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ABSTRACT

SYNTHETIC FINGERPRINT GENERATION WITH GANS

Fingerprints are regarded as the most reliable form of human identification for

thousands of years. Even though the fingerprint acquisiton process has became more con-

venient with technological advancements, privacy concerns hindered the data collection

and, hence advancement of research on fingerprint biometrics. Like many other problem

solved with deep learning, biometrics also requires a sizable database to succeed. This

study focuses on synthetic fingerprint generation to tackle bottlenecks created by data

scarcity. First, a preprocessing pipeline is designed tp enhance images from a small pub-

licly available fingerprint dataset. Next the new enhanced dataset is given as an input to

a generative network to create candidate synthetic fingerprints. Lastly Fingerprint image

quality models filter low-quality fingerprint images from the candidate set to form the

synthetic fingerprint dataset.

Numerous experiments were conducted to show the usability of the generated

synthetics fingerprints using both real and synthetic fingerprint datasets available for net-

work trainig. Experimental results show that enhancing fingerprint images from real-life

datasets helps models trained with synthetic fingerprint images classify enhanced versions

of the real-life fingerprint samples.Synthetic fingerprints generated using the proposed

pipeline can establish a good training set which can imporove deep neural network perfor-

mance as substantially as their real- life counterparts, but without introducing any privacy

concerns.
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ÖZET

SENTETİK PARMAK İZLERİNİN GANLAR İLE ÜRETİMİ

Parmak izleri binlerce yıldır en güvenilir insan tanıma yöntemi olarak kabul

edilmiştir. Teknolojik gelişmeler ile parmak izi toplama süreci daha pratik hale gelmiş

olsa da; kişilerin gizlilik endişeleri parmak izi biyometrisi üzerinde çalışan araştırmacıları

yavaşlattı. Derin öğrenme ile çözülen bütün problemler gibi biyometri de başarılı ola-

bilmek için büyük veritabanlarına ihtiyaç duyar. Kişilerin gizliliği ile oluştulan yasaların

getirdiği darboğaz problemini çözmek için bu çalışma sentetik parmak izleri üretmektedir.

Tasarlanan üretim hattı, öncelikle halka açık küçük bir parmak izi veri kümesindeki res-

imleri iyileştirir. Yeni oluşturulan gelişmis parmak izi veri kümesi, aday sentetik parmak

izleri üretmek için bir ağa girdi olarak verilir. Parmak izi kalitesi ölçen modeller aday

kümeden yüksek kaliteli parmak izlerini, sentetik parmak izi veri kümesi oluşturmak için

seçerler.

Bir çok sayıda yapılan deney, üretilen sentetik parmak izlerinin kalitesini göster-

mek için hem gerçek hem de sentetik veri kümeleri kullanılarak yapıldı. Deneyler sonu-

cunda gerçek parmak izi resimlerimlerinin iyileştirilmesi, sentetik parmak izlerinin gerçek

hayata entegrasyonunda yardımcı olduğu gözlemlenmiştir. Geliştirilen üretim hattı kul-

lanılarak üretilen sentetik parmak izleri gerçek hayattaki benzerleri ile yakın temsil ka-

biliyetleri olduğu ve kişilerin gizliliği sorunları içermediği gözlemlenmiştir.
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CHAPTER 1

INTRODUCTION

Biometrics are getting more integrated into our day-to-day lives with technological

advancements; thus, the need for quality fingerprint data is increasing. From small

tasks like unlocking phones to entering the most secure buildings globally, fingerprint

recognition is still the most used biometric recognition type in the biometric security field.

Fingerprints are still the most reliable form of biometric data for recognition. Researchers

are trying to create more robust algorithms to improve fingerprint recognition with an

ever-growing world population and security concerns.

Today, most fingerprint recognition algorithms are being tested with small datasets

like NIST SD4[1] and NIST SD14[10]. These datasets have been discontinued due to

their lack of documentation. With the discontinuation of the old datasets, researchers

cannot compare the new algorithms with the already existing ones. Regardless of the

discontinuation, small datasets tend not to generalize well on training. Obtaining large

fingerprint datasets is hard for researchers. Corporates and governments have to obey

strict privacy-protecting laws, so acquiring existing large datasets becomes impossible for

most.

Researchers tried to synthesize fake fingerprints to solve the lack of data issue.

Early researchers created mathematical methods to generate synthetic fingerprints.Recent

technological advancements paved the way for researchers to use generative deep learning

models to create more realistic synthetic fingerprints. Generative models have been proven

useful in different problems, like creating human faces to generating realistic-looking fake

bedroom images. Using state-of-the-art generative approaches like IWGAN[8] to generate

synthetic fingerprints has gained popularity in recent years.

Synthetic fingerprint generation offers a solution to the problems stated above.

Synthetic datasets can be as large as the research requires, and they do not contain any

actual personal data. Synthetic fingerprints can be created with different parameters, such

as age, ethnicity, and fingerprint class.

High-quality synthetic fingerprint datasets can be used with real-life datasets to



2

solve data scarcity. This thesis aims to generate realistic synthetic fingerprint images to

generate a large dataset to help improve fingerprint biometrics. A synthetic fingerprint

generation pipeline was designed. This pipeline takes real-life fingerprint dataset images

as an input. These images firstly go through an enhancement process. Enhanced images

are given to the GAN model designed. Quality assessment is conducted for the generated

fingerprint images, and images with higher quality are added to the new dataset. These

new synthetic fingerprints are used in fingerprint classification. Even though fingerprint

classification can not identify a single person, it can narrow down the search space. Each

finger can have different classes. Classification of all ten fingerprints can narrow the

search space even more. The synthetic fingerprint generated in this thesis can be used as

a training dataset to train these classifiers.

The thesis continues with background information about fingerprints and genera-

tive models. Chapter 3 is about related works where both mathematical and deep learning

based approaches on generating synthetic fingerprints are explained briefly. Chapter 4

shows the proposed methodology. The chapter starts with deep learning based approaches

and their performances on generating synthetic fingerprints. Pipeline’s enhancement,

generation processes are explained afterward. Chapter 5 presents the experimental re-

sults where representative qualities of synthetic and real-life datasets are compared using

classification methods.
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CHAPTER 2

BACKGROUND

2.1. Fingerprints

Epidermal ridges on our fingertips create a pattern that we call fingerprints. Finger-

prints start to form in the embryonic genome activation stage of embryonic development.

