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Abstract. In this paper, we prove dispersion estimates for the boundary
integral operator associated with the fourth order Schrödinger equation posed

on the half line. Proofs of such estimates for domains with boundaries are rare

and generally require highly technical approaches, as opposed to our simple
treatment which is based on constructing a boundary integral operator of

oscillatory nature via the Fokas method. Our method is uniform and can be
extended to other higher order partial differential equations where the main

equation possibly involves more than one spatial derivatives.
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2 FOURTH ORDER SCHRÖDINGER EQUATION

1. Introduction

A boundary integral operator (BdIntOp) associated with an initial-boundary
value problem (IBVP) is a mapping in the form of an integral formula that takes
functions defined on the boundary of the space-time cylinder to solutions of the
given IBVP, say with zero initial datum and interior source. Regularity analysis of
such operators plays a crucial role in establishing local wellposedness for (nonlin-
ear) IBVPs. A BdIntOp can be written in abstract or explicit form. An abstract
formula is generally based on the semigroup theory. However, in order to place
an IBVP within the context of semigroup theory, one needs to somehow homoge-
nize the given boundary condition so that the domain of the generator becomes a
time independent linear space. This is generally done by first extending the given
boundary input as a solution of a relevant stationary problem and then subtract-
ing it from the original problem. From the regularity point of view, this approach
costs loss of derivatives in wellposedness analysis, and one needs to employ rather
advanced techniques to retrieve desired smoothness properties. On the other hand,
there are methods to obtain explicit formulas for BdIntOps directly without using
an extension-homogenization approach. One of the most effective choices of such
direct methods is the unified transform method (UTM), also known as the Fokas
method, see e.g., [9] and [10]. This method was recently used to construct BdIntOp
for establishing local wellposedness of nonlinear initial boundary value problems,
see for instance [11], [13] and [16]. This method is realised in three main steps: (i)
the construction of a global relation, which is an identity that relates some partic-
ular integral transforms of known and unknown boundary values and the sought
after solution, (ii) the derivation of an integral representation of the solution which
involves the integral transforms of both the known and the unknown boundary val-
ues, (iii) the evaluation of the contribution of the unknown values in the integral
representation, with the utilisation of the global relation. This last step requires (a)
at the level of the global relation, the identification of the invariance maps which
keep spectral inputs of the transforms of boundary values unchanged, and (b) at the
level of the integral representation, a subtle contour deformation based on delicate
complex analytic arguments. The space-time structure of BdIntOps constructed via
the UTM allows one to use the tools of Fourier and harmonic analysis, in particular
the theory of oscillatory integrals, for proving Strichartz type estimates. These
estimates are essential for establishing the low regularity theory in function spaces.

This paper aims to (i) construct a BdIntOp corresponding to the fourth order
Schrödinger equation subject to Dirichlet-Neumann boundary conditions via the
UTM and (ii) prove dispersion estimates (that imply Strichartz type estimates) for
this BdIntOp with respect to boundary data. More precisely, we consider the fol-
lowing partial differential equation (PDE):

yt + Py = 0, (x, t) ∈ R+ × (0, T ), (1.1)

y(x, 0) = 0, (1.2)

Bjy(0, t) = gj(t), (1.3)

where P , Bj , j = 0, 1 are (differential) operators given by P = −i(∂4x + ∂2x),
B0 = γ0 (Dirichlet trace operator), and B1 = γ1 (Neumann trace operator). We
assume for simplicity that gj have compact support in (0, T ) for j = 0, 1. Note
that this in particular implies compatibility at the space time corner point. We will
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write y(t) = Wb[g0, g1](t) for the solution of the above PDE, where Wb denotes the
BdIntOp that we will construct by using the UTM.

A representation formula for solution of an easier problem, where P = −i∂4x
(without the Laplacian) was recently obtained in a recent work of first author [16].
In that work, the BdIntOp was found via the UTM in the form

Wb[g0, g1](x, t) =

∫
∂D+

E(k;x, t)G(k;T )dk, (1.4)

where

D+ :=

{
k ∈ C | arg k ∈

2⋃
`=1

(
(2`− 1)π

4
,
`π

2

)}
,

E = − 1

2π
eikx+ik

4t,

G(k; t) = −2ik(k + ν(k))g̃1(−ik4, t)− 2kν(k)(k + ν(k))g̃0(−ik4, t)
with

ν(k) =

{
ik, arg k ∈ {π4 ,

π
2 };

−ik, arg k ∈ { 3π4 , π},
and

g̃j(k, t) :=

∫ t

0

eksgj(s)ds. (1.5)

There is another study (see [5]) in which a BdIntOp corresponding to the bihar-
monic case P = −i∂4x is constructed. In their paper authors use a Riemann–Liouville
fractional integral. This method is well known and was previously used for the
Korteweg-de Vries (KdV) equation by Colliander and Kenig [6] and later for the
Schrödinger equation by Holmer [14]. To the best of our knowledge Riemann–Liouville
fractional integral method was used for PDEs that involved only a single spatial
derivative term. It is also possible to use the Laplace transform in time to construct
a BdIntOp, a method which was nicely applied both for the Schrödinger equation
[4] and the KdV equation [3] by Bona, et. al. Laplace transform method is an ef-
fective method in general but the technical analysis of solutions gets more difficult
if the order of PDE is high and there are multiple spatial derivative terms. This is
because one has to deal with higher order characteristic equations to be able solve
an infinite family of higher order ODEs, an algebraic difficulty. In addition, invert-
ing the associated Bromwich integral is another challenge for such PDEs because a
subtle singularity analysis must be performed.

