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ABSTRACT. We study the backstepping stabilization of higher order linear and nonlinear Schrödinger equa-
tions on a finite interval, where the boundary feedback acts from the left Dirichlet boundary condition. The
plant is stabilized with a prescribed rate of decay. The construction of the backstepping kernel is based on a
challenging successive approximation analysis. This contrasts with the case of second order pdes. Second,
we consider the case where the full state of the system cannot be measured at all times but some partial
information such as measurements of a boundary trace are available. For this problem, we simultaneously
construct an observer and the associated backstepping controller which is capable of stabilizing the original
plant. Wellposedness and regularity results are provided for all pde models. Although the linear part of the
model is similar to the KdV equation, the power type nonlinearity brings additional difficulties. We give two
examples of boundary conditions and partial measurements. We also present numerical algorithms and sim-
ulations verifying our theoretical results to the fullest extent. Our numerical approach is novel in the sense
that we solve the target systems first and obtain the solution to the feedback system by using the bounded
invertibility of the backstepping transformation.
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1. INTRODUCTION

1.1. Statement of problems and main results. The main purpose of this paper is to establish the
boundary backstepping stabilization of the higher order linear and nonlinear Schrödinger equations
with a prescribed decay rate. The linear equation is given by

iut + iβux x x +αux x + iδux = 0, (1.1)

while the higher order nonlinear Schrödinger equation (HNLS) has the following form:

iut + iβux x x +αux x + iδux + f (u) = 0, (1.2)

where β > 0,α,δ ∈ R, u is complex valued, and f (u) = |u|pu, p ∈ (0,4].
The initial condition is given by

u(x , 0) = u0(x), (1.3)

where u0 will assume various different degrees of smoothness depending on the type of problem that we
study below. We will associate (1.1)-(1.3) and (1.2)-(1.3) with two different sets of boundary conditions.
In Sections 2-4 below, we assume

u(0, t) = g0(t), u(L, t) = 0, ux(L, t) = 0, (1.4)

whereas in Section 5, we take

u(0, t) = g0(t), ux(L, t) = 0, ux x(L, t) = 0. (1.5)

The left end boundary input g0 denotes a backstepping feedback controller.
HNLS is used to describe the evolution of femtosecond pulse propagation in a nonlinear optical fiber

[14, 13]. In (1.1), the third order term corresponds to the higher order linear dispersion. The nonlinear
term in (1.2) is the self-phase modulation. Indeed, more general nonlinearities could be considered here
to take into account self-steepening and self-frequency shift due to the stimulated Raman scattering.
In the absence of the higher order dispersion, the model becomes the classical nonlinear Schrödinger
equation (NLS) which describes slowly varying wave envelopes in a dispersive medium. However, for
the pulses in the femtosecond regime, the NLS equation becomes inadequate and higher order nonlinear
and dispersive terms become crucial. See [1] for a detailed discussion on the higher order effects upon
the propagation of an optical pulse. From the practical point of view, the stabilization of solutions to
HNLS becomes necessary to suppress any chaotic behaviour during the transmission of optical pulses.
This paper shows how this can be achieved with a prescribed speed by using a controller which acts only
on the boundary of the medium. The latter is especially important in applications for which access to
the medium is severely restricted and only external control mechanisms are available.

Consider for example the linearized equation (1.1) together with the initial condition (1.3) and the
set of boundary conditions (1.4):







iut + iβux x x +αux x + iδux = 0, x ∈ (0, L), t ∈ (0, T ),
u(0, t) = g0(t), u(L, t) = 0, ux(L, t) = 0,

u(x , 0) = u0(x).
(1.6)

It is not difficult to show that when g0 ≡ 0, the solution of (1.6) satisfies

1
2

d
d t
|u(·, t)|22 = −

β

2
|ux(0, t)|2, t ≥ 0.

One can see this formally by multiplying (1.6) by ū, taking the imaginary parts, and integrating over
(0, L). This implies that the L2-norm is nonincreasing since we assume β > 0. Some solutions may decay
to zero of course, but there are certainly some solutions which do not decay. Consider for instance β =
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1,α= 2,δ = 8, L = π, and u0(x) = 3−e4i x−2e−2i x . Then, u(x , t) = u0(x) is a time independent solution
of (1.6) on the interval (0,π), whose L2(0, L)-norm is conserved. In any case, what we really want is
that all solutions to have an exponential decay with a prescribed large rate. This suggests inserting a
fast stabilizing effect into the system correlated with the prescribed decay rate. We will achieve this
by using the classical backstepping controller design, which comes with several technical challenges to
overcome in the case of the current problem, explained below in more detail. A backstepping controller
acting at the left endpoint of the domain is constructed by using a transformation given by

w(x , t) = (I − Υk)u(x , t)
.
= u(x , t)−

∫ L

x

k(x , y)u(y, t)d y. (1.7)

In (1.7) the kernel k is suitably chosen so that w becomes the solution of a pde model whose solution
readily satisfies the exponential decay property with the prescribed decay rate constant, say r > 0. An
obvious choice is the weakly damped higher order Schrödinger equation:











iwt + iβwx x x +αwx x + iδwx + irw= 0, x ∈ (0, L), t ∈ (0, T ),
w(0, t) = 0, w(L, t) = 0, wx(L, t) = 0,

w(x , 0) = w0(x)
.
= u0 −

∫ L

x k(x , y)u0(y)d y.

(1.8)

The solution of (1.8) satisfies
|w(·, t)|2 ® |w0|2e−r t , t ≥ 0. (1.9)

One can see this by multiplying (1.8) with w̄, integrating over (0, L) and taking the imaginary parts.
It is clear from (1.7) and the boundary conditions w(0, t) = 0, u(0, t) = g0(t) that the backstepping

feedback must have the form

g0(t)
.
=

∫ L

0

k(0, y)u(y, t)d y. (1.10)

The difficulty is generally associated with finding a suitable kernel k so that one can reach at the
target system (1.8) starting from the original plant (1.6). Once such kernel is found and one proves that
the backstepping transformation is bounded invertible on a suitable space, then one can conclude that
the same decay rate property also holds for the solution of (1.6).

Therefore, the problem in which we are interested can be stated as follows:

Rapid stabilization: Given r > 0, find a (sufficiently smooth) kernel k such that the solution of (1.6)
satisfies

|u(·, t)|2 ® |u0|2e−r t , t ≥ 0,
with the feedback controller g0 in (1.10).

After some calculations (see Appendix A for details) one can find that the solution of the original lin-
earized problem (1.6) is transformed into the solution of (1.8) via (1.7) if the kernel k = k(x , y) is a
solution of the boundary value problem







kx x x + ky y y − iα̃(kx x − ky y) + δ̃(kx + ky) + r̃k = 0,

k(x , x) = k(x , L) = 0,
d

d x kx(x , x) = − r̃
3 ,

(1.11)

where (x , y) belongs to the triangular domain

∆x ,y
.
= {(x , y) ∈ R2 | x ∈ (0, L), y ∈ (x , L)} (see Figure 1),
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α̃= α/β , δ̃ = δ/β , and r̃ = r/β .

Remark 1.1. We will sometimes write k = k(x , y; r) to emphasize the fact that the kernel implicitly
depends on the prescribed rate constant r.

One of the novelties of this paper is the proof of the existence and smoothness of a backstepping
kernel k solving (1.11). Although the proof relies on the classical scheme of successive approximations,
implementation of this technique for (1.11) requires a very delicate and rigorous series analysis at each
step of the succession. We present a unified approach for solving (1.11) which can also be applied to
the stabilization of various other second and higher order evolution equations.

Our main result regarding the linearized model (1.6) is the following.

Theorem 1.2. Let T,β , r > 0, α,δ ∈ R, u0 ∈ L2(0, L), and g0(t) = g0(u(·, t)) be as in (1.10) where k =
k(x , y; r) is a smooth backstepping kernel solving (1.11) (constructed in Lemma 2.1 below). Then (1.6) has
a unique mild solution u ∈ C([0, T]; L2(0, L))∩ L2(0, T ; H1(0, L)) with ux(0, ·) ∈ L2(0, T ) and |u(·, t)|2 ≤
ck |u0|2 e−r t , t ≥ 0, where ck ≥ 0 depending only on k given by ck =

�

�(I − Υk)−1
�

�

2→2

�

1+ |k|L2(∆x ,y )

�

.

Once we achieve the rapid stabilization for the linearized model, we are able to prove that small
solutions of the corresponding nonlinear model below has the same decay property, where g0 is the
backstepping controller in (1.10) with the kernel k solving (1.11):







iut + iβux x x +αux x + iδux + |u|pu= 0, x ∈ (0, L), t ∈ (0, T ),
u(0, t) = g0(t), u(L, t) = 0, ux(L, t) = 0,

u(x , 0) = u0(x).
(1.12)

The nonlinear problem is treated via the multiplier method. Unfortunately, in this case, it turns out
that the backstepping transformation spoils the monotone structure of the nonlinear power type term in
the target system; see (2.25) below. We use the special multiplier (1+ x)u for dealing with some of the
technical challenges in nonlinear estimates. However, there is another major difficulty here when p > 1,
which is the fact that the Lyapunov analysis yields a differential inequality which involves two nonlinear
terms and one has to deal with the asymptotic analysis of the solution of a Chini’s type differential
inequality. Nevertheless, we are able to prove that the exponential decay can still be obtained for small
solutions, although the situation is much better for the local wellposedness, where we prove existence
of local solutions even for large data, except for p = 4, in which case smallness is a natural condition.
The following theorem states the corresponding wellposedness and stability results for the nonlinear
model.

Theorem 1.3. Let T,β , r ′ > 0, α,δ ∈ R, p ∈ (0,4], u0 ∈ L2(0, L) (small if p = 4). Then, there corresponds
r > 0 and g0(t) = g0(u(·, t)) as in (1.10) where k = k(x , y; r) is a smooth backstepping kernel solving
(1.11) (constructed in Lemma 2.1 below) such that

(i) (1.12) has a unique local mild solution u ∈ C([0, T0]; L2(0, L)) ∩ L2(0, T0; H1(0, L)) for some
T0 ∈ (0, T] with ux(0, ·) ∈ L2(0, T0) and

(ii) if |u0|2 is small, then u can be extended globally and it satisfies |u(·, t)|2 ® |u0|2 e−r ′ t , t ≥ 0.

If the state of a system can be measured at all times, one can construct an exponentially stabilizing
backstepping controller as we proved in Theorem 1.2 and Theorem 1.3. When this is not the case, the
general approach is to (i) design an observer which uses some partial information extracted from the
original plant such as a boundary measurement, (ii) construct an exponentially stabilizing backstepping
controller for the observer, and then (iii) prove that the same controller (which uses the observer’s state)
also stabilizes the original plant in a similar manner.
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In the above case, we introduce the following observer (estimator) for (1.6):










iût + iβ ûx x x +αûx x + iδûx
−p1(x) (y(t)− ûx x(L, t)) = 0, in (0, L)× (0, T ),
û(0, t) = g0(t), û(L, t) = 0, ûx(L, t) = 0, in (0, T ),
û(x , 0) = û0(x), in (0, L),

(1.13)

where y(t) = ux x(L, t) denotes the partial information extracted from the original plant through a
sensor placed at the boundary point x = L. In this case, we set the controller to be

g0(t)
.
=

∫ L

0

k(0, y)û(y, t)d y. (1.14)

Observe that the new feedback uses the states of the observer (1.13) instead of the states of the original
plant (1.6). The same feedback will be supplied also to the original plant (1.6). Our aim is to find a
function p1 = p1(x) such that û(t)−u(t) tends to zero as t →∞, desirably with a prescribed exponential
decay rate, in a physically suitable norm. This can be achieved by stabilizing the error model below
written with the unknown ũ= û− u:







iũt + iβ ũx x x +αũx x + iδũx + p1(x)ũx x(L, t) = 0, in (0, L)× (0, T ),
ũ(0, t) = 0, ũ(L, t) = 0, ũx(L, t) = 0 in (0, T );
ũ(x , 0) = û0(x)− u0(x) in (0, L).

(1.15)

We will show that the error can also be controlled via backstepping, in which case p1ũx x(L, ·) is regarded
as a feedback acting from the interior. Here we use a backstepping transformation

ũ(x , t) = w̃(x , t)−
∫ L

x

p(x , y)w̃(y, t)d y, (1.16)

where w̃ is the solution of an exponentially decaying target system (this is written in (3.1) below) and
p is the corresponding kernel which solves the kernel pde model (3.2) below on ∆x ,y (see Appendix
(B) for details). Once p is found, it will turn out that we can set p1(x) := −iβp(x , L). We prove the
following theorem.

