

DESIGN AND IMPLEMENTATION OF A DOMAIN
SPECIFIC LANGUAGE FOR EVENT SEQUENCE

GRAPHS

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by
Mert KALECİK

July 2022
İZMİR

ACKNOWLEDGEMENTS

First, I’d like to express my heartfelt gratitude to my supervisor, Assoc. Prof. Dr.

Tugkan Tuglular, for his compassion, support, and encouragement. I am thankful for his

guidance with experiences and knowledge for me. I would also like to sincerely thank

and appreciate Prof. Dr. Fevzi Belli for his inspiration, remarks, and advice on my

research. I am extremely grateful to my other half all for her support and motivation

unconditionally all of these years. Also, I could not have undertaken this journey

without my family who gave me moral support and infinite motivation.

 iii

ABSTRACT

DESIGN AND IMPLEMENTATION OF A DOMAIN SPECIFIC
LANGUAGE FOR EVENT SEQUENCE GRAPHS

Nowadays, large-scale software applications are being developed because of the

increasing q-commerce or e-commerce conversion rate. Companies extend their service

operation areas with the trend of having a super app. As the result of extended

functionality brings some risks together. Therefore, software quality is one of the

crucial metrics for achieving reliable and faultless software products. One way of

achieving software quality is systematic testing, which is often materialized by model-

based testing. An example of model-based testing approaches is Event Sequence Graphs

(ESGs). Domain specific language is usually a declarative language that provides

substantial gain on a restricted business domain. This thesis mainly focuses on the

development of a domain specific language (DSL) for ESG building and visualization

process with a modularization support for sub-ESGs and decision tables. The ESGs are

augmented by decision tables visualized with a vertex and that vertex is visualized with

two tables such as property table and property definition table. The use of the proposed

DSL is compared with the existing ESG tool called Test Suite Designer (TSD) in areas

such as measuring the cost of quality, understanding the value of quality, motivation to

achieve quality, and understand how to overcome it. The comparison results obtained

through a questionnaire applied to a focus group show that some improvements for both

ESG DSL and TSD are necessary.

 iv

ÖZET

OLAY SIRA ÇİZGELERİ İÇİN ALANA ÖZGÜ DİL TASARIMI VE

UYGULAMASI

 Artan e-ticaret ve hızlı ticaret etkileşim oranlarının sonucu olarak günümüzde

büyük ölçekli yazılım uygulamaları geliştirilmeye başlandı. Şirketler servis operasyon

alanlarını genişleterek bir süper uygulamaya sahip olmaya yöneliyorlar. Genişletilen bu

işlevselliklerin sonucu olarak yanında bazı riskler getiriyor. Bu nedenle Yazılım

Kalitesi, güvenilir ve hatasız yazılım ürünleri elde etmek için önemli ölçütlerden biridir.

Yazılım kalitesine ulaşmanın bir yolu, genellikle model tabanlı testlerle gerçekleştirilen

sistemik testtir. Model tabanlı test yaklaşımlarına bir örnek Olay Sırası Çizgeleridir

(OSÇ). Alana Özgü Dil (AÖD) genellikle sınırlandırılış bir iş alanında önemli kazanç

sağlayan bildirimsel bir dildir. Bu tez esas olarak Alana Özgü Dil (AÖD) geliştirmeye,

mevcut yazılım ürünlerinin yeniden kullanılabilirliğini arttırmaya, üretkenliği arttırmaya

ve teknoloji altyapısı olmayan kişileri geliştirme sürecine dahil etmeyi amaçlayan yeni

bir yaklaşıma odaklanır. Bu çalışma, alt Olay Sırası Çizgeleri (OSÇ) ve Karar Tabloları

(KT) için modüler hale getirme desteği ile bir OSÇ görselleştirme sürecini

tanıtmaktadır. KT ile arttırılmış bir OSÇ bir köşe ile gösterilir ve bu köşe özellik tablosu

ve özellik detayları tablosu olarak iki tablo olarak görselleştirilir. Önerilen AÖD

tasarım, uygulama yaklaşımı ve mevcut araç ile kalite maliyetini ölçmek, kalitenin

değerini anlamak, kaliteye ulaşma motivasyonu ve bunun nasıl üstesinden gelineceğini

anlamak gibi alanlarda karşılaştırıldı. Karşılaştırma vaka sonuçları her iki araç için,

OSÇ AÖD ve Test Paketi Tasarımcısı (TPT), anket sonucunda test gruplarından alınan

geri bildirimler ve iyileştirmeleri göstermektedir.

 v

TABLE OF CONTENTS

ABSTRACT ... iii
ÖZET ... iv

LIST OF FIGURES ... vi
LIST OF TABLES ... viii

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. RELATED WORK .. 3

CHAPTER 3. FUNDAMENTALS ... 5

3.1. Domain Specific Languages ... 5

3.2. Event Sequence Graphs .. 10

3.2.1. Sub Event Sequence Graphs (Sub ESGs) .. 12

3.2.2. Augmented Event Sequence Graphs by Decision Tables 14

CHAPTER 4. EVENT SEQUENCE GRAPH DOMAIN SPECIFIC LANGUAGE 17

4.1. Decision .. 17

4.2. Analysis and Design ... 19

4.3. Implementation ... 23

4.4. Graph Visualization .. 30

CHAPTER 5. CASE STUDY ... 37

CHAPTER 6. CONCLUSION AND FUTURE WORK .. 47

REFERENCES ... 49

APPENDIX A ... 55

 vi

LIST OF FIGURES

Figure Page

Figure 3.1. Smart Home Automation Domain Analysis Result 7

Figure 3.2. Smart Home Automation DSL Grammar ... 8

Figure 3.3. Smart Home Automation Rule Declarations .. 8

Figure 3.4. Smart Home Automation Device Declarations .. 9

Figure 3.5. Smart Home Automation Generated JAVA File .. 9

Figure 3.6. Sample DSL usage in SQL ... 10

Figure 3.7. Smart Home Automation ESG ... 11

Figure 3.8. ESG of ATM deposit .. 12

Figure 3.9. Refinement process of a Sub ESG (Tuglular, 2018) 13

Figure 3.10. ATM Refined ESG with Sub ESG ... 13

Figure 3.11. Tagged ESG (Tuglular, 2021). ... 14

Figure 3.12. Login ESG augmented by DT .. 16

Figure 3.13. Password Entered DT ... 16

Figure 4.1. ESG DSL vertex definition .. 17

Figure 4.2. Sample ESG developed with TSD. .. 18

Figure 4.3. ESG DSL domain analysis result ... 20

Figure 4.4. ESG DSL Entity Relation Diagram .. 23

Figure 4.5. ESG DSL Event Grammar Definition .. 25

Figure 4.6. ESG DSL Color Grammar Definition .. 25

Figure 4.7. ESG DSL Edge Grammar Definition ... 26

Figure 4.8. ESG DSL Vertex Grammar Definition .. 26

Figure 4.9. ESG DSL ESG Grammar Definition .. 26

Figure 4.10. ESG DSL Condition Grammar Definition ... 27

Figure 4.11. ESG DSL Rule Grammar Definition .. 28

Figure 4.12. ESG DSL Decision Table Grammar Definition ... 28

Figure 4.13. Default XText Generator for DSLs .. 29

Figure 4.14. ESG DSL output skeleton .. 29

Figure 4.15. ESG DSL Generator Implementation ... 30

Figure 4.16. ESG Visualization Skeleton ... 31

 vii

Figure Page

Figure 4.17. Subgraph Definition with DOT Language ... 32

Figure 4.18. Subgraph Visualization with Graphviz .. 32

Figure 4.19. Simple ESG Visualization with Graphviz .. 33

Figure 4.20. DOT Language Syntax for Simple ESG .. 33

Figure 4.21. Refined ESG with Login sub-ESG ... 34

Figure 4.22. DOT Language Syntax for Refined ESG ... 34

Figure 4.23. Decision Table visualization with Graphviz .. 35

Figure 4.24. Decision Table containing vertex visualization with Graphviz 35

Figure 4.25. DOT Language Syntax for Decision Table .. 36

Figure 5.1. Login sub-ESG visualized by ESG DSL .. 39

Figure 5.2. Login sub-ESG visualized by TSD .. 40

Figure 5.3. Withdraw sub-ESG visualized by ESG DSL ... 40

Figure 5.4. Withdraw sub-ESG visualized by TSD .. 40

Figure 5.5. Deposit sub-ESG visualized by ESG DSL ... 41

Figure 5.6. Deposit sub-ESG visualized by TSD ... 41

Figure 5.7. Print Bill sub-ESG visualized by ESG DSL .. 41

Figure 5.8. Print Bill sub-ESG visualized by TSD ... 42

Figure 5.9. Logout sub-ESG visualized by ESG DSL .. 42

Figure 5.10. Logout sub-ESG visualized by TSD .. 42

Figure 5.11. ESG DSL vs TSD Questionnaire Results ... 44

Figure 5.12. ESG DSL Case Study Time Sheet ... 45

Figure 5.13. TSD Case Study Time Sheet .. 45

 viii

LIST OF TABLES

Table Page

Table 3.1. Printer DT .. 15

Table 4.1. ESG DSL Conceptual Domain Analysis ... 21

Table 4.2. Implementation Patterns for Executable DSLs .. 24

Table 4.3. Graphviz DOT Language Syntax (Graphviz, n.d.) .. 31

 1

CHAPTER 1

INTRODUCTION

 In the last twenty years, the software industry growing rapidly with the

improvement of internet speed that connected the world and expensed knowledge

turnover within engineering. The difficulties and complexities of the problem domain

differ from those of previous generations in terms of diversification of demand and size

of it (Boehm, 2006). With the increasing demand and functional set extension, the

complexity of the project is increased and prone to making mistakes. It becomes

difficult to keep the quality of the software product at a certain level. Software quality is

one of the most important metrics of the software development for faultless products.