An alternative which bypasses issues of the approaches mentioned in the above
paragraph is the Fokas method [1, 16]. It is worth mentioning that even with this
method there are some difficulties for the current problem. The challenge here
is that in this more general setting, where P = −i(∂4x + ∂2x), certain analyticity
issues arise related with the third step of the UTM. Observe that, in the case P =
−i∂4x, the spectral input of boundary terms is w(k) = −ik4. Therefore, there are
nontrivial entire (analytic on C) maps such as k 7→ ∓ik, k 7−→ −k, which keep
the spectral input invariant. Existence of such nice maps play an important role
in the contour deformation and elimination of unknowns from the formula of the
BdIntOp. On the other hand, the spectral input of boundary terms turn out to
be w(k) = −i(k4 − k2) if P = −i(∂4x + ∂2x). It is not clear whether there exists
a map k 7→ ν(k) which satisfies the invariance property w(ν(k)) = w(k), namely
−i(ν4(k)−ν2(k)) = −i(k4−k2) and is also analytic on a union of simply connected
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open sets, each of which contains the region whose boundary is part of the standard
(deformed) contour of integration used in the UTM.

The above technical issue may arise in most higher order PDEs where the main
differential operator is a linear combination of more than one term. An example
is the Korteweg-de Vries (KdV) equation [8]. Another context for observing this
analyticity issue is higher dimensional PDEs which involve mixed derivatives [1].
It can even happen in second order PDEs with a second order time derivative such
as the wave equation [7]. This analyticity issue stems from the use of complex
root functions, which are typically discontinuous, to construct invariance maps.
Recently, [1] recommended rotating the branch cut for the square root function to
a suitable degree and proved that this moves the domain of nonanaliticity of the
invariance maps away from the desired contour of integration, except at a single
branch point which does not affect the relevant analysis. In this work, we follow
a similar approach for constructing the BdIntOp associated with (1.1)-(1.3). In
the last section, we present the BdIntOp for the class of fourth order Schrödinger
operators given in the form P = −i(α∂4x + β∂2x), where 0 6= α ∈ R and β ∈ R.

The main result of the paper is given in Theorem 2.2. In this direction, we utilized
the nice space-time dependence, i.e., oscillatory nature of the BdIntOp (2.16) for
proving the desired dispersion estimates; results on the whole space proved in [2]
were also used.

2. Construction of the boundary integral operator

In this section, we construct the BdIntOp associated with (1.1)-(1.3). To this
end, we will first assume that u is sufficiently smooth in ΩT = R+ × (0, T ) up
to the boundary of ΩT , and also that u decays sufficiently fast as x → ∞. Once
the BdIntOp is constructed, then the smoothness condition can be given up as the
integral will still make sense under much weaker assumptions on data. In particular,
the integral formula will serve as the definition of a weak solution. In order to obtain
a global relation (the first ingredient of the UTM), we introduce the half line Fourier
transform:

ŷ(k, t) ≡
∫ ∞
0

e−ikxy(x, t)dx, Im k ≤ 0. (2.1)

Note that the condition Im k ≤ 0 is essential for the convergence of the above
integral. We also introduce the functions g̃j defined by the formula (1.5) for 0 ≤
j ≤ 2, so called t−transforms of boundary traces, some of which are unknown
such as t−transforms of gj(t) := ∂jxy(0, t), j = 2, 3. Taking the half line Fourier
transform of (1.1)-(1.3) and integrating the resulting ordinary differential equation
in time, we obtain the global relation

ew(k)tŷ(k, t) = −ig̃3(w(k), t) + kg̃2(w(k), t)

− i(1− k2)g̃1(w(k), t) + k(1− k2)g̃0(w(k), t), Im k ≤ 0, (2.2)

with

w(k) = −i(k4 − k2). (2.3)

Taking the inverse Fourier transform, we find that u must satisfy

y(x, t) =

∫ ∞
−∞

E(k;x, t)g̃(w(k), t)dk, x ∈ R+, t > 0, (2.4)
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where

E(k;x, t) = − 1

2π
eikx−w(k)t (2.5)

and g̃ = ig̃3 − kg̃2 + (1 − k2)(ig̃1 − kg̃0). Since only the Dirichlet and Neumann
boundary values are known, the values g̃2 and g̃3 are unknowns in the above formu-
lation. In order to eliminate these unknown boundary terms from (2.4), the first
step is deforming the integral on the real line to a more suitable contour in the
upper half complex plane. To this end, we first define the following regions:

D ≡ {k ∈ C | Re(w(k)) < 0}, D+ = D ∩ C+, D
− = D ∩ C−. (2.6)

Note that in C \D+, the exponential e−w(k)(t−s) is bounded. Therefore, the term
Eg̃ is analytic and decays as k → ∞ for k ∈ C \ D+. Thus, by using Cauchy’s
theorem and Jordan’s lemma, we can rewrite (2.4) in the form

y(x, t) =

∫
∂D+

E(k;x, t)g̃(w(k), t)dk, x ∈ R+, t > 0, (2.7)

where the orientation is so that D+ stays at the left of ∂D+ as the contour is
traversed.

The second step for eliminating unknowns is the use of invariance maps, i.e.,
maps that keep the spectral input w(k) unchanged. By definition, such a map
must satisfy ν4(k)− ν2(k) = k4 − k2, which is equivalent to

(ν(k)− k)(ν(k) + k)(ν2(k) + k2 − 1) = 0.