Theorem 1.4. Let T,β , r > 0, α,δ ∈ R, u0, û0 ∈ H6(0, L), u0(0) =
∫ L

0 k(0, y)û0(y)d y, u0(L) = 0, w̃0 = (I − Υp)−1ũ0 satisfy the compatibility conditions

ϕ( x̄) = −βϕ′′′( x̄) + iαϕ′′( x̄)−δϕ′( x̄) = 0, x̄ = 0, L, (1.17)

and g0(t) = g0(û(·, t)) be as in (1.14) where k and p are smooth solutions of (1.11) and (3.2), respectively.
Then the plant-observer-error system (1.6)-(1.13)-(1.15) has a solution (u, û, ũ) ∈ X 3

T×X 3
T×X 6

T . Moreover,
for ε > 0 (small) and r > 0, the components of the solution (u, û, ũ) satisfy

(i) |u(·, t)|2 ≤ cε,k,p,û0,ũ0
e−(r−εck,p)t + cp |ũ0|H3(0,L) e

−r t ,
(ii) |û(·, t)|2 ≤ cε,k,p,û0,ũ0

e−(r−εck,p)t , and
(iii) |ũ(·, t)|H3(0,L) ≤ cp |ũ0|H3(0,L) e

−r t , respectively,

where cε,k,p,û0,ũ0
, ck,p, and cp are nonnegative constants depending on their sub-indices.

Remark 1.5. The function spaces X s
T (s ≥ 0) used in the above theorem are defined in Section 1.3 below.

Remark 1.6. Extending the above result to the nonlinear model gets terribly difficult due to the technical
challenges related with multiplier calculations, and therefore constructing an observer in the nonlinear
case remains open.
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In the last section of the paper, we show that all of the above results extend to another set of boundary
conditions given in (1.5). Considering the linearized model







iut + iβux x x +αux x + iδux = 0, x ∈ (0, L), t ∈ (0, T ),
u(0, t) = g0(t), ux(L, t) = 0, ux x(L, t) = 0,

u(x , 0) = u0(x),
(1.18)

we find that a backstepping transformation

w(x , t) := u(x , t)−
∫ L

x

`(x , y)u(y, t)d y (1.19)

yields a boundary value problem for the kernel ` given by














`x x x + `y y y − iα̃(`x x − `y y) + δ̃(`x + `y) + r̃`= 0,
�

`y y + iα̃`y + δ̃`
�

(x , L) = 0,

`(x , x) = 0,

`x(x , x) = − r̃(L−x)
3 ,

(1.20)

where (x , y) ∈ ∆x ,y and α̃ = α/β , δ̃ = δ/β , r̃ = r/β . In (1.19), w is assumed to satisfy the target
system introduced in (5.1) below.

In the absence of the boundary control (i.e. g0 ≡ 0), multiplying the main equation by u, integrating
over (0, L) and taking the imaginary parts, one can see that the solution of (1.18) satisfies

d
d t
|u(·, t)|22 = −

�

β |ux(0, t)|2 +δ|u(L, t)|2
�

≤ 0

given that we further assume δ ≥ 0. We prove the following.

Theorem 1.7. Let T,β , r > 0, δ ≥ 0, α ∈ R, u0 ∈ L2(0, L), and g0(t) = g0(u(·, t)) be given by

g0(t)
.
=

∫ L

0

`(0, y)u(y, t)d y. (1.21)

where `= `(x , y; r) is a smooth backstepping kernel solving (1.20) (constructed in Lemma 5.1 below). Then
(1.18) has a unique mild solution u ∈ C([0, T]; L2(0, L))∩ L2(0, T ; H1(0, L)) with ux(0, ·) ∈ L2(0, T ) that
satisfies |u(·, t)|2 ≤ c` |u0|2 e−r t , t ≥ 0, where c` ≥ 0 depending only on ` given by
c` =

�

�(I − Υ`)−1
�

�

2→2

�

1+ |`|L2(∆x ,y )

�

.

The corresponding nonlinear model is given by






iut + iβux x x +αux x + iδux + |u|pu= 0, x ∈ (0, L), t ∈ (0, T ),
u(0, t) = g0(t), ux(L, t) = 0, ux x(L, t) = 0,

u(x , 0) = u0(x).
(1.22)

We have the following theorem regarding (1.22).

Theorem 1.8. Let T,β , r ′ > 0, δ ≥ 0, α ∈ R, p ∈ (0, 4], u0 ∈ L2(0, L) (small if p = 4). Then, there
corresponds r > 0 and g0(t) = g0(u(·, t)) as in (1.21) where `= `(x , y; r) is a smooth backstepping kernel
solving (1.20) (constructed in Lemma 5.1 below) such that

(i) (1.22) has a unique local mild solution u ∈ C([0, T0]; L2(0, L)) ∩ L2(0, T0; H1(0, L)) for some
T0 ∈ (0, T] with ux(0, ·) ∈ L2(0, T0) and

(ii) if |u0|2 is small, then u can be extended globally and it satisfies |u(·, t)|2 ® |u0|2 e−r ′ t , t ≥ 0.
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Regarding the observer design in the case of boundary conditions (1.5), we assume that we can extract
the information y(t) = u(L, t) from the original plant. This motivates us to consider the following
linearized observer system:







iût + iβ ûx x x +αûx x + iδux + p1(x) (y(t)− û(L, t)) = 0, in (0, L)× (0, T ),
û(0, t) = g0(t), ûx(L, t) = 0, ûx x(L, t) = 0, in (0, T ),
û(x , 0) = û0(x), in (0, L),

(1.23)

where p1(x), to be determined, is again intended to achieve ũ(t) = u(t)− û(t) → 0 in the sense of a
suitable norm as t →∞. The error model takes the form







iũt + iβ ũx x x +αũx x + iδũx − p1(x)ũ(L, t) = 0, in (0, L)× (0, T ),
ũ(0, t) = 0, ũx(L, t) = 0, ũx x(L, t) = 0 in (0, T ),
ũ(x , 0) = u0(x)− û0(x) in (0, L).

(1.24)

We again first focus on stabilizing the error system (1.24) via a backstepping transformation given
by (1.16) which uses a suitable kernel p that solves (5.10) below. In this case, the correct choice of p1
is given by p1 := −iβpy y(·, L) +αpy(·, L)− iδp(·, L). We have the following result.

Theorem 1.9. Let T,β , r > 0, δ ≥ 0, α ∈ R, u0, û0 ∈ H3(0, L), ũ0(0) = 0, and g0(t) = g0(û(·, t)) be given
by

g0(t)
.
=

∫ L

0

`(0, y)û(y, t)d y. (1.25)

where `= `(x , y; r) is a smooth backstepping kernel solving (1.20) (constructed in Lemma 5.1 below). Let
also p be a smooth kernel solving (5.10). Then the plant-observer-error system (1.18)-(1.23)-(1.24) has a
solution (u, û, ũ) ∈ X 0

T × X 0
T × X 3

T . Moreover, for ε > 0 (small) and r > 0, the components of the solution
(u, û, ũ) satisfy

(i) |u(·, t)|2 ≤ cε,k,p,û0,ũ0
e−(r−εc`,p)t + cp |ũ0|H3(0,L) e

−r t ,
(ii) |û(·, t)|2 ≤ cε,`,p,û0,ũ0

e−(r−εc`,p)t , and
(iii) |ũ(·, t)|H3(0,L) ≤ cp |ũ0|H3(0,L) e

−r t , respectively,

where cε,`,p,û0,ũ0
, c`,p, and cp are nonnegative constants depending on their sub-indices.

Remark 1.10. Note that Theorem 1.9 requires less smoothness and compatibility conditions compared
to Theorem 1.4. This is due to the fact that in Theorem 1.4 we are using second order trace terms in
the main equation of the observer whereas in Theorem 1.9 we only use the Dirichlet traces.

Finally, we provide numerical treatment of all of the problems studied here in Sections 4 and 5
supporting our theoretical results to the fullest extent.

Proofs of main theorems. Theorem 1.2 follows from Proposition 2.4 and Proposition 2.11. Theorem 1.3
is a consequence of Proposition 2.8 and Proposition 2.14. Theorem 1.4 follows from Proposition 3.3
and Proposition 3.6. Theorem 1.7 is due to Proposition 5.4 and Proposition 5.6. Theorem 1.8 follows
from Proposition 5.5 and Proposition 5.7. Theorem 1.9 can be obtained from the discussion in Section
5.2.1 and Proposition 5.10.
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1.2. Literature review and motivation. The higher order nonlinear Schrödinger equation was pro-
posed by [13] for modeling nonlinear propagation of pulses in optical fibers taking into account the
effect of the higher order dispersion. From a mathematical point of view, researchers studied both the
analysis and controllability aspects of this equation. On the wellposedness side, we would like to refer
the reader to [5], [6], [7], [16], and [24]. Regarding the controllability aspect, the internal stabilization
of the HNLS with constant coefficients was studied by [10] and [4]. A numerical treatment of this prob-
lem was given in [19]. The exact boundary controllability for the higher order nonlinear Schrödinger
equation with constant coefficients was studied in [8].

To the best of our knowledge there is no work yet dealing with the boundary feedback stabilization
of the higher order Schrödinger equations. However, this is an important physical problem because in
some physical systems access to the interior of the medium may not be available and boundary might be
the only location where one can apply a feedback. One of the most effective methods for constructing
a boundary feedback is the backstepping technique which was explained in detail in Section 1.1 above.
We also suggest that the reader consult [15] for a detailed review of the backstepping method and its
application to the stabilization of evolution equations.

There are also some recent works on the boundary feedback stabilization of other evolution equations
which involve higher order dispersion such as the Korteweg-de Vries (see e.g. [3],[9], [11],[22]) and
Korteweg-de Vries Burgers (see e.g. [21],[2],[12], [17]) equations.

The first difference of this paper compared to other authors’ work on the classical Schrödinger equa-
tion or KdV equation, is the construction of the backstepping kernel. For instance, in the case of the
classical Schrödinger equation, the kernel satisfies an integral equation in which the integral involves
only the kernel function itself. This makes successive approximation analysis much easier so that even
an exact form of the solution can be found by using a Bessell function [15]. However, in the case of the
higher order Schrödinger equation, corresponding integral equation for the kernel involves not only the
kernel function itself but also its various partial derivatives. This makes the analysis much more difficult
because each step of the succession brings a linear combination of monomials of different orders. There-
fore, finding the exact form of the series which converges to the kernel function is almost impossible
and thus, a careful analysis of the behavior of the coefficients in the series without actually computing
them is essential. This is what we do in the construction of the kernel (see Lemma 2.1 below) and this
technique is so general that it can also be applied to kernel models associated with stabilization of other
higher order PDE models. Other approaches claiming existence of backstepping kernels for higher order
PDEs were given for the KdV equation in [9] and [11] and for the KdV-Burgers equation in [21]. In [9]
and [21], authors state the form of the series converging to the kernel with unknown coefficients and
claim that coefficients satisfy some bound conditions without proof. In [11], a backstepping kernel is
constructed utilizing exact controllability properties of the KdV equation. However, this work has two
differences compared to ours: (i) the sought after kernel is only H1 as opposed to a C∞ kernel in this
paper and (ii) the construction only applies to domains of uncritical lengths whereas our construction
is independent of the domain length.

Another contribution our paper is the Lyapunov analysis of the nonlinear target systems which are
obtained once the backstepping transformation is applied. This is because the power type structure of
the nonlinear term is distorted (see (2.25)) and standard multipliers yield Chini’s type ODE inequalities
which involve more than one nonlinearities, see (2.71) and (2.82) below. The Lyapunov analysis given
in the context of the KdV equation (see e.g., [9] and [22]) does not involve ODE inequalities which
involve several nonlinearities. This is an intrinsic feature of the higher order Schrödinger equation and
contrasts with the KdV equation. Our approach for treating this issue is based on reducing the more
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complicated Lyapunov analysis to a simpler one by examining the time periods in which one nonlinear
term dominates the other one.