At the further parts of this stage, volar pads begin to develop[11]. Volar pads have a

significant impact on fingerprint generation[11]. Volar pads are swellings of tissues on the

surface of hands and feet. Since their growth rate is slower than the rest of the hand, these

pads get slowly less distinct. Since other epidermis cells grow faster, volar epidermis cells

create small ledges on the skin. These are ledges that form the first ridges on the skin.

Figure 2.1. Fingerprint ridge formation process.

Most minor changes in the process of the rapid growth changes can alter the whole

fingerprints formation. This characteristic makes the fingerprint one of the most reliable
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biometric identifiers; thus, it is one of the oldest identifiers humans use. Authorities from

ancient China and Babylon signed documents using fingerprints. Starting from the 16th

century, scientific studies of fingerprints gained popularity. Mid 17th century scientific

studies began to accept the uniqueness of each fingerprint. Henry Faulds and Francis

Galton all made efforts to recognize fingerprints as tangible evidence of a crime. After the

first arrest using fingerprints as evidence in Argentina[12], all countries started implement-

ing fingerprints into their justice systems. Nowadays, all countries have their fingerprint

databases where millions of criminal and civil fingerprints are recorded. Modern meth-

ods like using scanners to capture fingerprints helped both official and commercial use

of fingerprints. Fast and clean acquisition of fingerprints increased the efficiency and

acceptability of the collection process. All databases are digitally stored, and this enables

researchers to work on fingerprints on computers, giving them endless opportunities to

develop more robust systems on both identification and storage of these fingerprints.

2.2. Fingerprint Details

Each fingerprint is unique, but almost all fingerprints share some characteristics to

identify them. All fingerprints consist of some collection of ridges and valleys. Ridges’

width and their spacing usually lie between 200µm to 850µm[13]. Details on fingerprints

have generally three levels going from Level 1 to Level 3.

2.2.1. Level 1 Details

Ridges are usually straight parallel lines, but they can abruptly end or curve to

form some patterns. These pattern regions are called singularities, and these regions make

up the Level 1 details. One central region these patterns can develop is the core of the

fingerprint. In this region, they tend to create loops, whorls, and arches, and these three

types are called the main classes of fingerprints. But in literature, loops and arches are

separated into smaller classes to form the major five classes we use today[14]. Loops are

divided into left and right loops depending on their overall slant. Arches are separated



5

into two classes called arches and tented arches, where normal arches tend to consist of

continuous ridges while tented arches look like disconnected ridges in the middle with a

sharper edge resembling a tent image. These five classes can be seen in Figure 2.2.

(a) Arch (b) Tented Arch (c) Right Loop (d) Left Loop

(e) Whorl

Figure 2.2. Five main fingerprint classes from NIST SD4[1] .

2.2.2. Level 2 Details

Level 2 details, more known asminutiae points, are abrupt ridge endings and points

where two ridges combine into one; these minutiae points are called ridge endings and

bifurcations, respectively. Example minutiae points can be seen in 2.3

2.3. Master Fingerprints

The master fingerprint is the perfect impression of the fingerprint. Human skin is

oily and prone to getting dirty, especially on the fingertips. People cant place their fingers

in the same way they did before, and they also cant put the same amount of pressure on the

paper or the scanner. Human skin has an elastic structure, and slight pressure changes can

distort the fingerprint image. Ridges can look thicker than they are, or they can overlap
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(a) Ridge ending (b) Bifurcation (c) Dot (d) Hook

(e) Enclosure

Figure 2.3. Minutiae point examples.

each other. Fingerprint collection can be messy, too; old methods like using ink rely on

excellent ink coverage on the finger. All these variables can make the fingerprint look

different. Master fingerprints can only be generated as synthetic fingerprints since there is

no way to collect perfect fingerprints yet. The best way to imitate the master fingerprints in

real life is to enhance the fingerprints to cleanse them from the noises on images. Master

fingerprint images can be seen in 2.4

(a) Arch (b) Tented Arch (c) Right Loop (d) Left Loop

(e) Whorl

Figure 2.4. Master fingerprints of five main fingerprint classes. Generated with SFinGe
[2].
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2.4. Synthetic Fingerprints

Synthetic Fingerprint images are approximations of real-life fingerprint images.

These images are usually generated with two different approaches. The older approach is

called model-based approach. The model-based approach relies on mathematical models

to generate master fingerprints. Using these master fingerprints, researchers generate

different impressions of the same fingerprint since fingerprints can look different from

themselves in real life. With the creation of GAN[15], researchers started to lean towards

machine learning to generate fingerprints. The learning-based approach uses generative

networks such as GANs and VAEs[16] to create realistic fingerprint images.

(a) Synthetic fingerprint (b) Real fingerprint

Figure 2.5. Comparison of real and synthetic fingerprints.

2.5. Fingerprint Image Quality

Fingerprint biometric applications all rely on high-quality fingerprint images.

All governments mandates reporting fingerprint quality with all collected fingerprint

databases. Most of the fingerprint verification software includes fingerprint image qual-

ity evaluation tools. These softwares are not open to public access making the quality

assessment hard to improve. Different quality measurement information creates a vague

environment where one system might deem the quality high while others consider it low.

Some open source fingerprint image quality assesment tools are available to public and
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they perform better than the most.

2.5.1. NIST Fingerprint Image Quality

NIST released the first open-source fingerprint image quality tool called NIST

Fingerprint Image Quality (NFIQ)[17]. NFIQ tool classifies the given image in five

classes, one through five, using eleven different features. A three-layered fully-connected

feed-forward network takes all eleven features and outputs one of the five classes. Minutiae

numbers, minutiae map, the total number of pixels fingerprint occupies in the image are

all used as input for the network. Class one is considered as the highest quality, while

class five is regarded as the worst. The network trained for NFIQ used 3900 fingerprint

images from a variety of databases. Half of the total fingerprint images are from unique

individuals, and fingerprints are mixed with rolled and plain impressions.

(a) Synthetic fingerprints from this study (b) Synthetic fingerprints generated with
SFinGe[2]

(c) Real fingerprints from NIST SD4[1]

Figure 2.6. High quality (left) and poor quality (right) images according to their NFIQ
scores.
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2.5.2. NIST Fingerprint Image Quality 2

In March 2010, "The Future of NFIQ" workshop participating researchers decided

to develop the new version of the NFIQ[18]. The original version of NFIQ has been

successful, and both governments and commercial businesses used the NFIQ extensively.

