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A B S T R A C T

Approximate computing techniques, where less-than-perfect solutions are acceptable, present performance-
accuracy trade-offs by performing inexact computations. Moreover, heterogeneous architectures, a combination
of miscellaneous compute units, offer high performance as well as energy efficiency. Graph algorithms utilize
the parallel computation units of heterogeneous GPU architectures as well as performance improvements
offered by approximation methods. Since different approximations yield different speedup and accuracy loss
for the target execution, it becomes impractical to test all methods with various parameters. In this work,
we perform approximate computations for the three shortest-path graph algorithms and propose a machine
learning framework to predict the impact of the approximations on program performance and output accuracy.
We evaluate random predictions for both synthetic and real road-network graphs, and predictions of the large
graph cases from small graph instances. We achieve less than 5% prediction error rates for speedup and
inaccuracy values.
1. Introduction

As Dennard scaling comes to an end and Moore’s law slows down,
the present computing systems are reaching the fundamental limits
of the energy required for fully correct computation. Both industry
and research communities have shifted their focus to innovative solu-
tions from the traditional scaling for energy-efficient computing [1].
Approximate computing, which maintains an acceptable reduction in
output accuracy, has started to play a key role in the efficiency of
the applications tolerating computation errors. Various approximation
methods applied in different layers of the computing stack demonstrate
resource/correctness tradeoffs for the systems by targeting significant
energy savings [2–6].

Heterogeneous computing systems offer high performance and less
energy consumption by combining a wide range of device structures
and configurations. Building heterogeneous systems by bringing to-
gether general-purpose multi-core processors (CPUs) and data-parallel
graphics processing units (GPUs) enables efficient computation for
high performance and energy consumption in large-scale computing
platforms [7].

Graph algorithms serve for solving various real-life problems by
maintaining the graph data structure to represent the big data. Since
processing large amounts of data takes unreasonable time in single-core
systems, the parallel implementations of graph algorithms have been
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developed to utilize the parallel resources of multi-core CPU or many-
core GPU architectures [8–11]. While some graph-based computations
require an exact result, others may tolerate some errors to be accepted
as a correct result. Hence, the approximate computations may improve
the performance by providing energy efficiency [12,13]. Software-
based approximation, where the high-level source code is modified by
introducing code transformations, requires an exhaustive method and
parameter selection process to find out the best technique maintaining
both performance and accuracy. However, exploring all possible ap-
proximation methods and related parameters for all target algorithms
is not practical. Therefore, we need to find a way to find out the effects
of the approximation techniques for the particular program instance by
considering multiple criteria (e.g. performance, correctness).

In this work, we investigate approximation techniques for the
shortest-path graph algorithms and propose an ML-based methodology
to predict the performance and accuracy impacts of the approximation
techniques without executing all alternative approximations. We be-
lieve that our work can be easily adapted by other graph algorithms as
well. Our main contributions are as follows:

• We define a set of software-level approximation methods for
the main GPU-based shortest-path implementations for Dijkstra,
Bellman–Ford, and Hybrid algorithm combining two algorithms.
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• We perform detailed experiments to demonstrate the effect of the
approximations on the program performance and result correct-
ness. Our executions employ both the individual approximation
techniques with a set of parameters and the combination of
multiple approximations.

• Based on our observations that reveal the wide range of approx-
imation effects, we present an ML-based prediction mechanism
to find out the performance and accuracy impacts of the ap-
proximation techniques and the related parameters for the target
execution without running the programs.

• We evaluate both random predictions based on random train/test
data split and predictions of the large graph cases from small
graph instances. We utilize synthetic graphs generated by Kro-
necker generator [14] and real road-network graphs provided by
DIMACS Implementation Challenge [15]. Our prediction model
achieves less than 5% prediction error rates for speedup and
inaccuracy values.

While there is existing ML-based performance prediction [16,17]
nd design-space exploration literature [18,19], our work presents a
ystematic way for approximation methods for GPU-based shortest-
ath implementations, generates empirical data based on a large set of
xecutions, builds a prediction model by employing different machine
earning algorithms and rigorous experimental results, and guides the
eveloper for the approximations by predicting both performance and
ccuracy for target executions. We believe that our study will impact
ow approximation methods can be applied for graph algorithms,
nd how the target executions can be compared and traded-off for
erformance and accuracy on target GPU platforms.

The remainder of this paper is organized as follows: Section 2
resents some background on GPU architectures and shortest-path
lgorithms. We explain our approximation methods and prediction
ramework in Section 3. Then the experimental results are outlined in
ection 4. Finally, in Section 5, we summarize the work with some
onclusive remarks.

. Background and motivation

.1. GPU architecture and programming model

While introduced for real-time rendering in graphics applications,
urrently, GPU devices have been increasingly supporting non-graphics
omputing. Refined GPU architectures and programming models in-
rease flexibility and energy efficiency. A modern GPU architecture
ontains many cores. Each core, located in a core cluster, is responsible
or single-instruction-multiple-thread (SIMT) execution. While the cores
nside the same core cluster have access to the scratchpad memory
shared memory or L1 cache), all the cores can communicate through
2 cache structure via interconnect. DRAM-based global device mem-
ry maintains larger but relatively slower data access for all threads
xecuting in the device.

A GPU program starts its execution in a CPU, allocates memory
pace on the GPU, transfers data into GPU global memory, and starts

kernel function execution by creating thousands of threads. Each
hread executes the same program (SIMT) by processing different parts
f the given data. Threads that execute on the GPU are part of a com-
ute kernel specified by a function. Besides data-parallel applications
hat can benefit from many parallel execution units of GPUs, large-
cale graph computations with billions of vertices and edges, utilize
he massive degree of parallelism and the high memory bandwidth
rovided by GPUs [20]. While graph processing includes irregular data
ccess patterns [21] and also moving data from CPU to GPU results in
ubstantial overhead, parallel GPU cores still offer a promising solution
or high performance [10,22,23].
2

a

2.2. Shortest-path algorithms

One of the classical optimization problems in graph theory is the
shortest-path problem. Specifically, in the single-source shortest path
(SSSP) problem [24], the aim is to find the smallest combined weight
of edges required to reach every node, for a given weighted graph and
a source node. Many real-world problems, such as navigation systems,
social networks, databases, and web searching [25,26], arise from
finding the shortest paths from a given source to all the other nodes.
There are two common algorithms to solve the SSSP problem: Dijkstra’s
algorithm and Bellman–Ford’s algorithm. Additionally, Hybrid [27]
algorithm combines these two approaches by utilizing their advantages.

2.2.1. Dijkstra’s algorithm
The most well-known algorithm for solving the SSSP problem in the

absence of negative weights in the graphs was proposed by Dijkstra
in 1959. Dijkstra’s algorithm provides an optimal sequential solution
to the SSSP problem. Its time complexity is 𝑂(𝐸𝑙𝑜𝑔𝑉 ). There have
been many attempts to parallelize Dijkstra’s algorithm efficiently in the
literature [28].