It follows that one nontrivial invariance map is k 7→ −k. Using this transforma-
tion, we can rewrite the global relation (2.2) as

ew(k)tŷ(−k, t) = −ig̃3(w(k), t)− kg̃2(w(k), t)

− i(1− k2)g̃1(w(k), t)− k(1− k2)g̃0(w(k), t), Im k ≥ 0. (2.8)

Furthermore, changing k by an invariance map ν(k) satisfying

ν2(k) = 1− k2 (2.9)

in (2.8), we can rewrite the global relation in the form

ew(k)tŷ(−ν(k), t) = −ig̃3(w(k), t)− ν(k)g̃2(w(k), t)

− ik2g̃1(w(k), t)− ν(k)k2g̃0(w(k), t), Im ν(k) ≥ 0. (2.10)

Using (2.8) and (2.10), we have

− kg̃2(w(k), t) = −kew(k)t (ŷ(−k, t)− ŷ(−ν(k), t))

ν(k)− k
− ik(ν(k) + k)g̃1(w(k), t)− k2ν(k)g̃0(w(k), t) (2.11)

and

ig̃3(w(k), t) = −ν(k)ŷ(−k, t)− kŷ(−ν(k), t)

ν(k)− k
ew(k)t

− i
(
k2 + ν2(k) + kν(k)

)
g̃1(w(k), t)− kν(k)(k + ν(k))g̃0(w(k), t) (2.12)

provided Im k ≥ 0 and Im ν(k) ≥ 0.
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Now, we can rewrite (2.7) in the form

y(x, t) =

∫
∂D+

E(k;x, t)G(k; t)dk +
1

2π

∫
∂D+

eikxH(k; t)dk, x ∈ R+, t > 0,

(2.13)
where

G(k; t) = −2ik(k + ν(k))g̃1(w(k), t)− 2kν(k)(k + ν(k))g̃0(w(k), t) (2.14)

and

H(k; t) =
ν(k) + k

ν(k)− k
ŷ(−k, t)− 2k

ν(k)− k
ŷ(−ν(k), t).

Observe that H becomes singular at k ∈ C if ν(k) = k. This can only be true
if k = ∓ 1√

2
due to the invariance property (2.9). In either case, this would be

only a removable singularity if we knew ν were analytic. In that case, we could
easily conclude that the second integral in (2.13) is zero. However, there is no map
which both satisfies the invariance property (2.9) and is for instance analytic in the

neighborhood of k = −1 ∈ D+. This can be proven by using arguments similar to
those in the proof of [1, Lemma 4.2]. In order to deal with this analyticity issue, we
introduce a square root function whose branch cut is slightly rotated compared to

the standard square root function. We set
√
z
∗

:= |z| 12 ei
arg z

2 with arg z ∈ [ε, 2π+ ε)
for some fixed and sufficiently small ε > 0, and choose

ν(k) =
√

1− k2
∗
. (2.15)

Then, ν satisfies the invariance property (2.9) and is analytic on D+ \ {−1} (See
Figure 1).

Moreover, Im ν(k) ≥ 0 for all k ∈ D+. The discontinuity point k = −1 can be
taken care of by using the same complex analytic arguments given in [1, Section
4, pg. 13]. In more details, we remove a small half ball Br from D+ around the
branch point k = −1 and show via Cauchy’s theorem and Jordan’s lemma that the
integral around the boundary of D+ \ Br vanishes as H is analytic and bounded
in this region. Moreover, the integral around ∂Br vanishes as r → 0 since H is
bounded on Br (even if it is not analytic). In conclusion, we justify that the second
integral in (2.13) is zero.

Hence, the BdIntOp associated with (1.1)-(1.3) is given by

Wb[g0, g1](x, t) =

∫
∂D+

E(k;x, t)G(k; t)dk, (2.16)

where ν is defined in (2.15), E is defined in (2.5) and G is defined in (2.14). One
can of course replace G(k; t) at the right hand side of (2.16) with G(k;T ) by using
the standard arguments in the Fokas method. Therefore, we have the formula given
in the theorem below:

Theorem 2.1 (Integral representation). Suppose y solves (1.1)-(1.3) in ΩT =
R+× (0, T ), is sufficiently smooth up to the boundary of ΩT and decays sufficiently
fast as x→∞, uniformly in t ∈ [0, T ]. Then, the associated BdIntOp is defined by

Wb[g0, g1](x, t) =

∫
∂D+

E(k;x, t)G(k;T )dk, (2.17)

where E and G are given by (2.5) and (2.14), respectively and ∂D+ is the boundary
of the region D+ defined in (2.6) with orientation that D+ remains at the left of
∂D+ as the boundary is traversed.



FOURTH ORDER SCHRÖDINGER EQUATION 7

Figure 1. Red path denotes the branch cut of ν(k) =
√

1− k2∗

The advantage of the above form with T in (2.17) relative to the formulation in
(2.16) is that differentiation with respect to space and time is very straightforward
since it only affects the exponential term E(k;x, t). This is important for interpo-
lation arguments because an estimate at the base level can then be extended to
higher regularity levels via differentiating in x and applying the base level estimate
again.

The main result concerning the spatial norms associated with the BdIntOp is
below:

Theorem 2.2 (Dispersion estimates). Let Wb be the BdIntOp defined by (2.17).
Then, it satisfies the following estimate

‖Wb[g0, g1]‖Lrx(R+) . t
−( 1

4−
1
2r )

5∑
i=1

‖Ψi‖Lr′ , 0 < t ≤ 1, (2.18)

for r ∈ [2,∞], where Ψi, i = 1, 5 are defined in (3.8), (3.19), (3.38), (3.49), (3.30),
respectively in terms of given Dirichlet-Neumann data (g0, g1).

The dispersion estimates found above imply Lλt L
r
x(R+) type Strichartz estimates

with respect to L2 norm of Ψi, i = 1, 2, 3, 4 for suitable, i.e., biharmonic admissible,
(λ, r), i.e., 1

8 = 1
4r + 1

λ , λ, r ∈ [2,∞]. Observe that the representation formula
is very favorable for differentiating with respect to x and each derivative merely
brings a factor of k into the integrand. Therefore, one can differentiate and obtain
LλtW

s,r
x (R+) type estimates with respect to Hs norms of Ψi at first for integer

s and then by interpolation for fractional s. Finally, it is not difficult to show
by using the Fourier characterization of Sobolev norms that Hs norms of Ψi are

controlled by H
2s+3

8
t (0, T ) and H

2s+1
8

t (0, T ) norms of boundary data g0 and g1,
respectively. See for instance [15] for such arguments in the case of the Schrödinger
equation. Therefore, we have the corollary below whose proof can be done by using
the dispersion estimate in Theorem 2.2 and slightly modifying the arguments given
in [15] for the classical Schrödinger equation.
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Corollary 2.3 (Strichartz estimates). Let s ≥ 0, T ≤ 1, g0 ∈ H
2s+3

8
t , g1 ∈ H

2s+1
8

t

with supp g0, supp g1 ⊂ [0, T ) and (λ, r) be biharmonic admissible and Wb be the
BdIntOp defined by (2.17). Then, Wb[g0, g1] defines an element of C([0, T ];Hs(R+))
that satisfies the following inhomogeneous Strichartz estimate:

|Wb[g0, g1]|Lλt (0,T ;W s,r
x (R+)) . |g0|

H
2s+3

8
t (R)

+ |g1|
H

2s+1
8

t (R)
, (2.19)

where the constant of the inequality depends on s.