The project’s open-source nature enabled NIST to invite organizations and individuals to

work on a better version. The new design standardized the input images type. Captured

images have to come from either optical sensors or scanned ink, and images must be in

500 dpi. NFIQ 2[19] increased the number of features from 11 to 14. These features are:

• Regions with fingerprint images

• Frequency domain

• Local clarity score

• Orientation certainty level

• Orientation Flow

• Ridge valley uniformity

• The arithmetic mean of the grayscaled input image

• Block-based arithmetic mean of the grayscaled input image

• Minutiae count

• Minutiae quality

• ROI-based features (area mean, orientation map coherence sum, relative orientation

map coherence sum)

• Local quality measures(mean, standard deviation)

• NFIQ 2 feature vector (concatenation of all quality features)

• The predictive power of NFIQ 2 features

6629 images were trained with random forest binary classification. Images classi-

fied in Class 0 have low utility(poor quality), images in Class 1 represent high utility(good

quality) images. The new scoring system is based on the probability of an image belonging

to Class 1. Each probability is multiplied by 100 and rounded up to the closest integer.
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2.6. Generative Models

2.6.1. Generative Adversarial Networks

Generative adversarial networks (GANs)[15] are able to learn from data without

needing too much explanation of the data by using two competitive networks. GANs

usually consist of generator and discriminator networks. The generator’s duty is to learn

the real data distribution and apply it to random noise to create real data. The discriminator

must figure out if the presented data is fake or real. These two players try to reach the Nash

equilibrium to capture the real data distribution ultimately. There are virtually no limits

to what types of architecture can be used as discriminator and generator networks. GANs

used fully connected layers first; these architectures were used for simple generations like

MNIST[20]. CNN’s popularity and success enabled researchers to implement the con-

volutional layered approach to the GAN. Original GAN paper formulated the adversarial

approach with a two-player minimax game function.

minGmaxD VG,D Ex∼pdatalog Dx Ez∼pzzlog1−DGz (2.6.1)

As long as generator and discriminator networks are given an equal chance to learn,

they can achieve a near-optimal solution. The function given is a binary cross-entropy

function. The binary classification used has a small nuance where input data consists

of real and fake parts. A Discriminator network is a binary classifier where when it

encounters a real sample, it tries to maximize the output, but if the sample is provided

from the generator, it does the opposite; this part is implemented as log1−DGz in the

function. The generator cannot be trained to minimize the log1−DGz part. Regardless of

the data to be generated, initial generator results are almost always are insufficient to fool

the discriminator. A discriminator who receives these poor results can easily classify these

inputs, hindering the generator’s learning process. Generators try something different than

minimizing log1−DGz ; they are trained tomaximize the logDGz ; this way, both networks

have the exact opposite goals, and they improve each other.
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2.6.1.1. Deep Convolutional Generative Adversarial Networks

After the massive success of GANs [15] and CNNs[21], Researchers created a

network called Deep Convolutional Generative Adversarial Networks (DCGAN)[3]. DC-

GAN’s contribution to the literature opened the door for many different GAN approaches.

Almost all the advanced GAN models use convolutional layers because of the success of

DCGAN. Instead of using linear layers like the original GANs, DCGANuses convolutional

layers. The model removes all pooling functions and instead uses strided convolutions

and follows it up with a batch normalization layer. They remove fully connected layers

on deeper parts of the model. The generator uses ReLU function except for all last layers

where it uses the Tanh function, and the discriminator uses Leaky ReLU function as their

activation functions. DCGAN generates great results when trained on simple datasets like

MNIST[20], but results for complex images like human faces and LSUN[22] are easily

distinguishable as computer-generated. DCGAN suffers from model collapse on these

datasets when trained for a long time.

(a) Synthetic face im-
ages generated with
DCGAN[3].

(b) Synthetic bedroom
images generated with
DCGAN[3].

Figure 2.7. Synthetic images generated with DCGAN[3].
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2.6.1.2. Least Squared Generative Adversarial Networks

Following DCGAN, new, more stable GANs have been created. Least Squared

Generative Adversarial Networks(LSGAN)[4] came out in 2017 following DCGAN. This

approach generates higher quality images than prior GANs with a more stable training

process. The least-square function penalizes the outlier samples more, even if they are

correctly classified. This approach helps prevent vanishing gradient problems since regular

GAN does not punish these outlying samples; the generator might create more gradients.

With a lower risk of vanishing gradients, LSGAN’s learning process becomes more stable.

Linear least means squares are highly susceptible to these outlier data points, and these

data points can easily skew the results[23].

(a) Synthetic face images generated
with LSGAN[4].

(b) Synthetic bedroom images gener-
ated with LSGAN[4].

Figure 2.8. Synthetic images generated with LSGAN[4].

2.6.1.3. Relativistic Generative Adversarial Networks

Relativistic GANs (RELGAN) [24] modify discriminators to turn into relativistic

ones to produce higher quality images with stable training. After some training generator

gets better at producing realistic data, the discriminator’s ability to separate real data from

the fake data reduces. Before a batch is given to the discriminator, there is prior knowledge
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that no models use making the model relativistic. Discriminators can use the distribution

percentage of real and fake samples on a batch to make better decisions. Any GAN can

be turned into a relativistic version of itself by adding this knowledge to the discriminator.

2.6.1.4. Wasserstein Generative Adversarial Networks

Discriminators are more easily optimized than generators. If the generator is doing

poorly while the discriminator is improving, generators will face vanishing gradients.

Wasserstein GAN(WGAN)[5] uses a different cost function than the original GAN using

Wasserstein distance, also called the Earth Mover’s distance. WGAN’s discriminator

does not work like a conventional discriminator; it instead learns the K-Lipschitz function

to calculate Wasserstein distance. Weights are clamped to a small range to enforce

Lipschitz continuity. They note that weight clipping is not a good way to enforce Lipschitz

constraints since picking an optimal range is challenging. Smaller ranges can lead to a

vanishing gradient problem, or if it is too large, it can take too long to reach the optimum

weights. Even though using Wasserstein distance significantly improves GANs finding

the optimal clipping value and finding the number of training steps for discriminator per

iteration is a time-consuming process.

(a) Synthetic face images generated with WGAN[5].

(b) Synthetic bedroom images generated with
WGAN[5].

Figure 2.9. Synthetic images generated with WGAN[5].



14

2.6.1.5. Improved Training of Wasserstein Generative Adversarial Net-

works

Improved Training of Wasserstein Generative Adversarial Networks (WGAN-

GP)[8] tries to solve issues ofWGAN,mainly the problems that comewithweight clipping.