Dijkstra’s algorithm (given in Algorithm 1) has a greedy approach
and finds the next best solution hoping that the final result is the best
solution. In the algorithm, when a low-cost path is discovered, the cost
of the visited vertex is changed. If there is no change in the cost, then
the algorithm terminates. It works fast in CPU compared to the other
algorithms. However, the downside of the algorithm is that it does not
work on the graphs with negative-weight edges, additionally, it is hard
to parallelize in the GPU.

Algorithm 1: Sequential Dijkstra’s Algorithm
1 create priority queue Q ;
2 for vertices 𝑣 ∈ 𝑉 (𝐺) do
3 𝑑(𝑣) = ∞ ;
4 𝑝𝑟𝑒𝑣(𝑣) = 𝑁𝑈𝐿𝐿 ;
5 if 𝑣 ≠ 𝑠 then
6 𝑖𝑛𝑠𝑒𝑟𝑡_𝑡𝑜_𝑞𝑢𝑒𝑢𝑒(𝑄, 𝑣) ;
7 end
8 end
9 𝑑[𝑠] = 0;

10 while 𝑄 ≠ ∅ do
11 𝑢 = 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑚𝑖𝑛(𝑄) ;
12 for each neighbor 𝑣 ∈ 𝑢 do
13 𝑎𝑙𝑡 = 𝑑[𝑢] +𝑤𝑒𝑖𝑔ℎ𝑡(𝑢, 𝑣) ;
14 if 𝑎𝑙𝑡 < 𝑑[𝑣] then
15 𝑑[𝑣] = 𝑎𝑙𝑡 ;
16 𝑝𝑟𝑒𝑣[𝑣] = 𝑢 ;
17 end
18 end
19 end

2.2.2. Bellman–Ford’s algorithm
Another well-known algorithm for solving the SSSP problem is

Bellman–Ford’s algorithm, which has time complexity, 𝑂(𝑉 𝐸). Unlike
Dijkstra’s algorithm, the graphs with negative-weight edges can be
processed and the algorithm can be parallelized easily in the GPU.

In Bellman–Ford’s algorithm (given in Algorithm 2), firstly, the
length of the path from the source node to all other vertices is over-
estimated. Then those estimates are iteratively relaxed by finding new
paths that are shorter than the previous paths. 𝑅𝑒𝑙𝑎𝑥 procedure (given
in Algorithm 3) checks if, starting from 𝑢, it is possible to improve the
distance to 𝑣. This process is repeated 𝑉 times, since in the worst-case
cenario, a vertex’s path length might need to be readjusted 𝑉 times.
inally, it is executed one more time (i.e., (𝑉 +1)𝑡ℎ) to check if there is
ny negative cycle in the graph. If the algorithm still updates the path
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distances, then there is a negative cycle in the graph. However, if there
is no change in the distance path then the algorithm is finished, and
there is no negative cycle in this graph.

Algorithm 2: Sequential Bellman–Ford’s Algorithm
1 for vertices 𝑢 ∈ 𝑉 (𝐺) do
2 𝑑(𝑢) = ∞ ;
3 end
4 𝑑(𝑠) = 0;
5 for edges (𝑢, 𝑣) ∈ 𝐸(𝐺) do
6 𝑅𝑒𝑙𝑎𝑥(𝑢, 𝑣,𝑤) ;
7 end

Algorithm 3: Relax Procedure
1 Function Relax(𝑢, 𝑣, 𝑤):
2 if 𝑑(𝑢) +𝑤 < 𝑑(𝑣) then
3 𝑑(𝑣) = 𝑑(𝑢) +𝑤;
4 end
5 return

2.2.3. Hybrid algorithm
Hybrid algorithm (given in Algorithm 4) combines the first two al-

gorithms, i.e., Bellman–Ford’s and Dijkstra’s algorithms, and calculates
the distances from the source to all other nodes [27]. It is proposed to
show that Dijkstra’s algorithm can actually work with the graphs with
negative-weight edges and it realizes its purpose by running Dijkstra’s
algorithm several times.

Algorithm 4: Sequential Hybrid Algorithm
1 𝑖 ← 0 ;
2 while no change in distance or 𝑖 = |𝑉 | − 1 do
3 i++;
4 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎_𝑠𝑐𝑎𝑛();
5 end
6 if no change in distance then
7 return
8 else
9 There exist negative cycle

10 end

2.3. Approximate computing

It is essential to improve the energy efficiency for applications
that require high workloads to deal with the massive information that
needs to be processed. A promising solution, known as approximate
computing, introduces acceptable errors into the computing process and
romises significant energy-efficiency gains.

There are different ways to achieve approximate computing [29].
he approximation of the computations can be performed either in the
oftware with code modifications [30,31] or in the hardware by ap-
roximating the circuits [5,32]. In this work, we perform software-level
pproximate computations for the shortest-path algorithms requiring
igh performance with some tolerable error rate. While graph al-
orithms solve various real-life problems by representing big data,
rocessing a huge amount of data takes too much time. Even though the
arallel implementation of the graph algorithms maintains lower exe-
ution times, performance gain may not be sufficient for time-critical
pplications. On the other hand, those applications could tolerate some
rrors by providing faster executions. Therefore, applying approxima-
ion techniques by exchanging with some error rate is the best way to
atisfy the performance requirements.
3

l

There are many approximation methods performed for graph com-
utations in the literature. Singh and Nasre [12] present four approxi-
ation methods including Reduced Execution, Partial Graph Process-

ng, Approximate Graph Representation, and Approximate Attribute
alues, where they utilize the following approaches to achieve ap-
roximation: cutting-short the execution, processing only some part
f the graph, running the algorithm on an approximate graph, and
ransforming SSSP algorithm into BFS algorithm, respectively.

Singh and Nasre, in their other work, [33], propose GPU-specific
pproximations. They focus on the GPU-specific aspects affecting the
erformance and address memory coalescing, memory latency, and
hread divergence problems by presenting three techniques to boost
erformance. In this work, we do not focus on GPU-specific techniques.

Slim Graph [30] presents a practical lossy graph compression frame-
ork and programming model for approximate computing in graphs. It
ccelerates many graph algorithms, reduces storage use, and provides
igh accuracy of the resulting graphs.

. Methodology

In this work, we firstly implement the parallel versions of Bellman–
ord’s, Dijkstra’s, and Hybrid algorithms, and apply the approximation
echniques to increase the performance. Then, we gather the data from
arious graphs with various approximation techniques and use machine
earning models to predict the speedup and the inaccuracy rates for the
iven graphs. Specifically, we predict how much the execution time
s reduced and how inaccurate the expected result is computed (error
ates as differences between distance values). In this section, we first
xplain the CUDA implementations of our SSSP algorithms. Secondly,
e introduce our approximation techniques applied in the target codes.
inally, we present our prediction model built to estimate the speed-up
nd the inaccuracy rates of the approximate versions.

.1. SSSP algorithms implementation details

The shortest path algorithms aim to find the shortest paths from a
ingle source node to all other nodes in a given graph. In this work, we
mplement Bellman–Ford’s, Dijkstra’s, and Hybrid algorithms in CUDA
rogramming model.