Quality comprises all characteristics and significant features of a product or an activity

which relate to the satisfying of given requirements (Tomar et al., 2011).

 The complicated nature of software development and working with large size

projects make it hard to measure and enhance software quality. Marco said “You can’t

manage what you can’t measure!” (DeMarco, 1982). Software testing is the process of

ensuring that a software product has the satisfied quality for the end-users. Hence,

software testing has an important role for achieving reliable and faultless software

products. On 26 April 1986, the incident happened at Chernobyl nuclear power plant

while the scientists made a wrong power cutdown decision to system under test. The

accident caused genetic diseases in millions of people and thousands of people were

dead. A large area of land closed to human access because of the environmental change.

(Higley, 2006). This example shows that software testing is one of the most crucial

steps in software development life cycle.

 Behavior Driven Development (BDD) (Diepenbeck et al., 2014) is concerned

with describing briefly defined specifications of the behaviors of the target system that

are influenced by the interactions from end-users, system under test itself, and

environmental changes. Clearly written Gherkin (Cucumber, n.d.) based test scenarios

help test designers in writing test cases. Also, the test scenarios which are written as

gherkin based can be transformed into the formal test models (Tuglular, 2021).

 2

 Model Based Testing (MBT) is a model-based design technique that represent

the required behaviors of the System Under Test (SUT). Formal models are derived

from the requirements in model based testing (Eeles et al., 2014).

 Event Sequence Graph (ESG) is a way to represent the behaviors of the system

under test. With the modularization support, makes it easy to understand in smaller

component layers. The difference between ESG and Finite State Machine (FSM)

(Chow, 1978) is that FSM contains states, ESG contains events of the system under test.

 In this thesis, a DSL design and development steps are introduced in order of

decision, analysis, design, implementation, and deployment. The software product’s

behaviors represented with ESGs and for the different behaviors set under a certain

condition is represented by DTs. The modularization support for ESGs provided by

vertex refinement and vertex augmentation by DTs. The generated ESG objects

visualized by Graphviz (Ellson et al., 2003) with using DOT language. Also, Graphviz

supports modular ESG visualization for the refined vertex container ESGs.

 For the motivation of the project, the ESG visualization cost is high and

requires rework for each ESG. Further, the existing ESG visualization tools is not user

friendly, there is no error checking and highlighting support. The motivation is creating

a domain specific language that is user friendly, reusable, and easy to understand.

 The aim of this thesis to design and develop a ESG DSL and visualization

process for the ESGs. This thesis tries to answer the following questions:

1. How to design and develop a DSL with supporting modularization and

decision table for multiple input case for ESGs?

2. How can the ESG DSL reduce the complexity of the ESG visualization by

using a close to nature language syntax?

3. How to visualize the ESGs, sub-ESGs (inner ESGs), and DTs with reusing

the software artifacts?

 This thesis is organized as the given order. Second chapter examines an

overview of the literature. Third chapter introduces fundamental concepts namely,

Domain Specific Languages (DSLs), Event Sequence Graphs (ESGs), vertex refinement

for modularization, augmented ESGs by Decision Tables (DTs). Fourth chapter

includes the detailed design and development steps of a DSL and graph visualization for

ESGs. The case study, Bank ATM project, of this thesis study is given in chapter five.

Finally, the conclusion and the future work are mentioned in chapter six.

 3

CHAPTER 2

RELATED WORK

Software testing is the process of validating a service or application to prove if it

meets the given requirements and all the characteristics of the software are implemented

correctly (Uddin et al., 2019). Thus, software testing is a critical step for creating

faultless and high-quality software products.

Behavior-driven development (BDD) is a branch of test-driven development

(TDD). The methods of the system under test are passed without no failure at all, if the

methods do not satisfy the required behavior for the system under test, then the system

does not meet the requirements (Mishra, 2017). Hence, BDD defines the behaviors of

the target system. The model-based testing (MBT) provides a technique, the required

specification of the software is defined in a model which is generally a graph. The finite

state machines (Chow, 1978) is extended to hold events on the each vertex of the graph.

Event sequence graph (ESG) is introduced to illustrate the events of the system under

test (Belli, 2001).

For decades, the people of software community have been trying to increase

reusability of the software artifacts. The early example of this intention is the fourth-

generation languages (4GL). 4GL languages have statement that are close to the natural

language and commonly using in scripting languages like Python, and Perl. The first

attempts were called micro-languages and little languages for the domain specific

languages (DSLs) (Bentley, 1986). In object-oriented programming, DSL developments

are injected into a subroutine library and can be implemented as a framework to the

code base. DSL usually includes a general-purpose language (GPL) and enhance the

abilities of the language in the domain-specific area (Deursen et al., 2000).

In this thesis, we focused on DSLs and graph visualization tools which are

developed with JAVA general-purpose language. Eclipse Xtext (Xtext, 2006)

framework is used to develop ESG DSL. Well-known companies use domain specific

language that developed with Xtext (Xtext, 2006). Yaktor (SciSpike/Yaktor, 2016/2021)

is event-driven, asynchronous, distributed, scalable multi-party state-machine tool.

 4

Yaktor DSL (SciSpike/Yaktor-Dsl-Xtext, 2016/2017) is developed with Xtext and it

creates data models and behavior for the Yaktor application. Franca (Franca, 2018) is a

powerful IDL (Interface Definition Language) that is used for integration software

components from different suppliers. Expression DSL (Expression Language, 2021)

provides an expression language built using Xtext framework and a runtime engine to

evaluate the expressions. The language can be imported in other DSLs to create

composable and reusable languages using Xtext.

JGraph is a java-based framework that allows to draw graphs and runs graph

algorithms. The algorithms can be run with an animation feature, which allows the end-

users to see the intermediate steps as the algorithm runs (Bagga & Heinz, 2001). The

tool is created by several graduate students.

 Java Universal Network/Graph (JUNG) framework is an open-source project

that provides a language for the modeling, analysis, and visualization of the data

provided by the end-users. JUNG is a java-based tool and has a strong capability that is

coming from java general-purpose language. The JUNG framework is designed to

support a variety of representations of entities and relations (JUNG Framework Tech

Report, n.d.). The framework has a support for drawing directed and undirected graphs,

entities, and relations with metadata.

 PlantUML (PlantUML, 2009) is an open-source tool that allows users to create

diagrams from a plain text language. It is important to be aware of that PlantUML is

more a drawing tool than a modeling tool. That means it does not help end-users with

drawing inconsistent diagrams. Also, PlantUML has a support for AsciiMath, DOT, and

LaTeX. The tool uses Graphviz (Ellson et al., 2003) framework to layout its diagrams.

 Graphviz is an open-source graph visualization software. The representation of

structural information as diagrams of abstract graphs and networks is known as graph

visualization. It is usually using in software engineering, database and web design,

machine learning, and bioinformatics (Graphviz, n.d.). Emden and Stephen introduce a

tool that is manipulating the graphs and their drawings (Gansner & North, 1997). A

four-pass algorithm for drawing directed graphs is described for Graphviz software. The

first pass stands for the optimal rank assignment using a simplex algorithm. The second

pass uses and iterative heuristic with a novel weight function and local transpositions to

reduce crossing to determine the vertex order withing ranks. The third pass calculates

the optimal coordinates for the vertices. Splines are used to draw edges in the final pass

(Gansner et al., 1993).

 5

CHAPTER 3

FUNDAMENTALS

This chapter introduces fundamental concepts related to thesis study. First,

Domain Specific Languages (DSLs) are explained. Second, Event Sequence Graphs

(ESGs) are introduced with additional features, which are Sub-Event Sequence Graphs

and Event Sequence Graphs Augmented by Decision Tables.

3.1. Domain Specific Languages

Nowadays, when we mentioned about language many people think of spoken

language or programming language. Most software developer think of the commonly

used general purpose languages such as JAVA, C#, or C. A domain-specific language is

any mechanism that has expressiveness gain as statements over the language. if that’s

applicable in a restricted domain then we can call it “little languages” (Gansner &

North, 1997).

Over the years, different solutions have been tried for to eliminate domain

complexity, increase the reusability of the software components, enhance productivity,

and reduce maintain cost of the system. In the literature these solutions have been

introduced:

Definition 3.1: Subroutine libraries contain subroutines that perform related

tasks in well-defined domains like, for instance, differential equations, graphics, user-

interfaces, and databases. The subroutine library is the classical method for packaging

reusable domain-knowledge (Deursen et al., 2000).

Definition 3.2: Object-oriented frameworks and component frameworks

continue the idea of subroutine libraries. Classical libraries have a flat structure, and the

application invokes the library. In object-oriented frameworks it is often the case that

the framework is in control, and invokes methods provided by the application-specific

 6

code (Deursen et al., 2000).

Definition 3.3: A domain-specific language (DSL) is a small, usually

declarative, language that offers expressive power focused on a particular problem

domain. In many cases, DSL programs are translated to calls to a common subroutine

library and the DSL can be viewed to hide the details of that library (Deursen et al.,

2000).

In this thesis, we use Domain Specific Language (DSL) which is more

convenient to use. DSL is a programming language that designed to increase abstraction

level for a group of complex problems on a restricted application domain. They provide

numerous advantages in ease of use and limited portion of related general-purpose

language. A DSL generally provides less complex language than a general-purpose

language such as Java, C#, or C.