Finally, we also introduce a numerical approach for the backstepping problem which is different than
numerical approaches of other authors who treated the KdV equation. For instance, in [20], the authors
directly solve the original model with the boundary feedback whereas in our paper we solve the target
systems that have homogeneous boundary values first and then use the bounded invertibility properties
of the backstepping transformation to find the solution of the original model. In this way, we can use
a finite element method which suits best for homogeneous boundary value problems and not suscepti-
ble to numerical errors which might happen due to inhomogeneous and rough boundary interactions.
Moreover, we do not solve the kernel PDE model numerically since it is defined on a triangular region
which might create complications from the point of computational aspects. Instead, we use the idea
of the proof of Lemma 2.1 and construct a numerical kernel through the same procedure. Namely,
we obtain an exact polynomial after sufficiently many iterations and use the resulting polynomial as a
numerical approximation to the sought after kernel.

1.3. Preliminaries and notation. Given 1 ≤ p ≤ ∞ and u ∈ Lp(0, L), |u|p will denote its Lp(0, L)

norm, i.e. |u|p =
�

∫ L

0 |u(x)|
pd x

�
1
p

if p <∞ and |u|∞ = ess sup
x∈(0,L)

|u(x)|.

We will write A ® B in the sense of A ≤ cB where the constant c > 0 may depend on the fixed
parameters of the problem under consideration which are not of interest.

We will use X s
T , (s ≥ 0) to denote the spaces

C([0, T]; H s(0, L))∩ L2(0, T ; H s+1(0, L)).

If A is a linear bounded operator on L2(0, L), we will denote its operator norm on L2(0, L) by |A|2→2.
The following form of the Gagliardo-Nirenberg’s inequality will be quite useful in nonlinear estimates.

Lemma 1.11. Let p ≥ 2, α = 1/2 − 1/p, and u ∈ H1(0, L). Then, |u|p ≤ c1|u′|α2 |u|
1−α
2 + c2|u|2, where

c1, c2 are positive constants depending only on L. If in addition u ∈ H1
0(0, L), then c2 = 0.

We will also need the following higher order Gagliardo-Nirenberg inequalities in developing the linear
theory:

Lemma 1.12. Let u ∈ Hm(0, L) and α= j/m≤ 1 where j, m ∈ N. Then, |u( j)|2 ≤ c1|u(m)|α2 |u|
1−α
2 + c2|u|2,

where c1, c2 are positive constants depending only on L and m. If in addition u ∈ H1
0(0, L), then c2 = 0.

Let η be a C∞-function and Υη : H l(0, L) → H l(0, L) (l ≥ 0) be the integral operator defined by

(Υηϕ)(x) :=
∫ L

x η(x , y)ϕ(y)d y. Then, Υη has the following remarkable properties.

Lemma 1.13. I − Υη is invertible with a bounded inverse from H l(0, L) → H l(0, L) (l ≥ 0). Moreover,
(I −Υη)−1 can be written as I +Φ, where Φ is a bounded operator from L2(0, L) into H l(0, L) for l = 0,1, 2
and from H l−2(0, L) into H l(0, L) for l > 2.

Proof. The proof can be done as in [18, Lemma 2.4] and [22, Lemma 2.2, Remark 2.3], where the
integral in the definition of Υη is of the form

∫ x

0 instead of
∫ L

x . We omit the details as the arguments are
the same. �

Remark 1.14. The following estimates will be useful later:

|Φw|∞ ≤ cη|w|2, (1.26)

|Φw|2 ≤ cη|w|2, (1.27)
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�

�

�

�

d
d x
[Φw]

�

�

�

�

2

≤ cη|w|2, (1.28)

where cη is a nonnegative constant depending on various norms of η, see [22, Lemma 2.2, Remark 2.4]
for the details.

1.4. Outline of the paper. Section 2.1 is dedicated to the proof of the existence of a smooth backstep-
ping kernel k which solves (1.11). We convert (1.11) into an integral equation and use the method of
succession to solve it. Finding a solution of (1.11) relies on a subtle series analysis. In Section 2.2, we
study the wellposedness for the linearized and nonlinear models (1.6) and (1.12), respectively. Thanks
to the invertibility property of the backstepping transformation presented in Section 1.3, it is enough
to deal with the wellposedness problem for the corresponding target systems. Local solutions for the
nonlinear model are obtained via Banach’s fixed point theorem by showing that the solution map is
contractive on a suitably chosen closed ball of the solution space. This requires a gentle analysis of
the nonlinear terms using Gagliardo-Nirenberg inequalities. We prove the decay of solutions for the
linearized and nonlinear models in Section 2.3. The multiplier (1+ x)u plays a crucial role here. Sta-
bilization is proved only for small solutions in the case of the nonlinear problem due to the structure
of the subsequent Lyapunov inequalities. The case p > 1 is more difficult because then the Lyapunov
inequality involves two different nonlinearities. This issue is treated case by case by analysing how one
nonlinear term dominates the other one. In Section 3, we design an observer system assuming the sec-
ond order trace y(t) = ux x(L, t) can be measured. We prove that the observer efficiently estimates the
original plant, and most importantly its states can be used to construct a boundary feedback which also
stabilizes the original plant. Here, wellposedness analysis is carried out at a higher regularity level. This
is essential because the main equation of the observer involves second order traces. In Section 4, we
provide numerical experiments and the associated numerical algorithms illustrating the validity of the
theoretical results mentioned above to the fullest extent. In Section 5, we prove the analogues of the
above results and provide the related numerical experiments for the set of boundary conditions given
in (1.5). Here, the observer problem is studied at a relatively lower regularity level since we are using
the measurement y(t) = u(L, t) instead of a second order trace. In Section 6, we give some remarks
based on the comparison of the problem studied here with the dual problem where one places one or
two controllers at the right hand side. Finally, we put the details of several lengthy calculations in the
Appendices section not to distract the reader too much.

2. CONTROLLER DESIGN

In this section the purpose is threefold: (i) we prove that the kernel boundary value problem (1.11)
has a C∞ solution, (ii) we show that the linear plant (1.6) is wellposed and the nonlinear plant (1.12)
is locally wellposed for p ∈ (0,4], (iii) we obtain the exponential stability for the linear and nonlinear
plants with the prescribed decay rate. This in particular gives the global wellposedness for the nonlinear
plant.

2.1. Backstepping kernel.

2.1.1. Smooth kernel. In order to prove the existence of a solution of (1.11) we first make a change of
variables and write G(s, t) ≡ k(x , y) with s ≡ y − x , t ≡ L − y . We obtain the following relationships
between partial derivatives of G and k:

kx = −Gs, ky = −Gt + Gs, (2.1)

kx x = Gss, ky y = Gt t − 2Gts + Gss, kx y = −Gss + Gst , (2.2)
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y

x
L

L

Triangular region ∆x ,y

s = y − x
t = L − y

t

s
L

L

Triangular region ∆s,t

FIGURE 1. Triangular regions

and
kx x x = −Gsss, ky y y = −Gt t t + 3Gt ts − 3Gsst + Gsss. (2.3)

Using (2.1)-(2.3), the main equation in (1.11) is equivalent to

3Gsst − 3Gt ts + Gt t t + iα̃(2Gts − Gt t) + δ̃Gt − r̃G = 0. (2.4)

Moreover, the boundary conditions of k translate as

k(x , x) = 0⇔ G(0, t) = 0, (2.5)

k(x , L) = 0⇔ G(s, 0) = 0, (2.6)

and
d

d x
kx(x , x) = 0⇔ Gst(0, t) = −

r̃
3
⇔ Gs(0, t) = −

r̃
3

t. (2.7)

Note that in (2.7), we use the fact that Gs(0, 0) = 0, which follows from (2.6). (2.4)-(2.7) gives the
equivalent kernel pde model below in the new variables (s, t).







3Gsst − 3Gt ts + Gt t t + iα̃(2Gts − Gt t) + δ̃Gt − r̃G = 0

G(0, t) = G(s, 0) = 0,

Gs(0, t) = − r̃ t
3 ,

(2.8)

where (s, t) belongs to the rotated triangular domain∆s,t
.
= {(s, t) ∈ R2 | s ∈ (0, L), t ∈ (0, L−s)} (see Figure 1).

We will convert (2.8) into an equivalent integral equation. To this end, we first write

Gsst = DG
.
=

1
3

�

3Gt ts − Gt t t − iα̃(2Gts − Gt t)− δ̃Gt + r̃G
�

.

Integrating the above identity in t and twice in the first variable and using (2.5)-(2.7) we deduce that
G solves

G(s, t) = −
r̃
3

st +

∫ t

0

∫ s

0

∫ ω

0

[DG](ξ,η)dξdωdη (2.9)

if and only if it solves (2.8).
Existence of a solution of (2.8) will be proven by applying the successive approximations method to

the integral equation (2.9). Indeed, we prove the following lemma.
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Lemma 2.1. There exists a C∞-function G such that G solves the integral equation (2.9) as well as the
boundary value problem given in (2.8).

Proof. Let P be defined by

(P f )(s, t)
.
=

∫ t

0

∫ s

0

∫ ω

0

[D f ](ξ,η)dξdωdη. (2.10)

Then (2.9) can be rewritten as

G(s, t) = −
r̃
3

st + PG(s, t). (2.11)

Define G0 ≡ 0, G1(s, t) = −
r̃
3

st, and Gn+1 = G1 + PGn. Then for n≥ 1,

Gn+1 − Gn = P(Gn − Gn−1).

Defining Hn ≡ − 3
r̃ (G

n+1 − Gn) we see that H0(s, t) = st, Hn+1 = PHn and for j > i,

G j − G i =
j−1
∑

n=i

(Gn+1 − Gn) = −
r̃
3

j−1
∑

n=i

Hn. (2.12)

Let us denote the supremum norm of a function in the triangle ∆s,t by | · |∞. From (2.12) we see that
if Hn (and its partial derivatives) is an absolutely summable sequence with respect to the norm | · |∞
then Gn (and its partial derivatives) is Cauchy with respect to the same norm, which implies Gn’s are
convergent and the limit solves (2.9). So let us start by writing P as sum of six operators

P = P2,−2 + P1,−1 + P2,−1 + P1,0 + P2,0 + P2,1,

where

P2,−2 f = −
1
3

∫ t

0

∫ s

0

∫ ω

0

ft t t(ξ,η)dξdωdη,

P1,−1 f =

∫ t

0

∫ s

0

∫ ω

0

ft ts(ξ,η)dξdωdη,

P2,−1 f =
iα̃
3

∫ t

0

∫ s

0

∫ ω

0

ft t(ξ,η)dξdωdη,

P1,0 f = −
2iα̃
3

∫ t

0

∫ s

0

∫ ω

0

fts(ξ,η)dξdωdη,

P2,0 f = −
δ̃

3

∫ t

0

∫ s

0

∫ ω

0

ft(ξ,η)dξdωdη,

P2,1 f =
r̃
3

∫ t

0

∫ s

0

∫ ω

0

f (ξ,η)dξdωdη.

Then

Hn = PnH0 = (P2,−2 + P1,−1 + P2,−1 + P1,0 + P2,0 + P2,1)
nst =

6n
∑

r=1

Rr,nst, (2.13)

where Rr,n := Pir,n, jr,n Pir,n−1, jr,n−1
· · · Pir,1, jr,1 , ir,q ∈ {1,2}, jr,q ∈ {−2,−1, 0,1} for 1≤ q ≤ n.