For the parallel Bellman–Ford’s algorithm (given as a template
n Algorithm 5), we utilize the implementation and the optimization
echniques performed by Busato et al. [34]. Firstly, as a preprocessing
tep, we eliminate the self-loops from the graphs since they cannot
hange the tentative distance of 𝑢. Secondly, we add the source vertex
o the queue by adding its neighbors to the queue in the CPU. Thus, we
ncrease the parallelism and avoid unnecessary kernel launch and data
opy operations. Therefore, we do not have to implement the source
dge class technique, which suggests the direct update of its neighbors
ince they are never visited before, in the kernel code. Thirdly, we
mplement the out-degree edge class, which specifies that there is no
eed for an update if the vertices with out-degree are equal to zero,
nd they are ignored during the algorithm iterations. Finally, we apply
he duplicate removal with 64-bit atomic instructions. In the parallel
ellman–Ford implementation, the duplicate vertices are generated
ecause more threads concurrently access the same vertex for the relax
peration. This causes a vertex to be added to the next-frontier more
han once. To avoid duplicate vertices, Busato et al. [34] propose a
echnique that involves adding extra information to each vertex (in
ddition to the distance value). The distance of each vertex is coupled
ith the number of the current algorithm iteration. They are stored

nto a 64-bit int2 CUDA data type. The distance value is stored in the 32
ost significant bits while the iteration number is stored in the 32 least

ignificant bits. Algorithm 6 and Algorithm 7 present the high-level and

ow-level implementations of the atomic relax operations, respectively.



Parallel Computing 112 (2022) 102942B. Aktılav and I. Öz
Algorithm 5: Parallel Bellman–Ford’s Algorithm
1 for vertices 𝑢 ∈ 𝑉 (𝐺) do
2 𝑑(𝑢) = ∞ ;
3 end
4 𝑑(𝑠) = 0;
5 𝐹1 ← {𝑠};
6 𝐹2 ← ∅;
7 while 𝐹1 ≠ ∅ do
8 parallel for vertices 𝑢 ∈ 𝐹1 do
9 𝑢 ← 𝐷𝐸𝑄𝑈𝐸𝑈𝐸(𝐹1);

10 parallel for vertices 𝑣 ∈ 𝑎𝑑𝑗[𝑢] do
11 if 𝑑(𝑢) +𝑤 < 𝑑(𝑣) then
12 𝑑(𝑣) = 𝑑(𝑢) +𝑤;
13 𝐸𝑁𝑄𝑈𝐸𝑈𝐸(𝐹2, 𝑣);
14 end
15 end
16 end
17 𝑆𝑊𝐴𝑃 (𝐹1, 𝐹2);
18 end

Algorithm 6: Atomic Relax Pseudocode
1 Function Relax_Atom(𝑢, 𝑣, 𝑤):
2 if 𝑑(𝑢) +𝑤 < 𝑑(𝑣) then
3 𝑑(𝑣) = 𝑑(𝑢) +𝑤;
4 if 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑢𝑚[𝑣] ≠ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑢𝑚 then
5 ENQUEUE(V) ;
6 end
7 end
8 return

Algorithm 7: Atomic64 Relax Implementation
1 Function Relax_Atom(𝑢, 𝑣, 𝑤):
2 u_info = MERGE(d(u), currentIteration);
3 old_info = ATOMIC_MIN(&vertexInfo[v], u_info);
4 if 𝑜𝑙𝑑_𝑖𝑛𝑓𝑜.𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≠ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 then
5 ENQUEUE(v);
6 end
7 return

For the parallel Dijkstra’s algorithm (given as a template in Al-
gorithm 8), we utilize the implementation proposed by Harish and
Narayanan [28]. We use a distance array 𝑑(𝑢), an updating distance
array 𝑢𝑑(𝑢), and a boolean visited array. In our first kernel function,
(𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎_𝐾𝑒𝑟𝑛𝑒𝑙1 given in Algorithm 9), in each iteration, each vertex
checks whether it is visited before. The distance of each of its neighbors
is updated, if it is visited and the distance is larger than the summation
of the distance of the current vertex and the edge weight to that
neighbor. However, the new distances are not reflected in the distance
array. They are updated in the updating distance array. At the end of
the first kernel execution, we launch a second kernel (𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎_𝐾𝑒𝑟𝑛𝑒𝑙2
given in Algorithm 10). It simply compares the distance and updating
distance arrays, and updates the distance array if the distance in the
updating array is smaller. The second kernel for updating the distance
array is necessary because there is no synchronization mechanism
between the CUDA streaming multiprocessors.

Fig. 1 presents the normalized execution times of our parallel execu-
tions for our synthetic graphs (The graph details are given in Table 2).
Since Bellman–Ford’s algorithm is more suitable for parallelization,
our parallel implementation outperforms two other algorithms. How-
ever, we apply our approximation methods to all three algorithms by
4

Algorithm 8: Parallel Dijkstra’s Algorithm
1 for vertices 𝑢 ∈ 𝑉 (𝐺) do
2 𝑑(𝑢) = ∞ ;
3 𝑢𝑑(𝑢) = ∞ ;
4 𝑣𝑖𝑠𝑖𝑡𝑒𝑑(𝑢) = 0 ;
5 end
6 𝑑(𝑠) = 0;
7 𝑣𝑖𝑠𝑖𝑡𝑒𝑑(𝑠) = 1;
8 while 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ≠ ∅ do
9 parallel for vertices 𝑢 ∈ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 do

10 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎_𝐾𝑒𝑟𝑛𝑒𝑙1();
11 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎_𝐾𝑒𝑟𝑛𝑒𝑙2();
12 end
13 end

Algorithm 9: Dijkstra Kernel1
1 𝑡𝑖𝑑 ← 𝑔𝑒𝑡𝑇 ℎ𝑟𝑒𝑎𝑑𝐼𝐷;
2 if 𝑣𝑖𝑠𝑖𝑡𝑒𝑑(𝑡𝑖𝑑) then
3 𝑣𝑖𝑠𝑖𝑡𝑒𝑑(𝑡𝑖𝑑) ← 𝑓𝑎𝑙𝑠𝑒 ;
4 for all neighbors nid of tid do
5 if 𝑢𝑑(𝑛𝑖𝑑) > 𝑑(𝑡𝑖𝑑) +𝑤(𝑛𝑖𝑑) then
6 𝑢𝑑(𝑡𝑖𝑑) ← 𝑑(𝑡𝑖𝑑) +𝑤(𝑛𝑖𝑑);
7 end
8 end
9 end

Algorithm 10: Dijkstra Kernel2
1 tid ← getThreadID ;
2 if 𝑣𝑖𝑠𝑖𝑡𝑒𝑑(𝑡𝑖𝑑) > 𝑢𝑑(𝑡𝑖𝑑) then
3 𝑑(𝑡𝑖𝑑) ← 𝑢𝑑(𝑡𝑖𝑑);
4 𝑣𝑖𝑠𝑖𝑡𝑒𝑑(𝑡𝑖𝑑) ← 𝑡𝑟𝑢𝑒;
5 end
6 𝑢𝑑(𝑡𝑖𝑑) ← 𝑑(𝑡𝑖𝑑)

Fig. 1. Normalized execution times for shortest-path implementations.

considering their possible diverse characteristics. While Bellman–Ford
potentially performs better, the approximation methods may impact
both performance and accuracy in different ways.

