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Indirect exchange interaction in two-dimensional materials with quartic dispersion
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We investigate the indirect magnetic exchange interaction between two magnetic moments in a two-
dimensional semiconductor with quartic dispersion, featuring a singularity at the band edge. We obtain the
Green’s functions analytically to calculate the magnetic exchange interaction at zero temperature. We show
that the singularity in the density of states (DOS) for quartic dispersion gives rise to an enhancement in the
amplitude of the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction as the Fermi energy is swept toward the
band edge. Furthermore, a region of finite exchange interaction arises, with a range increasing as the Fermi
energy approaches the band edge. The results lay the possibility of an electrical/chemical control over the
exchange interactions.
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I. INTRODUCTION

Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction is an
indirect exchange interaction between localized magnetic
moments mediated by conduction electrons [1–3]. In a d-
dimensional metallic system with parabolic energy dispersion,
RKKY interaction oscillates at the Fermi wavelength featur-
ing ferromagnetic (FM) and antiferromagnetic (AF) character
as a function of distance and it decays as 1/Rd , for d = 1, 2, 3
[4,5]. In doped graphene the exchange interaction decays as
1/R2 oscillating at the Fermi wavelength between FM/AF
values [6,7]. In neutral two-dimensional monolayer graphene
the RKKY interaction decays as 1/R3, which arises due to
vanishing DOS at the Fermi energy. In neutral graphene,
exchange energy is of pure ferromagnetic (antiferromagnetic)
character depending on whether the impurities are located at
the same (different) sublattice of the hexagonal lattice [8–10].
The difference in chirality of valence and conduction elec-
tronic states and particle-hole symmetry in neutral graphene
leads to a purely AF/FM-type magnetic interaction depending
on the sublattice type of the impurities [8].

The importance of dispersion and the density of states
(DOS) at the Fermi energy for two-dimensional materials was
explored by Klier et al. [10], who reported a change in the
range and AF/FM character of RKKY interactions in biased
bilayer graphene as the Fermi energy is tuned across the band
edge [11]. For graphene monolayers the enhancement of DOS
at the Fermi level via resonances created by external poten-
tials and its influence on RKKY interactions was explored in
Ref. [12].
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It was reported that group VA and group III-VI elements
can form stable two-dimensional monolayer structures, ex-
hibiting quartic dispersion where the quartic dispersion leads
to a van Hove singularity in the DOS at the valence band edge
[13–15]. At the valence band edge these materials feature a
dispersion of the form E = −α(k2 − k2

c )2, where α and kc are
material-dependent constants. Jiang et al. [16] reported ex-
perimental signatures of quartic dispersion in the topological
insulator Sn-doped bulk Bi1.1Sb0.9Te2S.

In this work we are going to study RKKY interactions
at zero temperature for two-dimensional materials featuring
quartic dispersion. We are going to calculate the Green’s
functions and obtain the RKKY interaction using the Green’s
functions. We will study the influence of the singular-
ity in DOS on the strength, character, and amplitude of
RKKY interactions. We will compare our results with the
case of quadratic dispersion, where there is no singularity
in the DOS.

In Sec. II we will give a a summary of the formalism for
calculating exchange interaction from the Green’s functions at
zero temperature. In Sec. II A in particular, the already known
results on two-dimensional electron systems with quadratic
dispersion will be reviewed. In Sec. II B Green’s functions for
quartic dispersion in two dimensions will be presented and
RKKY interaction will be derived and a comparison with the
case of a quadratic dispersion will be presented.

II. CALCULATION OF SUSCEPTIBILITY
AND THE EXCHANGE INTERACTION

The Heisenberg-type contact interaction describing the
interaction between localized moments and the itinerant elec-
tron in a lattice can be written as follows:

V (r) =
∑

α=1,2

λαs · Sαδ(r − Rα ), (1)
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where s is the spin of the itinerant electron and Sα is the
impurity spin at the site Rα . λ1,2 are the coupling constants.
In such a system indirect exchange interactions between the
impurities are mediated by the itinerant electrons and can
be described by an effective Heisenberg-type spin exchange
Hamiltonian

H ′ = J S1 · S2. (2)

Here, J is the effective coupling constant and is related to the
susceptibility function as [9]

J = λ1λ2h̄2

4
χ (r1, r2). (3)