Note that for positive integers m and nonnegative integers k

Pi, js
m tk = ci, js

m+i tk+ j (2.14)
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where ci, j = 0 if j + k ≤ 0 or i +m= 1, and

c2,−2 = −
k(k− 1)

3(m+ 1)(m+ 2)
,

c1,−1 =
k

(m+ 1)
,

c2,−1 =
iα̃k

3(m+ 1)(m+ 2)
,

c1,0 = −
2iα̃

3(m+ 1)
,

c2,0 = −
δ̃

3(m+ 1)(m+ 2)
,

c2,1 =
r̃

3(m+ 1)(m+ 2)(k+ 1)

(2.15)

otherwise. Let σ = σ(n, r)≡
∑n

q=1 jr,q. From (2.14)-(2.15) one can see that for each n and r

Rr,nst =

¨

0 if σ ≤ −1,

Cr,nsβ tσ+1 if σ > −1
(2.16)

where n+ 1≤ β ≤ 2n+ 1 and Cr,n is a constant which only depends on n and r.
Let M =max{1, |α̃|, |δ̃|, |r̃|}. We claim that for each n and r,

|Cr,n| ≤
M n

(n+ 1)!(σ+ 1)!
. (2.17)

Taking m= 1, k = 1 in (2.14)-(2.15) we see that the claim holds for n= 1. Suppose it holds for n= `−1
and for all r ∈ {1, 2, .., 6`−1}. Then for n= ` and r∗ ∈ {1,2, .., 6`}, using (2.14) and (2.16), we get

Rr∗,`st = Pi, jRr,`−1st = Cr,`−1Pi, js
β tσ+1 = Cr,`−1ci, js

β∗ tσ
∗+1

for some i ∈ {1,2}, j ∈ {−2,−1,0, 1} and r ∈ {1,2, .., 6`−1}, where β∗ is either β+1 or β+2, σ∗ = σ+ j.
By the induction assumption Cr,`−1 ≤

M`−1

`!(σ+1)! . Moreover using (2.15) and the fact that β ≥ ` we see

that |ci, j | ≤ M σ+1
`+1 for j = −1,−2, |ci,0| <

M
`+1 , and |ci,1| <

M
(σ+2)(`+1) . Hence for each i ∈ {1, 2} and

j ∈ {−2,−1, 0,1} we obtain

|Cr∗,`|= |Cr,(`−1)ci, j | ≤
M `

(`+ 1)!(σ+ j + 1)!
=

M `

(`+ 1)!(σ∗ + 1)!

which proves that the claim holds for n= ` as well.
Using (2.13), (2.16), (2.17) and the fact that 0≤ s, t ≤ L in the triangle ∆s,t we obtain

|Hn|∞ ≤
6nM n L3n+2

(n+ 1)!
(2.18)

which shows Hn is absolutely summable. On the other hand since Hn is a linear combination of 6n

monomials of the form sβ tσ+1 with β ≤ 2n+ 1 and σ ≤ n, any partial derivative ∂ a
s ∂

b
t Hn of Hn will be

absolutely less than
(2n+ 1)a(n+ 1)b6nM n L3n+2−a−b

(n+ 1)!
(2.19)

which is a summable sequence. �
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A graph and a contour plot of the kernel are given below in Figure 2 for the particular values of
parameters given by L = π, β = 1, α= 2, δ = 8, and r = 1.

FIGURE 2. Backstepping kernel on ∆x ,y for L = π, β = 1, α= 2, δ = 8 and r = 1.

2.2. Wellposedness.

2.2.1. Linear model. We introduce the notation w̃(x , t)
.
= er t w(x , t), where r > 0 and w is the sought-

after solution of the linearized target system (1.8). Then w̃ satisfies the following pde model






iw̃t + iβ w̃x x x +αw̃x x + iδw̃x = 0, x ∈ (0, L), t ∈ (0, T ),
w̃(0, t) = 0, w̃(L, t) = 0, w̃x(L, t) = 0,

w̃(x , 0) = w̃0(x)
.
= w0(x).

(2.20)

Regarding the above model, the following wellposedness result is known.

Proposition 2.2 ([10]). Let T > 0, w̃0 ∈ L2(0, L). Then (2.20) has a unique mild solution w̃ ∈ X 0
T which

satisfies
|w̃|L∞(0,T ;L2(0,L)) + |w̃|L2(0,T ;H1(0,L)) ≤ C(1+

p
T )|w̃0|2 (2.21)

and the trace regularity w̃x(0, ·) ∈ L2(0, T ).

Remark 2.3. Note that the initial value problem (2.20) can be written in the operator theoretic form

d
d t

w̃(t) = Aw̃(t), w̃(0) = w̃0,

where Aφ = −βφ′′′ + iαφ′′ − δφ′ with D(A) ≡ {φ ∈ H3(0, L) |φ(0) = φ(L) = φ′(L) = 0}. It is not
difficult to show that A generates a C0-semigroup S(t) in the underlying space L2(0, L). Then, for any
w̃0 ∈ L2(0, L), w̃(t) = S(t)w̃0 defines a function in the space C([0, T]; L2(0, L)) which is referred to as
the mild solution of (2.20) (see e.g., [23]).

Proposition 2.2 is also valid for w̃ replaced by w since w(x , t) = e−r t w̃(x , t), which implies |w(t)|2 ≤
|w̃(t)|2 and |wx(t)|2 ≤ |w̃x(t)|2. The wellposedness of the original linearized plant (1.6) can now be
obtained via the bounded invertibility of the backstepping transformation given in Lemma 1.13 and we
have the following proposition.
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Proposition 2.4. Let T > 0, u0 ∈ L2(0, L), and g0 be as in (1.10), where k is the backstepping kernel
constructed in Lemma 2.1. Then (1.6) has a unique mild solution u ∈ X 0

T which satisfies

|u|L∞(0,T ;L2(0,L)) + |u|L2(0,T ;H1(0,L)) ≤ ck(1+
p

T )|u0|2 (2.22)

and the trace regularity ux(0, ·) ∈ L2(0, T ).

Proof. The proof follows from Proposition 2.2 (where w̃ replaced with w), Lemma 1.13, the observations

|u(t)|2 ≤ |(I − Υk)
−1|2→2|w(t)|2,

|ux(t)|2 ≤ |(I − Υkx
)−1|2→2|wx(t)|2,

and
|w0|2 ≤ |(I − Υk)|2→2|u0|2. (2.23)

Note that the trace regularity ux(0, ·) ∈ L2(0, T ) follows from

wx(0, t) = ux(0, t)−
∫ L

0

kx(0, y)u(y, t)d y. (2.24)

Indeed, from (2.24), we have

|ux(0, ·)|L2(0,T ) ≤ |wx(0, ·)|L2(0,T ) +
p

T |kx(0, ·)|2 |u|L2(0,T ;L2(0,L)) <∞.

�

2.2.2. Nonlinear model. By using the backstepping transformation in (1.7), we obtain the following pde
from (1.12) and the properties of the kernel k:

iwt + iβwx x x +αwx x + iδwx + irw= −(I − Υk)[|w+ v|p (w+ v)] (2.25)

with homogeneous boundary conditions

w(0, t) = 0 , w(L, t) = 0, and wx(L, t) = 0, (2.26)

where v(x , t) = [Φw](x , t), with Φ being the linear operator defined in Section 1.3 in Lemma 1.13.
Indeed, for the nonlinear case, the right hand side of (A.1) has the additional term

−i

∫ L

x

k(x , y)|u(y, t)|pu(y, t)d y = −iΥk[|u|pu](x , t).

Moreover, we have the nonlinear analogue of (A.6):

iut(x , t) + iβux x x(x , t) +αux x(x , t) + iδux(x , t)

= −|u(x , t)|pu(x , t) = −I[|u|pu](x , t). (2.27)

Combining these with the assumed properties of the kernel which solves (1.11), we see that the right
hand side of (A.5) becomes

Υk[|u|pu](x , t)− I[|u|pu](x , t) = −(I − Υk)[|u|pu](x , t). (2.28)

In order to represent the above term in w, we can use the fact that w = (I − Υk)u, which implies
(I − Υk)−1w= (I +Φ)w= u. Therefore, the right hand side of (2.28) can be rewritten as

−(I − Υk)[|w+Φ(w)|p(w+Φ(w))](x , t),

which gives us the right hand side term in (2.25).
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In order to prove the wellposedness of (2.25), we first consider the linear nonhomogeneous model
below:







iwt + iβwx x x +αwx x + iδwx + irw= f , x ∈ (0, L), t ∈ (0, T ),
w(0, t) = 0, w(L, t) = 0, wx(L, t) = 0,

w(x , 0) = w0(x),
(2.29)

where f ∈ L1(0, T ; L2(0, L)). Again, changing variables via w̃(x , t)
.
= er t w(x , t), we obtain







iw̃t + iβ w̃x x x +αw̃x x + iδw̃x = f̃ , x ∈ (0, L), t ∈ (0, T ),
w̃(0, t) = 0, w̃(L, t) = 0, w̃x(L, t) = 0,

w̃(x , 0) = w̃0(x)
.
= w0(x),

(2.30)

where f̃ (x , t) = er t f (x , t). The following result is known.

Proposition 2.5 ([10]). Let T > 0, w̃0 ∈ L2(0, L), f̃ ∈ L1(0, T ; L2(0, L)). Then (2.30) has a unique mild
solution w̃ ∈ X 0

T which satisfies

|w̃|L∞(0,T ;L2(0,L)) + |w̃|L2(0,T ;H1(0,L)) ≤ C(1+
p

T )
�

|w̃0|2 + | f̃ |L1(0,T ;L2(0,L))

�

and the trace regularity w̃x(0, ·) ∈ L2(0, T ).

Again, from the relationship between w and w̃ as well as f and f̃ , we can say that (2.29) has a unique
mild solution w ∈ X 0

T which satisfies

|w|L∞(0,T ;L2(0,L)) + |w|L2(0,T ;H1(0,L))

≤ C(1+
p

T )
�

|w0|2 + erT | f |L1(0,T ;L2(0,L))

�

(2.31)

and the trace regularity wx(0, ·) ∈ L2(0, T ).
Assuming given initial and boundary data are smoother, one can prove that the solution is also

smoother. More precisely, we have the following higher regularity result.

Proposition 2.6. Let T > 0, w̃0 ∈ H3(0, L), f̃ ∈W 1,1(0, T ; L2(0, L)). Assume further that the compatibil-
ity conditions w̃0(0) = w̃0(L) = 0 hold. Then (2.30) has a unique solution w̃ ∈ X 3

T .

Proof. Follows by differentiating (2.30) in time and applying Proposition (2.5) to w̃t . �

In order to obtain the local solution of the nonlinear model (2.25), we will use the contraction argu-
ment. To this end, we first set the space YT

.
= X 0

T and the solution map

[Γ z](t)
.
= S(t)w0 +

∫ t

0

S(t − s)Fz(s)ds, (2.32)

where Fz
.
= −(I−Υk)[|z+Φ(z)|p (z +Φ(z))] and S(t)w0 denotes the solution of the corresponding linear

equation (1.8). By using the linear homogeneous and nonhomogeneous estimates, we obtain that for
any z ∈ YT , one has

|Γ z|YT
≤ C(1+

p
T )

×

�

|w0|2 + erT

�

∫ T

0

|(I − Υk)[|z +Φ(z)|p (z +Φ(z))]|2 d t

��

. (2.33)
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Using Gagliardo-Nirenberg’s inequality, the inequalities (1.27)-(1.28), the last term at the right hand
side of (2.33) can be estimated as follows.

∫ T

0

|(I − Υk)[|z +Φ(z)|p (z +Φ(z))]|2 d t

≤ck

∫ T

0

||z +Φ(z)|p (z +Φ(z))]|2 d t

=ck

∫ T

0

|z +Φ(z)|p+1
2p+2 d t

≤ck

∫ T

0

�

|z +Φ(z)|
p+2

2
2 |zx + ∂xΦ(z)|

p
2
2 + |z +Φ(z)|

p+1
2

�

d t

≤ck

∫ T

0

�

|z|
p+2

2
2 |zx |

p
2
2 + |z|

p+1
2

�

d t

≤ck|z|
p+2

2

C([0,T];L2(0,L))

∫ T

0

|zx |
p
2
2 d t + ck T |z|p+1

C([0,T];L2(0,L))

≤ck T 1− p
4 |z|

p+2
2

C([0,T];L2(0,L))|zx |
p
2

L2(0,T ;L2(0,L)) + ck T |z|p+1
YT

≤ck T 1− p
4 |z|p+1

YT
+ ck T |z|p+1

YT
.

(2.34)

Combining (2.33) and (2.34), we deduce that

|Γ z|YT
≤ C(1+

p
T )
�

|w0|2 + ckerT T 1− p
4 |z|p+1

YT
+ ck T |z|p+1

YT

�

(2.35)

for z ∈ YT .
Without loss of generality, we will assume that 0< T < 1 since it is enough to prove the local existence

of for one sufficiently small T .

Case (i): If 0 < p < 4, then θ
.
= 1− p

4 > 0, and letting R
.
= 4C |w0|2 and z ∈ BT

R
.
= {z ∈ YT | |z|YT

≤ R},
from (2.35) we get

|Γ z|YT
≤

R
2
+ ckerT T θRp+1 + ck TRp+1. (2.36)

Now, we can choose T small enough that ckerT T θRp + ck TRp < 1
2 , so that we can guarantee

|Γ z|YT
≤ R.