Further implications.

• The dispersion estimate and the Strichartz estimate in this paper also hold
in the easier case where the pde only involves the biharmonic operator and
does not involve the Laplacian. Moreover, in the purely biharmonic case
the restriction t ≤ 1 in (2.18) and the condition on T in Corollary 2.3 can
both be removed. This is because the analog of the oscillatory estimate in
Theorem 3.4 does not require the restriction 0 < t ≤ 1 when the oscillatory
term in the integral does not involve the exponent s2 associated with the
Laplacian, see [2].

• The results of Theorem 2.2 and Corollary 2.3 are also useful for treat-
ing the corresponding nonlinear problems. Recently, [12] studied the local
wellposedness for the nonlinear fourth order Schrödinger equation posed on
the half line with inhomogeneous Dirichlet-Neumann boundary conditions.
The authors obtained local wellposedness in the high regularity setting,
namely for s > 1/2. The problem remains open in the low regularity set-
ting 0 ≤ s < 1/2 which is a more difficult problem even for power type
nonlinearities such as u 7→ |u|pu, p > 0. This is because the space Hs(R+)
is no longer a Banach algebra for s > 1/2. The classical tool for treating this
difficulty is using Strichartz estimates. Therefore, the Strichartz estimate
in Corollary (2.3) can be considered as a first step towards establishing lo-
cal wellposedness in the low regularity setting for the associated nonlinear
models. Of course, in addition to the boundary type Strichartz estimates
established here, one also needs to prove time trace estimates in fractional
Sobolev spaces for the homogeneous and nonhomogeneous linear Cauchy
problems to be able to fully treat the nonlinear problem. Proving Strichartz
estimates for the homogeneous and nonhomogeneous Cauchy problems is
not difficult and can be done by modifying the well known arguments for
the classical Schrödinger equation. However, the time trace analysis of
solutions of the nonhomogeneous Cauchy problem is a quite challenging
problem at the low regularity setting. We leave this problem as well as the
full treatment of the nonlinear model as a future work.

• The results of this section extend to more general type of fourth order
differential operators in the form P = −i(α∂4x + β∂2x), where 0 6= α ∈ R
and β ∈ R. We show in the last section that D+ and the correct choice
of a branch cut for the square root function in the definition of invariance
maps change depending on the signs and values of α and β.
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3. Dispersion estimates - Proof of Theorem 2.2

In this section, we prove that dispersion estimates for the fourth order Schrödinger
equation posed on the whole line (see e.g., [2]) can be extended to the case of half
line and in particular one can obtain boundary smoothing properties associated
with BdIntOp (2.16) . To this end, we first observe that the integral on ∂D+ is
equivalent to the sum of integrals over the union of paths given by

γ1(s) = is, ∞ > s ≥ 0, (3.1)

γ2(s) = s, 0 < s < 1√
2
, (3.2)

γ3(s) = s+ i(s2 − 1
2 )

1
2 , 1√

2
≤ s <∞, (3.3)

γ4(s) = −s+ i(s2 − 1
2 )

1
2 , 1√

2
≤ s <∞, (3.4)

γ5(s) = s, −∞ < s ≤ − 1√
2
. (3.5)

We first split the representation formula in five pieces according to the above
paths:

Wb[g0, g1](x, t) =

5∑
`=1

∫
γ`

E(k;x, t)G(k;T )dk =: W `
b [g0, g1](x, t). (3.6)

We will find estimates for each of the terms at the right hand side of (3.6).
For ` = 1, we have

W 1
b [g0, g1](x, t) =

∫
γ1

E(k;x, t)G(k;T )dk

=
i

2π

∫ ∞
0

e−sx+i(s
4+s2)tG(is, T )ds.

(3.7)

Let Ψ1 is defined to be the inverse Fourier transform of Ψ̂1, where

Ψ̂1(s) = G(is, T ) for s ≥ 0 and Ψ̂1(s) = 0 for s < 0. (3.8)

Then,

W 1
b [g0, g1](x, t) =

1

2π

∫ ∞
0

e−sx+i(s
4+s2)t

∫ ∞
−∞

e−isyΨ1(y)dyds. (3.9)

By changing the order of integration, we can represent W 1
b [g0, g1](x, t) as

W 1
b [g0, g1](x, t) =

1

2π

∫ ∞
−∞

[∫ ∞
0

e−sx+i(s
4+s2)t−isyds

]
Ψ1(y)dy

=
1

2π

∫ ∞
−∞

K1(y;x, t)Ψ1(y)dy,

(3.10)

where K1(y;x, t) is called the kernel of W 1
b and given by

K1(y;x, t) =

∫ ∞
0

e−sx+i(s
4+s2)t−isyds =

∫ ∞
0

eiφ(s;y,t)p(s, x)ds (3.11)

with the amplitude function p(s, x) = e−sx and the phase function

φ(s; y, t) = (s4 + s2)t− sy.

We have the following lemma.
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Lemma 3.1. Let

I(s; y, t) ≡
∫ s

0

ei(ξ
4+ξ2)t−iξydξ.