DSL development is hard, requires deep domain knowledge and general-purpose

language experience for development. DSLs are usually developed in collaboration with

domain experts and senior developers. Only a limited number of people have expertise

in both domain and programming knowledge with the related general-purpose language.

The importance of DSL development is providing notation-based, similar to natural

language, and an easy-to-use environment for non-tech people. Thus, domain experts

and some business partners are included in the process without deep knowledge of the

related general-purpose language.

The power of DSLs is coming from the underlying general-purpose language,

DSLs can use all the functionality, such as a large set of public frameworks, useful data

structures to hold parsed data from DSL models, file creating, exporting tools etc., of

the general-purpose language. In this way, DSLs simplify the domain-restricted code

and create an easy-to-use user interface for end-users.

Another advantage of using DSL is that it increases productivity in development

once comparison between development while without DSL usage. “Their importance

should not be underestimated as they are directly related to the to the productivity

improvement associated with the use of DSLs” (Mernik et al., 2005). Even if the

development process is hard and requires domain knowledge, DSLs increase

productivity in sense of time, reusability for software components and ease-of-use for

non tech people.

DSL development is investigated in 5 main steps such as decision, analysis,

design, implementation, and deployment. Each main step is valuable and requires

 7

domain expertise, development steps are examined in Chapter 4.

There are two commonly using meta-modeling frameworks, which are Eclipse

XText and JetBrains Meta Programming System (MPS). Both provides powerful

grammar language for DSL, parser, generator, type checker, and compiler. Main

difference between XText and MPS is that XText parser-based framework and best fit

for textual files, MPS projection-based framework and doesn’t parse textual files.

In this thesis, Eclipse XText is preferred. Because XText framework is more

flexible in sense of XText can work with textual files. Also, Eclipse XText provides

Eclipse Modeling Framework (EMF) and code generation for building components.

(Merks et al., 2009). Open Architecture Ware (OAW) is a modular Model Driven

Architecture (MDA) or Model Driven Design (MDD) which is implemented in JAVA

programming language. OAW stands for parsing models from given syntax, applying

code analysis, and transform models into generated target output (Efftinge et al., 2006).

Example 3.1: A Smart Home Automation system will be constructed with DSL.

Each device of Smart Home takes an identifier and n number of state that states are

separated with a comma. For controlling the devices, Smart Home Automation takes

rules and each rule takes a description field, when condition, and then action.

Figure 3.1. Smart Home Automation Domain Analysis Result

Definition 3.4: An xText Grammar consist of a set of rules (Model, Field,

Comment, and Type). A rule is described using sequences of tokens. A token is either a

reference to another rule or primitive tokens (INT, STRING, ID) (Efftinge et al., 2006).

 In Figure 3.2, Smart Home Automation rules are declared. For one Declaration

 8

grammar can take a device or a rule. A Device has a name and “can be” suffix after the

name field and takes a list of states each state separated with a comma. The state

contains only the name field. A rule contains a description, when state or qualified

name, and then state or qualified name fields. A Qualified name takes an ID, and it is

also can be combined with a comma.

Figure 3.2. Smart Home Automation DSL Grammar

Once the grammar development is done, the Generate XText Artifacts workflow

is started. The workflow takes some time and the whole process is traceable on the

console. When the workflow is complete, the DSL is ready to be launched as an Eclipse

application. After the start of the application, DSL is ready to be used on the editor

screen.

Figure 3.3. Smart Home Automation Rule Declarations

 9

Figure 3.4. Smart Home Automation Device Declarations

 Eclipse XText editor checks the grammar syntax and warns if there is a missing

part of the written grammar with red color. When all the device and rule declarations

are completed, saving the editor screen triggers the file generator. The file generator

generates a file from the declarations that are defined in DSL grammar. The generated

file is shown in Figure 3.5.

Figure 3.5. Smart Home Automation Generated JAVA File

Commonly known example of DSL usages that are SQL (Structured Query

Language, using with relational databases), MATLAB (programming language

designed for specifically scientists and engineers), HTML (Hyper Text Markup

Language, is using for creating web pages). As we can see on the previous examples,

the list of defined rules that are written on the user interface of designed DSL. Then all

 10

the given rules compiled into a general-purpose language.

Example 3.2: DSL usage on Structured Query Language (SQL) is given in

Figure 3.6. The related DSL syntax selects related columns from the given table name

and orders the return values according to the given parameter in ascending or

descending order.

Figure 3.6. Sample DSL usage in SQL

3.2. Event Sequence Graphs

Several validation methods are proposed for testing in the software industry,

such as Specification Oriented Testing, Implementation Oriented Testing. Each

proposed methods identify relevant features to system under test. An Event Sequence

Graph (ESG) is a way that represents behaviors of the system under test (Belli et al.,

2005). The proposed methodology is an interactive system, which means that system

reacts actions for user events or response triggered by the system.

The main difference between finite-state-automata (FSA) and ESG is that FSA

represents states of the related system under test, but an ESG provides an abstraction

layer to better understanding for event flow of the related system in external point of

view. An ESG is a directed graph and each vertex of the ESG represents an event

triggered by user interaction or system response. Directed edges of the ESG connects

two events on the system.

Definition 3.5: An Event Sequence Graphs are directed graphs

and has some rules. is a limited number of nodes and is a finite set

of arcs (edges), and finite set of distinguished vertices with ,

named as start vertices and end vertices, correspondingly, in which there will

 11

be at least one vertex sequence by one to the next

with , for i = 0, …, k-1 and (Belli et al., 2006).

The start and finish vertices of the ESG are marked as applying the following

convention: all are precipitated by such a pseudo vertex ‘[‘ so all

are pursued by other pseudo node ‘]’ (Belli et al., 2006). The start (entry) and

finish (exit) vertices which are demonstrated by ‘[‘ and ‘]’ respectively, are called

pseudo vertices and they are not included in (Belli et al., 2005, 2006).

Example 3.3: For the ESG given in Figure 3.7, V = {turn on heating, turn on

lights, close windows, close curtains, heating turned on, lights turned on}, Ξ = {turn on

heating, turn on lights}, Γ = {heating turned on, lights turned on}, and E = {(turn on

heating, close windows), (close windows, heating turned on), (turn on lights, close

curtains), (close curtains, lights turned on). E does not include the edges from entry

vertex (‘[‘) and to exit vertex (‘]’).

Figure 3.7. Smart Home Automation ESG

Definition 3.6: In Definition 3.5, assume that V and E are described. So any

nodes sequence is known as an ES (Event Sequence) if

, for i = 0, …, k-1 (Belli et al., 2004, 2005, 2006).

Example 3.4: In Figure 3.7, turn on heating - close windows – heating turned

on is an event sequence that has length of 3.

Definition 3.7: The Event Sequence is a CES (Complete Event Sequence),

 12

where is the entry and is the exit vertex (Belli et al., 2004,

2005, 2006).

Example 3.5: For the ATM deposit ESG in Figure 3.8, {deposit money, enter

amount, show error} is an Event Sequence of length 3. Complete Event Sequences for

the related graph are {(deposit money, show error, enter amount), (deposit money, enter

amount, show error, enter amount). Each edge on the ESG marked as a legal Event Pair

(EP), also each event pairs represented with ES with fixed length where length is 2. For

Figure 3.2, Event pairs (EP) as follows:

Figure 3.8. ESG of ATM deposit

EP = {EP1 = (deposit money, enter amount), EP2 = (deposit money, show error),
EP3 = (enter amount, show error), EP4 = (show error, enter amount)}.

3.2.1. Sub Event Sequence Graphs (Sub ESGs)

Maintainability, readability, refactor, and new feature development processes are

getting complex when dealing with large scale projects. ESG modularization comes to

the stage at this point. The ESG contains vertices that are abstract, and modularized in

any layer or under it. The final ESG can be refined with refinement of each sub ESG.

Definition 3.8: Given an ESG, say ESG1 = (V1, E1, Ξ1, Γ1) a vertex v ∈ V1, and

an ESG, say ESG2 = (V2, E2, Ξ2, Γ2). Then, replacing v by ESG2 produces a refinement

of ESG1, say ESG3 = (V3, E3, Ξ3, Γ3) with V3 = V1 ∪ V2 \ {v} and E3 = E1 ∪ E2 ∪ Epre ∪

Epost \ E1 replaced (‘\’: set difference operation), where in Epre = N(v) x Ξ2 (connections of

the predecessors of v with the entry nodes of ESG2), Epost = Γ2 x N+(v) (connections of

 13

exit nodes of ESG2 with the successors of v), and E1 replaced = {(vi, v), (v, vk)} with vi ∈

N-(v) and vk ∈ N+(v) (replaced arcs of ESG1) (Belli et al., 2005, 2007).

Figure 3.9. Refinement process of a Sub ESG (Tuglular, 2018)

Figure 3.10. ATM Refined ESG with Sub ESG

 14

Example 3.6: The ESG in Figure 3.10. shows the refinement operation on ESG

as stated in Definition 3.4. The event modeling consists of three user story, as follows

login, withdraw, and send bill. Withdraw vertex refined by another ESG, the Sub ESG

consist of enter amount, show error, send otp, and update balance vertices. On the

refinement process the entry and exit vertices eliminated and connected to the relevant

parts of the refined ESG.

Definition 3.9: A tagged ESG is an ESG, where a node or vertex may contain a

tag instead of an event (Tuglular, 2021).

Figure 3.11. Tagged ESG (Tuglular, 2021).

3.2.2. Augmented Event Sequence Graphs by Decision Tables

 Decision tables are a graphical illustration for identifying the actions under

given set of conditions. A decision table (DT) logically links conditions (“if”) with

actions (“then”) that are determined by combinations of given conditions (“rules”).