Case (ii): If p = 4, we observe that θ = 0. Suppose |w0|2 ≤ ε and set R= R(ε)
.
= 4εC . Then, from (2.35)

we have

|Γ z|YT
≤

R
2
+ ckerT Rp+1 + ck TRp+1. (2.37)

Note that ckerT Rp+ck TRp <
1
2

for small ε and small T > 0. Therefore, we again have |Γ z|YT
≤ R

under a smallness condition on w0.

By cases (i)-(ii) above, we conclude that Γ maps the closed ball BT
R onto itself for p ∈ (0,4].
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Next, we would like to show that Γ is indeed a contraction on BT
R for sufficiently small T . To prove

this let z1 and z2 be two elements in YT . Then,

|Γ z1 − Γ z2|YT
=

�

�

�

�

∫ ·

0

S(· − s)[Fz1(s)− Fz2(s)]ds

�

�

�

�

YT

≤cerT |Fz1 − Fz2|L1(0,T ;L2(0,L))

≤cerT

�

∫ T

0

|(I − Υk)[|z1 +Φ(z1)|p (z1 +Φ(z1))

−|z2 +Φ(z2)|p (z2 +Φ(z2))]|2 d t
�

≤ck

∫ T

0

||z1 +Φ(z1)|p (z1 +Φ(z1))− |z2 +Φ(z2)|p (z2 +Φ(z2))]|2 d t

≤ck

∫ T

0

�

�|z1 +Φ(z1)− z2 −Φ(z2)|(|z1 +Φ(z1)|p + |z2 +Φ(z2)|p)
�

�

2d t

≤ck

∫ T

0

|z1 +Φ(z1)− z2 −Φ(z2)|2
�

|z1 +Φ(z1)|
p
2p + |z2 +Φ(z2)|

p
2p

�

d t.

(2.38)

Note that due to (1.27), we have

|z1 +Φ(z1)− z2 −Φ(z2)|2 ≤ ck|z1 − z2|2. (2.39)

We divide the analysis of the nonlinear part in two cases.

Case (i): If 0< p ≤ 1, then using Hölder’s inequality (if p ∈ (0, 1)) and (1.27), we get

|zi +Φ(zi)|
p
2p ≤ c|zi +Φ(zi)|

p
2 ≤ ck|zi |

p
2 (2.40)

for i = 1, 2. Applying (2.39) and (2.40) to the right hand side of (2.38), we obtain

|Γ z1 − Γ z2|YT
≤ck

∫ T

0

|z1 − z2|2(|z1|
p
2 + |z2|

p
2)d t

≤ck T |z1 − z2|YT
(|z1|

p
YT
+ |z2|

p
YT
)≤ ck TRp|z1 − z2|YT

. (2.41)

For sufficiently small T , we can guarantee that ck TRp < 1 so that Γ becomes a contraction on
BT

R .
Case (ii): If 4≥ p > 1, then we use Gagliardo-Nirenberg’s inequality and (1.27) to get

|zi +Φ(zi)|
p
2p ≤c

�

|zi +Φ(zi)|
p+1

2
2 |∂xzi + ∂xΦ(zi)|

p−1
2

2 + |zi |
p
2

�

≤ck

�

|zi |
p+1

2
2 |∂xzi |

p−1
2

2 + |zi |
p
2

�

(2.42)
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for i = 1,2. Applying (2.39) and (2.42) to the right hand side of (2.38) and using Hölder’s
inequality, we obtain

|Γ z1 − Γ z2|YT
≤ck

∫ T

0

|z1 − z2|2
�

|z1|
p+1

2
2 |∂xz1|

p−1
2

2 + |z1|
p
2

+|z2|
p+1

2
2 |∂xz2|

p−1
2

2 + |z2|
p
2

�

d t

≤ck(T
5−p

4 + T )|z1 − z2|YT
(|z1|

p
YT
+ |z2|

p
YT
)

≤ck(T
5−p

4 + T )Rp|z1 − z2|YT
.

(2.43)

For sufficiently small T , we can guarantee that ck(T
5−p

4 +T )Rp < 1 so that Γ becomes a contrac-
tion on BT

R .

By cases (i)-(ii) above, we conclude that Γ is a contraction on the closed ball BT
R , and therefore has a

unique fixed point, say w ∈ BT
R . By choosing T small enough, we can further claim that the solution

is indeed unique in YT . In order to see this, suppose to the contrary that there are two solutions z1 =
Γ z1, z2 = Γ z2 ∈ YT . Then in the first case where 0< p ≤ 1, from (2.41), we see that for small enough T

|z1 − z2|YT
= |Γ z1 − Γ z2|YT

≤ ck T |z1 − z2|YT
(|z1|

p
YT
+ |z2|

p
YT
)≤

1
2
|z1 − z2|YT

, (2.44)

which can only hold if z1 − z2 = 0. Similarly, in the second case where 1 < p ≤ 4, from (2.43), we see
that for small enough T

|z1 − z2|YT
= |Γ z1 − Γ z2|YT

≤ck

�

T
5−p

4 + T
�

|z1 − z2|YT
(|z1|

p
YT
+ |z2|

p
YT
)≤

1
2
|z1 − z2|YT

,
(2.45)

which can only hold if z1 − z2 = 0. We have just proved the following local wellposedness result for the
target system.

Proposition 2.7. Let T > 0, p ∈ (0,4], w0 ∈ L2(0, L) (small if p = 4), then (2.25)-(2.26) admits a unique
solution w ∈ X 0

T0
for some T0 ∈ (0, T]. Moreover, the flow w0 7→ w is continuous from L2(0, L) into X 0

T0
.

Thanks to the bounded invertibility of I − Υk given in Lemma 1.13 on the L2-based Sobolev spaces,
we conclude that the original nonlinear plant (1.12) is also locally wellposed as stated in the proposition
below.

Proposition 2.8. Let T > 0, p ∈ (0, 4], u0 ∈ L2(0, L) (small if p = 4), and g0 be as in (1.10), where k is
the backstepping kernel constructed in Lemma 2.1. Then (1.12) admits a unique solution u ∈ X 0

T0
for some

T0 ∈ (0, T].

Remark 2.9. It will turn out in the next section that the local solution of the target system (2.25)-(2.26)
as well as the local solution of the original plant (1.12) are global (i.e., T0 = T) and also exponentially
decay in time with respect to L2 norm in space provided that |u0|2 is not too large.

Finally, we will need a higher regularity result to justify the multiplier calculations for local solutions
of (2.25) in the next section. We prove the following proposition.

Proposition 2.10. Let T > 0, p ∈ (0,4], w0 ∈ H3(0, L) (|w0|2 small if p = 4) and satisfy the compatibility
conditions w0(0) = w0(L) = 0. Then (2.25)-(2.26) admits a unique solution w ∈ X 3

T0
for some T0 ∈ (0, T].
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Proof. Let w0 ∈ H3(0, L) with w0(0) = w0(L) = 0, and w ∈ YT0
be the corresponding fixed solution of

(2.25). Now, we consider the problem

izt + iβzx x x +αzx x + iδzx + irz = F(w, z), (2.46)

where

F(w, z) =− (I − Υk)
�

p+ 2
2
|w+Φ(w)|p (z +Φ(z))

+
p
2
|w+Φ(w)|p−2(w+Φ(w))2

�

z̄ +Φ(z)
�
i

.
(2.47)

Moreover, we associate z with initial and boundary conditions given by

z(0) = z0 = −βw′′′0 + iαw′′0 −δw′ − rw0 + i(I − Υk)[|w0 +Φ(w0)|p (w0 +Φ(w0))], (2.48)

z(0, t) = 0 , z(L, t) = 0, and zx(L, t) = 0. (2.49)

We define the solution map

[Γ z](t)
.
= S(t)z0 +

∫ t

0

S(t − s)F(w(s), z(s))ds (2.50)

on YT0
. Then, similar to (2.33), we have the estimate

|Γ z|YT0
≤C(1+

p

T0)
�

|z0|2 + erT0 |F(w, z)|L1(0,T0;L2(0,L))

�

=C(1+
p

T0)

�

|z0|2 + erT0

∫ T

0

�

�

�

�

(I − Υk)
�

p+ 2
2
|w+Φ(w)|p (z +Φ(z))

+
p
2
|w+Φ(w)|p−2(w+Φ(w))2

�

z̄ +Φ(z)
�
i
�

�

�

2
d t
i

.

(2.51)

If 0< p ≤ 1, then using the same argument in (2.40), we obtain

||w+Φ(w)|p (z +Φ(z))|2 ≤ |w+Φ(w)|
p
2p|z +Φ(z)|2 ≤ ck|w|2|z|2. (2.52)

Using this in (2.51) and the boundedness of I − Υk, we obtain

|Γ z|YT0
≤ C(1+

p

T0)
�

|z0|2 + T0erT0 |w|YT0
|z|YT0

�

. (2.53)

If 4≥ p > 1, using the idea in (2.42), we have

||w+Φ(w)|p (z +Φ(z))|2 ≤|w+Φ(w)|
p
2p|z +Φ(z)|2

≤ck

�

|w|
p+1

2
2 |∂x w|

p−1
2

2 + |w|p2
�

|z|2.

Therefore, we have

|Γ z|YT0
≤ C(1+

p

T0)
h

|z0|2 + ck(T
5−p

4
0 + T0)e

rT0 |w|pYT0
|z|YT0

i

. (2.54)

Recalling that w is fixed, the differences can be handled exactly in the same way, and if 0< p ≤ 1, then
we have

|Γ z1 − Γ z2|YT0
≤ C(1+

p

T0)T0erT0 |w|YT0
|z1 − z2|YT0

, (2.55)

and if 4≥ p > 1, then we obtain

|Γ z1 − Γ z2|YT0
≤ ck(1+

p

T0)(T
5−p

4
0 + T0)e

rT0 |w|pYT0
|z1 − z2|YT0

. (2.56)
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Again we can find suitable R and T0, such that Γ becomes a contraction on the closed ball BT0
R of YT0

which implies z ∈ YT0
. Note that w = w0 +

∫ t

0 z(s)ds, thanks to the compatibility conditions of w0 and
boundary conditions of z. In particular, z = wt and w ∈ H1(0, T0; H1(0, L)) ⊂ C([0, T0]× [0, L]). Note
that

iβwx x x = −iwt −αwx x − iδwx − irw− (I − Υk)[|w+Φ(w)|p (w+Φ(w))].

Now, it follows from Gagliardo-Nirenberg inequalities and the boundedness properties of I −Υk and Φ,
that w ∈ X 3

T0
. �

2.3. Stabilization of linear and nonlinear plants.

2.3.1. Linearized model. Taking L2(0, L) norms of both sides of (1.7), we get the following

|w(·, t)|2 ≤ |u(·, t)|2 +

�

�

�

�

�

∫ L

•
k(·, y)u(y, t)d y

�

�

�

�

�

2

. (2.57)

By using the Cauchy-Schwarz inequality the last term at the right hand side of (2.57) is estimated as
�

�

�

�

�

∫ L

•
k(·, y)u(y, t)d y

�

�

�

�

�

2

≤ |k|L2(∆x ,y ) |u(·, t)|2 . (2.58)

Combining (2.57) and (2.58), we conclude that

|w(·, t)|2 ≤
�

1+ |k|L2(∆x ,y )

�

|u(·, t)|2 . (2.59)

Evaluating the above inequality at t = 0, we get

|w0|2 ≤
�

1+ |k|L2(∆x ,y )

�

|u0|2 . (2.60)

On the other hand, we know from Lemma 1.13 that

|u(·, t)|2 =
�

�[(I − Υk)
−1w](·, t)

�

�

2 ≤
�

�(I − Υk)
−1
�

�

2→2 |w(·, t)|2 . (2.61)

Now, (1.9), (2.60), and (2.61) yield

|u(·, t)|2 ≤
�

�(I − Υk)
−1
�

�

2→2

�

1+ |k|L2(∆x ,y )

�

|u0|2 e−r t (2.62)

for t ≥ 0. We just proved the following proposition.

Proposition 2.11. Let r > 0, k be the smooth backstepping kernel that solves (1.11) and u be the
solution of (1.6) where the feedback controller acting at the left Dirichlet boundary condition is cho-
sen as in (1.10). Then, |u(·, t)|2 ≤ ck |u0|2 e−r t , t ≥ 0, where ck ≥ 0 depending only on k given by
ck =

�

�(I − Υk)−1
�

�

2→2

�

1+ |k|L2(∆x ,y )

�

.