Then,

|I(s; y, t)| ≤ ct−1/4,
where c > 0 is independent of y ∈ R and t, s > 0.

Proof. See Appendix A. �

Remark 3.2. Note that in the above lemma the interval of integration is finite but
the constant of the inequality is independent of the upper limit s which is a crucial
ingredient for the next lemma below. The unbounded case where the interval of
integration is the whole line is given below in Theorem 3.4 and due to Ben-Artzi,
Koch, Saut [2]. The unbounded case is critical in the analysis of W 2

b .

Lemma 3.3. The kernel of W 1
b defined by (3.11) satisfies the following dispersive

estimate:

|K1(y;x, t)| . t−1/4, (3.12)

where x, t ∈ R+ and y ∈ R.

Proof. We first set Φ(s; y, t) ≡ I(s; y, t). Then write the kernel

K1(y;x, t) =

∫ ∞
0

[
d

ds
Φ(s; y, t)

]
p(s, x)ds. (3.13)

Integrating by parts at the RHS of (3.13) and using

lim
s→∞

Φ(s; y, t)p(s;x) = 0

we find

|K1(y;x, t)| ≤
∫ ∞
0

|Φ(s; y, t)|
∣∣∣∣ ddsp(s, x)

∣∣∣∣ ds. (3.14)

By Lemma (3.1), we have |Φ(s; y, t)| . t−1/4. Therefore,

|K1(y;x, t)| ≤ ct−1/4
∫ ∞
0

∣∣∣∣ ddsp(s, x)

∣∣∣∣ ds = ct−1/4
(
x

∫ ∞
0

e−sxds

)
= ct−1/4(1− e−sx) ≤ ct−1/4.

(3.15)

�

The following estimate is deduced from Lemma 3.3:∥∥W 1
b [g0, g1]

∥∥
L∞x (R+)

. t−
1
4 ‖Ψ1‖L1 , t > 0. (3.16)

On the other hand, using (3.7) and the boundedness of Laplace transform, we have∥∥W 1
b [g0, g1]

∥∥2
L2
x(R+)

=
1

(2π)2

∫ ∞
0

∣∣∣∣∫ ∞
0

e−sx+i(s
4+s2)tG(is, T )ds

∣∣∣∣2 dx
.
∫ ∞
0

(∫ ∞
0

e−sx|G(is, T )|ds
)2

dx .
∫ ∞
0

|G(is, T )|2ds

=

∫ ∞
−∞
|Ψ̂1(s)|2ds = ‖Ψ1‖2L2 .

(3.17)
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Interpolating between (3.16) and (3.17), we obtain∥∥W 1
b [g0, g1]

∥∥
Lrx(R+)

. t−(
1
4−

1
2r )‖Ψ1‖Lr′ (3.18)

for r ∈ [2,∞].
Regarding the case ` = 2, we first define Ψ2 to be the inverse Fourier transform

of Ψ̂2, where

Ψ̂2(s) = G(s, T ) for
1√
2
≥ s ≥ 0 and Ψ̂2(s) = 0, otherwise. (3.19)

Now, we can extend our limits of integral to the whole real line:

W 2
b [g0, g1](x, t) = − 1

2π

∫ 1√
2

0

eisx+i(s
4−s2)tΨ̂2(s)ds

= − 1

2π

∫ ∞
−∞

Ψ2(y)

∫ ∞
−∞

eisx+i(s
4−s2)t−isydsdy =:

∫ ∞
−∞

Ψ2(y)K2(y;x, t)dy.

(3.20)

To estimate the kernel we use [2, Theorem 1]:

Theorem 3.4. ([2]) Let t ≤ 1 or |x| ≥ t and consider the oscillatory integral

I(x, t) =

∫
R
eit(s

4−s2)+ixsds. (3.21)

Then,

|I(x, t)| ≤ ct−
1
4

(
1 + |x|

t1/4

)− 1
3
. (3.22)

By using Theorem 3.4, we find the decay estimate for kernel K2(x, y, t):

|K2(x, y, t)| . t− 1
4

(
1 +
|x− y|
t1/4

)−1/3
. (3.23)

Since the term
(

1 + |x−y|
t1/4

)−1/3
≤ 1, we get the desired estimate for the kernel:

|K2(x, y, t)| . t− 1
4 . (3.24)

The above estimate implies∥∥W 2
b [g0, g1]

∥∥
L∞x (R+)

. t−
1
4 ‖Ψ2‖L1 . (3.25)

On the other hand extending (3.20) to x ∈ R, we obtain that

F(W 2
b [g0, g1])(s, t) = −ei(s

4−s2)tΨ̂2(s), (3.26)

which gives ∥∥W 2
b [g0, g1]

∥∥
L2
x(R+)

≤
∥∥W 2

b [g0, g1]
∥∥
L2
x(R)

= ‖Ψ2‖L2 . (3.27)

Interpolating between (3.25) and (3.27), we obtain∥∥W 2
b [g0, g1]

∥∥
Lrx(R+)

. t−(
1
4−

1
2r )‖Ψ2‖Lr′ (3.28)

for r ∈ [2,∞].
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For ` = 5, we have

W 5
b [g0, g1](x, t) =

∫
γ5

E(k;x, t)G(k;T )dk

= − 1

2π

∫ − 1√
2

−∞
eisx+i(s

4−s2)tG(s, T )ds.

(3.29)

We set Ψ5 to be the inverse Fourier transform of Ψ̂5(s), where

Ψ̂5(s) := G(s, T ) for s ≤ − 1√
2

and Ψ̂5(s) = 0 for s > − 1√
2
. (3.30)

So we can rewrite the fifth component of the BdIntOp in the following form:

W 5
b [g0, g1](x, t) = − 1

2π

∫ ∞
−∞

Ψ5(y)

∫ − 1√
2

−∞
eisx+i(s

4−s2)t−isydsdy

=:

∫ ∞
−∞

Ψ5(y)K5(x, y, t)dy.