Research shows that any form of weight clipping can lead to optimization problems. Even

with the best scenario, WGAN fails to converge. Rather than weight clipping, they added

a gradient penalty to original critic loss. Arjovsky et al. suggest using batch normalization

in WGAN to prevent vanishing gradients, but WGAN-GP penalizes critic’s gradient for

each input.

2.6.1.6. Progressive Growing of General Adversarial Networks

Progressive Growing of GANs (PGAN)[6] uses a different method than any other

GAN. Models generator and discriminator grows progressively. Networks start with low

resolutions and learn more subtle details as it grows. This approach can generate very

detailed images at the end of its training. Small starting resolution helps with the memory

constraints of GPUs, but as the network grows, it requires more memory, leading to a

bottleneck when working with cheaper GPUs.

2.6.2. Variational Autoencoders

Autoencoders are bottleneck architectures. They try to learn how to represent data

efficiently in an unsupervised environment[25]. Similar to GANs, autoencoders have two

parts called encoder and decoder; however, their job is different from the two networks

in GAN. Encoders compress the data and map it into code. The decoder reconstructs the

data into its original form from the compressed representation. After the reconstruction

process, its loss is calculated; this loss measures how close the reconstruction is to the orig-

inal input. Autoencoders do not possess generative properties; however, autoencoders can
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(a) Synthetic face images generated with PGAN[6].

(b) Synthetic bedroom images generated with PGAN[6].

Figure 2.10. Synthetic images generated with PGAN[6].

generate new samples by modifying the encoder. To generate new samples encoder takes

the input and encodes it into a latent distribution rather than latent representation[16]. Rep-

resentation is sampled from the latent space to be reconstructed. Since this representation

is different from any input, the decoder will generate new samples.

2.6.3. Upsampling Methods

While training, GANs upsampling is used in the generator network to create

the desired output size. Upsampling function increases the image’s shape by a scale.

Upsampling tries to fill the gap created by the increased size of the matrix. When matrix’s

size is increased new fields are added between existing fields. There are a couple of

approaches to how to fill these gaps. Few methods are tested for fingerprint data.

2.6.3.1. Nearest Neighbor Interpolation

One of the simplest interpolation methods is the nearest neighbor interpolation.

Points with no values are filled with the nearest point with a value. On a 2D image

matrix, every value on a pixel is copied to its neighbor to increase the size of the image.

This method can create a sharper, more artificial look on resized images. Advanced
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interpolation methods like linear or cubic interpolation methods can create better results

when an image is upsampled.

2.6.3.2. Bilinear Interpolation

This interpolation method creates new data points by looking at the existing points

and tries to fit new points between the range set by existing data points. Existing points

create straight-line linear polynomial, and new data is selected from this line. The new

point can be calculated with a slope equation. This method is augmented to work in two

directions, making the interpolation line a quadratic one.

Figure 2.11. Fingerprint images generated with the GAN. Bilinear interpolation method
used in upsampling.

2.6.3.3. Bicubic Interpolation

Bicubic interpolation is the extended form of Cubic Hermite Spline. Like linear

interpolation, Cubic Hermet Spline produces continuous function, but the function created

does not have to be linear. The function is applied to each interval, and its derivative is

also continuous. This method creates one of the smoothest transitions between known

data points and produces little artifact. Results are similar to Figure: 2.11.
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CHAPTER 3

RELATED WORK

Synthetic fingerprint generation techniques can be classified into two classes.

The first technique is model-based, and it uses mathematical models to approximate real

fingerprints. Even though this technique is older than the second one, it generates excellent

results. Fingerprints generated can look highly realistic to an untrained eye. Since the

technique is model-based, images tend to look more uniform, while real-life samples

look different than each other. The second technique is getting more popular due to

advancements in deep learning. Using generative models to create synthetic fingerprints

is becoming the newnorm. BothGANandCNNare used to generate synthetic fingerprints.

These fingerprints can look more realistic since they learn the irregularities of fingerprints

in training. The biggest problem with this technique is training stability. GANs get less

stable at the later stages of the training resulting worse results. Also, to train a complex

deep learning model, one needs an expensive graphic card which can deter a researcher

from using a deep learning approach.

One of themost famous approaches to creating synthetic fingerprintswas developed

by Capelli et al. , and it is called SFinGe (Synthetic Fingerprint Generator)[2]. SFinGe

was designed to imitate electronically scanned fingerprints. In a sense, SFinGe tries to

invert the classic fingerprint matching algorithm to create realistic samples. Fingerprint

matching algorithms remove the background from the image, generate orientation maps,

and enhance the ridges to find minutiae points. SFinGe model generates a segmented

fingerprint, adds noise, and places it on a background. The SFinGe model starts with

creating a master fingerprint. First, the model creates a fingerprint area. The shape and

size of the area are dependent on variables such as pressure from the finger, the position of

the finger, and the size of the fingertip. After generating the fingerprint area the approach

creates an orientation image of an imaginary fingerprint. This image again depends on

variables like the class of the fingerprint and the position of the minutieas. However,

the model cannot be used for arch types without any minutieas. The model generates a

feasible random ridge line frequency image.Ridge frequency images represent the number
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of ridges in a given length. These images are created by inspecting a large number of

fingerprints. Ridge frequencies on human fingerprints tend to drop above the loops and

below the deltas. With two images created, they are given as an input for ridge pattern

generation. The model starts by placing dots on an empty image and enhances the image

by using Gabor filters. Master fingerprints are then used to create different impressions

of themselves to create intra-fingerprint variability. Different placements of the finger,

dampness of the skin, cuts on the fingerprint, scanner noise, and external objects can all be

used to create variabilities. These variabilities help improve recognition. Against human

subjects, SFinGe’s outputs are proven to be reasonably realistic. Only 23 percent of the

subjects correctly classify genuine and synthetic fingerprints. The model-based approach

makes it hard to create images with varying ridge thicknesses, and SFinGe is no exception.

Noises on SFinGe samples are uniformly distributed, unlike real examples noises and

artifacts tend to cluster over small areas of the images.