3.2. Approximation methods

For the approximation methods, we utilize the techniques proposed
by Singh and Nasre [12]. Moreover, we propose additional approxima-
tion methods specific to our target implementations. We note that the
approximation methods are generic approximations rather than GPU-
specific, so that they can applied to either sequential or CPU-based
parallel implementations of the algorithms.
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We perform the same methods for all the algorithms unless stated
otherwise and provide the specific implementation for Bellman–Ford’s
and Dijkstra’s algorithms. In our evaluation phase, we collect both
speedup (i.e. performance improvement) and inaccuracy (i.e. error in
the result) values for our synthetic graphs. We calculate both speedup
and inaccuracy values by considering the execution time and resultant
outputs of the exact versions. Since both metrics represent normalized
values, instead of having the values for each graph separately, we
demonstrate average inaccuracy and speedup values collected from all
six graphs for four approximation methods (Figs. 2, 4, 6, 8). On the
other hand, for easier comparison of our target algorithm, we include
the results only for the largest graph, namely, Graph6, in Figs. 3, 5, 7,
9.

3.2.1. Method 1: Reduced execution
In the reduced execution approximation method, we interrupt the

execution by halting the outermost loop early. Namely, we execute the
loop for fewer iterations, and examine the performance improvement
and inaccuracy values.

Algorithm 11: Reduced Execution for Parallel Bellman–Ford’s
Algorithm

1 while 𝑟𝑜𝑢𝑛𝑑 < 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑢𝑚𝑏𝑒𝑟 do
2 parallel for vertices 𝑢 ∈ 𝐹1 do
3 𝑢 ← 𝐷𝐸𝑄𝑈𝐸𝑈𝐸(𝐹1);
4 parallel for vertices 𝑣 ∈ 𝑎𝑑𝑗[𝑢] do
5 if 𝑑(𝑢) +𝑤 < 𝑑(𝑣) then
6 𝑑(𝑣) = 𝑑(𝑢) +𝑤;
7 𝐸𝑁𝑄𝑈𝐸𝑈𝐸(𝐹2, 𝑣);
8 end
9 end

10 end
11 𝑆𝑊𝐴𝑃 (𝐹1, 𝐹2);
12 end

Algorithm 12: Reduced Execution for Parallel Dijkstra’s Algo-
rithm

1 while 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ≠ ∅ && 𝑟𝑜𝑢𝑛𝑑 < 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑢𝑚𝑏𝑒𝑟 do
2 parallel for vertices 𝑢 ∈ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 do
3 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎_𝐾𝑒𝑟𝑛𝑒𝑙1();
4 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎_𝐾𝑒𝑟𝑛𝑒𝑙2();
5 end
6 end

As seen in the first line of both Algorithm 11 and Algorithm 12, if
the current round number is smaller than the desired iteration number,
the algorithm continues to work, otherwise it halts early. By eliminating
the number of iterations in the original execution, we expect higher
performance with lower total execution time.

We examine each possible iteration number for the given graphs
and the effects on both performance and inaccuracy percentage. By
reducing the number of iterations, we achieve performance gains from
several steps like launching the kernel, copying back and forth the
edges to be processed, the work done in the kernel itself, and reducing
the number of atomic operations. We mostly observe small changes in
accuracy.

Fig. 2 presents how speedup and inaccuracy values change by
executing the code with different iteration counts. We observe that
cutting off the last two iterations does not lead to an error but improves
the execution time. We examine these last two iterations, and find
out that very little work (2–10 edges added to the queue) is done
and mostly they do not affect the outcome of the algorithms (but not
5

Fig. 2. Speedup-Inaccuracy variation with various iteration counts (average values of
all synthetic graphs).

Fig. 3. Comparison of the algorithms’ speedup and inaccuracy variation with iteration
count (values for Graph6 as a representative graph).

guaranteed). We also observe that the algorithms complete their work
in 7–8 iterations.

In Bellman–Ford’s algorithm, most of the work is done in the first
two iterations. If we cut off the rest of the iterations, the inaccuracy rate
becomes less than 2%. In Dijkstra’s algorithm, most of the work is done
in the first three iterations. If we cut off the rest of the iterations, the
inaccuracy rate becomes less than 1%. In Hybrid algorithm, we execute
Dijkstra’s algorithm several times so that it could also work with the
graphs having negative weights. If there is no negative weight, then
the algorithm runs Dijkstra twice. When the iteration number of the
algorithm is reduced, it still runs Dijkstra twice, however, at each run
it stops the algorithm prematurely. If we cut off the last five iterations,
the error rate becomes less than 1%.

Fig. 3 demonstrates speedup and inaccuracy change separately for
the comparison of our target algorithms. The inaccuracy values of
Dijkstra and Hybrid algorithms are the same since they both run the
same algorithm. Dijkstra seems to reach to higher speedup (∼3.5 times)
compared to the others while it results in very high inaccuracy (∼50%)
with those higher speedup levels.

3.2.2. Method 2: Minimum edge number selection

In the minimum edge number selection approximation method, we
do not process the nodes that have less than the specified edge number.
Thus, we reduce the number of atomic operations inside the kernel.
With fewer atomic operations, which are serial executions, the method
gives us a great advantage to speed up the execution with mostly a
minor impact on accuracy. As seen at lines 4 of Algorithm 13 and
Algorithm 14, we apply this technique by checking the number of edges
of the current vertex and continue processing if it has more than the
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Algorithm 13: Minimum Edge Number Selection for Parallel
Bellman–Ford’s Algorithm

1 while 𝐹1 ≠ ∅ do
2 parallel for vertices 𝑢 ∈ 𝐹1 do
3 𝑢 ← 𝐷𝐸𝑄𝑈𝐸𝑈𝐸(𝐹1);
4 if u has at least minEdgeNumber edges then
5 parallel for vertices 𝑣 ∈ 𝑎𝑑𝑗[𝑢] do
6 if 𝑑(𝑢) +𝑤 < 𝑑(𝑣) then
7 𝑑(𝑣) = 𝑑(𝑢) +𝑤;
8 𝐸𝑁𝑄𝑈𝐸𝑈𝐸(𝐹2, 𝑣);
9 end