Remark 2.12. The constant ck implicitly depends on r since k depends on r.
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2.3.2. Nonlinear model. We do this only formally. A more rigorous proof can be given in view of Propo-
sition 2.7 and Proposition 2.10 through a density argument. More precisely, one can first work with a
sequence of initial data w0n taken from H3(0, L) satisfying compatibility conditions w0n(0) = w0n(L) = 0
such that w0n→ w0 in L2(0, L).

To this end, we first multiply (2.25) by w̄+ xw̄, integrate over (0, L), and take the imaginary parts.
One can easily see that

Im

∫ L

0

iwt xw̄d x ,=
1
2

d
d t

�

�

�x
1
2 w(·, t)

�

�

�

2

2
,

Im

∫ L

0

iβwx x x xw̄d x =
3β
2
|wx(·, t)|22,

Im

∫ L

0

αwx x xw̄d x = −Im

∫ L

0

αwx w̄d x ,

Im

∫ L

0

iδwx xw̄d x = −
δ

2
|w(·, t)|22,

Im

∫ L

0

irwxw̄d x = r
�

�

�x
1
2 w(·, t)

�

�

�

2

2
.

(2.63)

Using (2.63) and the identities that can be obtained due to the multiplier w̄, we get

d
d t

�

|w(·, t)|22 +
�

�

�x
1
2 w(·, t)

�

�

�

2

2

�

+ (2r −δ) |w(·, t)|22 + 2r
�

�

�x
1
2 w(·, t)

�

�

�

2

2

=− 3β |wx(·, t)|22 − β |wx(0, t)|2

+ 2Im

∫ L

0

αwx w̄d x − 2Im

∫ L

0

[(I − Υk)|w+ v|p (w+ v)](1+ x)w̄d x .

(2.64)

Let us analyze the last term in (2.64). We can rewrite this term as

− 2Im

∫ L

0

[(I − Υk)|w+ v|p (w+ v)](1+ x)w̄d x

=− 2Im

∫ L

0

(1+ x)|w+ v|p vw̄d x + 2Im

∫ L

0

Υk[|w+ v|p (w+ v)](1+ x)w̄d x .

(2.65)

The first term at the right hand side of (2.65) is estimated as

− 2Im

∫ L

0

(1+ x)|w+ v|p vw̄d x ≤ cp,L

∫ L

0

(|w|p+1|v|+ |v|p+1|w|)d x . (2.66)
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The second term at the right hand side of (2.65) is estimated as

2Im

∫ L

0

Υk[|w+ v|p (w+ v)](1+ x)w̄d x

=2Im

∫ L

0

(1+ x)w̄(x , t)

×

�

∫ L

x

k(x , y)|w(y, t) + v(y, t)|p (w(y, t) + v(y, t)) d y

�

d x

≤cL |k|L∞(∆x ,y )

�

∫ L

0

|w+ v|p+1d x

�

∫ L

0

|w|d x

≤ck,p,L

�

|w|p+1
p+1 + |v|

p+1
p+1

�

|w|2

≤ck,p,L

�

|w|p+1
p+1 + |v|

p+1
∞

�

|w|2.

(2.67)

Case 1 (4≥ p > 1): In this case, we use the Gagliardo-Nirenberg’s and ε−Young’s inequalities together
with (1.26) to find out that the right hand side of (2.66) can be estimated by

cp,L |w|
p+1
p+1|v|∞ + cp,L |v|p+1

∞ |w|2 ≤ ck,p,L |w|
p+5

2
2 |wx |

p−1
2

2 + ck,p,L |w|
p+2
2

≤ ck,p,L,ε|w|
2(p+5)

5−p

2 + ε|wx |22 + ck,p,L |w|
p+2
2 .

(2.68)

Similarly, the right hand side of (2.67) can be estimated by

ck,p,L

�

|w|p+1
p+1 + |v|

p+1
∞

�

|w|2 ≤ ck,p,L |w|
p+5

2
2 |wx |

p−1
2

2 + ck,p,L |w|
p+2
2

≤ ck,p,L,ε|w|
2(p+5)

5−p

2 + ε|wx |22 + ck,p,L |w|
p+2
2 .

(2.69)

We conclude that if 4≥ p > 1, then (2.64) can be estimated as

d
d t

�

|w(·, t)|22 +
�

�

�x
1
2 w(·, t)

�

�

�

2

2

�

+ (2r −δ− cα,ε)
�

|w(·, t)|22 +
�

�

�x
1
2 w(·, t)

�

�

�

2

2

�

≤− (δ+ cα,ε)
�

�

�x
1
2 w(·, t)

�

�

�

2

2
+ 3(ε− β)|wx(·, t)|22

− β |wx(0, t)|2 + ck,p,L,ε|w|
2(p+5)

5−p

2 + ck,p,L |w|
p+2
2 .

(2.70)

Setting y(t) = |w(·, t)|22 +
�

�

�x
1
2 w(·, t)

�

�

�

2

2
, for sufficiently small and fixed ε > 0, we obtain

d
d t

y(t) + (2r −δ− cα,ε)y(t)− ck,p,L,ε y
p+5
5−p (t)− ck,p,L y

p+2
2 (t)≤ 0 (2.71)

for t ≥ 0. We have the following lemma.

Lemma 2.13. If y satisfies (2.71) and y0 := y(0) is sufficiently small and r is sufficiently large, then there
exists some γ = γ(r,δ, L,α,ε) > 0 such that y(t) ® y0e−γt for t ≥ 0. Moreover, γ can be made arbitrarily
large by choosing r large enough.

Proof. We divide the proof of the lemma in two parts. At first let us consider the case

2r −δ− cα,ε

2(ck,p,L,ε + ck,p,L)
> 1. (2.72)
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There is no harm to assume that y(0) 6= 0 because if y(0) = 0 but y 6≡ 0, then there would be a time
t ′ > 0 s.t. y(t ′) 6= 0, and we can argue starting from time t ′. Since p+5

5−p , p+2
2 > 3

2 , the inequality (2.71)
is satisfied also by a y for any a > 1. Therefore, without loss of generality we can further assume that
y(0)> 1. Let t∗ ≡ inf({t > 0| y(t) = 1}∪{∞}). Observe that p+5

5−p >
p+2

2 since p > 1. Therefore, (2.71)
implies

d
d t

y(t) + (2r −δ− cα,ε)y(t)− (ck,p,L,ε + ck,p,L)y
p+5
5−p (t)≤ 0 (2.73)

for 0< t < t∗ since in this interval y(t)> 1. Now, solving the inequality (2.73) we obtain

y(t)
2p

5−p ≤
1

�

1

y(0)
2p

5−p
− ck,p,L,ε+ck,p,L

2r−δ−cα,ε

�

e
2pt(2r−δ−cα,ε)

5−p +
ck,p,L,ε+ck,p,L

2r−δ−cα,ε

(2.74)

for 0< t < t∗. Assumming y(0)<
�

2r−δ−cα,ε

2(ck,p,L,ε+ck,p,L)

�

5−p
2p

, (2.74) implies

y(t)≤ 2
5−p
2p e−(2r−δ−cα,ε)t y(0) (2.75)

for 0 < t < t∗. This shows that t∗ < ∞. Since y(t∗) = 1 and we are assuming (2.72), from the
inequality (2.71) we see that y ′(t∗)< 0. Hence there exists a maximal interval (t∗, ts) such that y(t)< 1
for t∗ < t < ts. However (2.71) still implies y ′(t) ≤ 0 for t∗ < t < ts hence ts =∞. In other words
y(t)< 1 for all t > t∗. Hence (2.71) implies

d
d t

y(t) + (2r −δ− cα,ε)y(t)− (ck,p,L,ε + ck,p,L)y
p+2

2 ≤ 0 (2.76)

for t > t∗. In this case solving (2.76) we obtain

y(t)≤ 2
2
p e−(2r−δ−cα,ε)(t−t∗) (2.77)

for t > t∗.

In the second case, where
2r −δ− cα,ε

2(ck,p,L,ε + ck,p,L)
≤ 1, we assume

y(0)<min

(

�

2r −δ− cα,ε

2(ck,p,L,ε + ck,p,L)

�
2
p

, 2−
2
p

)

.

Then y(t) satisfies (2.76) for t < t∗, which implies

y(t)≤ 2
2
p e−(2r−δ−cα,ε)t y(0)< e−(2r−δ−cα,ε)t (2.78)

for t < t∗. Hence t∗ =∞ and y decays exponentially. �

Case 2 (0 < p ≤ 1): In this case, we use the Cauchy-Schwarz inequality and (1.26), and estimate
the right hand side of (2.66) by

cp,L |w|
p+1
2 |v|∞ + cp,L |v|p+1

∞ |w|2 ≤ cp,L |w|
p+2
2 . (2.79)

Similarly, the right hand side of (2.67) is estimated by

ck,p,L |w|
p+2
2 + ck,p,L |v|p+1

∞ |w|2 ≤ ck,p,L |w|
p+2
2 . (2.80)
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Therefore, if 0< p ≤ 1, then (2.64) can be estimated as

d
d t

�

|w(·, t)|22 +
�

�

�x
1
2 w(·, t)

�

�

�

2

2

�

+ (2r −δ− cα,ε)
�

|w(·, t)|22 +
�

�

�x
1
2 w(·, t)

�

�

�

2

2

�

≤− (δ+ cα,ε)
�

�

�x
1
2 w(·, t)

�

�

�

2

2
+ (ε− 3β)|wx(·, t)|22 − β |wx(0, t)|2 + ck,p,L |w|

p+2
2 .

(2.81)

Then, for sufficiently small ε > 0, we obtain

d
d t

y(t) + (2r −δ− cα,ε)y(t)− ck,p,L y
p+2

2 (t)≤ 0 (2.82)

for t ≥ 0. It is not difficult to show that the solution (2.82) decays exponentially for small y(0).
Hence, we just proved the following proposition.

Proposition 2.14. Let r ′ > 0, then there corresponds some suitable r > 0 and a smooth backstepping
kernel k which solves (1.11) such that the solution u of (1.12), where the feedback controller acting at the
left Dirichlet boundary condition is chosen as in (1.10), satisfies |u(·, t)|2 ® |u0|2 e−r ′ t , t ≥ 0 provided that
|u0|2 is sufficiently small.

3. OBSERVER DESIGN

In this section, our goal is to prove the wellposedness and the exponential stabilization for each
component of the observer design. The components of this system are the plant, observer, and the error
system. To this end, we first choose an exponentially stable target error system given by







iw̃t + iβ w̃x x x +αw̃x x + iδw̃x + irw̃= 0, in (0, L)× (0, T ),
w̃(0, t) = 0, w̃(L, t) = 0, w̃x(L, t) = 0, in (0, T ),
w̃(x , 0) = w̃0(x), in (0, L).

(3.1)

Calculating the spatial and temporal derivatives of both sides of (1.16), integrating by parts by using the
given boundary conditions, we deduce that the desired target error system (3.1) is obtained if p1(x) :=
−iβp(x , L) and p = p(x , y) solves the following kernel pde model on∆x ,y (see Appendix (B) for details):







px x x + py y y − iα̃(px x − py y) + δ̃(px + py)− r̃ p = 0,
p(0, y) = 0, p(x , x) = 0,
d

d x px(x , x) = r̃
3 .

(3.2)

In order to solve (3.2), we change variables and write p̃( x̃ , ỹ)
.
= p(x , y), where x̃ = L− y and ỹ = L− x .

Then, p is a solution of (3.2) if and only if p̃ solves the pde model below on ∆ x̃ , ỹ =∆x ,y :







p̃ x̃ x̃ x̃ + p̃ ỹ ỹ ỹ − iα̃(p̃ x̃ x̃ − p̃ ỹ ỹ) + δ̃(p̃ x̃ + p̃ ỹ)− r̃ p = 0,
p̃( x̃ , L) = 0, p̃( x̃ , x̃) = 0,
d

d x̃ p̃ x̃( x̃ , x̃) = r̃
3 .

(3.3)

But the solution of (3.3) is simply p(x , y) = p̃( x̃ , ỹ) = k( x̃ , ỹ;−r) = k(L − y, L − x;−r), where k is the
solution of (1.11) obtained in Lemma 2.1.