(3.31)

By similar calculations that we used for W 2
b , we have

|K5(x, y, t)| . t−
1
4 . (3.32)

Using (3.32) in (3.31), we have∥∥W 5
b [g0, g1]

∥∥
L∞x (R+)

. t−
1
4 ‖Ψ5‖L1 . (3.33)

On the other hand extending (3.31) to x ∈ R, we get:

F(W 5
b [g0, g1])(s, t) = −ei(s

4−s2)tΨ̂5(s), (3.34)

which gives ∥∥W 5
b [g0, g1]

∥∥
L2
x(R+)

≤
∥∥W 5

b [g0, g1]
∥∥
L2
x(R)

= ‖Ψ5‖L2 . (3.35)

Interpolating between (3.35) and (3.33), we obtain∥∥W 5
b [g0, g1]

∥∥
Lrx(R+)

. t−(
1
4−

1
2r )‖Ψ5‖Lr′ (3.36)

for r ∈ [2,∞].
For ` = 3, we have

W 3
b [g0, g1](x, t) =

∫
γ3

E(k;x, t)G(k;T )dk

=
1

2π

∫ ∞
1√
2

eisx−(s
2− 1

2 )
1
2 x−i(2s2− 1

2 )
2tG(s+ i(s2 − 1

2 )
1
2 , T )(1 + is

(s2− 1
2 )

1
2

)ds.

(3.37)

Let Ψ3 be defined as the inverse Fourier transform of

Ψ̂3(s) =

 G(s+ i(s2 − 1
2 )

1
2 , T )

(
1 + is

(s2− 1
2 )

1
2

)
, s ≥ 1√

2

0 s < 1√
2
.

(3.38)
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By changing the order of the integration we can rewrite W 3
b in the following form:

W 3
b [g0, g1](x, t) = − 1

2π

∫ ∞
−∞

Ψ3(y)

∫ ∞
1√
2

eisx−(s
2− 1

2 )
1
2 x−i(2s2− 1

2 )
2t−isydsdy

=:

∫ ∞
−∞

K3(y;x, t)Ψ3(y)dy.

(3.39)

where K3(y;x, t) is the kernel of W 3
b . Now, we can show that K3 decays as t−1/4

by using a similar analysis that was given for W 1
b . Indeed, we can write

K3(y;x, t) =

∫ ∞
1√
2

eis(x−y)−i(4s
4−2s2+ 1

4 )t−(s
2− 1

2 )
1
2 xds

=

∫ ∞
1√
2

eiφ3(s;x,y,t)p3(s, x)ds

(3.40)

where φ3(s;x, y, t) = θ(s)t+ s(x− y) with θ(s) = −(4s2 − 2s2 + 1
4 ) and

p3(s, x, t) = e−(s
2− 1

2 )
1
2 x.

Lemma 3.5. Let

I(s;ω, t) ≡
∫ s

1√
2

eiξω−i(4ξ
4−2ξ2+ 1

4 )tdξ.

Then,

|I(s;ω, t)| ≤ ct−1/4,
where c > 0 is independent of ω ∈ R, t > 0, and s > 1/

√
2.

Proof. The proof of the above lemma is similar to the proof of Lemma 3.1, therefore
we only mention a few details here. Let us note that in the above integral we set

φt,ω(ξ) = 4ξ4 − 2ξ2 +
1

4
+ ξ

ω

t
.

Then,

φ
(4)
t,ω(ξ) = 96 ≥ 1, φ

(3)
t,ω(ξ) = 96ξ, φ

(2)
t,ω(ξ) = 48ξ2 − 4, φ

(1)
t,ω(ξ) = 16ξ3 − 4ξ +

ω

t
.

Again, we set δ = t−1/4. We can assume without loss of generality that s >
δ/96 + 1/

√
2 because otherwise the lemma is immediate.

If δ/96 < 1/
√

2, then |φ(3)t,ω(ξ)| ≥ δ for all ξ ∈ [1/
√

2, s]. Also

|φ(2)t,ω(ξ)| ≥ 20 ≥ 10

482
δ2

and Van der Corput arguments apply.

On the other hand, if δ/96 ≥ 1/
√

2, then |φ(3)t,ω(ξ)| < δ for ξ ∈ [1/
√

2, δ/96) and

|φ(3)t,ω(ξ)| ≥ δ for ξ ∈ [δ/96, s]. Also,
√

2δ/48 ≥ 2⇒ 2δ2/482 ≥ 4⇒ −4 ≤ −2δ2/482.

Therefore,

|φ(2)t,ω(ξ)| = 48ξ2 − 4 ≥ δ2/192− 2δ2/482 = 3δ2/48
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for ξ ∈ [δ/96, s]. Hence, we can split the given integral over two regions as

[1/
√

2, δ/96) ∪ [δ/96, s] and finally use Van der Corput arguments in the second
interval. �

Now, we have the following result by combining the above lemma and the be-
havior of exponentially decaying term.

Lemma 3.6. The kernel K3 defined in (3.40) satisfies

|K3(y;x, t)| ≤ ct−1/4, (3.41)

where t > 0, x ∈ R+, and y ∈ R.