Another related work [26] attempts to create synthetic fingerprints with prespeci-

fied features. Research focuses on generating synthetic fingerprints which contact-based

sensors have collected. The model-based approach takes inputs like fingerprint image

size, minutiae samples, and orientation maps from their respective statistical models to

synthesize the fingerprints. Level-1 and level-2 features are extracted from real fingerprint

images using their statistical distribution models. These features are dependent on each

other due to their nature. Singular points on fingerprints can be roughly approximated

for each fingerprint type with Gaussians[27] . For each type of fingerprint, class images

get aligned at their centroid points. The assumption has been made that each class can

be represented with Gaussian distributions. The model generates master fingerprints with

AM-FM based methods. Fingerprint ridges can be represented with AM-FM functions

where FM can represent variations andAMcan represent intensity values in ridge. Impres-

sions are generated by using different types of distortions on master fingerprints. Different

regions of the fingerprint are subjected to different levels of non-linear plastic distortion

to emulate a real-life finger. They further render the images to create a more realistic look.

This realistic look is achieved by simulating the dryness of the skin and adding noise to the

image. Lastly, they apply a smoothing filter to achieve the final impression. The number

of minutiae points on the synthetic images is more in line with what SFinGe produces.

Research claims that this approach gives more flexibility and control over what the SFinGe

method can offer.
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A similar mathematical model approach was created by Imdahl et al. [28] in 2015.

Their Realistic Fingerprint Creator (RFC) model starts at all foreground pixels instead

of the random point start of SFinGe[2]. The orientation field from a database and five

associated parameters are randomly generated. The field is then shaped according to these

parameters. These parameters are picked in a plausible range not to create unrealistic

orientation fields. Each pixel gets selected randomly and assigned a black or white color.

This initial image was then transformed into a fingerprint image by applying Gabor filters

for 50 iterations. Finally, they apply threshold and thinning operations to the generated

images. They extract the minutiae points to test the similarity of real and synthetic

samples. To calculate the similarity, researchers generate minutiae histograms of both

real and synthetic images. Afterward, earth mover’s distance metric is used to compare

the histograms. With this metric, they claim that the real and synthetic images are not

distinguishable from each other.

FingerGAN[29] is based on deep learning approaches. Their framework is a

DCGAN with increased convolutional layers. The framework adds total variation to the

loss function to prevent a dashed line look on the ridges. The model was trained on PolyU

High-Resolution-Fingerprint Database and FVC2006’s DB2-A dataset. The only metric

the researchers show is Fréchet Inception Distance, where the generated samples scored

70.5. They claim the score is comparable to state-of-the-art models, but it does not include

any of these scores. Results look noisy, and even an untrained person can easily separate

the synthetic samples from the real ones.

SYNFI model [30] is a deep learning based approach to generating synthetic

fingerprints. They rely on GANs and super-resolution techniques. In order to generate

these images, they split these techniques into a two-phase approach. Before the phases

start, they pre-process the images. They use NIST biometric image software(NBIS) to

segment and centrally align the fingerprint images. They scale the images into two sizes:

the first 64x64 pixels and the second is 256x256 for the GAN and Super Resolution(SR)

model, respectively. In phase 1, Wasserstein GAN[*] was trained with the lower quality

database. With only GANs, they could only generate 64x64 pixel images; anything higher

resolution yielded unsatisfactory images. They transformed these low-resolution images

into high-resolution ones in the second phase. ESRGAN[31] with Residual-in-Residual

Dense blocks were used to create the higher resolution version of these synthetic images.

They analyzed the indistinguishability of the real and synthetic fingerprints with different
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classifier models, and all of them failed to classify since the best accuracy was only 50.43

percent.

One of the most advanced deep learning based approaches in synthetic fingerprint

generation was made by Jain et al. in 2018[32]. The architecture proposed consists of

Convolutional Autoencoder (CAE) and Improved-WGAN[8] (IWGAN). They acquired a

database with 250 thousand fingerprint images from unnamed law enforcement to train

the models. All fingerprint images from this database are resized to 512x512 pixels, and

all have 500 dpi. These images did not go through any data augmentation process other

than normalization. CAE extracts a compressed representation of an image given and

tries to reconstruct the input image with a chosen cost function. They take advantage of

the similarity between the decoder of CAE and the IWGAN generator. Initially, CAE is

trained in unsupervised mode. Trained CAE’s decoder then used as a starting point for the

IWGAN’s generator. Their IWGAN implementation has seven convolutional layers in both

generator and discriminator, and the LeakyReLU activation function is used in all layers.

Model is able to generate an image in 12ms on a reasonably cheap computer. Produced

images achieve similar NFIQ 2 scores with a higher probability of occurrence to real

fingerprint datasets like CASIA and synthetic fingerprint datasets like IBG Novetta. To

find the fingerprint diversity, they calculate imposter comparision score using VeriFinger

SDK 6.3. Scores shows that the proposed approach can generate more diverse looking

fingerprints than IBG Novetta and SFinGe.

Wyzyowski et al.[33] created a hybrid model for fingerprint generation. They in-

corporated SFinGe[2] approach to create seed images. Seed images are different versions

of the same fingerprints. The first stage of creating seed images is generating master

fingerprints from SFinGe implementation, and then they dynamically change the ridge

thicknesses of these fingerprints. To avoid sudden changes in the thickness of the ridges,

they use the sine function. Pore and scratch distributions are learned from real fingerprint

images to add to the master fingerprints. They use the pore-ridge reconstruction method[*]

to implement pores to the master fingerprint. They also count scratches on all the fin-

gerprints in a real fingerprint image database and use the normalized cumulative density

function to choose the number of scratches to add to the master fingerprint. From the

generated fingerprints, they take different positions and angles to create multiple instances.

These instances are given as input to the CycleGAN[34] alongside real fingerprint images.

Output images and real fingerprints are given to 60 human participants, and they failed to



21

discriminate real from synthetic images. The model can make synthetic fingerprints look

real, but generating new fingerprint images relies on SFinGe and deep learning solely used

to translate synthetic images to more realistic ones.
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CHAPTER 4

METHOD

With the development of new generative networks, synthetic images started to

look more realistic. One of the best examples of this is how researchers started to

generate realistic human faces. The model proposed in this thesis consist of three phases.

First, fingerprints from real databases are collected, and they are enhanced to look like

master fingerprints. The second phase is the training and generation phase. This phase

takes enhanced fingerprint images as input to train the proposed model and generate the

fingerprints. Generated fingerprints are then fed to a quality checking pipeline where they

are evaluated, and based on their quality, they are selected as final synthetic images.

4.1. Choosing The Best Approach

Generative models were tested with a sample subset from NIST SD4 to determine

which approach yielded better results for fingerprint generation. A small subset of 100

images per class was randomly selected as the subset. Images did go through a small

enhancement process using a non-local means denoising algorithm[35].