Decision tables are useful when the decision to create a DT during system design.

Definition 3.10: Decision Table is represented with a table of DT = (X, Y, Z)

trio (Tuglular et al., 2016b). Where X ≠ Ø and X = {x1, . . ., xn} is a limited series of

conditions, Y ≠ Ø and Y = {y1, . . ., ym} is a limited number of actions and Z ≠ Ø and Z

= {z1, . . ., zk} is a limited number of rules, each of which perform specific actions based

on a predefined number of conditions (Murnane et al., 2001).

Definition 3.11: Assume Z is declared in Definition 3.10. Then, ∀z ∈ Z can be

defined as z = (Xtrue, Xfalse, Ym), where Xtrue ⊆ X is the series of requirements to be met.

 15

Xfalse ⊆ X is the number of conditions that must be false . Ym ⊆ Y denotes the set of

actions to be taken if all a ∈ Xtrue are settled to true and all b ∈ Xfalse are settled to false

(Murnane & Reed, 2001). Below ordinary situations: Xtrue ∪ Xfalse = X and Xtrue ∩ Xfalse

= Ø (Murnane et al., 2001). If a condition is not perceived in certain scenarios, it is

merely denoted as ‘-’ (ignore) in the rule (Murnane & Reed, 2001). The real number of

DT rules can be easily calculated based on the number of ‘-’ in each rule as follows: If

m < |X| is the number of ‘-’ in z ∈ Z, then the set of rules replaced by ‘-’ is 2m (Murnane

et al., 2001).

Definition 3.12: Assume Z is defined in Definition 3.10. The highest set of rules

in DT will be 2|X| = 2t, (Tuglular et al., 2016). Complete DT is defined as DT with |Z|

= 2t. If |Z| > 2t, the DT is inconsistent and should be reconstructed (Murnane et al.,

2001).

 Example 3.7: DT defined in Definition 3.9, Table 3.1 is an example of DT.

Where C = {printer does not print, red light is flashing, printer unrecognized} is

condition set of DT. A = {check power cable, ensure software is installed, check for

paper jam} is action set of DT. Finally, Z = {Z1, Z2, Z3, Z4} is rule set of DT.

Table 3.1. Printer DT

Rules

R1 R2 R3 R4

Co
nd

iti
on

s Printer does not print T T T F

Red light is flashing F T T T

Printer unrecognized F F T F

Ac
tio

ns

Check power cable - - X -

Ensure software is installed X - X -

Check for paper jam X X - X

For the given Definitions 3.9, 3.10, and 3.11 the maximum number of condition

combination represented with 2|C|, where |C| stands for the condition numbers. This

combination of conditions makes a mess on the Event Sequence Graph. To escape this

 16

complexity, Event Sequence Graph Augmented by a refined vertex that contains the

related decision table.

 Example 3.8: In Figure 3.11, Login ESG contains password entered vertex

refined by DT. The purple triple octagon shape is representing a DT. DT is given in

Figure 3.2.2.2. For the related DT, C = {C0, C1, C2, C3}, A = {A0, A1, A2}, and R =

{R0, R1}.

Figure 3.12. Login ESG augmented by DT

 The vertex password entered given in Figure 3.12 contains a decision table.

Conditions, actions, rules, and a table for the property details of the decision table is

illustrated in Figure 3.13.

Figure 3.13. Password Entered DT

 17

CHAPTER 4

EVENT SEQUENCE GRAPH DOMAIN SPECIFIC

LANGUAGE

This part of the thesis focuses on Event Sequence Graph (ESG) Domain Specific

Language (DSL) development stages in detail. ESG DSL introduces a new graph

drawing approach which is easy-to-use, more likely to natural language, abstracted from

programming and domain expertise. Also, the related DSL provides modularization for

sub-ESGs and Augmented ESGs by Decision Tables.

4.1. Decision

The decision to develop DSL is a crucial point to take into consideration because

the development process takes a long time and requires deep domain knowledge. The

main purpose of the related DSL is to draw Event Sequence Graphs (Belli, 2001) using

a well-defined grammar. Secondly, ESG DSL target tech people and non-tech people

who are business partners. With DSL development the abstraction layer is created

between the tech infrastructure and non-tech people. Thirdly, using DSL increases

reusability of software artifacts such as the use of software frameworks in a general-

purpose language. In Figure 4.1, vertex grammar model is defined and the vertex is

reusable. With the same vertex model, the “ID” and “Event” properties are signature for

it, we can draw two different vertices without reimplementation of it.

Figure 4.1. ESG DSL vertex definition

 18

On the other hand, there are some disadvantages to giving a decision for

developing a DSL. Initially, you must use your resources for development such as

developers, time, and business partners. Once the development process is over, the

education period is required for users of ESG DSL. Since the feature set expands, there

will be a need for maintaining and developing cost on the related DSL repository.

 Test Suite Designer (TSD, please see Appendix A) tool draws ESGs and

generates test suites from the related ESGs. The tool is developed with JAVA general-

purpose language, double click creates a vertex on the editor page, each edge is created

with drag-and-drop action from source vertex to target vertex. There is no

modularization support in the tool but tagged ESG (Tuglular 2021) is used as an

alternative for it. The user experience is very difficult to dealing with complex project

modeling with TSD tool. TSD tool also allows copy and paste operation for vertices and

edges on the graph. But it is not working as expected, when you try to copy, there are

some missing parts that might be occurred while copy operation. In Figure 4.2, ATM

card read operation tagged ESG is given.

Figure 4.2. Sample ESG developed with TSD.

Finally, the decision to develop ESG DSL is made to increase the productivity

of the users (Mernik et al., 2005), enhance reusability of software artifacts, design better

user experience with easy-to-use grammar for the users. DSL creates an abstraction

layer that provides some advantages such as develop models with less domain and tech

information in a restricted domain (Fischer et al., 2004; Nardi, 1993).

 19

4.2. Analysis and Design

During the analysis part, the problem set is examined, the problem domain is

identified, and the required information extracted from sources such as analysis

documents, domain experts, existing code repository. In this thesis, domain knowledge

provided by the existing code repository (ESG-Engine, please see Appendix A).

Designing a DSL is investigated into two dimension which are the relationship between

the DSL and existing languages (for ESG DSL it is JAVA general-purpose language)

and the nature of the design description (Mernik et al., 2005).

In the domain analysis of ESG DSL development, the problem domain is the

development of a domain specific language which provides a graphical user interface

that acts like an editor for DSL, textual parsing, syntax highlighting, error checking,

model converter from syntax, and generator for the target output. Java Script Object

Notation (JSON) is specified as the target output of the DSL. JSON is widely used in

communication technologies such as Representational State Transfer (REST), and

GraphQL (Brito et al., 2020).

The domain analysis is done as the same with domain analysis strategy in

database management, Algorithm 4.1 is used for domain identification.

Algorithm 4.1. ESG DSL Domain Analysis Algorithm

Input: Listi = (Domain Entity) – an ESG domain entity list
 k – integer number of elements in the input list
Output: Listj = (Domain Entity) reified domain entity list

 for n=1 to k incrementing by 1 do

 val element = Listi[n]

 if (Check element matches a model in DSL)

 Listj.add(element)

 endfor

All the candidate entities are written on a page, where C(E) stands for set of

entities C(E) = {Edge, Arrow, Direction, Graph, Vertex, Event, Identifier, Source,

 20

Target, Inner ESG, Abstraction, Decision Table, Rule, Action, Condition, Result,

Expression, Literal, Operand, Pattern, Recognition, Recursion, Shape, Color}. C(E) is

given as input to Algorithm 4.1, then the output of the domain analysis is gathered. In

Figure 4.3 The domain analysis result is illustrated.

Figure 4.3. ESG DSL domain analysis result

For the next step, double validation process is applied with ESG-Engine project

(Öztürk, 2020). The related project contains all the ESG models, the required fields of

the entities, and the member functions. The missing entity models are finalized by

merging the results from the Algorithm 4.1 output entity list and the checking missing

entity models from the code repository.

As the last step of domain analysis, conceptual analysis (Compatangelo et al.,

2002) is performed for showing entity relations briefly. This modeling technique

provides entity identifiers, attribute list, attribute relations, cardinality of constraints. It

 21

also shows the inheritance relationships of the ESG DSL grammar entities. The output

of the conceptual analysis is given in Table 4.1. The table shows entities, identifiers,

attributes, and relation of attributes.

Table 4.1. ESG DSL Conceptual Domain Analysis

entity ESG
has identifier
 name as STRING
has attributes
 event as 1:1 EVENT
 subESGs as 1:N ESG
 edges as 1:N EDGE

entity DT
has identifier
 id as INT
has attributes
 name as 1:1 STRING
 conditions as 1:N CONDITION
 rules as 1:N RULES
 actions as 1:N ACTIONS

entity VERTEX
has parents ESG;
has identifier
 ID as INT
has attributes
 event as 1:1 EVENT
 color as 1:1COLOR
 dt as 1:1 DT

entity RULE
has identifier
 ID as INT
has attributes
 name as 1:1 STRING
 value as 1:1 STRING
 variables as 1:N VARIABLE
 actions as 1:N ACTION

entity EDGE
has attributes
 source as 1:1 INT
 target as 1:1 INT
 color as 1:1 COLOR

entity ACTION
has identifier
 ID as INT
has attributes
 name as 1:1 STRING
 event as 1:1 INT

entity EVENT
has attributes
 name as 1:1 STRING

entity CONDITION
has attributes
 name as 1:1 INT
 evals as 1:1 EVALUABLE

entity CONNECTIVE
has attributes
 connective as 1:1 AND | OR

entity EVALUABLE
has attributes
 expression as 1:1 EXPRESSION
 or
 connective as 1:N CONNECTIVE

entity EXPRESSION
has attributes
 left as 1:1 LITERAL
 operand as 1:1 OPERAND
 right as 1:1 LITERAL

entity DECLARATION
has attributes
 esg as 1:1 ESG

(cont. on the next page)

 22

cont. of Table 4.1.

entity VARIABLE
has attributes
 name as 1:1 STRING
 value as 1:1 LITERAL

entity OPERAND
has attributes
 operand as 1:1 < | > | == | <= | >=

entity LITERAL
has attributes
 literal as 1:1 INT | STRING
entity COLOR
has attributes
 name as 1:1 black | red | green | blue
 | orange

entity SUBESG
has parents ESG;
has identifier
 ID as INT
has attributes
 event as 1:1 EVENT
 subESGs as 1:N ESG
 edges as 1:N EDGE

 The design characteristics are grouped in two categories, which are the

relationship with the DSL and the existing code repository, and the relationship with

DSL and the nature of the design specifications. To avoid entity confusion, the same

concepts and the entities are chosen from the existing code repository (ESG-Engine,

please see Appendix A).