10 end
11 end
12 end
13 𝑆𝑊𝐴𝑃 (𝐹1, 𝐹2);
14 end

Algorithm 14: Minimum Edge Number Selection for Dijkstra
Kernel1

1 𝑡𝑖𝑑 ← 𝑔𝑒𝑡𝑇 ℎ𝑟𝑒𝑎𝑑𝐼𝐷;
2 if 𝑣𝑖𝑠𝑖𝑡𝑒𝑑(𝑡𝑖𝑑) then
3 𝑣𝑖𝑠𝑖𝑡𝑒𝑑(𝑡𝑖𝑑) ← 𝑓𝑎𝑙𝑠𝑒 ;
4 if 𝑒𝑑𝑔𝑒𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑑 > 𝑚𝑖𝑛𝐸𝑑𝑔𝑒𝑁𝑢𝑚𝑏𝑒𝑟 then
5 for all neighbors nid of tid do
6 if 𝑢𝑑(𝑛𝑖𝑑) > 𝑑(𝑡𝑖𝑑) +𝑤(𝑛𝑖𝑑) then
7 𝑢𝑑(𝑡𝑖𝑑) ← 𝑑(𝑡𝑖𝑑) +𝑤(𝑛𝑖𝑑);
8 end
9 end

10 end
11 end

specified number of edge. It guarantees that the nodes to be processed
have more edges than the specified number. To find out the minimum
number of edges to process, the edge distribution on the nodes is
preprocessed. Firstly, the number of edges of each node is sorted in
non-decreasing order by degree. Then, the nodes that do not have any
edges are removed. The rest of the array is divided into 10 chunks, and
the last chunk is divided into 10 chunks as well. Since the nodes with
fewer edges are much more than the nodes with many edges, we divide
the array in this way. This preprocessing, which is applied before the
execution of the main process, has a small overhead but it achieves
good improvement on the execution time with a small error rate. On
average, 25% speed-up is achieved with less than 6% error rate by
processing the top 1% of the nodes (see Figs. 4 and 5). We must note
that these are average speed-ups. We observe that when the graph size
increases, the speedup increases, and the inaccuracy rate decreases.

3.2.3. Method 3: Maximum edge number selection
We perform approximation not only by restricting the lower bound

of the edge numbers of the nodes but also by restricting the upper
bound of the edge number of the nodes. We simply check the number
of the edges for the current vertex, and continue the execution if the
vertex has less than the specified edge value. With this upper limit and
potentially with fewer vertices processed simultaneously, we reduce
the number of atomic operations. Additionally, since the work done
by each thread is limited, each thread works on a similar amount of
data; thus, the technique achieves load balance. Hence, we expect to
have performance improvements for the target execution. Similar to the
minimum edge number selection method, we apply this technique by
modifying the if statement at line 4 in Algorithm 13 and Algorithm 14
by setting a maximum number instead of a minimum. It guarantees that
6

Fig. 4. Speedup-Inaccuracy variation with minimum edge processing (average values
of all synthetic graphs).

Fig. 5. Comparison of the algorithms’ speedup and inaccuracy variation with minimum
edge processing (values for Graph6 as a representative graph).

Fig. 6. Speedup-Inaccuracy variation with maximum edge processing (average values
of all synthetic graphs).

the nodes to be processed have fewer edges than the specified number.
We perform similar preprocessing to find out the maximum number of
edges to process. Firstly, the number of edges of each node is sorted in
non-decreasing order by degree. Then, the nodes that do not have any
edges are removed. The rest of the array is divided into 10 chunks, and
the last chunk is divided into 10 chunks as well. Again, the last chunk
is divided into 10 chunks, and we take the last 10 chunks, which is
equivalent to the top 0.1% of the nodes. On average, 50% speed-up is
achieved with less than 25% error rate (see Figs. 6 and 7).
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Fig. 7. Comparison of the algorithms’ speedup and inaccuracy variation with maximum
edge processing (values for Graph6 as a representative graph).

3.2.4. Method 4: Partial queue processing
In this approximation method, in each iteration, we take some per-

centage of the nodes randomly to send it to the kernel to be processed.
We expect to see performance improvements due to the smaller number
of vertex processing with this method. However, queue reconstruction
takes additional time as the cost of the technique and can affect the
execution time. Our experimental results show that the change in the
percentage rate to be processed in the queue does not affect the error
rate significantly. However, processing the small percentage of the
queue (nearly 25%) reduces the execution time by almost 30% with
less than 30% error rate in Bellman–Ford algorithm (see Fig. 8(a)).
However, the other algorithms do not perform similarly (see Fig. 9).
In contrast to Bellman–Ford, Dijkstra and Hybrid algorithms get slow
down by the partial queue processing approximation. The reason is
that we process the nodes to be added to the queue in the GPU
kernel in our Bellman–Ford implementation (Line 1 in Algorithm 15).
However, in the Dijkstra code, we keep track of the visited nodes and
have to preprocess them in the CPU (Line 1 in Algorithm 16). Due to
the additional CPU computation, the execution time for Dijkstra and
Hybrid algorithms increases.

Algorithm 15: Partial Queue Processing for Parallel Bellman–
Ford’s Algorithm

1 𝐹1 = 𝐹1 − 𝑛𝑜𝑑𝑒𝑠𝐸𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑;
2 parallel for vertices 𝑢 ∈ 𝐹1 do
3 𝑢 ← 𝐷𝐸𝑄𝑈𝐸𝑈𝐸(𝐹1);
4 parallel for vertices 𝑣 ∈ 𝑎𝑑𝑗[𝑢] do
5 if 𝑑(𝑢) +𝑤 < 𝑑(𝑣) then
6 𝑑(𝑣) = 𝑑(𝑢) +𝑤;
7 𝐸𝑁𝑄𝑈𝐸𝑈𝐸(𝐹2, 𝑣);
8 end
9 end

10 end
11 𝑆𝑊𝐴𝑃 (𝐹1, 𝐹2);

Algorithm 16: Partial Queue Processing for Parallel Dijkstra’s
Algorithm

1 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 = 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 − 𝑛𝑜𝑑𝑒𝑠𝐸𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑;
2 while 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ≠ ∅ do
3 parallel for vertices 𝑢 ∈ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 do
4 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎_𝐾𝑒𝑟𝑛𝑒𝑙1();
5 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎_𝐾𝑒𝑟𝑛𝑒𝑙2();
6 end
7 end

3.2.5. Combinations of approximation methods
In the previous sections, we see that even though the individual

approximation methods help us achieve some speedups with tolerable
7

Fig. 8. Speedup-Inaccuracy variation with partial queue processing (average values of
all synthetic graphs).

Fig. 9. Comparison of the algorithms’ speedup and inaccuracy variation with partial
queue processing (values for Graph6 as a representative graph).

inaccuracy percentages, they do not provide high speedups. There-
fore, we combine those approximation techniques with each other
and achieve higher speedups with less inaccuracy percentage. Table 1
presents some of the combinations, and their speedup and inaccuracy
percentage. We perform much more approximations by combining the
techniques with different parameters.