The susceptibility function can be expressed in terms of
Green’s function as

χ (r1, r2) = − 2

π

∫ E f

−∞
dE Im{G(r1, r2; E )G(r2, r1; E )}, (4)

where r1,2 denotes the position of the magnetic impuri-
ties. G(r1, r2; E ) = 〈r1|(E − Ĥ0 + iδ)−1|r2〉 is the retarded
Green’s function, where Ĥ0 is the Hamiltonian for the system
without impurities. For a translationally invariant system, χ

can be written as function of R = r1 − r2 as follows:

χ (R) = − 2

π

∫ E f

−∞
dE Im{G(R, E )2}. (5)

A. RKKY interaction for quadratic dispersion

In this section, we will briefly review the exchange interac-
tion for an electronic system in two dimensions with quadratic
(parabolic) dispersion for comparison purposes [5].

We will consider noninteracting electrons in a two-
dimensional system with low-energy excitations featuring a
quadratic dispersion at the valence band edge, with an ef-
fective Hamiltonian E (k) = −h̄2(k2

x + k2
y )/2m. The retarded

Green’s function for quadratic dispersion is obtained as
follows:

G(R; q′) = − i

4β
H (2)

0 (q′R), (6)

where q′ = √−E/β with β = h̄2/2m (for details see Ap-
pendix Sec. 1). Here, H (2)

0 (q′R) is the Hankel function of the
second kind. Plugging the Green’s function into Eq. (5) gives
the exchange energy

J (R) = −λ1λ2h̄2

16πβ

∫ ∞

k′
F

dq′ q′J0(q′R)N0(q′R)

= λ1λ2h̄2k′2
F

32πβ
[J1(k′

F R)N1(k′
F R) + J0(k′

F R)N0(k′
F R)],

(7)

where Jn(x) and Nn(x) are Bessel functions of the first and
second kind, respectively. Here k′

F = √−EF/β is the Fermi
wave vector. For R � 1/k′

F the exchange energy Eq. (7) shows
the following asymptotic behavior [5,17–19],

J2D(R) � −λ1λ2h̄2

16π
D(EF ) × sin(2k′

F R)

R2
. (8)

FIG. 1. (a) The Mexican-hat-type quartic dispersion, and (b) the
corresponding DOS.

For the case of quadratic dispersion DOS is D(E ) = 1/(2πβ ),
a constant independent of energy. At short distances, 1 �
k′

F R, the exchange interaction takes the form

J (2D) ≈ λ1λ2h̄2

16π
k′2

F D(EF )[−1.2 + 2.0 ln(k′
F R)]. (9)

The exchange energy Eq. (7) is suppressed as EF → 0.
As a side note, RKKY interaction in doped monolayer

graphene, which shows a linear dispersion, oscillates at the
Fermi wavelength, with an additional spatial oscillatory factor
due to intervalley scattering [6,7]. The amplitude of oscil-
lations in doped monolayer graphene is also proportional to
DOS [6].

In general, at dimensions d = 1, 2, 3, at long distances,
k′

F R � 1, the amplitude of exchange coupling is of the form
∼h̄2λ1λ2D(EF )/Rd , oscillating as a function of distance at the
Fermi wave vector 2k′

F [4,19].

B. RKKY interaction for quartic dispersion:
Mexican-hat-type dispersion

Two-dimensional honeycomb structures with second near-
est neighbor interactions may exhibit quartic dispersion at the
band edge at around the � point. This was shown to be the
case for group-VA elements [13]. Motivated by the results in
Ref. [13], we will consider a Mexican-hat-type dispersion of
the form

E = −α
(
k2

x + k2
y − k2

c

)2
(10)

at the � point, with α > 0. The corresponding dispersion
is depicted in Fig. 1(a). In a hexagonal lattice, the system
is bipartite, and the eigenfunctions come with a pseudospin
term which describes the motion of the electrons in different
sublattices. However, at the � point the system is isotropic
and the electrons behave like a scalar field independent of
the sublattice type. The density of states corresponding to the
dispersion relation, Eq. (10), is as follows:

D(E ) =

⎧⎪⎪⎨
⎪⎪⎩

0, E > 0
1

2π
√

αE
, 0 � E � −αk4

c

1
4π

√
αE

, E < −αk4
c

, (11)
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which features a discontinuity at E = −αk4
c and diverges as