Proof. First set Φ(s;ω, t) = I(s;ω, t). Then as in the proof of Lemma 3.3, integrat-
ing by parts and using

lim
s→∞

|Φ(s;ω, t)p3(s;x)| = 0,

we obtain

|K3(y;x, t)| ≤
∫ ∞

1√
2

|Φ(s;ω, t)|
∣∣∣∣ ddsp3(s;x, t)

∣∣∣∣ ds. (3.42)

We change variables by setting m2 = s2 − 1/2, m > 0. Then the result follows by
Lemma 3.5 with ω = x− y and the following uniform estimate∫ ∞

1√
2

∣∣∣∣ ddsp3(s;x, t)

∣∣∣∣ ds =

∫ ∞
0

xe−mxdm < 1, x > 0. (3.43)

�

The above lemma gives∥∥W 3
b [g0, g1]

∥∥
L∞x (R+)

. t−
1
4 ‖Ψ3‖L1 . (3.44)

On the other hand, using (3.39) we have∣∣W 3
b [g0, g1](x, t)

∣∣2
L2
x(R+)

=

=
1

(2π)2

∫ ∞
0

∣∣∣∣∣∣
∫ ∞

1√
2

eisx−(s
2− 1

2 )
1
2 x−i(2s2− 1

2 )
2tG(s+ i(s2 − 1

2 )
1
2 , T )(1 + is

(s2− 1
2 )

1
2

)ds

∣∣∣∣∣∣
2

dx.

.
∫ ∞
0

∫ ∞
1√
2

e−(s
2− 1

2 )
1
2 x|G(s+ i(s2 − 1

2 )
1
2 , T )|

∣∣∣∣ 2s2− 1
2

s2− 1
2

∣∣∣∣
1
2

ds

2

dx

(3.45)

After change of variables and using the boundedness of Laplace transform, we have∣∣W 3
b [g0, g1](x, t)

∣∣2
L2
x(R+)

.
∫ ∞
0

∫ ∞
0

e−mx|G((m2 + 1
2 )

1
2 + im, T )|

∣∣∣∣ (2m2+
1
2 )

(m2)

∣∣∣∣
1
2

dm

2

dx

.
∫ ∞
−∞
|Ψ̂3(s)|2ds = ‖Ψ3‖2L2 .

(3.46)



FOURTH ORDER SCHRÖDINGER EQUATION 15

Interpolating between (3.46) and (3.44), we obtain∥∥W 3
b [g0, g1]

∥∥
Lrx(R+)

. t−(
1
4−

1
2r )‖Ψ3‖Lr′ . (3.47)

for r ∈ [2,∞].
The case ` = 4 is similar to that of W 3

b . We have

W 4
b [g0, g1](x, t) =

∫
γ4

E(k;x, t)G(k;T )dk

= − 1

2π

∫ ∞
1√
2

e−isx−(s
2− 1

2 )
1
2 x−i(2s2− 1

2 )
2tG(−s+ i(s2 − 1

2 )
1
2 , T )(−1 + is

(s2− 1
2 )

1
2

)ds.

(3.48)

Let Ψ4 be the inverse Fourier transform of

Ψ̂4(s) =

 G(−s+ i(s2 − 1
2 )

1
2 , T )

(
− 1 + is

(s2− 1
2 )

1
2

)
, s ≥ 1√

2

0, s < 1√
2
.

(3.49)

Then, W 4
b takes the following form:

W 4
b [g0, g1](x, t) = − 1

2π

∫ ∞
−∞

Ψ4(y)

∫ ∞
1√
2

e−isx−(s
2− 1

2 )
1
2 x−i(2s2− 1

2 )
2t−isydsdy

=:

∫ ∞
−∞

K4(y;x, t)Ψ4(y)dy.

(3.50)

where K4(x, y, t) is the kernel of W 4
b . We can deduce that K4 decays as t−1/4

by arguing as in the case of W 3
b because we can write

K4(y;x, t) =

∫ ∞
1/
√
2

e−is(x+y)−i(4s
2−2s2+ 1

4 )te−(s
2− 1

2 )
1
2 xds

=

∫
1/
√
2

eiφ4(s;x,y,t)p4(s;x)ds

(3.51)

where φ4(s;x, y, t) = θ(s)t− s(x+ y) with θ(s) = −(4s2 − 2s2 + 1
4 ) and

p(s;x) = e−(s
2− 1

2 )
1
2 x.

Therefore, we have

|K4(y;x, t)| ≤ ct−1/4, (3.52)

where t 6= 0, x ∈ R+, and y ∈ R. This implies∥∥W 4
b [g0, g1]

∥∥
L∞x (R+)

. t−
1
4 ‖Ψ4‖L1 . (3.53)

Again, from the boundedness of the Laplace transform we have∥∥W 4
b [g0, g1]

∥∥
L2
x(R+)

. ‖Ψ4‖L2 . (3.54)

Interpolating between (3.54) and (3.53), we obtain∥∥W 4
b [g0, g1]

∥∥
Lrx(R+)

. t−(
1
4−

1
2r )‖Ψ4‖Lr′ . (3.55)

for r ∈ [2,∞].
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4. Towards the general case

In what follows we present a general form of the integral boundary operator
(2.16), namely the BdIntOp for the problem (1.1)-(1.3), with the linear operator P
be defined by the general form

P = −i(α∂4x + β∂2x), β ∈ R, α ∈ R, α 6= 0.

We note that the case α = β = 1 was discussed earlier in this paper and the case
α = 1, β = 0 was analysed in [16].

For the general problem the global relation (2.2) takes the form

ew(k)tŷ(k, t) = −iαg̃3(w(k), t) + αkg̃2(w(k), t)

− i(β − αk2)g̃1(w(k), t) + k(β − αk2)g̃0(w(k), t), Im k ≤ 0, (4.1)

with
w(k) = −i(αk4 − βk2). (4.2)

Furthermore, the integral representation of the solution takes the form (2.4) with
g̃ being defined as

g̃ = iαg̃3 − αkg̃2 + (β − αk2)(ig̃1 − kg̃0).

Following the same arguments as in section 2 we are able to derive the general
boundary integral operator

W g
b [g0, g1](x, t) = α

∫
∂D+

E(k;x, t)G(k; t)dk, (4.3)

where E is defined in (2.5), G is defined in (2.14). Therein w(k) given by (4.2) and
ν(k) is defined follows

ν(k) =

√
β

α
− k2

∗

, (4.4)

where we set
√
z
∗

:= |z| 12 ei
arg z

2 and for some fixed and sufficiently small ε > 0 we
choose:

• arg z ∈ [−π + ε, π + ε), for α > 0, β > 0. Then ν(k) is analytic on

D+ \
{
−
√

β
α

}
(See Figure 2).