3.3. Prediction model

As demonstrated in the previous section, the parallel Bellman–
Ford’s algorithm performs the best among our target algorithms and
its approximate versions also employ larger performance improvements
with lower errors in the results. Therefore, we focus on Bellman–
Ford’s algorithm in our prediction study and include its executions
in our dataset. We perform the approximation techniques with differ-
ent parameters and obtain a wide range of speedup and inaccuracy
values. While one technique maintains larger speedup values, it can
miscalculate the result value substantially. Similarly, the parameters
of the approximation methods can greatly impact the speedup and
inaccuracy results. Since it is impractical to apply all the possible
techniques with their various parameters, we build regression models
to predict the impact of the approximation methods without executing
the codes. Especially, it is important to obtain the effects for large graph
processing scenarios. We aim to predict both speedup and inaccuracy
percentage values for the target large-size graphs by executing the
approximate codes for relatively small graphs. Additionally, we execute
our program versions for real road-network graphs and include them in
our evaluation in order to investigate the efficiency of our prediction
model by considering realistic scenarios.
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Table 1
The examples for the combination of the approximation techniques.

iterationNum maxEdgeDeg maxProcessEdge minProcessEdge Graph% Inaccuracy Speedup

1 2 25054 1340 0 100 9.88 2.27
2 8 25054 1340 3 100 9.35 2.00
3 8 25054 1340 6 100 9.70 2.07
4 4 25054 1340 3 100 9.35 2.02
5 8 25054 465 21 100 19.83 3.02
6 2 25054 1283 42 100 19.32 3.11
7 7 39530 1996 92 100 19.81 3.26
8 2 39530 694 29 100 18.40 3.11
9 2 39530 1996 92 100 19.83 3.31
10 2 25054 465 50 100 24.89 4.46
11 2 25054 454 50 100 27.22 4.77
12 5 39530 676 92 100 28.13 4.36
13 6 39530 676 92 100 28.13 4.48
Table 2
Graphs used in our experiments.

Graph name Type Nodes Edges

Graph1 Synthetic 524288 7968035
Graph2 Synthetic 1048576 16084739
Graph3 Synthetic 2097152 32417950
Graph4 Synthetic 4194304 65243481
Graph5 Synthetic 8388608 131155371
Graph6 Synthetic 16777216 263434146
BAY road-network 321270 800172
CAL road-network 1890815 4657742
COL road-network 435666 1057066
CTR road-network 14081816 34292496
E road-network 3598623 8778114
FLA road-network 1070376 2712798
LKS road-network 2758119 6885658
NE road-network 1524453 3897636
NW road-network 1207945 2840208
NY road-network 264346 733846
USA road-network 23947347 58333344
W road-network 6262104 15248146

3.3.1. Data format and size
We apply individual or combined approximation methods, run the

code in our target architecture, calculate the shortest path, and save the
related data as a csv file format. Specifically, we record the following
data at each time a graph is processed and the shortest path is calcu-
lated: (1) the total number of vertices in the graph, (2) the total number
of edges in the graph, (3) the possible maximum number of edges for a
single vertex in the graph, (4) the total number of iterations in the main
loop of the algorithm, (5) the number of minimum processing edge in
the kernel (for each vertex that contains higher number of the specified
edges), (6) the number of maximum processing edge in the kernel (for
each vertex that contains lower number of the specified edges), (7)
the percentage number that identifies how many of the vertices in
the queue should be processed in the next iteration, (8) the signals
of the approximation techniques (it is 1 if the specified approximation
technique is applied in the calculation of the shortest path, otherwise
0), (9) the inaccuracy rate of the final calculation of the shortest path,
(10) the time elapsed for the execution of the algorithm.

For the execution time measurement, we only consider the kernel
execution time, and do not take into consideration the preprocessing
steps, since we want to clearly see the effects of the approximation tech-
niques. We first calculate the shortest path for the given graph without
applying any approximation methods and save the computed path as
the accurately calculated distance. We utilize this path data to compare
the outcome of the executions, when we perform the approximation
techniques. In order to make this comparison, we need to start at the
same vertex for each case. Therefore, we choose a standard starting
vertex, which has the highest number of edge degrees. We perform
the approximation techniques including Reduced Execution, Minimum
dge Number Selection, Maximum Edge Number Selection, and Partial
8

Table 3
The features and their ranges for our prediction model.

Feature Range Data type

graphSize 1–32 Discrete
iterationNum 0–1 Continuous
minProcessEdge 0–1 Continuous
maxProcessEdge 0–1 Continuous
percentage 0–1 Continuous
sOriginalDistance 0 or 1 Categorical
sMinEdgeToProcess 0 or 1 Categorical
sMaxEdgeToProcess 0 or 1 Categorical
sPartialGraphProcess 0 or 1 Categorical
sReduceExecution 0 or 1 Categorical
sAtomicBlock 0 or 1 Categorical
error 0–1 Continuous
speedup 0–1 Continuous

Queue Processing, individually, and also combine these approximation
techniques (two, three, and four of them) to see if we can achieve
higher speedups with fewer errors in our computations. We consider
multiple test scenarios for each synthetic graph in different sizes. These
graphs are generated by the Kronecker generator [14], which creates
an edge list according to the Graph500 parameters [35]. The edge
list is returned in an array with three rows, where 𝑆𝑡𝑎𝑟𝑡𝑉 𝑒𝑟𝑡𝑒𝑥 is the
first column, 𝐸𝑛𝑑𝑉 𝑒𝑟𝑡𝑒𝑥 is the second column, and 𝑊 𝑒𝑖𝑔ℎ𝑡 is the third
column. We use the scales 19, 20, 21, 22, 23, 24, and the edge factor
16 for our generated graphs. Additionally, in our prediction part, we
consider 12 real road networks from the 9th DIMACS Implementation
Challenge [15]. Table 2 presents the number of nodes and edges for
our target graphs. Since synthetic graphs and real graphs own diverse
characteristics, we build separate regression models for them.

We run each test case 10 times, discard the values with minimum
and maximum execution times, take the average of the remaining
times, and record the average as the execution time for each case.
For some of the approximation techniques, where the outcome of
the calculated shortest path is not stable and changeable (taking the
random vertices in the queue to process in the next cycle), we take the
average of the errors in the calculations.

3.3.2. Preprocessing
We use data normalization techniques to improve our prediction

accuracy. Data normalization is one of the most important preprocess-
ing steps in machine learning since it is common to have data with
different ranges [36]. The machine learning algorithms perform better
if data is normalized to the same range. If all the data has different
ranges, it increases the difficulty of the problem that is being modeled.
For instance, large input values, such as the number of vertices in the
graph, may result in a model that learns large weight values. This
makes the model unstable and it suffers from poor performance issues
during learning. 𝑔𝑟𝑎𝑝ℎ𝑆𝑖𝑧𝑒 is the projection of the number of vertices.
Normally, the vertex numbers of graphs are large values (e.g., power
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of 2 values between 219 and 224 for synthetic graphs), but we fit these
umbers between 1 and 32 by assigning values between 20 and 25. The
umber of iterations, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑢𝑚 takes values in a varying range but
t is normalized between 0 and 1 as stated in Table 3. 𝑚𝑖𝑛𝑃 𝑟𝑜𝑐𝑒𝑠𝑠𝐸𝑑𝑔𝑒
epresents the vertices that have the specified number of edges or more,
hile 𝑚𝑎𝑥𝑃 𝑟𝑜𝑐𝑒𝑠𝑠𝐸𝑑𝑔𝑒 represents the vertices that have the specified
umber of edges or less. Their value depends on the graph size and
he graph characteristics, since they are chosen by specific rules (as
xplained earlier in Section 3). For example, 𝑚𝑖𝑛𝑃 𝑟𝑜𝑐𝑒𝑠𝑠𝐸𝑑𝑔𝑒 varies
etween 2 and 120 and 𝑚𝑎𝑥𝑃 𝑟𝑜𝑐𝑒𝑠𝑠𝐸𝑑𝑔𝑒 varies between 359 and
38592 for our synthetic graphs. In the preprocessing step, they are
ormalized to the values in the range between 0 and 1.