∼1/
√

E as E → 0 as shown in Fig. 1(b).
The retarded Green’s function can be written as follows:

G(R; E )= 1

(2π )2

∫
d2k

eik·R

E + α
(
k2

x + k2
y − k2

c

)2 + iδ
. (12)

For E < −αk4
c for a given momentum group, velocity is

always in the opposite direction of the momentum, whereas
for E > −αk4

c there are degenerate states with group veloc-
ity either in the opposite or in the same direction as the
momentum [see Fig. 1(a)]. After evaluating the integral, we
obtain the Green’s function as follows (see Appendix Sec. 2):

G(R; q) =

⎧⎪⎪⎨
⎪⎪⎩

−1

8παq2

{
2K0

(√
q2 − k2

c R
) + iπH (2)

0

(√
q2 + k2

c R
)}

, q2 > k2
c

−i

8αq2

{
H (1)

0

(√−q2 + k2
c R

) + H (2)
0

(√
q2 + k2

c R
)}

, q2 < k2
c

, (13)

where q = (−E/α)1/4. K0(x) is the modified Bessel function of the second kind, and H (1,2)
0 (x) are the Hankel function of first

and second kind, respectively.
We will employ Eq. (3) to determine the exchange energy. For Fermi energy lying in the interval 0 > EF > −αk4

c the
exchange energy is as follows:

J (R) = λ1λ2h̄2

α
[ f1(R) + f2(R)] (14)

f1(R) = − 1

16π

∫ ∞

kc

dq
1

q

(
N0

(√
q2 + k2

c R
) + 2

π
K0

(√
q2 − k2

c R
))

J0
(√

q2 + k2
c R

)
(15)

f2(R) = − 1

16π

∫ kc

qF

dq
1

q

(
N0

(√
k2

c + q2R
) − N0

(√
k2

c − q2R
))(

J0
(√

k2
c + q2R

) + J0
(√

k2
c − q2R

))
, (16)

where qF = (−EF /α)1/4. The exchange energy is a function of kcR and qFR.
For the case when EF < −αk4

c , the exchange energy becomes

J (R) = −λ1λ2h̄2

16πα

∫ ∞

qF

dq
1

q

(
N0

(√
q2 + k2

c R
) + 2

π
K0

(√
q2 − k2

c R
))

J0
(√

q2 + k2
c R

)
. (17)

Here again the exchange energy is a function of kcR and qFR.

At large separation when R � k+
F /q2

F , with the Fermi wave vector given as k±
F =

√
k2

c ± q2
F , the exchange energy can be

approximated as follows:

J (R) � −λ1λ2h̄2

8π
D(EF) ×

⎧⎨
⎩

1
2R2

[
sin(2k+

F R) + sin(2k−
F R) + 4

√
k+

F k−
F

k+
F +k−

F
cos[(k+

F −k−
F )R]

]
, EF > −αk4

c

1
R2 sin(2k+

F R), EF < −αk4
c

(18)

Here, for EF > −αk4
c , there are two types of excitations with

Fermi wave vectors k±
F , which produces four types of second-

order processes around the Fermi level at the long-distance
limit, which are schemetically shown in Fig. 1(a) with the
dashed lines I–IV. For EF < −αk4

c , in the long-distance limit,

excitations with Fermi wave vector k+
F dominate, which leads

to oscillations at the corresponding Fermi wave length shown
in Fig. 1(a) with the dashed line V. The amplitude of RKKY
interaction at the long-distance limit, Eq. (18), is proportional
to the density of states at the Fermi energy.

At short distances 1 � k±
F R, in the limits αk4

c � EF and EF � αk4
c , respectively, the exchange energy becomes

J (R) � λ1λ2h̄2

8π
D(EF)q2

F ×

⎧⎪⎨
⎪⎩

−4.9 + 2.0 q2
F

k2
c

+ k2
c R2

[
2.0 + q2

F
k2

c
(0.12 − 1.0 ln(kcR))

]
, EF � −αk4

c

−2.5 − 2.0 k2
c

q2
F

+ k2
c R2

[
2.4 + 1.6 q2

F
k2

c
−

(
1 + q2

F
k2

c

)
ln(qF R)

]
, EF � −αk4

c .

