 9 degrees, the

resulting scale factors are plotted as a surface in Figure 4.11. When bending angle is

swept in the same way, resulting scale factors are plotted in Figure 4.12.

As current changes, scale factor graphs are proportionally moved in vertical direc-

tion while their shape is substantially preserved. Although there is a slight horizontal shift,

rate of change with respect to current (in vertical direction) is almost constant. Therefore,

it can be successfully estimated by calibrating with more than one current value. Then, as

long as the orientations stay static, the orientation angles will have no significance at all.
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Figure 4.11. Effect of FBG orientations on the scale factor

Figure 4.12. Effect of bending orientation on the scale factor
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4.5. Detector Noise Effect

Scale factors, taking into account the noise of the three detectors, are plotted for

currents ranging from 1 kA to 40 kA in Figure 4.13 (blue dots and standard deviation).

The red line indicates the noiseless case which shows a linear behavior. The deviations

were obtained by 20 trials. It shows that the current values near zero are more impacted by

the noise. For currents equal or higher than 1 kA, the deviation falls under 1%. Especially

for a healthy calibration, the minimum calibration current must be large enough for a

better fitting of scale factor.

Figure 4.13. Error bar for the demodulated phase obtained by simulating each trace for
20 times with the detector noise. Red line represents the noiseless case.

Percentage error shown in Figure 4.14, agrees with the standard deviation of the

scale factors in Figure 4.13. For currents smaller than 1 kA, noise heavily spoils the

resulting phase. For currents above 3 kA, error decreases below 1%, and falls below 0.5%

for currents higher than 15 kA.
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Figure 4.14. Percentage error obtained for currents from 200 A to 40 kA. All the
mentioned effects are included.
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CHAPTER 5

CONCLUSION

This study demonstrates that current measurement can be a new application area

to Phase-OTDR technology. However, this area demands high accuracy which is met by

two FBGs and a calibration process. The simulations show that, it can quantify currents

from 1 kA to 40 kA with a percentage error less than approximately 1%.

As a future work, detector-noise-induced poor performance while sensing the

currents below 1 kA may be improved by deep learning methods, e.g., denoising auto-

encoders, recursive neural networks, long short term memory, etc.

Another projection is to multiplex our proposed sensor by interrogating successive

sensing fibers coiled around different currents with multiplexed FBG pairs along a single

fiber line, which can find applications in remote monitoring of different current sources,4

e.g., 3-phase systems in electrical grids or power stations. Also, the design can be

converted to a quasi-distributed system by inscribing an array of FBGs along the sensing

fiber rather than a pair of FBGs at both ends.
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