The normalization formula used in the preprocessing phase is as
ollows:

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋 −𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛
(1)

After performing preprocessing, we have the features given in Ta-
le 3 for our prediction model. Since the graph size is one of the crucial
arts to estimate the execution time, we use the number of vertices in
he graph (𝑔𝑟𝑎𝑝ℎ𝑆𝑖𝑧𝑒) as our feature in the prediction model. We use
he iteration number of the main loop (𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑢𝑚), as the iteration

number increases the execution time increases as well while inaccu-
racy decreases. The partial graph processing percentage (𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒)
etermines how many vertices will be processed in the queue. The
umber of minimum edges (𝑚𝑖𝑛𝑃 𝑟𝑜𝑐𝑒𝑠𝑠𝐸𝑑𝑔𝑒) and the maximum edges
𝑚𝑎𝑥𝑃 𝑟𝑜𝑐𝑒𝑠𝑠𝐸𝑑𝑔𝑒) to process are used as our features because their
alue has an effect on the speedup and inaccuracy as well. Addition-
lly, the signal values starting with 𝑠 in Table 3 are included as our
eature because they contain the information of which approximation
echnique is applied. Finally, for the sake of multiple-output prediction,
e normalize the inaccuracy and speedup values to the same range
etween 0 and 1 so that the prediction results of each output would
e more accurate. As a result, the aforementioned features and their
epresented values play an important role in the prediction step.

.3.3. Machine learning algorithms
In our prediction model, we utilize the following five regression

lgorithms.

• Linear Regression (LR) is a supervised learning algorithm. It is a
linear model and assumes a linear relationship between input and
output variables and predicts the dependent variable based on a
given independent variable.

• K-Nearest Neighbors (KNN) Regression depends on the nearest
neighbors of each point for learning. The output is predicted
by local interpolation of the targets associated with the nearest
neighbors in the training set.

• Random Forest (RF) Regression constructs a very large number
of classifying decision trees on various sub-samples of the train-
ing dataset. The prediction is the average prediction across the
decision trees.

• Decision Tree (DT) Regression trains a model in the structure of
a tree and predicts the value of a target variable by learning
simple decision rules. It fits a sine curve and learns local linear
regressions approximating the sine curve with a set of if-then-else
decision rules.

• Gradient Boosting (GB) Regression builds the model in a stage-wise
fashion and allows for the optimization of arbitrary differentiable
loss functions.

Firstly, we predict the single output values (i.e., inaccuracy and
xecution time separately), then the multiple outputs (i.e., inaccuracy
nd execution time jointly) with those regression algorithms. We evalu-
te the performance of the predictors with different evaluation metrics
9

iven as follows:
• Mean Absolute Error (MAE) measures the average magnitude of
the errors. It is the average over the test samples of the absolute
differences between the predicted and the observed values, where
all individual differences have equal weight.

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − 𝑥𝑖| (2)

• Mean Squared Error (MSE) is simply the average of the squares of
the errors.

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑥𝑖)2 (3)

• Root Mean Squared Error (RMSE) is a quadratic scoring rule that
measures the average magnitude of the errors. It is the standard
deviation of the residuals (the prediction errors). The residuals
are a measure of how far from the regression line the data points
are. RMSE is a measure of how to spread out these residuals are
so it tells you how concentrated the data is around the line of the
best fit.

𝑅𝑀𝑆𝐸 =

√

∑𝑛
𝑖=1(𝑦𝑖 − 𝑥𝑖)2

𝑛
(4)

• R2 score represents the proportion of the variance that has been
explained by the independent variables in the model. It provides
an indication of the goodness or the badness of the fit. It is a
measure of how likely unseen samples are to be predicted by
the model through the proportion of the explained variance. The
best possible score is 1.0 and it can be negative as well if the
model is arbitrarily worse. Since R2 is adopted in various research
disciplines, there is no standard guideline to determine the level
of predictive acceptance. However, Henseler et al. [37] propose
a rule of thumb, which describes R2 values with 0.75, 0.50, and
0.25 as substantial, moderate, and weak, respectively.

𝑅2 = 1 − 𝑅𝑆𝑆
𝑇𝑆𝑆

(5)

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 (𝑅𝑆𝑆) =
𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑥𝑖)2 (6)

𝑇 𝑜𝑡𝑎𝑙 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 (𝑇𝑆𝑆) =
𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦) (7)

where 𝑛 represents the total number of predictions, 𝑦 and 𝑥 represent
the predicted and the observed values, respectively.

4. Experimental study

4.1. Experimental setup

We compile our programs with CUDA 9.0 and run the approxi-
mation experiments in an Intel Xeon-based workstation with 2x Xeon
Silver 4114 processors, 32 GB main memory and an NVIDIA Quadro
P4000 GPU device. For our prediction model, we utilize the algorithms
implemented in the scikit-learn library [38].

4.2. Experimental results

In this section, we present the results of different machine learning
algorithms in our prediction models.

Table 4 presents the prediction results of our models in terms of
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and
R2 score. While we report three metrics to demonstrate our results,
we focus onR2 score to evaluate the prediction models. We consider
hree different prediction scenarios including the prediction of only
naccuracy rate (Inaccuracy), only speedup (Speedup), and both inac-

curacy rate and speedup (Multiout). Essentially, Multiout model aims
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Table 4
Prediction results of ML algorithms with different metrics.

MAE RMSE R2

Multiout Inaccuracy Speedup Multiout Inaccuracy Speedup Multiout Inaccuracy Speedup

LR
rnda 0.085 0.054 0.117 0.122 0.070 0.158 0.661 0.792 0.531
largeb 0.111 0.085 0.137 0.158 0.102 0.198 0.352 0.456 0.249
realc 0.093 0.020 0.165 0.157 0.024 0.221 0.587 0.591 0.583

KNN
rnd 0.025 0.032 0.018 0.038 0.043 0.031 0.951 0.921 0.982
large 0.042 0.056 0.028 0.063 0.069 0.056 0.843 0.748 0.939
real 0.032 0.008 0.056 0.070 0.012 0.099 0.905 0.893 0.916

RF
rnd 0.002 0.001 0.003 0.005 0.002 0.006 0.999 0.999 0.999
large 0.020 0.023 0.018 0.029 0.031 0.028 0.969 0.951 0.985
real 0.030 0.008 0.054 0.069 0.012 0.097 0.908 0.896 0.920