(19)

Here in Eq. (19), the amplitude of RKKY interactions is a
constant independent of Fermi energy, ∝ D(EF )q2

F ∝ 1/
√

α

[see Eq. (11)].
In Fig. 2, the exchange energy for EF > −αk4

c in Eq. (14)
is numerically computed and shown as a function of kcR.
At short range the RKKY interaction is of ferromagnetic

character and there is an oscillation between ferromagnetic
and antiferromagnetic character as a function of distance. As
the Fermi energy gets closer to the band edge, the amplitude
of the exchange energy is enhanced due to the singularity
at the band edge. In the inset the long-distance behavior is
shown, where a beating behavior can be seen. This behavior is
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FIG. 2. Exchange energy is shown for Fermi energy EF > −αk4
c ,

at values EF/(αk4
c ) = −0.1, −0.01. The inset shows the exchange

energy scaled with R2, where fast and slow oscillations have typical
wavelengths π/kc and 2πkc/q2

F, respectively.

also evident from the long-distance behavior of the exchange
energy in Eq. (18), where for αk4

c � |EF| regime exchange
energy behaves as

J ∝ −1√
EFR2

cos

(
q2

F

kc
R

)
cos2

(
kcR − π

4

)
, (20)

which is the behavior seen in the inset in Fig. 2. In Fig. 3(a) a
comparison of the numerical results computed from Eq. (14)
with the long-distance asymptotic behavior in Eq. (18) is
presented. The exchange interactions oscillate as a function of
distance and exhibit a power law decay ∼1/R2 with an ampli-
tude ∼1/

√
EF at large separation. It can also be seen in Fig. 2

that the RKKY interaction is of ferromagnetic character up to
a distance R ∝ kc/q2

F , where this region increases as EF → 0,
whereas the magnitude of RKKY interactions remains finite
[see Eq. (19)].

In Figs. 3(a) and 3(b) the exchange energy follows the
asymptotic form in Eq. (18), which reduces to the form
Eq. (20) for αk4

c � |EF|, exhibiting a slow oscillation at wave-
length ∼√αk2

c /EF = kc/q2
F modulated by a fast oscillation at

wavelength ∼k−1
c .

FIG. 3. Exchange energy numerically computed from Eq. (17)
and its asymptotic form Eq. (18) are scaled with

√|EF|/αR2 and
shown as a function of distance for Fermi energy values EF/(αk4

c ) =
−0.01, −0.5, −0.99.

FIG. 4. Exchange energy vs distance is graphed for EF < −αk4
c ,

at the values of Fermi energy EF/(αk4
c ) = −1.01, −8. In the inset the

long-distance behavior is shown, where exchange energy is scaled
with R2.

For k+
F � k−

F , i.e., EF → −αk4
c , the exchange energy be-

haves as

J ∝ −1√
EFR2

[
1√

1 + δ2
sin(2k+

F R − δ) + sin(2k−
F R)

]
, (21)

where tan δ = 4
√

k−
F /k+

F . The behavior can be seen in

Fig. 3(c) with fast oscillations at wavelength ∼(k+
F )−1 super-

imposed on slow oscillations at wavelength ∼(k−
F )−1.

In Fig. 4, exchange energy is plotted as a function of
distance for EF < −αk4

c . Again at short distances RKKY
interaction is of ferromagnetic character and oscillates as a
function of distance featuring FM/AF character. The inset in
Fig. 4 shows an agreement with the asymptotic form Eq. (18),
exchange energy J ∝ 1/(R2

√
EF) and oscillating at the wave-

length π/k+
F .

The change in behavior of the exchange energy across
EF = −αk4

c is clearly seen in Eq. (18), which can also be seen
by comparing Fig. 3(c) and the inset in Fig. 4. In general there
is an enhancement in RKKY interaction when the Fermi en-
ergy is above the critical value EF > −αk4

c , due to an increase
in DOS [see Eq. (11)].

FIG. 5. Fourier transform of exchange energy J (q) is shown, in
units of λ1λ2 h̄2/α, as a function of q (in units of kc) at Fermi energies
EF/(αk4

c ) = −0.1, −0.9, −1.1, −8.
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FIG. 6. Exchange energy is shown for pure quartic dispersion
(blue curve) and quadratic dispersion (red curve). In the inset ex-
change energy scaled with R2 is shown in units of λ1λ2 h̄2/(αk2

F )
for pure quartic dispersion (blue curve) and in units of 2mλ1λ2 for
quadratic dispersion (red curve).