STABILIZATION OF HIGHER ORDER SCHRÖDINGER EQUATIONS 27

3.1. Wellposedness of plant-observer-error system. In order to prove the wellposedness of the plant-
observer-error system, we first study the error target system (3.1) and the error system (1.15). To this
end, suppose y0 ∈ H3(0, L) and it satisfies the compatibility conditions y0(0) = y0(L) = 0. Now, consider
the linear homogeneous model below:







iqt + iβqx x x +αqx x + iδqx = 0, x ∈ (0, L), t ∈ (0, T ),
q(0, t) = 0, q(L, t) = 0, qx(L, t) = 0,

q(x , 0) = q0(x),
(3.4)

where q0
.
= −β y ′′′0 + iαy ′0 −δ y ′0 ∈ L2(0, L).

Let us set y
.
= y0 +

∫ t

0 qds. Then, y solves the following pde model:


















i yt + iβ yx x x +αyx x + iδ yx = iq+ iβ y ′′′0 +αy ′′0 + iδ y ′0
+
∫ t

0 (iβqx x x +αqx x + iδqx)ds = 0, x ∈ (0, L), t ∈ (0, T ),
y(0, t) = 0, y(L, t) = 0, yx(L, t) = 0,

y(x , 0) = y0(x),

(3.5)

where the boundary conditions are satisfied due to the compatibility conditions satisfied by y0. We note
that integrating the main equation in (3.4) in t, we get

iq− q0 = iq+ iβ y ′′′0 +αy ′′0 + iδ y ′0 = −
∫ t

0

(iβqx x x +αqx x + iδqx)ds,

which allows us to conclude that the right hand side of the main equation in (3.5) is zero. We know
from Proposition 2.2 that y, q ∈ X 0

T . It follows from the main equation in (3.5) that

yx x x = −
1
β

q+ iα̃yx x − δ̃ yx . (3.6)

Recall that we have the Gargliardo-Nirenberg inequalities

|∂x y(t)|2 ® |y|
2
3
2 |∂

3
x y|

1
3
2 and |∂ 2

x y(t)|2 ® |y|
1
3
2 |∂

3
x y|

2
3
2 .

Using these estimates, we get |∂ 3
x y(t)|2 ® |q(t)|2 + |y(t)|2. By taking the sup norm with respect to the

temporal variable, we deduce that y ∈ C([0, T]; H3(0, L)). Similarly, writing out

yx x x x = −
1
β

qx + iα̃yx x x − δ̃ yx x , (3.7)

and using the fact that the right hand side belongs to L2(0, T ; L2(0, L)), we conclude that y ∈ L2(0, T ; H4(0, L)).
Hence, we proved the following lemma.

Lemma 3.1. Let y0 ∈ H3(0, L) and satisfy the compatibility conditions y0(0) = y0(L) = 0. Then, (3.5)
has a unique solution y ∈ X 3

T .

If y0 ∈ H6(0, L) and satisfies the higher order compatibility conditions (1.17), then we can differ-
entiate (3.5) in time and apply Lemma 3.1 to yt and infer that y ∈ X 6

T and yt ∈ X 3
T . Now, suppose

ũ0 ∈ H6(0, L) such that w̃0 = (I − Υp)−1ũ0, which belongs to H6(0, L), satisfies the compatibility condi-
tions (1.17). Choosing y0

.
= w̃0, solving (3.5), and setting w̃(x , t)

.
= e−r t y(x , t), we see that w̃ satisfies

the main equation as well as the initial and boundary conditions of the error target system (3.1). More-
over, w̃ ∈ X 6

T such that w̃t ∈ X 3
T . Now, the wellposedness of the error system (1.15) follows by the

bounded invertibility Lemma (1.13). Hence, we have the following proposition.
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Proposition 3.2. Let ũ0 ∈ H6(0, L) such that w̃0 = (I − Υp)−1ũ0 satisfies the compatibility conditions
(1.17). Then, the error system (1.15) has a unique solution ũ ∈ X 6

T .

Next, we wish to prove the wellposedness of the observer and its target model. These two models
are related through the backstepping transformation I − Υk, where k is the kernel which solves (1.11).
Namely, we have

ŵ(x , t) = û(x , t)−
∫ L

x

k(x , y)û(y, t)d y. (3.8)

It follows that the target observer system is


















iŵt + iβ ŵx x x +αŵx x + iδŵx + irŵ
−[(I − Υk)p1](x)w̃x x(L, t) = 0, x ∈ (0, L), t ∈ (0, T ),
ŵ(0, t) = 0, ŵ(L, t) = 0, ŵx(L, t) = 0,

ŵ(x , 0) = ŵ0(x)
.
= û0 −

∫ L

x k(x , y)û0(y)d y.

(3.9)

We will first prove the wellposedness of the target observer system (3.9) and then the wellposedness
of observer system (1.13). We observe that f (x , t)

.
= [(I − Υk)p1](x)w̃x x(L, t) defines a function that

belongs to W 1,1(0, T ; L2(0, L)) because

| f |W 1,1(0,T ;L2(0,L)) ≡
∫ T

0

�

∫ L

0

�

| f (x , t)|2 + | ft(x , t)|2
�

d x

�
1
2

d t

=

�

∫ L

0

|[(I − Υk)p1](x)|
2 d x

�
1
2

×
∫ T

0

(|w̃x x(L, t)|+ |w̃x x t(L, t)|) d t

≤ck T
�

|w̃|C([0,T];H3(0,L)) + |w̃t |C([0,T];H3(0,L))

�

<∞.

(3.10)

Now for ŵ0 ∈ H3(0, L) satisfying the compatibility conditions ŵ0(0) = ŵ0(L) = 0, the wellposedness
of (3.9) follows from Proposition 2.6. Hence, we have ŵ ∈ X 3

T . The wellposedness of the observer system
(1.13) follows thanks to the bounded invertibility Lemma (1.13), again. Hence, we have the following
proposition.

Proposition 3.3. Let u0, û0 ∈ H6(0, L), u0(0) =
∫ L

0 k(0, y)û0(y)d y, u0(L) = 0, and w̃0 satisfy the com-
patibility in (1.17), then the plant-oberver-error system has a solution (u, û, ũ) ∈ X 3

T × X 3
T × X 6

T .

Remark 3.4. It is important to notice that the boundary feedback controller g0(t)
.
=
∫ L

0 k(0, y)û(y, t)d y
uses only the states of the observer but not states of the original plant.

3.2. Stabilization of plant-observer-error system. We first prove the following lemma.

Lemma 3.5. Let w̃ be a sufficiently smooth solution of (3.1), then for t ≥ 0

(i) |w̃(·, t)|2 ≤ |w̃0|2e−r t ,
(ii) |w̃x x(L, t)|+ |w̃(·, t)|H3(0,L) ® |w̃0|H3(0,L)e

−r t .

Proof. (i) follows by multiplying (3.1) by w̃, integrating over (0, L), and taking imaginary parts. In
order to prove (ii), we differentiate (3.1) in t, then multiply by w̃t , integrate over (0, L), and take the



STABILIZATION OF HIGHER ORDER SCHRÖDINGER EQUATIONS 29

imaginary parts. Using integration by parts and boundary conditions as well, we obtain

d
d t
|w̃t(·, t)|22 + 2r |w̃t(·, t)|22 = −β |wx t(0, t)|2 ≤ 0, (3.11)

which implies
|w̃t(·, t)|2 ≤ |w̃t(0)|2e−r t ≤ |w̃0|H3(0,L)e

−r t (3.12)

since |w̃t(0)|2 = | − β w̃′′′0 + iαw̃′′0 −δw̃′0 + irw̃0|2 ≤ |w̃0|H3(0,L). On the other hand, by (3.1) we have

|w̃x x x(·, t)|22 ≤
�

α̃|w̃x x(·, t)|22 + δ̃|w̃x(·, t)|22 + r̃|w̃(·, t)|22 +
1
β
|w̃t(·, t)|22

�

. (3.13)

Applying ε-Young’s inequality to the right hand side of the Gagliardo-Nirenberg type inequalities

|w̃x(·, t)|2 ® |w̃x x x(·, t)|
1
3
2 |w̃(·, t)|

2
3
2 ,

|w̃x x(·, t)|2 ® |w̃x x x(·, t)|
2
3
2 |w̃(·, t)|

1
3
2 ,

we obtain
δ̃|w̃x(·, t)|22 ® ε|w̃x x x(·, t)|22 + cε|w̃(·, t)|22 (3.14)

and
α̃|w̃x x(·, t)|22 ® ε|w̃x x x(·, t)|22 + cε|w̃(·, t)|22 (3.15)

for ε > 0. Combining (3.13)-(3.15), we deduce that

|w̃x x x(·, t)|22 ®
r̃ + 2ε
1− 2ε

|w̃(·, t)|22 +
1

β(1− 2ε)
|w̃t(·, t)|22 (3.16)

and therefore
|w̃(·, t)|H3(0,L) ® |w̃(·, t)|2 + |w̃t(·, t)|2. (3.17)

On the other hand, from Sobolev trace theory we have

|w̃x x(L, t)|® |w̃(·, t)|H3(0,L). (3.18)

Now, Lemma 3.5-(ii) follows from Lemma 3.5-(i), (3.12), (3.17), and (3.18). �

By specially constructing p1, we ensured that the term p1(x)ũx x(L, t) in the main equation of the
error system (1.15) behaves like a damping. This means that the solution of the original plant and
the observer system will tend to each other in the long run. The second goal is to achieve the decay of
solutions of the original plant. This is equivalent to controlling the observer since the error tends to zero.
Let us now show that the target observer system’s solution exponentially decays to zero. Multiplying
(3.9) by ŵ, integrating on (0, L), taking imaginary parts, using ε−Young’s inequality we get

1
2

d
d t
|ŵ(·, t)|22 +

β

2
|ŵx(0, t)|2 + r |ŵ(·, t)|22 = w̃x x(L, t)

∫ L

0

[(I − Υk)p1](x)ŵ(x , t)d x

≤ ε|(I − Υk)p1|22 |ŵ(·, t)|22 + cε|w̃x x(L, t)|2.

for ε > 0. It follows from Lemma 3.5-(ii) and (3.2) that
1
2

d
d t
|ŵ(·, t)|22 +

�

r − ε|(I − Υk)p1|22
�

|ŵ(·, t)|22 ≤ cε|w̃0|2H3(0,L)e
−2r t . (3.19)

for ε > 0. Integrating the above inequality, we obtain the decay estimate

|ŵ(·, t)|2 ≤
�

|ŵ0|2 +
cε|w̃0|H3(0,L)

2ε|(I − Υk)p1|2

�

e−(r−ε|(I−Υk)p1|22)t , (3.20)
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where ε > 0 is fixed but can be arbitrarily small. Similar to (2.61) and (2.60), we have

|û(·, t)|2 ≤
�

�(I − Υk)
−1
�

�

2→2 |ŵ(·, t)|2 (3.21)

and
|ŵ0|2 ≤

�

1+ |k|L2(∆x ,y )

�

|û0|2 , (3.22)

respectively.
From (1.16), we know that

|w̃0|H3(0,L) ≤
�

�(I − Υp)
−1
�

�

H3(0,L)→H3(0,L) |ũ0|H3(0,L) (3.23)

and
|ũ(·, t)|H3(0,L) ≤ cp |w̃(·, t)|H3(0,L) . (3.24)

It follows from (3.20), (3.21), (3.22), and (3.23) that

|û(·, t)|2 ≤ cε,k,p,û0,ũ0
e−(r−ε|(I−Υk)p1|22)t , (3.25)

where

cε,k,p,û0,ũ0
=
�

�(I − Υk)
−1
�

�

2→2 ×
��

1+ |k|L2(∆x ,y )

�

|û0|2

+
cε
�

�(I − Υp)−1
�

�

H3(0,L)→H3(0,L) |ũ0|H3(0,L)

2ε|(I − Υk)p1|2

!

.

Moreover, as in (2.59), we have

|ũ(·, t)|2 ≤
�

1+ |p|L2(∆x ,y )

�

|w̃(·, t)|2 , (3.26)

which implies due to Lemma 3.5-(i) that the error is exponentially decaying to zero at L2−level with
the decay rate estimate given by

|ũ(·, t)|2 ≤
�

1+ |p|L2(∆x ,y )

�

|w̃0|2e−r t . (3.27)

Combining (3.24) and Lemma 3.5-(ii), we get the following decay rate estimate for the error system at
H3− level

|ũ(·, t)|H3(0,L) ≤ cp|w̃0|H3(0,L)e
−r t . (3.28)

The following proposition follows from the discussion above.