4.1.1. Variational Autoencoders

Acouple of differentVAEapproacheswere used to checkwhetherVAE’s could out-

performGAN’s. Thefirst approach testedwasHypersphericalVariationalAutoencoders[36].

This approach swaps the Gaussian distribution used in the classic approach to von Mises-

Fischer distribution. Results achieved were lackluster compared to well-optimized GANs

for the dataset given. The second model used is called Vector Quantised Variational

AutoEnconder (VQ-VAE) [7]. Vector Quantised approach makes encoder outputs to be
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discrete rather than being continuous. This approach also prevents posterior collapse

caused by the decoder training is being faster and more robust than the encoder. Both

encoder and decoder use convolutional layer structure from PixelCNN[37]. The results

generated from VQ-VAE were impressive in terms of quality, but they lacked the required

diversity. Hyperspherical Variational Autoencoder approach generated results that were

competitive with GANs in terms of quality but lacked the expected diverse results for

better training of classification models. VQ-VAE performed poorly on the raw NIST SD4

dataset, but when trained with the enhanced NIST SD4, it generated high quality and

diverse images, but the images came with undesired artifacts.

Figure 4.1. Generated results from VQ-VAE[7]. Enhanced NIST SD4 dataset were given
as an input to the model.

4.1.2. Generative Adversarial Networks

Different GANs perform differently on each dataset. Fingerprint datasets are no

exception. A small portion of the NIST SD4[1] dataset and its enhanced version is used

as a test set to decide whether a particular GAN approach is good enough to generate

fingerprints. All approaches are tuned to generate the best results from the test set, and

they all have given the same amount of time and resources.
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4.1.2.1. DCGAN

Fingerprint images are detailed because of their changing ridge thickness, the

number of minutiae points, and their classes. These problems make DCGAN[3] an

inadequate candidate for generating synthetic fingerprints.

Figure 4.2. Generated results from DCGAN[3]. NIST SD4 dataset[1] were given as an
input to the model.

4.1.2.2. LSGAN

Results of the LSGAN[4] are significantly better than DCGAN[3] but not enough

to be chosen as the approach for fingerprint generation.

4.1.2.3. RELGAN

Results generated with RELGAN[24] were similar to the original DCGANs.
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Figure 4.3. Generated results from LSGAN. NIST SD4 dataset were given as an input to
the model.

Figure 4.4. Generated results from RELGAN. NIST SD4 dataset were given as an input
to the model.

4.1.2.4. WGAN

Even though using Wasserstein distance[5] significantly improves GANs finding

the optimal clipping value and finding the number of training steps for discriminator per

iteration is a time-consuming process. Results were clearly better than the rest of the

results.
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4.1.2.5. WGAN-GP

WGAN-GP[8] results had the highest quality results withmore stable and relatively

faster training than any other approach.

Figure 4.5. Results generated from WGAN-GP[8].

4.1.2.6. PGAN

Results generated with PGAN[6] comparable with WGAN-GP, but with Finger-

print images, WGAN-GP can achieve good-looking images faster. With a good GPU,

substituting this method with WGAN-GP can lead to more realistic images.

4.2. Fingerprint Enhancement

Fingerprint enhancement is an essential step before training. Protecting the sta-

bility of the training process of GANs is essential and small noises can alter the results.

Fingerprint images are noisy, and using them without any enhancement can generate bad

results since the training process of GANs are not stable. Jain et al. [38] created an

image enhancement algorithm for fingerprints. The thesis stays true to this enhancement

algorithm but is tuned to perform better on the database used. The database used for the

thesis consists of relatively high-quality images; thus, one part of the algorithm was ex-

cluded from the enhancement process. Excluded part of the algorithm finds unrecoverable

parts and deletes them. The following subsections explain the fingerprint enhancement
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Figure 4.6. Results generated from PGAN[6]. PGAN trained with only one class because
of the resource constraints.

algorithm used.

4.2.1. Normalization

Image normalization is done by calculating each pixels z score and adjusting

image pixel intensities accordingly. Normalization is a pixel-wise operation, and each

pixels value is recalculated using desired mean and standard deviation. Using the formula:

x−µ
σ

(4.2.1.)

where:

• µ is the mean of the pixels values

• σ is the standard deviation of the pixels values

This step is essential to almost all image enhancement processes. Real fingerprint

images are all considered gray-level images where only one color channel is present, and

each pixel value denotes the intensity of the gray level. Normalization aims to reduce the

intensity differences on ridges. All ridges can have the similar gray levels since the model

is working on Level-1 details and, the pores on the ridges and other small details are not

crucial to Level-1 details. After acquiring the normalized image, this image is used as a

mask to find ridges where dark areas are considered ridges.
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(a) Original fingerprint image. (b) Normalized fingerprint image.

Figure 4.7. Fingerprint image before and after the normalization process.

4.2.2. Fingerprint Segmentation

The fingerprint ridge segmentation function takes a fingerprint image and returns

a mask that can identify where ridges are located. Given a block size function takes

the image and splits it into block-sized regions. Each region’s standard deviation gets

calculated. If the value lies above the predicted threshold value, that region is deemed part

of the fingerprint. This method can create chunks in the mask if the ridge distance gets

too low due to poor image quality or poor finger placement. After the mask is generated,

the mask gets normalized again to remove any intensity differences further.

(a) Normalized fingerprint. (b) Segmented fingerprint image.

Figure 4.8. Fingerprint image before and after the segmentation process.
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4.2.3. Ridge Orientation

Ridge orientation creates an estimation map of where the local orientation of the

ridges is. Image is again dived into the same block-sized regions. Sobel-Feldman operator

is generated in these blocks. Even though this operation can get inaccurate, it is adequate

enough to approximate. Local orientation gets centered at the middle of each block. Some

windows might calculate orientations wrong. Ridges tend to look continuous with no

extreme changes in their orientation.

Figure 4.9. Orientation map of the fingerprint image.

4.2.4. Ridge Frequency

Uninterrupted ridges and valleys gray levels can be used to model a sinusoidal

wave along the direction of the orientation. This wave is a great tool to differentiate actual

ridges from undesired noises. Normalized mask images and orientation field maps can

be used together to generate these waves. Same resolution fingerprints can be used as

a reference point to find the frequency range of ridges and valleys. For the blocks with

minutiae, they need to be interpolated using neighboring blocks.