In Fig. 5, the Fourier transform of exchange energy, J (q) =∫
d2rJ (r)e−iq·r, is numerically computed and plotted as a

function of wave vector. Figures 5(a) and 5(b) show the behav-
ior of the susceptibility for EF > −αk4

c . For this case, there are
three values of momentum where exchange energy becomes
nonanalytic, q = 2kF± and q = k+

F − k−
F , at which Fermi sur-

face nesting takes place [20]. Figures 5(c) and 5(d) show the
case EF < −αk4

c , where Fermi surface nesting takes place
only at q = 2k+

F . The Fermi nesting momenta correspond to
the wave vectors at which exchange energy oscillates at large
distances as is seen in Eq. (18) [21].

1. RKKY interaction for quartic dispersion:
Pure quartic dispersion

In the case of pure quartic dispersion E = −α(k2
x + k2

y )2

it is sufficient to take the limit kc → 0 for the results of
Mexican-hat-type dispersion with E < −αk4

c in Eq. (17). This
leads to the exchange energy

J (R) = − λ1λ2h̄2

16πα

∫ ∞

qF

dq
1

q

(
N0(qR) + 2

π
K0(qR)

)
J0(qR)

= λ1λ2h̄2

128π
5
2 α

{
−G4,0

1,5

(
1

0, 0, 0, 1
2 , 0

∣∣∣∣k4
F R4

64

)
. . .

+ 4πG3,0
2,4

(
1
2 , 1

0, 0, 0, 0

∣∣∣∣k2
F R2

)}
, (22)

expressed in terms of Meijer G-functions [22]. Here kF =
(−EF/α)1/4 is the Fermi wave vector. The exchange energy
Eq. (22), in the limits kF R � 1 and kF R � 1, respectively,
takes the asymptotic forms

J (R) � λ1λ2h̄2×

⎧⎪⎪⎨
⎪⎪⎩
−D(EF)

sin(2kF R)

8πR2
, kFR�1,

−2.5 + [1.6 − ln(kFR)](kFR)2

32π2α
, kFR�1,

(23)

in agreement with the results in Eqs. (18) and (19) in kc → 0
limit. For the case of pure quartic dispersion DOS is given as
D(E ) = 1/(4π

√
αE ).

Figure 6 shows the exchange energy for pure-quartic and
quadratic dispersion, Eqs. (22) and (7), as a function of dis-
tance kF R. For k−1

F � R, exchange energy attains a constant
value for quartic dispersion independent of Fermi energy,
whereas for quadratic dispersion it exhibits a logarithmic di-
vergence, as seen in Eqs. (23) and (9). In the inset in Fig. 6,
for R � k−1

F , exchange energy oscillates between FM and
AF character at the Fermi wavelength, featuring a power law
decay 1/R2 for both pure quartic and quadratic dispersion,
with an amplitude proportional to DOS at the Fermi energy
D(EF). This amplitude is constant for quadratic dispersion,
whereas it increases as 1/

√
EF with decreasing Fermi energy.

For pure quartic dispersion, RKKY interaction is of fer-
romagnetic character as R → 0, and this region extends to
a distance R ∝ 1/kF , which can be deduced from the short-
distance behavior in Eq. (23). The mean value of exchange
interaction within this region is a constant independent of
Fermi energy,

J̄ = 1

πR2
0

∫ R0

0
J (R)2πRdR

= −λ1λ2h̄2

α
× 0.0023, (24)

with R0 � 1.84/kF corresponding to the first zero of exchange
energy J (R0) = 0. On the other hand, the average exchange
energy Eq. (24) for the quadratic case, Eq. (9), becomes pro-
portional to the Fermi energy J̄ ∝ EF, which is suppressed as
EF → 0.

The Fourier transform of the exchange energy Eq. (22) for
pure quartic dispersion is given as follows:

J (q) =
∫

d2re−iq·rJ (r)

= − λ1λ2h̄2

8πα

{
1

q2
arcsinh

(
q2

2k2
F

)
. . .

+ θ (q − 2kF )
2

q2
ln

(
2kF

q +
√

q2 − 4k2
F

)}
. (25)

Here the nesting takes place at q = 2kF , which corresponds
to the wave vector of oscillations in exchange energy at large
distances [21].