 The set of entities extracted from existing code repository C(E) = {Edge, Vertex,

Event, Inner ESG (sub ESG), Decision Table (DT), Rule, Action, Condition, Result,

Expression, Literal, Operand}.

 The general-purpose language design principles provided (Brooks, 1996) are

applied for the rest of the entities such as Color, Declaration, Variable, etc. The

provided principles include readability, simplicity, and orthogonality design criteria.

 In Figure 4.4, the ESG DSL entity relation is given. At the root, there is an ESG

contains elements under it. Elements must either be an ESG (sub ESG) or a vertex

again. With this logic there is a recurrence relation comes into the stage. Each sub ESG

is also an ESG and contains elements that must either be an ESG or a vertex again. Each

ESG contains edges and one event. Vertex has the possibility to store a decision table

on it. That is helpful in extracting actions when dealing with user inputs under some

conditions. One decision table contains a set of rules, actions, and conditions. One

condition contains f-number of expressions that are connected with connectives. The

cardinality information is taken from the conceptual analysis and shown on the ESG

DSL entity relation graph.

 23

Figure 4.4. ESG DSL Entity Relation Diagram

4.3. Implementation

 The DSL implementation step begins after the DSL design and domain analysis

steps completed. Eclipse XText framework is used to develop ESG DSL, the related

 24

framework provides textual parsing, error checking, syntax highlighting, code compiler,

general-purpose language support, model converter from syntax, and generator for the

target output.

 In implementation step, there are several implementation patterns proposed.

Table 4.2 Implementation Patters for Executable DSLs taken as it is (Mernik et al.,

2005).

Table 4.2. Implementation Patterns for Executable DSLs

Pattern Description

Interpreter DSL constructs are recognized and
interpreted using a standard fetch-decode-
execute cycle. This approach is
appropriate for languages having a
dynamic character or if execution speed is
not an issue. The advantages of
interpretation over compilation is greater
simplicity, greater control over the
execution environment, and easier
extension.

Compiler/application generator DSL constructs are translated to base
language constructs and library calls. A
complete static analysis can be done on the
DSL program/specification. DSL
compilers are often called application
generators.

Preprocessor DSL constructs are translated to
constructs in an existing language (the
base language). Static analysis is limited to
that done by the base language processor.

Embedding DSL constructs are embedded in an
existing GPL (the host language) by
defining new abstract data types and
operators. Application libraries are the
basic form of embedding.

Extensible compiler/interpreter A GPL compiler/interpreter is extended
with domain-specific optimization rules
and/or domain-specific code generation.
While interpreters are usually relatively
easy to extend, extending compilers is hard
unless they were designed with extension
in mind.

Commercial Off-The-Self(COTS) Existing tools and/or notations are
applied to a specific domain.

Hybrid A combination of the above approaches.

 25

 From Table 4.2, compiler/application generator pattern is selected for ESG DSL

development. Our expectation from the ESG DSL is firstly model translations into Java

objects, then generation of the target file (JSON file). In the ESG domain, DSL defines

domain-related rules and at the end of the process generates a target file (JSON).

Compilation and interpretation are important for both general-purpose languages and

DSLs. Spinellis (Spinellis, 2001) examined DSL development and general-purpose

language development is quite different, DSL development requires more effort and

time-consuming at the development steps. But effective and timesaving for the usage on

the restricted domain.

 The implementation step for ESG DSL is developed with Eclipse XText

framework using Eclipse IDE. The grammar structure of ESG DSL is created according

to relationship of the entities from Table 4.1 and Figure 4.4. The creation process started

with ESGs and inner ESGs (sub-ESGs), followed by augmented ESG with Decision

Tables (DTs).

Figure 4.5. ESG DSL Event Grammar Definition

 Firstly, event model created in ESG DSL grammar. Event model includes name

field as type of string. Event is used with ESG, sub-ESG, and Vertex.

The color grammar model is created to color the edges and vertices while

drawing graphs with DOT language on the Graphviz framework. Each edge and vertex

element of the JSON contains a color property and it comes black by default.

Figure 4.6. ESG DSL Color Grammar Definition

 26

Figure 4.7. ESG DSL Edge Grammar Definition

 The edge grammar model is created to represent an edge from the source vertex

to the target vertex. The source field takes the source vertex identifier as integer and the

target field takes the target vertex identifier as integer. Edges have also the color field, it

is an optional field, and it comes black by default. The question mark states that it is an

optional field. Each edge of the ESG DSL is directed edge and the direction from source

vertex to target vertex.

Figure 4.8. ESG DSL Vertex Grammar Definition

 The vertex grammar model is created to represent a vertex in ESG, a vertex has

an identifier field, an event field that holds the vertex’s event, an optional color field it

comes black by default, and a decision table field which is optional.

Figure 4.9. ESG DSL ESG Grammar Definition

 27

 The ESG grammar model is created to represent both the root ESG and the sub-

ESGs (inner ESGs). Event field is an optional field because the root ESG is not taking

event field, but each sub-ESGs are taking event field to represent the event for the

refined vertex’s event on the main ESG. Each sub-ESG can be either ESG again or a

vertex, sub-ESGs are separated by a comma and the asterisk sign means for sub-ESGs

are not an optional field. Each ESG contains edges separated by a comma and the edges

field is not an optional field.

Figure 4.10. ESG DSL Condition Grammar Definition

 Secondly, ESG DSL grammar is extended to support vertex augmentation by

decision tables The condition grammar model is created to represent conditions for

decision tables. Each condition takes name field as identifier for it and takes set of

evaluable models as required field. Each evaluable grammar model must be either an

expression or a connective. Expression DSL model contains left literal, an operand (<,

>, <=, >=), and right literal. A Literal also grammar model and it accepts input as string

or integer. Evaluable can be a connective grammar model which acts as a conjunction

between two expressions.

 28

Figure 4.11. ESG DSL Rule Grammar Definition

 The rule grammar model is created to represent decision table’s rules. Each rule

has a name field as string, an identifier field as integer, a value field that contains a

string, every char of this string corresponds to sequential condition results. If there are

three condition (C0, C1, C2) and value is equal to “TFT” that means C0 = T, C1 = F, C2 =

T. Variable grammar model is created to hold input variables of the rules, rule grammar

model has set of variables separated by commas and variables field is not optional.

 The action grammar model is created to hold the rule’s actions that triggers

under certain circumstances. Rule grammar model has set of actions separated by

commas and actions field is not optional.

Figure 4.12. ESG DSL Decision Table Grammar Definition

The Decision Table (DT) grammar model is created to represent an

augmentation operation of a vertex. The DT has a name field as string, an identifier

 29

field as integer, set of conditions separated by commas and the condition field is not

optional, set of actions separated by commas and the actions field is not optional, set of

rules separated by commas and also the rules field is not optional.

Once the DSL grammar implementation is done, then the DSL generator class

implementation process is started to create the desired output file (in our thesis the

desired output is JSON file). XText converts the grammar syntax from the editor pane

to EMF (Eclipse Modeling Framework) models. In Figure 4.13, the base generator

class, provided by the Eclipse XText framework, is given.

Figure 4.13. Default XText Generator for DSLs

 In Figure 4.14, the skeleton of the output file is given. To create a JSON file
which contains id as integer, name as string, edge array, and vertices array that contains
both vertices and sub-ESGs. ESG DSL Generator class generates a JSON file that is
suitable with given skeleton.

Figure 4.14. ESG DSL output skeleton

 30

Figure 4.15. ESG DSL Generator Implementation

The generator inherits “doGenerate” method from AbstractGenerator which is

provided by the XText framework. ESG DSL Generator filters all declarations from the

model set and apply filter operation to find root ESGs in the filtered declarations. For

each root ESG, the generator class generates JSON objects appropriate for the skeleton

in Figure 4.14. If a vertex model has DT attribute, then it generates the DT JSON

objects with vertex. For the full version of the ESG DSL generator, see implementation

part in Appendix A.

4.4. Graph Visualization

Once the desired JSON file generated, the generated file is read and converted

into Java objects by ESG-Engine project. The ESG-Engine project details are given in

Appendix A. After the Java object conversation is done, ESG structure is designed by

using DOT Language with Graphviz framework support. Graphviz provides graph

visualization for tools and web applications in software engineering, knowledge

representation, bioinformatics, databases, networking (Ellson et al., 2003). DOT

 31

Language is providing a modularization layer for ESG and sub-ESGs (inner ESGs). For

the main ESG is covered by digraph root element. Each of the sub-ESGs represented

with a subgraph element on dot file. DOT language skeleton for ESG is given in Figure

4.16.