30

4.2.5. Ridge Filter

The Ridge filter is the last function used in the enhancement process. This filter

enhances fingerprints with oriented filters. A band-pass filter can be created using si-

nusoidal waves to remove the noise. Properties of Gabor filters make them an excellent

band-pass filter candidate to use. The filter’s frequency is taken from ridge frequency,

and orientation is taken from the orientation map. Standard deviations of the Gaussian

envelope are chosen based on the dataset from where the fingerprint originates from.

(a) Original fingerprint image. (b) Enhanced fingerprint image.

Figure 4.10. Fingerprint image before and after the enhancement process.

4.3. Generative Model

The model used for training is an implementation of Wasserstein loss[5] with

gradient penalty into DCGAN[3]. The generator and discriminator consist of four convo-

lutional layers and one fully-connected layer at the top. Each convolutional layer has a 3x3

pixel kernel with a one-pixel stride. All but the last layer use LeakyReLU as an activation

function. The last layer uses the Tanh function instead. The generator takes random noise

shaped latent space with 256 dimensions. Discriminator takes 256x256 images from both

real samples and generators output.
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4.3.1. Generator and Discriminator

The generator takes a 512-dimensional latent vector of random noise as an input.

This input goes into a fully connected layer sized 1048576. After this, four convolutional

layers follow. These layers consist of upsampling functionwith a scale of 2, a convolutional

layer with a 3x3 kernel, a 1x1 stride, one padding, batch normalization function with 0.8

epsilon, and LeakyReLU activation function with a negative slope value of 0.2.

Generator
Layer Output shape
Linear 1048576
Upsample [56, 128, 128]
Conv2d [256, 128, 128]
BatchNorm2d [256, 128, 128]
LeakyReLU [256, 128, 128]
Upsample [256, 256, 256]
Conv2d [128, 256, 256]
BatchNorm2d [128, 256, 256]
LeakyReLU [128, 256, 256]
Upsample [128, 512, 512]
Conv2d [64, 512, 512]
BatchNorm2d [64, 512, 512]
LeakyReLU [64, 512, 512]
Conv2d [1, 512, 512]
Tanh [1, 512, 512]

Table 4.1. Generator’s architecture.

The discriminator network takes either real or fake image samples as input. This

image goes through deconvolutional layers to form a validation score. Discriminator

layers primarily consist of reverse ordered generator layers after the feature learning

discriminator’s fully connected layers take a 512-dimensional feature vector. The fully

connected neural network generates output after the Sigmoid function produces a score

that classifies the image as either real or fake. The fully connected network also uses 0.25

dropout regularization to help with generalization.
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4.4. Fingerprint Quality Assessment

The generative model can generate an infinite amount of images, but all of them

are not high-quality results. After each image is generated, they should go through a

quality assessment. NFIQ 1[17] and NFIQ 2[19] were used to judge the quality of the

images. NFIQ 1 is older and less powerful than NFIQ 2 in quality assessment, but it is

faster than NFIQ 2. NFIQ 1 is used as a preliminary to NFIQ 2. Each image that scores

three or below was selected and sent to NFIQ 2. Images that score 70 or more in NFIQ

2 are selected and added to the dataset. This process provides researchers to work with

high-quality images. This process can easily be turned off the get raw results as well.
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CHAPTER 5

EXPERIMENTS

The generative pipeline is used to create a sizeable synthetic fingerprint database.

Conducted experiments show how much the generated fingerprints are usable in the real

world. Real fingerprints images are from the NIST SD4 dataset. The images in this dataset

have low noise and high quality. Most importantly, this database comes with class labels

for each fingerprint image. Five class labels (Arch, Tented Arch, Right Loop, Left Loop,

Whorl) were used in classification experiments. Designed classification experiments use

a combination of real and synthetic fingerprints to show to what extend the synthetic

fingerprints can be relied on in real-life. The last part of the generation pipeline uses

NFIQ and NFIQ 2 scores to generate high-quality images. Average scores of the synthetic

fingerprints were compared against real fingerprints to check if the synthetic fingerprints

can at least achieve the same quality as the sensor image. Minutiae points have a significant

role in fingerprint biometrics; thus, having a realistic minutiae distribution and quantity is

extremely important. Real and synthetic fingerprint minutiae maps, minutiae histograms,

and total minutiae points were compared to show their similarity. Each experiment and

its variations are shown in detail.

5.1. Classification

Picking the right architecture is essential in most classification jobs. The exper-

iments are focused on data quality rather than architecture quality; that is why one of

the state-of-the-art models was chosen rather than creating a new one. The classifier has

five different output classes. These classes comes from the Level-1 features of human

fingerprints. Using this classification on the ten fingers can narrow the search space and

help other tools and experts identify people. The representational quality of the data

is tested using the same classification architecture and same validation data with differ-

ent training data. The chosen network is an improved version of ResNeXt[] developed
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by NVIDIA. ResNeXt is the second-place winner in ILSVRC 2016 classification task.

The network uses repeating layers just like its predecessor, ResNet. The model aims

to exploit the split-transform-merge strategy introduced in Inception models. NVIDIA

added a squeeze-and-extraction module[9] to the ResNeXt[39] to create SE-ResNeXt.

The squeeze-and-extraction model help determines how much each channel in the con-

volutional block matters. Each channel in the convolutional block gets squeezed into a

single value by global pooling, and all channels go into a fully connected layer followed

by an activation function that creates non-linearity. These steps add slight complexity to

the whole network; no performance loss is detected. Almost all the networks benefit from

the squeeze-and-extraction module, which drops the top-1 error on average one percent.

SE-ResNeXt101-32x4d model was used in every classification task to show the usability

of the synthetic prints. The chosen model is pre-trained with ImageNet’s[40] one thousand

labels. Image classes chosen are part of the ILSVRC 2012 classification task still used in

today’s classification tasks. Every classification task used the same hyper-parameters and

10-fold cross-validation. These parameters are:

• Batch size: 8

• Learning rate: 0.08 (Scaled with batch size)

• Momentum: 0.875

• Label smoothing: 0.1

• Weight decay: 6.10e−5

• Cosine annealing learning rate scheduler

• Drop-out rate: 0.5

Figure 5.1. Example squeeze and extraction block from the original paper[9].
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Figure 5.2. Implementation of squeeze and extraction module to the ResNet[9] model.