For iron atoms on graphene the RKKY interaction was
obtained in an ab initio approach [23] and with an amplitude
∝ D(EF )/R2 with oscillations at the Fermi wave vector 2kF .
The exchange coupling energy of Fe atoms to carbon atoms
on graphene was at ∼2.2 eV [23]. Typically we may expect
the coupling constants to be on the order of λ1,2 ≈ 1 eV ·
(Unit Cell Area)/h̄2. SnAs features a pure quartic dispersion
with kc = 0, α = 42 eV Å4 [14]. From those we can expect
for SnAs an RKKY coupling amplitude in Eq. (23) to be on
the order of λ2h̄2/(8π2α) ≈ 1 eV/h̄2.

III. CONCLUSION

We investigated RKKY-type exhange interactions for two-
dimensional systems with quartic dispersion near the band
edge. Quartic dispersion features a singularity in DOS at
the band edge and this leads to an enhanced amplitude for
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the exhange interactions at large distances, as the Fermi en-
ergy approaches the band edge. In particular for pure quartic
dispersion, a region of finite magnetic exchange interaction
emerges, with an average value independent of Fermi en-
ergy, up to a distance R ≈ 1/kF . This region increases as
the Fermi energy approaches the band edge. This is in stark
contrast to the case of quadratic dispersion in two dimensions
where the amplitude of RKKY interaction is suppressed ev-
erywhere as the Fermi energy approaches the band edge. The
materials with quartic dispersion potentially enable highly
electrically/chemically tunable exchange interactions in two-
dimensional systems.
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APPENDIX: GREEN’S FUNCTIONS

1. Green’s function for quadratic dispersion

G(r, r′; E ) = 1

(2π )2

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

eik·(r−r′ )

E + β(k2
x + k2

y ) + iδ
,

(A1)

where β = h̄2/(2m).
We can write the expression as a function of R = r − r′. We
can choose R along the x direction without loss of generality
due to the isotropy of the system [24],

G(R; q′) = 1

(2π )2β

∫ ∞

−∞
dkxeikxR

∫ ∞

−∞

dky

k2
x + k2

y − q′2 + iδ︸ ︷︷ ︸
I (kx )

,

(A2)

where q′2 = −E/β. We can carry out ky integration in
Eq. (A2) in the complex plane. There are two cases where
k2

x > q′2 and k2
x < q′2, and the integrand has two simple poles

for each case. For |kx| > q, the poles are ky = ±i
√

k2
x − q′2,

and for |kx| < q′, they are given as ky = ±√
q′2 − k2

x ∓ iδ. By

carrying out the integration in Eq. (A2) in the complex plane,
the integrand I (kx ) can be obtained as follows:

I (kx ) = 2π i

{
θ
(
q′2 − k2

x

)
−2

√
q′2 − k2

x

+ θ
(−q′2 + k2

x

)
2i

√−q′2 + k2
x

}
. (A3)

We can rewrite Eq. (A1) in more compact form as follows:

G(R; q′) = 1

(4π )β

∫ ∞

−∞

eikxR√
k2

x − q′2 dkx, (A4)

which can be evaluated to yield

G(R; q′) = −i

4β
H (2)

0 (q′R). (A5)

Here, H (2)
0 (q′R) is the Hankel function of the second kind.

2. Green’s function for quartic dispersion

The Fourier transform of Green’s function can be factored
as follows:

G(k; E ) = 1

α
(
k2 − k2

c

)2 − αq4 + iδ
, (A6)

= 1

2αq2

(
1

k2 − k2
c − q2 + iδ

− 1

k2 − k2
c + q2 − iδ

)
,

(A7)

where E = −αq4.
In position space the Green’s function for E > −αk4

c be-
comes

G(R; q) = 1

8αq2

(−iH (2)
0

(√
k2

c +q2R
) − iH (1)

0

(√
k2

c − q2R
))

.

(A8)

For E < −αk4
c

G(R; q) = 1

8αq2

(−iH (2)
0

(√
k2

c +q2R
) − iH (1)

0

(
i
√

q2−k2
c R

))
,

(A9)

= 1

8αq2

(
−iH (2)

0

(√
k2

c + q2R
) − 2

π
K0

(√
q2 − k2

c R
))

.

(A10)
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