Figure 4.16. ESG Visualization Skeleton

 The DOT Language is defined by the following abstract grammar. Single quoted

are used for literal characters. When needed, parentheses “(“ and “)” indicate grouping.

Optional items are enclosed in square brackets “[“ and “]”. Node, edge, graph, digraph,

subgraph case insensitive terms. Compass point values are not keywords, this syntax

stand for using as other identifiers. An edge operator is “-->” for directed graphs and “--

" is for undirected graphs. For the ESG DSL, directed edges are used for all the edges.

Table 4.3. Graphviz DOT Language Syntax (Graphviz, n.d.)

Graph [strict] (graph | digraph) [ID] ‘{‘
element list
‘}’

Element list [element [‘;’] element list]

Element node | edge | attr | ID | subgraph

attr (graph | node | edge) attr list

subgraph [subgraph [ID]] ‘{‘ element list‘}’

Compass_pt (n | ne | e | se | s | sw | w | nw | c | _)

 32

In Graphviz, subgraphs serve three main objectives. A subgraph, for example,

can be used to express graph structure by signaling that specific nodes and edges should

be clustered inside to create an abstraction layer. Also, subgraphs usually used to

specify semantic information about the graph components. Subgraphs can be used as

handy shorthand for edges.

Figure 4.17. Subgraph Definition with DOT Language

 In Figure 4.17, simple subgraph syntax is given. The subgraph contains three

nodes respectively A, B and C. There are two directed edges, first one from A to B and

the second one from A to C. In Figure 4.18, the subgraph, given in Figure 4.17, is

visualized by Graphviz framework.

Figure 4.18. Subgraph Visualization with Graphviz

 The root graph is defined as digraph, rank direction as left to right, one label for

main ESG, vertex declarations, and edge declarations are included in ESG DOT file.

Each vertex has a label and ellipse shape attribute as optional fields that are given inside

 33

 the square brackets. For each vertex of the graph, vertex names given with pre-tagged

by ESG name. Then under score with vertex name. In figure 4.19, simple ESG with {a,

b, c, d} vertices are given.

Figure 4.19. Simple ESG Visualization with Graphviz

 To construct the ESG in Figure 4.19, digraph root element is used because the

edges of the ESG is directed from source vertex to target vertex. Rank direction is set

left to right. The vertex and edge declarations are given in Figure 4.20, the ellipse shape

is used for all the simple vertices.

Figure 4.20. DOT Language Syntax for Simple ESG

 34

 There is an abstraction layer support with subgraph clusters for sub-ESG (inner

ESG) creation with using DOT language on Graphviz framework. The sub-EGS is also

another ESG, the refined node of the main ESG shaped as double circle on the graph.

Figure 4.21. Refined ESG with Login sub-ESG

For visualization of the refined ESG which is given in Figure 4.21, the subgraph

element is used to represent sub-ESG. The login cluster indicates another ESG layer just

similar to the ESG DSL abstraction layer.

Figure 4.22. DOT Language Syntax for Refined ESG

 35

Figure 4.23. Decision Table visualization with Graphviz

 Decision table visualization process can be divided into three main steps. Firstly,

change the decision table container vertex’s shape from ellipse to triple octagon on main

ESG. Secondly, decision table properties table is created to describe all the conditions

and actions given as input to decision table. Thirdly, decision table is visualized in a

table that contains rules in x-axis, conditions, and actions in y-axis. In Figure 4.23, the

visualized decision table properties table and the decision table itself is given.

Figure 4.24. Decision Table containing vertex visualization with Graphviz

 36

 For the illustrations given in Figure 4.23 and Figure 4.24, subgraph clusters are

created for the properties table and decision table itself. To implement a table structure

with DOT language in Graphviz, <table> tag is used to create a table structure. Each

row is created with a <tr> tag and for each column <td> tag is used to create a column

in the row. In Figure 4.25, the table creation syntax is given. For detailed decision table

implementation please see Appendix A implementation part.

Figure 4.25. DOT Language Syntax for Decision Table

 37

CHAPTER 5

CASE STUDY

 The case study examination will focus five operational flows on bank Automatic

Teller Machine) ATM project. The Bank ATM is a computational device that provides

digital banking operations such as deposit money, withdraw money, personal

information update, money transfer, etc. The ATM devices allowing customers to

perform reliable transactions and decreasing the location dependency for the bank

branches.

In this thesis, we will investigate a limited portion of the bank ATM

functionality. The case study will cover login, withdraw money, deposit money, print

bill, and logout user scenarios. Each scenario is important to overcome some problems

that will be examined in detail. The Gherkin (Gutiérrez et al., 2017) based scenarios are

used to represent the flows of the ATM operations. The Gherkin based scenarios for

bank ATM operations are given below.

Scenario: operation 1 – Login Successful

Given I am at #loginPage

And I entered password

And password is correct

Then Login successful and then navigate to #operationList

Scenario: operation 2 – Login Failed

Given I am at #loginPage

And I entered password

And password is wrong

And show error

And card blocked

And card retained

Then Login failed and then navigate to #loginPage

 38

Scenario: operation 3 – Successful Withdraw Operation

Given I am at #withdrawPage

And I entered amount

And amount confirmed

And balance updated

And session refreshed

Then Withdraw successful navigate to #operationList

Scenario: operation 4 – Failed Withdraw Operation

Given I am at #withdrawPage

And I entered amount

And amount invalid

And show Error

And Enter amount again

Then Withdraw failed navigate to #operationList

Scenario: operation 5 – Successful Deposit Operation

Given I am at #depositPage

And I entered amount

And amount confirmed

And balance updated

And session refreshed

Then Deposit successful navigate to #operationList

Scenario: operation 6 – Failed Deposit Operation

Given I am at #depositPage

And I entered amount

And amount invalid

And show Error

And enter amount again

Then Withdraw failed navigate to #operationList

Scenario: operation 7 – Successful Print Bill Operation

Given I am at #resultPage

 39

And I choose print bill

And bill printed

And SMS sent

Or e-mail sent

Then Print Bill successful navigate to #homePage

Scenario: operation 8 – Failed Print Bill Operation

Given I am at #resultPage

And I choose print bill

And show error

Then Print Bill failed navigate to #homePage

Scenario: operation 9 – Logout Operation

Given I am at #homePage and session is active

And I request to logout

And session cleared

And card ejected

And show error

Then Logout successful navigate to #welcomePage

 The given Gherkin based scenarios will be implemented in both Test Suite

Designer (TSD) tool and also ESG Domain Specific Language (DSL). In this case

study, comparison will be given in functional suitability, usability, reliability,

maintainability, productivity, compatibility, and expressiveness. Following figures

illustrate the visualized ESGs in both TSD and ESG DSL. The implementation source

code is included with the abstraction implementation for sub-ESGs in Appendix A.

Also, the output JSON file for the visualized graph is included in Appendix A.

Figure 5.1. Login sub-ESG visualized by ESG DSL

 40

Figure 5.2. Login sub-ESG visualized by TSD

 For Login sub-ESG, the vertex set C(V) = {Username Entered, Password

Entered, Correct Password, Wrong Password, Show Error, Card Blocked, Card

Retained} is visualized with both TSD and ESG DSL.

Figure 5.3. Withdraw sub-ESG visualized by ESG DSL

Figure 5.4. Withdraw sub-ESG visualized by TSD

 For Withdraw sub-ESG, the vertex set C(V) = {Amount Entered, Amount

Confirmed, Balance Updated, Session Refreshed, Amount Invalid, Show Error} is

visualized with both TSD and ESG DSL. Withdraw and deposit operations have the

same vertex set and the visualization process differs in sense of time. The reusability of

the ESG DSL is high when we compare it with TSD. ESG DSL increases the reuse of

 41

the software artifacts because there is copy and paste support on the textual models. It

offers copy and paste support not only for edges and vertices, but for the entire ESG.

Figure 5.5. Deposit sub-ESG visualized by ESG DSL

Figure 5.6. Deposit sub-ESG visualized by TSD

 For the Withdraw and Deposit sub-ESGs, the vertices and the edges are
completely the same. The scenarios are given on purpose and the time required to
visualize similar ESGs for the ESG DSL and TSD is observed.

 In Figure 5.7 and Figure 5.8 print bill sub-ESG ,the vertex set C(V) = {Bill

Requested, Bill Printed, Email sent, SMS sent, Show Error}, is visualized with both

TSD and ESG DSL.

Figure 5.7. Print Bill sub-ESG visualized by ESG DSL

 42

Figure 5.8. Print Bill sub-ESG visualized by TSD

Figure 5.9. Logout sub-ESG visualized by ESG DSL

Figure 5.10. Logout sub-ESG visualized by TSD

 In Figure 5.9 and Figure 5.10, logout sub-ESG, the vertex set C(V) = {Logout

Requested, Clear Session, Eject Card, Show Message}, is visualized with both TSD and

ESG DSL.

 This case study is carried out with the participation of software developers,

software testers, managers, and analysts from three different software companies, each

having over 100 employees. The participants divided into two groups, these groups used

TSD and ESG DSL tools respectively. The presentation, which lasted 15 minutes, is

given for each group. The presentation content contains functional and structural

oriented testing difference, definition for ESG, event pairs, complete event sequencies,

vertex refinement. Finally, TSD tool usage is shown to the participants for the first

 43

group and ESG DSL definition, usage, advantages and disadvantages is presented for

the second group.

The evaluation questionnaire has three parts:

1) personal information gathering from participant

2) scoring ESG DSL/TSD to a set of DSL/tool characteristics

3) open-ended questions

 We used open-ended questions to take feedback from the end-users about

functionality of the ESG DSL and suggestions for future development of it.