5.2. Experiment 1

This experiment focuses on the classification task of NIST SD4 data. Four different

training datasets were given to the same classification architecture. The model was trained

with these four training datasets using 10-fold cross-validation. These datasets are:

• NIST SD4

• Synthetic fingerprint generated in this thesis

• Synthetic fingerprint generated with SFinGe model

• The enhanced version of NIST SD4

All training datasets have the same amount of fingerprint images per class. 720 images

were selected randomly for each class for all datasets resulting in 3600 images per dataset.

The Figure shows that themodel trainedwithNISTSD4was able to classify the test dataset.

Other models that trained with the remaining three datasets had low test accuracies. All

of them had around % 20 test accuracy on average and failed to represent the features

of the NIST SD4 dataset. This experiment shows that using an enhanced version of the

same dataset or the synthetic fingerprint datasets chosen are not good training sets for the

classification task of raw fingerprint images.
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Training Set Highest Acc % Lowest Acc % Average Acc %
Enhanced NIST SD4 %24 %19 %22

Thesis %22 %21 %22
SFinGe %24 %22 %23
NIST SD4 %89 %91 %90

Table 5.1. Test accuracy statistics of models and their training sets for experiment 1.

5.3. Experiment 2

The previous experiment showed that models trained with synthetic fingerprints

could not classify Level-1 details on the NIST SD4 dataset. This experiment tries to

solve this issue by enhancing the NIST SD4 dataset images. The same algorithm[38] used

before the generation process was used to enhance the NIST SD4 dataset images. Three

datasets were used to train the SE-ResNeXt model with 10-fold cross-validation. These

datasets are:

• Synthetic fingerprint generated in this thesis

• Synthetic fingerprint generated with SFinGe model

• The enhanced version of NIST SD4

Results tell a different story than experiment 1. Training datasets were a closer represen-

tation of the enhanced dataset than the raw one. This conclusion can be seen in the figures

where the test accuracies are significantly higher than in Experiment 1. One difference

is that synthetic fingerprints generated in this thesis had a better representational power

than the SFinGe images. Comparing the results shows that enhancing the training and test

dataset does not reduce the test accuracy and can be used instead of the raw data.

Training Set Lowest Acc % Highest Acc % Average Acc %
Enhanced NIST SD4 %87 %93 %91

Thesis %69 %87 %86
SFinGe %43 %50 %47

Table 5.2. Test accuracy statistics of models and their training sets for experiment 2.
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5.4. Experiment 3

The third experiment uses different training and test dataset pairs. Three datasets

were used in this experiment. With using three datasets, three training and test dataset pairs

were created. These are: Thesis - SFinGe SFinGe - Thesis Thesis - SFinGe Impressions

• Synthetic fingerprint generated in this thesis - Synthetic fingerprint generated with

SFinGe model

• Synthetic fingerprint generated with SFinGemodel - Synthetic fingerprint generated

in this thesis

• Synthetic fingerprint generated in this thesis - Synthetic fingerprint impressions

generated with SFinGe model

Each dataset consisted of 1000 images. The classification model trained with the synthetic

fingerprint dataset generated in this thesis and its validation accuracies against both SFinGe

datasets was recorded. The model’s test accuracy was high in both cases, achieving %94

on average for SFinGe and %81 on average for SFinGe impressions. The model trained

with SFinGe had a low test accuracy with only %69 on average. This experiment shows

that when a model is trained with the synthetic fingerprint images dataset, it generalizes

better than SFinGe fingerprints.

Training Set - Test set Highest Acc. % Lowest Acc. % Average Acc. %
Thesis - SFinGe %96 %84 %94

Thesis - SFinGe Impressions %82 %59 %81
SFinGe - Thesis %72 %52 %69

Table 5.3. Test accuracy statistics of models and their training sets for experiment 3.

5.5. Experiment 4

The last experiment focuses on if synthetically generated fingerprints help with

the classification when used with the real fingerprint data. For this, both SFinGe and

generated dataset were added to the enhanced NIST SD4 dataset and enhanced NIST SD4
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were used as the test dataset. The experiment was conducted in two parts. For the first part

of the experiment, equal parts of both enhanced NIST SD4 and synthetic fingerprints were

combined into one training set. The second part addsmore synthetic data to the training set

to see if results get better with more data or worse with adding more synthetic data to the

training set. Results show that adding the same amount of synthetic data generated in this

thesis as NIST SD4 to the training set improves models test accuracy slightly. However,

with adding the SFinGe dataset, that slight improvement was not captured. Adding even

more SFinGe data did not improve the test accuracy. Even though synthetic fingerprints

generated in this thesis increased the test accuracy when used as equal parts with enhanced

NIST SD4, adding more synthetic data dropped the accuracy back to the original enhanced

NIST SD4 data. These results show that the representative power of synthetic fingerprints

is close to the real-life fingerprint images but not enough to improve real-life datasets.

Training Set Highest Acc. % Lowest Acc. % Average Acc. %
%50 Thesis+%50 Enh. SD4 %93 %85 %92
%66 Thesis+%33 Enh. SD4 %91 %86 %90
%50 SFinGe+%50 Enh. SD4 %91 %85 %90
%66 SFinGe+%33 Enh. SD4 %90 %87 %90

Table 5.4. Test accuracy statistics of models and their training sets for experiment 4.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1. Conlusion

The lack of publicly available datasets hindered the researchers. Synthetic fin-

gerprints can not be matched with any human’s fingerprint, and a model can generate an

infinite number of them. A deep-learning-based pipeline was designed for this study with

these opportunities in mind. The pipeline enhances the publicly available dataset to help

with the generation process. Generative models take the enhanced dataset to generate

candidate synthetic fingerprints. These candidate fingerprints go through an elimination

process where models trained to assess fingerprint quality eliminate those with low scores.

After these steps, a final synthetic database is generated. Results show that the generated

models trained with synthetic fingerprints can classify enhanced real data with %86 ac-

curacy, which is a significant improvement from SFinGe master fingerprints. Results also

show that enhancing real fingerprint images helps models trained with synthetic finger-

prints classify. This is crucial since the aim is to use models only trained with synthetic

fingerprints in real-life scenarios. Study shows that synthetic fingerprints can replace real

fingerprint datasets in the near future.

6.2. Future Work

The realism of the data is not yet explored since all of the state-of-the-art methods

are unavailable to public access. Even though the experiments show that enhancing the

fingerprint data is acceptable new parts can be added to the pipeline to make the images

look more like real-life samples. The progressive GAN approach can be added to the

model to generate better results.
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