DT
rnd 0.002 0.001 0.004 0.007 0.003 0.009 0.999 0.999 0.999
large 0.020 0.023 0.018 0.029 0.031 0.029 0.969 0.951 0.984
real 0.031 0.008 0.054 0.072 0.012 0.101 0.900 0.893 0.913

GB
rnd 0.014 0.012 0.015 0.020 0.017 0.022 0.989 0.987 0.991
large 0.026 0.024 0.027 0.036 0.032 0.040 0.957 0.945 0.970
real 0.049 0.008 0.089 0.091 0.011 0.127 0.885 0.909 0.860

aRandom selection of train and test data.
bPrediction of the largest graph results from small graphs.
cPrediction of the real graph results.
Fig. 10. Observed and predicted inaccuracy values with single output prediction
model for large graphs.

to predict both inaccuracy and speedup at the same time, and its
metrics, namely MAE, RMSE and R2, are calculated by taking the
average of both outcomes. We report Multiout model results to better
understand the prediction success on both inaccuracy and speedup at the
same time. Moreover, we build prediction models by utilizing different
training/test data points. Firstly, given as 𝑟𝑛𝑑 in Table 4, we randomly
split the synthetic graph data points as training and test data, 80% and
20%, respectively, and apply our ML algorithms to predict the test data
points from the training. Secondly, given as 𝑙𝑎𝑟𝑔𝑒 in Table 4, we build
our prediction model such that we train the model with the data points
(obtained by applying all approximation methods) belonging to the 5
smallest synthetic graphs, then we make predictions for the data points
(approximation methods) belonging to the largest graph (Graph6). We
specifically choose this training and test data to see if we can predict
10
Fig. 11. Observed and predicted speedup values with single output prediction model
for large graphs.

the approximation results of the large graphs from the small graphs,
without executing the approximate versions for large graph data that
requires unreasonable times. Additionally, 𝑟𝑒𝑎𝑙 rows in Table 4 present
the prediction results for our regression models built from 12 real road-
network graphs. Specifically, we split the data points as training and
test data, 80% and 20%, respectively, and apply our ML algorithms to
predict the real data points from the training.

As seen in Table 4, for all three prediction scenarios (i.e., Inaccuracy,
Speedup, and Multiout predictions), the prediction models, where we
split data randomly, have much lower prediction errors than the mod-
els, where we utilize small graphs to predict the large graph outcomes.
Since we have larger speedup values and more diverge behavior for
the large graphs, the model that does not have any data point in its
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Fig. 12. Observed and predicted inaccuracy values with single output prediction
model for real graphs.

Fig. 13. Observed and predicted speedup values with single output prediction model
for real graphs.

training set for large graph executions fails to make correct estima-
tions. Additionally, the prediction models based on real-graph data
employ higher prediction errors. Especially, for very large real graph
instances (e.g., USA), the speedup values with approximate versions are
substantial and difficult to predict with relatively smaller graph data.

As mentioned in Section 3.3.3, we use five different machine learn-
ing algorithms to fit our data. These algorithms are Linear Regression
(LR), K-Nearest Neighbors (KNN), Random Forest (RF), Decision Tree
11
Fig. 14. Speedup and inaccuracy prediction errors for single output models with
large graphs.

(DT), and Gradient Boosting (GB). While we see from Table 4, RF, DT,
and GB achieve low prediction errors, which means their predictions
are very close to the actual values, LR suffers from poor prediction
results for all the scenarios. Since our model is too complex and not
linear, LR algorithm does not perform well. When we look at KNN
results, we can see that KNN performs well when data is split randomly
(𝑟𝑛𝑑). However, it produces larger prediction errors when data is split
into small graphs and large graphs (𝑙𝑎𝑟𝑔𝑒) as well as for real graph
scenarios (𝑟𝑒𝑎𝑙). Since KNN does not model the nearest points of the
graphs, which it never sees (the training data does not include the
largest graph), it suffers from poor predictions.

We can also note that the prediction results of the three prediction
scenarios (i.e., Inaccuracy, Speedup, and Multiout) are very close to
each other. Predicting the impact of the approximation methods on
inaccuracy and speedup, either separately or together, yields similar re-
sults due to our normalization procedure. Both inaccuracy and speedup
values contribute the prediction outcomes in a similar way.

Figs. 10 and 11 present observed and predicted inaccuracy and
speedup values with the models that the outcomes are predicted sep-
arately (single output) for large graph prediction scenarios. We use
the model, where training data includes smaller graphs and test data
consists of the largest graph data points. LR fails in the cases that test
values do not lie in the specific lines. For both speedup and inaccuracy
values, LR tends to fit the data to the local lines, however, test data
behaves non-linearly, consequently, LR does not catch that behavior.
Moreover, the difference between predicted and test values for KNN is
very large, especially for inaccuracy values. Since KNN works with the
common intuition, in which data points with similar features tend to
be similar, it does not successfully predict the values for data points
that it has never seen before. Inaccuracy values for the large graphs
are relatively larger than the small graphs, which are in training data
set, KNN stucks at small values that exist in the training set (for small
graphs) and fails to predict the larger values in the test set (for the
largest graph). On the other hand, as more complex algorithms, RF,
DT, and GB perform better to fit test data. While they do not estimate
the exact values, they predict the trend, and find more accurate (with
less difference) results for all the cases. Although test data points spread
over a wide space, those three algorithms can model the trend better
and perform well for the prediction of both Inaccuracy and Speedup
values.
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Fig. 15. Speedup and inaccuracy prediction errors for single output models with
real graphs.

Figs. 12 and 13 present the observed and predicted inaccuracy and
speedup values for real graph prediction scenarios. Our observation for
the large-graph prediction case is also valid for these graph instances.
While LR tends to fit the data points linearly, the other ML algorithms
can model the diverse behavior more successfully by employing small
differences between observed and predicted values. On the other hand,
the success rates of the algorithms are not as high as rnd and large
instances due to the real graphs’ diverse behavior (not uniform as our
synthetic graphs).

Figs. 14 and 15 present the percentage error rates for different
single output regression models. As discussed earlier in this section,
LR and KNN prediction error rates are large for the models predicting
large graph instances. Additionally, the variance in the error rates is
larger due to the failure in the model predictions. Since both LR and
KNN (especially for Inaccuracy values) are not able to predict the
pattern, the prediction success rates are also not stable. We can say that
they perform randomly for some cases other than making intelligent
predictions. For real graph predictions, LR performs the worst, however
the other algorithms employ similar prediction error rates, which are
higher than the large graph predictions.

5. Conclusion

We present a prediction methodology for the approximation meth-
ods applied in GPU-based shortest-path graph algorithms. Based on
our implementations for three shortest-path algorithms, we perform
approximations for higher performance by sacrificing some accuracy in
the results. Our prediction approach estimates inaccuracy and speedup
values for the specific approximations targeting the specific algorithm.
By utilizing our approach, one can find out the effects of the approx-
imation methods on both performance and correctness of the target
execution without executing the approximate shortest-path program.
Especially, for large graphs, it is practical to understand the approxi-
mation effects and choose the suitable approximation technique based
on the requirements of the program.
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