 The Framework for Qualitative assessment of Domain-specific Languages

(FQAD) (Kahraman et al., 2015) is customized to adoption for ESG DSL. Each

characteristic of the questionnaire is scored between one to five where 1 stands for

“Very Bad” and 5 stands for “Very Good”.

 The first section of the questionnaire consists of five questions that are related to

gathering information about the participant such as name, surname, graduated

department, academic degree, work experience, and role in their companies.

Participants distributed equally across the two platforms ESG DSL and TSD. Both of

the group has the same distribution percentage on the basis of graduated departments.

All the participants have Bachelor of Science academic degree.

 The second section of the questionnaire consists of seven subsections such as

functional suitability, usability, reliability, maintainability, productivity, compatibility,

and expressiveness. In total, these sections consist of 18 quality characteristic questions

for both the TSD tool and ESG DSL. In Figure 5.11, the average scores for each quality

characteristic collected from the questionnaire evaluators are given. The illustrated

graph includes both ESG DSL and TSD evaluation scores, orange color shows TSD

scores, and blue shows ESG DSL scores over quality metrics. The bar graph evaluated

by quality metrics between “Very Bad” and “Very Good” which is mentioned above.

 In the final part of the questionnaire, the following open-ended questions were

asked to the participants to get future development plan and feedbacks:

1) Does ESG DSL/TSD make graph visualization easier?

2) Do you find ESG DSL/TSD useful for graph visualization process?

3) Do you think that ESG DSL/TSD is covered the whole domain models?

 44

4) Please write your suggestions and other comments for improving ESG

DSL/TSD.

Figure 5.11. ESG DSL vs TSD Questionnaire Results

 In the functional suitability aspect, ESG and sub-ESG visualization process can

be done with both ESG DSL and TSD tool. On the other hand, ESG DSL provides

visualization support for the decision table (DT) container vertices. Also, the DT’s

properties table and DT’s itself visualized with ESG DSL. The DT visualization is not

supported with TSD tool.

 In the usability aspect, there is a gap between ESG DSL and TSD. TSD tool is

hard to understand how it is working and it does not have user friendly user interface.

ESG DSL provides coloring support for edges and vertices. It has user friendly user

interface for the ESG DSL user. Conversely, ESG DSL provides a natural language-

based syntax for the ESG DSL users. That is easier to understand and also the mapping

domain entities to syntax models provides integrity for the domain.

 In the reliability aspect, there is error checking mechanism, syntax highlighting

and error visualization support for ESG DSL. TSD tool does not provide an error

prevention mechanism for ESG visualization process.

 45

 In the maintainability aspect, ESG DSL can be combined with any platform

because ESG DSL produces a JSON file output to communicate with the other

platforms. It is harder to maintain TSD, further development must be implemented with

 JAVA general-purpose language.

 In the productivity aspect, both ESG DSL and TSD tool enhance the

productivity of ESG visualization when comparing with general-purpose

implementation of the process visualization. In Figure 5.12 and Figure 5.13, the time, in

minutes, bar graph is given to better explanation.

Figure 5.12. ESG DSL Case Study Time Sheet

Figure 5.13. TSD Case Study Time Sheet

 46

 By having the graph visualization order of main, login, withdraw, deposit, print

bill, and logout the Figure 5.12 and Figure 5.13 shows that TSD ESG visualization

process requires less time than ESG DSL. The letters from “A” to “E” show the

participants of the case study. Also, The repeating ESG visualization process, withdraw

sub-ESG and deposit sub-ESG visualization has the same number of vertices and edges,

is consuming much less time with ESG DSL than TSD tool. The withdraw and deposit

ESGs similar to each other, the related ESGs are given in Figure 5.4 and Figure 5.5.

 For the open-ended questions, we got feedback from the participants. They gave

mostly “yes” responses to the question “Does ESG DSL make graph visualization

easier?”. They replied the second question “Do you find ESG DSL useful for the graph

visualization process?” as “yes” and said that ESG DSL makes the visualization process

easier when they need to visualize a graph when compared with the existing tools. All

of the participants answered yes to “Do you think that ESG DSL is covered the whole

domain models?” because all the scenarios were implemented without any development

on ESG DSL. The last question for the open-ended is suggestions for the future of the

ESG DSL.

Finally, for the conclusion , ESG DSL provides a suitable graph visualization

environment, that helps to visualize the graphs with support of error checking, syntax

highlighting. ESG DSL consuming more time than TSD graph visualization process.

 47

CHAPTER 6

CONCLUSION AND FUTURE WORK

 In this thesis, a Domain Specific Language (DSL) called Event Sequence Graph

(ESG) DSL has been introduced. The study gives brief explanation about ESG

visualization, decision to develop a DSL, domain analysis, corner case discovery for

DSL development, design, implementation, and deployment process. Moreover, this

study presents a nested modularization technique for sub-ESGs (inner ESGs) and the

ESGs augmented by decision tables (DTs). Each abstraction layer might have a

container vertex that contains a sub-ESG or a combination of sub-ESGs along their

layers. The DTs are visualized by two different tables, first table illustrates the DT itself

and the second one illustrates table properties and definitions of the properties.

 The study presents an editor that is closer to the natural language. Enhance the

logical entity relation between domain models and DSL EMF models. The editor

provides error checking mechanism, colorful syntax highlighting, and error indicator in

the pane. With this development environment, ESG DSL offers an easy-to-understand

editor for non-tech person such as business partners, managers, etc. In this way, it

increases the number of people who can get involved the event-bases modeling without

tech background.

 The tool developed in this thesis provides a platform independent output file that

can be read and process with any other platform. Also, the produced file crates a

contract with other software languages. ESG DSL developed with JAVA general-

purpose language and the output file of the program can be read by other languages

such as kotlin, swift, etc.

 ESG DSL increases productivity when it is focused on a restricted domain of the

project. The case study shows that after the main ESG and the first sub-ESG

visualization, there are serious gains in sense of time because it is an enabler of the

reuse of software artifacts. Reusability enhances the outcome of the people and

increases the project output indirectly. Also, the colorful syntax is easy to remember and

copy and paste operations increase the productivity with a small effort.

 48

 For future work, the design and implementation of a pipeline for the

communication between ESG DSL and the graph visualization project are required. The

implementation can be deployed as a cloud application to increase the accessibility of

the ESG DSL. Also, the decision table composition and improvements for defining an

easy and useful syntax will be done. The simplification operation over the DSL models

will decrease the time that is spent visualizing ESGs.

 49

REFERENCES

Bagga, J. S., & Heinz, A. (2001). JGraph—A Java Based System for Drawing Graphs

and Running Graph Algorithms. Undefined.

https://www.semanticscholar.org/paper/JGraph-A-Java-Based-System-for-

Drawing-Graphs-and-Bagga-

Heinz/4df05ecf4e2b9ca94f591fc9d90b2bdb5279d1c0

Belli, F. (2001). Finite state testing and analysis of graphical user interfaces. In

Proceedings of the International Symposium on Software Reliability

Engineering, ISSRE (p. 43). https://doi.org/10.1109/ISSRE.2001.989456

Belli, F., Budnik, C., & . (2004). Minimal Spanning Set for Coverage Testing of

Interactive Systems (Vol. 3407, p. 234). https://doi.org/10.1007/978-3-540-

31862-0_17

Belli, F., Budnik, C., & . (2005). Towards Minimization of Test Sets for Coverage

Testing of Interactive Systems. (p. 90).

Belli, F., Budnik, C. J., & . (2007). Test minimization for human-computer interaction.

Applied Intelligence, 161–174. https://doi.org/10.1007/s10489-006-0008-0

Belli, F., Budnik, C., & White, L. (2006). Event-based modelling, analysis and testing

of user interactions: Approach and case study. Softw. Test., Verif. Reliab., 16, 3–

32. https://doi.org/10.1002/stvr.335

Bentley, J. (1986). Programming pearls: Little languages. Communications of the ACM,

29(8), 711–721. https://doi.org/10.1145/6424.315691

Boehm, B. (2006). A view of 20th and 21st century software engineering. In

Proceedings—International Conference on Software Engineering (Vol. 2006, p.

29). https://doi.org/10.1145/1134285.1134288

 50

Brito, G., Valente, M. T., & . (2020). REST vs GraphQL: A controlled experiment.

Proceedings - IEEE 17th International Conference on Software Architecture,

ICSA 2020, 81–91. https://doi.org/10.1109/ICSA47634.2020.00016

Brooks, F. P. (1996). Keynote address: Language design as design. In History of

programming languages—II (pp. 4–16). Association for Computing Machinery.

https://doi.org/10.1145/234286.1057806

Chow, T. S. (1978). Testing Software Design Modeled by Finite-State Machines. IEEE

Transactions on Software Engineering, SE-4(3), 178–187.

https://doi.org/10.1109/TSE.1978.231496

Compatangelo, E., Meisel, H., & . (2002). Conceptual Analysis of EER Schemas and

Ontologies. https://www.semanticscholar.org/paper/Conceptual-Analysis-of-

EER-Schemas-and-Ontologies-Compatangelo-

Meisel/47d57c45ab8b52643f7a250bd3db8fd3e58a25f6

Cucumber, G. (n.d.). Gherkin Reference—Cucumber Documentation. Retrieved June 3,

2022, from https://cucumber.io/docs/gherkin/reference/

DeMarco, T. (1982). Controlling software projects: Management, measurement &

estimation. New York, NY : Yourdon Press.

http://archive.org/details/controllingsoftw0000dema

Deursen, A., Klint, P., & Visser, J. (2000). Domain-Specific Languages: An Annotated

Bibliography. SIGPLAN Notices, 35, 26–36.