Figure 2. Red path denotes the branch cut of ν(k) =
√

β
α − k2

∗

for α > 0, β > 0.
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• arg z ∈ [ε, 2π+ε), for α > 0, β < 0. Then ν(k) is analytic on D+\
{
i
√
−β
α

}
(See Figure 3).

Figure 3. Red path denotes the branch cut of ν(k) =
√

β
α − k2

∗

for α > 0, β < 0.

• arg z ∈ [−π − ε, π − ε), for α < 0, β < 0. Then ν(k) is analytic on

D+ \
{√

β
α

}
(See Figure 4).

Figure 4. Red path denotes the branch cut of ν(k) =
√

β
α − k2

∗

for α < 0, β < 0.

• arg z ∈ [−ε, 2π − ε), for α < 0, β > 0. Then ν(k) is analytic on D+ \{
i
√
−β
α

}
(See Figure 5).

For the case that α = 1 and β = 0 the BdIntOp (4.3) simplifies to (1.4), since
(4.4) takes the form

ν(k) =

{
ik, k ∈ D+

1 =
{
k : arg k ∈

(
π
4 ,

π
2

)}
−ik, k ∈ D+

2 =
{
k : arg k ∈

(
3π
4 , π

)} .
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Figure 5. Red path denotes the branch cut of ν(k) =
√

β
α − k2

∗

for α < 0, β > 0.

Appendix A. Proof of Lemma 3.1

Proof. We can write

I(s; y, t) ≡
∫ s

0

ei(ξ
4+ξ2)t−iξydξ =

∫ s

0

eit(ξ
4+εξ2− ξyt )dξ.

Set φt,y(ξ) ≡ ξ4 + ξ2 − ξy
t . Then, φ

(4)
t,y (ξ) = 24 ≥ 1. We can use the steps of the

proof of Van der Corput lemma and prove that

|I(s; y, t)| . t−1/4, t > 0,

where the constant of the inequality is independent of φt,y, y, t, and s. For com-
pleteness we give the details because we refer to the content of this lemma for other
oscillatory integrals later.

Indeed, we first set δ ≡ t−1/4. Then, we have φ
(3)
t,y (ξ) = 24ξ < δ if ξ ∈ [0, δ/24).

Therefore, we can write

I(s; y, t) =

∫ δ/24

0

ei(ξ
4+ξ2)t−iξydξ +

∫ s

δ/24

ei(ξ
4+ξ2)t−iξydξ ≡ A+B.

Clearly, |A| ≤ δ
24 = t−1/4

24 . We are assuming without loss of generality that s > δ/24,
otherwise the result of the lemma is immediate.

Now, we will estimate B. First observe that φ′′t,y(ξ) = 12ξ2 + 2 ≥ δ2

48 + 2 on
[δ/24, s]. In particular, φ′t,y is monotone on [δ/24, s]. Now, we define mt,y be such
that

|φ′(mt,y)| = inf
ξ∈[δ/24,s]

|φ′t,y(ξ)|.

There is only one such point in [δ/24, s] due to monotonicity of φ′t,y. Note that

φ′t,y(ξ) = 4ξ3 + 2ξ − y
t . Only three cases are possible:
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(i) The first case is mt,y ∈ [δ/24, s] and φ′t,y(mt,y) = 0. If ξ /∈ (mt,y − δ,mt,y +
δ), we have

|φ′t,y(ξ)| =

∣∣∣∣∣
∫ ξ

mt,y

φ′′t,y(ξ)dξ

∣∣∣∣∣ ≥
(
δ2

48
+ 2

)
|ξ −mt,y| ≥

δ3

48
+ 2δ.

We write,

B =

∫ s

δ/24

· =
∫ mt,y−δ

δ/24

·+
∫ mt,y+δ

mt,y−δ
·+
∫ s

mt,y+δ

· ≡
3∑
i=1

Bi.

Clearly, |B2| ≤ 2δ = 2t−1/4. Let us estimate B1. We integrate by parts, use
the monotonicity of φt,y, Fundamental Theorem of Calculus and obtain

|B1| =

∣∣∣∣∣
∫ mt,y−δ

δ/24

eitφt,y(ξ)dξ

∣∣∣∣∣
≤
∣∣∣∣ eitφt,y(ξ)itφ′t,y(ξ)

∣∣∣∣mt,y
δ/24

+

∫ mt,y−δ

δ/24

∣∣∣∣ ddξ
(

1

itφ′t,y(ξ)

)∣∣∣∣ dξ
≤ 2

t

(
δ3

48
+ 2δ

)−1
+

1

t

∣∣∣∣∣
∫ mt,y−δ

δ/24

d

dξ

(
1

φ′t,y(ξ)

)
dξ

∣∣∣∣∣
≤ 4

t

(
δ3

48
+ 2δ

)−1
≤ 192t−1/4.

(A.1)

|B3| is estimated in the same manner and we can find the same bound for
it.

(ii) Consider the case φ′t,y(mt,y) 6= 0 and mt,y = δ/24. In this case, we decom-
pose as

B =

∫ s

δ/24

· =
∫ mt,y+δ

δ/24

·+
∫ s

mt,y+δ

· ≡ C1 + C2,

where |C1| ≤ δ and |C2| ≤ 192t−1/4 by the same arguments in (i).
(iii) Consider the case φ′t,y(mt,y) 6= 0 and mt,y = s. In this case, we decompose

as

B =

∫ s

δ/24

· =
∫ mt,y−δ

δ/24

·+
∫ s

mt,y−δ
· ≡ D1 +D2,

where |D1| ≤ 192t−1/4 and |D2| ≤ δ by the same arguments in (i) and (ii).
By the three cases above, the lemma follows.

�

References
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