Diepenbeck, M., Kühne, U., Soeken, M., & Drechsler, R. (2014). Behaviour Driven

Development for Tests and Verification. In M. Seidl & N. Tillmann (Eds.), Tests

and Proofs (pp. 61–77). Springer International Publishing.

https://doi.org/10.1007/978-3-319-09099-3_5

 51

Eeles, P., Sam, H. B., Mistrík, I., Roshandel, R., & Stal, M. (2014). Relating System

Quality and Software Architecture: Foundations and Approaches.

https://doi.org/10.1016/B978-0-12-417009-4.00001-6

Efftinge, S., Völter, M., & . (2006). oAW xText: A framework for textual DSLs.

Workshop on Modeling Symposium at Eclipse Summit, 32.

Ellson, J., Gansner, E. R., Koutsofios, E., North, S. C., & Woodhull, G. (2003).

Graphviz and dynagraph – static and dynamic graph drawing tools. Graph

Drawing Software, 127–148.

Expression Language. (2021). https://github.com/intuit/common-xtext-expression-

language/commits/develop?after=44a9ce7bc5d7a43d5252c453c622d8a3cc0134

20+34&branch=develop&qualified_name=refs%2Fheads%2Fdevelop

Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A., & Mehandjiev, N. (2004). Meta-Design:

A manifesto for End-User Development. Commun. ACM, 47, 33–37.

https://doi.org/10.1145/1015864.1015884

Franca. (2018). GitHub. https://github.com/franca/franca

Gansner, E., Koutsofios, E., North, S., & Vo, K. (1993). A Technique for Drawing

Directed Graphs. Software Engineering, IEEE Transactions On, 19, 214–230.

https://doi.org/10.1109/32.221135

Gansner, E., & North, S. (1997). An Open Graph Visualization System and Its

Applications to Software Engineering. Software - Practice and Experience -

SPE, 30. https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-

SPE338>3.CO;2-N

Graphviz. (n.d.). Graphviz. Retrieved June 5, 2022, from https://graphviz.org/

Gutiérrez, J. J., Ramos, I., Mejías, M., Arévalo, C., Sánchez-Begines, J. M., & Lizcano,

D. (2017). Modelling gherkin scenarios using uml. Information Systems

 52

Development: Advances in Methods, Tools and Management - Proceedings of

the 26th International Conference on Information Systems Development, ISD

2017, undefined-undefined. https://www.mendeley.com/catalogue/25265db9-

9e9e-3e19-91a2-

2b665a941dd3/?utm_source=desktop&utm_medium=1.19.8&utm_campaign=o

pen_catalog&userDocumentId=%7Be777957f-a095-3145-be8c-

f71f593f0c73%7D

Higley, K. A. (2006). Environmental consequences of the chernobyl accident and their

remediation: Twenty years of experience. Report of the chernobyl forum expert

group ‘environment.’ Radiation Protection Dosimetry, 121(4), 476–477.

https://doi.org/10.1093/rpd/ncl163

JUNG Framework Tech Report. (n.d.). Retrieved June 5, 2022, from

http://www.datalab.uci.edu/papers/JUNG_tech_report.html#related

Kahraman, G., Bilgen, S., & .. (2015). A framework for qualitative assessment of

domain-specific languages. Software & Systems Modeling, 14(4), 1505–1526.

https://doi.org/10.1007/s10270-013-0387-8

Merks, E., Paternostro, M., Budinsky, F., & Steinberg, D. (2009). EMF: Eclipse

Modeling Framework 2nd edition (2nd edition).

Mernik, M., Heering, J., & Sloane, A. M. (2005). When and how to develop domain-

specific languages. ACM Computing Surveys, 37(4), 316–344.

https://doi.org/10.1145/1118890.1118892

Mishra, A. (2017). Introduction to Behavior-Driven Development (pp. 317–327).

https://doi.org/10.1007/978-1-4842-2689-6_10

 53

Murnane, T., & Reed, K. (2001). On the effectiveness of mutation analysis as a black

box testing technique. Proceedings 2001 Australian Software Engineering

Conference, 12–20. https://doi.org/10.1109/ASWEC.2001.948492

Murnane, T., Reed, K., & .. (2001). On the Effectiveness of Mutation Analysis as a

Black Box Testing Technique. (p. 20).

Nardi, B. A. (1993). A Small Matter of Programming: Perspectives on End User

Computing. MIT Press.

Öztürk, D. (2020). A model-based test generation approach for agile software product

lines. https://gcris.iyte.edu.tr/handle/11147/10970

PlantUML. (2009). PlantUML.Com. https://plantuml.com/

SciSpike/yaktor. (2021). [JavaScript]. scispike. https://github.com/SciSpike/yaktor

(Original work published 2016)

SciSpike/yaktor-dsl-xtext. (2017). [Java]. scispike. https://github.com/SciSpike/yaktor-

dsl-xtext (Original work published 2016)

Spinellis, D. (2001). Notable design patterns for domain-specific languages. Journal of

Systems and Software, 56(1), 91–99. https://doi.org/10.1016/S0164-

1212(00)00089-3

Tomar, A., Vilas, D., & Thakare, V. M. (2011). A Systematic Study Of Software

Quality Models. International Journal of Software Engineering & Applications,

2. https://doi.org/10.5121/ijsea.2011.2406

Tuglular, T. (2018). Event Sequence Graph-Based Feature-Oriented Testing: A

Preliminary Study. Proceedings - 2018 IEEE 18th International Conference on

Software Quality, Reliability, and Security Companion, QRS-C 2018, 580–584.

https://doi.org/10.1109/QRS-C.2018.00102

 54

Tuglular, T. (2021). On the Composability of Behavior Driven Acceptance Tests

(IARIA SOFTENG).

Tuglular, T., Belli, F., & Linschulte, M. (2016a). Input Contract Testing of Graphical

User Interfaces. International Journal of Software Engineering and Knowledge

Engineering, 26(2), 183–215. https://doi.org/10.1142/S0218194016500091

Tuglular, T., Belli, F., & Linschulte, M. (2016b). Input Contract Testing of Graphical

User Interfaces. International Journal of Software Engineering and Knowledge

Engineering, 26(02), 183–215. https://doi.org/10.1142/S0218194016500091

Uddin, A., Anand, A., & .. (2019). Importance of Software Testing in the Process of

Software Development. 2321–0613.

Xtext. (2006). https://www.eclipse.org/Xtext/

 55

APPENDIX A

ESG DSL SOFTWARE

Java SE

Java Standard Edition (Java SE) is a desktop and server computing platform that

environment helps for developing and deploying portable code. Java SE defines a

variety of general purpose and open-source APIs for the Java Class Library. ESG DSL

development is done with JAVA general-purpose language. The project runs with the

java SE 11 or newer versions.

(https://www.oracle.com/tr/java/technologies/javase/jdk11-archive-downloads.html)

Eclipse

Eclipse is a programming Integrated Development Environment (IDE). It comes

with a standard workspace and a plug-in framework for configurating the environment.

It is the second-most used IDE for Java development, and it was the most popular until

2016. Eclipse is developed mostly in Java and its primary use is for developing Java

applications. (https://www.eclipse.org/downloads/)

XText Framework

 XText is a programming language and domain-specific language development

framework. With XText, you may use a robust grammar language to define your

domain specific language. As a result, you receive a complete infrastructure for Eclipse,

including a parser, linker, type-checker, compiler, and editing support.

(https://www.eclipse.org/Xtext/)

 56

Graphviz

Graphviz is a graph visualization program that is free and open source. Graph

visualization is a method of displaying structural data in the form of diagrams of

abstract graphs and networks. Networking, bioinformatics, software engineering, web

design, and visual interfaces for other technical disciplines all benefit from it. Graphviz

has many useful features such as concrete diagrams, support options for colors, fonts,

tabular layouts, line styles and custom shapes. (https://graphviz.org/download/)

Test Suite Designer

 TSD is a scientific software tool that is non-commercial and freely available to

the software analysis and testing research community. TSD relies on Event Sequence

Graphs and generation of test sequences from CES and FCES.

(http://download.ivknet.de/)

Installation

 ESG DSL installation instructions are given in git-hub repository. Also, the

sample ESG DSL grammars, output files are included in the repository.

(https://github.com/esg4aspl/esg-dsl)

ESG-Engine

 ESG structure, its features and positive/negative test generation are implemented
under this project. (https://github.com/ esg4aspl/esg-engine)

ESG DSL Case Study

ESG DSL “Bank ATM Project” case study grammar syntax and the visualized

graph is given in the git-hub repository provided at the end of the paragraph. The DSL

http://download.ivknet.de/

 57

syntax file named as “bank_atm_mert.mkdsl” and visualized graph is named as
“bank_atm_mert.dot” (https://github.com/esg4aspl/esg-dsl).

	ABSTRACT
	ÖZET
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1
	INTRODUCTION
	CHAPTER 2
	RELATED WORK
	CHAPTER 3
	FUNDAMENTALS
	3.1. Domain Specific Languages
	3.2. Event Sequence Graphs
	3.2.1. Sub Event Sequence Graphs (Sub ESGs)
	3.2.2. Augmented Event Sequence Graphs by Decision Tables

	CHAPTER 4
	EVENT SEQUENCE GRAPH DOMAIN SPECIFIC LANGUAGE
	4.1. Decision
	4.2. Analysis and Design
	4.3. Implementation
	4.4. Graph Visualization

	CHAPTER 5
	CASE STUDY
	CHAPTER 6
	CONCLUSION AND FUTURE WORK
	REFERENCES
	APPENDIX A