Proposition 3.6. Let ε > 0 be fixed and small, r > 0, and (u, û, ũ) be the solution of the linear plant-
observer-error system. Then, the components of (u, û, ũ) satisfies

(i) |u(·, t)|2 ≤ cε,k,p,û0,ũ0
e−(r−εck,p)t + cp |ũ0|H3(0,L) e

−r t ,
(ii) |û(·, t)|2 ≤ cε,k,p,û0,ũ0

e−(r−εck,p)t , and
(iii) |ũ(·, t)|H3(0,L) ≤ cp |ũ0|H3(0,L) e

−r t , respectively,

where cε,k,p,û0,ũ0
, ck,p, and cp are nonnegative constants depending on their sub-indices.

4. NUMERICAL RESULTS

In this section, we present the numerical algorithms and give several numerical experiments verifying
the theoretical results found in Section 2 and Section 3.

4.1. Controller design.
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4.1.1. Linear case. Our numerical scheme consists of three steps.

Step i. In the first step we derive an approximation to the backstepping kernel. More precisely we solve

G j+1(s, t) = −
r

3β
st +

∫ t

0

∫ s

0

∫ ω

0

[DG j](ξ,η)dξdωdη, (4.1)

for j = 1, 2, . . . iteratively with

G1(s, t) = −
r

3β
st. (4.2)

Then we change variables by setting x = L − (s + t), y = L − t to get an approximation for
k(x , y) = G(y − x , L − y) = G(s, t) which is the solution of the kernel pde model (1.11). We
first observe that at each step of the iteration we get a polynomial in the variables s and t.
This is a great convenience for performing algebraic operations as well as differentiation and
integration. To this end, let us express a general n-th degree polynomial in two variables with
complex coefficients

P(s, t) =α0,0 +α1,0s+α0,1 t +α2,0s2 +α1,1st +α0,2 t2 + · · ·

+αn,0sn +αn−1,1sn−1 t +αn−2,2sn−2 t2 + · · ·+α0,n tn (4.3)

in a matrix form as

[P] =















α0,0 α0,1 · · · α0,n−1 α0,n
α1,0 α1,1 · · · α1,n−1

...
...

...

αn−1,0 αn−1,1 0
αn,0















. (4.4)

Considering the fact that the set of (n + 1) × (n + 1) square matrices form an abelian group
and they satisfy multiplication with a scalar, we can perform the algebraic operations inside the
integral (4.1) using the form (4.4). Moreover, using the elementary row and column operations,
we can perform differentiation and integration. For instance, in order to differentiate P(s, t)
with respect to s, one needs to multiply j-th row of [P] by j − 1 and write the result to the
( j − 1)-th row for each j, j = 2,3 . . . , n+ 1. See Algorithm 1 and Algorithm 2 for pseudo codes
of differentiation and integration operations with respect to the variable s. Differentiation and
integration with respect to the variable t can be performed similarly by doing analogous column
operations.

Algorithm 1 Differentiation with respect to s.

Require: (n+ 1)× (n+ 1) coefficient matrix C .
1: for j = 2→ n+ 1 do
2: C( j − 1, :)← ( j − 1)C( j, :)
3: end for
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Algorithm 2 Integration with respect to s.

Require: (n+ 2)× (n+ 2) coefficient matrix C .
1: for j = n+ 1→ 1 do
2: C( j + 1, :)← C( j,:)

j
3: end for
4: C(1, :)← 0

Remark 4.1. The above approach allows us to make only algebraic computations for computing
derivatives and integrals of a given polynomial. Thus, by using the form (4.4) and performing
the iteration (4.1) sufficiently many times, we derive a nearly exact result for G(s, t) quite fast.
We do not use a discretization based numerical technique due to the error involved especially
for higher order derivatives. We also refrain from using a symbolic toolbox because due to
performance issues.

Step ii. As a second step, we obtain a numerical solution to the weakly damped target system (1.8). To
this end, let M ≥ 3 be an integer and {xm}

M
m=1 be the set of M distinct nodes of [0, L] given by

xm = (m− 1)h where h= L
M−1 is the uniform spatial grid spacing. Consider the vector space

XM :=
�

w= [w1 · · ·wM ]
T ∈ CM

	

(4.5)

with the property

w1(t) = wM (t) = 0, (4.6)

wM−2(t)− 4wM−1(t) + 3wM (t)
2h

= 0 (4.7)

for t > 0 and with the understanding that wm(t) approximates w(x , t) at the point x = xm.
Note that (4.6) corresponds to Dirichlet boundary conditions, whereas (4.7) is one sided second
order finite difference approximation to the first order derivative at the point xM and stands for
the Neumann boundary condition.

Consider the standard forward difference and backward difference operators ∆+ : XM →
XM and ∆− : XM → XM , respectively, and let us also introduce the following finite difference
operators

∆ :=
1
2
(∆+ +∆−) , ∆2 :=∆+∆−, ∆3 :=∆+∆+∆−. (4.8)

Then, the semi-discrete form is

dw(t)
d t

+
�

β∆3 − iα∆2 +δ∆+ rIM
	

[w] (t) = 0 (4.9)

where IM is the identity matrix defined on XM .
Next, let N be a positive integer and T be the final time, and define the time step k = T

N−1 . Let
n= 1, . . . , N be the time index so that tn = (n−1)k. Let wn = [wn

1 · · ·w
n
m]

T be an approximation
of the solution at the n-th time step. Discretizing (4.9) by the Crank-Nicolson time stepping and
defining

A := β∆3 − iα∆2 +δ∆+ rIM , (4.10)

one obtains the following fully discrete scheme: Given wn ∈ XM , find wn+1 ∈ XM such that
�

IM +
k
2

A
�

�

wn+1
�

= Fn
l , n= 1,2, . . . , (4.11)
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where Fn
l :=

�

IM − k
2 A
�

[wn] .
Step iii. To go back to the original plant, we consider the transformation (1.7) and substitute u(x , t)

by w(x , t) + v(x , t) where v(x , t) :=
∫ L

x k(x , y)u(y, t)d y . Then, we end up with the following
problem: Find v(x , t) such that

v(x , t) =

∫ L

x

k(x , y)v(y, t)d y +

∫ L

x

k(x , y)w(y, t)d y. (4.12)

Here numerical results for k(x , y) and w(x , t) are known from the previous steps, therefore
solving the above problem recursively and using the relation u(x , t) = w(x , t) + v(x , t) again,
we deduce the numerical solution to the original plant.

4.1.2. Nonlinear case. In the nonlinear case, the first and the third steps given in the linear case remain
the same, and the only difference occurs in the second step, i.e. solving the target system. Applying
the same discretization given in the linear case for the nonliner target equation (2.25), one obtains the
following fully discrete form:

�

IM +
k
2

A
�

�

wn+1
�

−
ik
2

�

IM −ΥM
k

�

×
h
�

�

�

�

IM −ΥM
k

�−1 �
wn+1

�

�

�

�

p
�

IM −ΥM
k

�−1 �
wn+1

�

i

= Fn
l + Fn

nl , (4.13)

where Fn
nl := ik

2

�

IM −ΥM
k

�

h
�

�

�

�

IM −ΥM
k

�−1
[wn]

�

�

�

p
�

IM −ΥM
k

�−1
[wn]

i

and for a given wn, the system is to

be solved for the (n+ 1)-th time step. The matrix ΥM
k is the discrete counterpart of the integral oper-

ator Υk. Note that this matrix can be explicitly expressed by applying a suitable numerical integration
technique to the integral Υk. For instance applying the composite trapezoidal rule, one obtains

ΥM
k = h













1
2 k(x1, x1) k(x1, x2) · · · k(x1, xM−1)

1
2 k(x1, xM )

0 1
2 k(x2, x2) · · · k(x2, xM−1)

1
2 k(x2, xM )

...
...

. . .
...

...
0 0 · · · 1

2 k(xM−1, xM−1)
1
2 k(xM−1, xM )

0 0 · · · 0 0













. (4.14)

We divide the linearization of the nonlinear part in two cases.

Case (i): If p ≥ 1, then we employ the Taylor linearization method. More precisely, let wn,k, k = 0, 1, . . .
be an approximation of the unknown wn+1. We start the iteration wn,k+1 = wn,k + dw with
wn,0 = wn to derive a better approximation until the correction dw is small enough. For this
purpose, we insert wn,k + dw for wn+1 in (4.13). Then Taylor expand the p-th powered term,
keeping only the linear terms in dw and therefore the nonlinear term at the left hand side of
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(4.13) becomes
�

�

�

�

IM −ΥM
k

�−1 �
wn+1

�

�

�

�

p
�

IM −ΥM
k

�−1 �
wn+1

�

=
�

�

�

�

IM −ΥM
k

�−1 �
wn,k + dw

�

�

�

�

p
�

IM −ΥM
k

�−1 �
wn,k + dw

�

≈
§
�

�

�

�

IM −ΥM
k

�−1 �
wn,k

�

�

�

�

p
+ p

�

�

�

�

IM −ΥM
k

�−1 �
wn,k

�

�

�

�

p−1
�

IM −ΥM
k

�−1
[dw]

ª

×
¦

�

IM −ΥM
k

�−1 �
wn,k

�

+
�

IM −ΥM
k

�−1
[dw]

©

≈
�

IM −ΥM
k

�−1 �
wn,k

�

�

�

�

�

IM −ΥM
k

�−1 �
wn,k

�

�

�

�

p

+
�

�

�

�

IM −ΥM
k

�−1 �
wn,k

�

�

�

�

p
�

IM −ΥM
k

�−1
[dw]

+ p
�

IM −ΥM
k

�−1 �
wn,k

�

�

�

�

�

IM −ΥM
k

�−1 �
wn,k

�

�

�

�

p−1
�

IM −ΥM
k

�−1
[dw] .

Inserting the last expression into (4.13) gives
�

IM +
k
2

A
�

[dw]−
ik
2

�

IM −ΥM
k

�

h
�

�

�

�

IM −ΥM
k

�−1 �
wn,k

�

�

�

�

p

+p
�

IM −ΥM
k

�−1 �
wn,k

�

�

�

�

�

IM −ΥM
k

�−1 �
wn,k

�

�

�

�

p−1�
�

IM −ΥM
k

�−1
[dw]

=Fn
l + Fn

nl −
§

IM +
k
2

A
ª

�

wn,k
�

+
ik
2

�

IM −ΥM
k

�

h

�

IM −ΥM
k

�−1 �
wn,k

�

�

�

�

�

IM −ΥM
k

�−1 �
wn,k

�

�

�

�

pi

.

(4.15)

Case (ii): For 0< p < 1, we employ the Picard linearization method. To this end, we simply use the previ-

ously computed approximation wn,k for the unknown wn+1 in the term
�

�

�

�

IM −ΥM
k

�−1 �
wn+1

�

�

�

�

p
.

Next, we again set wn,k+1 = wn,k + dw, wn,0 = wn, k = 0, 1, . . . , and use for the rest of the
terms which belongs to the (n+ 1)-th time step. Then, the nonlinear term becomes

�

�

�

�

IM −ΥM
k

�−1 �
wn+1

�

�

�

�

p
�

IM −ΥM
k

�−1 �
wn+1

�

≈
�

�

�

�

IM −ΥM
k

�−1 �
wn,k

�

�

�

�

p
�

IM −ΥM
k

�−1 �
wn,k+1

�

=
�

�

�

�

IM −ΥM
k

�−1 �
wn,k

�

�

�

�

p
�

IM −ΥM
k

�−1 �
wn,k

�

+
�

�

�

�

IM −ΥM
k

�−1 �
wn,k

�

�

�

�

p
�

IM −ΥM
k

�−1
[dw] .

Inserting this into (4.13) yields
�

IM +
k
2

A
�

[dw]−
ik
2

�

IM −ΥM
k

�

h
�

�

�

�

IM −ΥM
k

�−1 �
wn,k

�

�

�

�

pi

×
�

IM −ΥM
k

�−1
[dw]

=Fn
l + Fn

nl −
�

IM +
k
2

A
�

�

wn,k
�

+
ik
2

�

IM −ΥM
k

�

h

�

IM −ΥM
k

�−1 �
wn,k

�

�

�

�

�

IM −ΥM
k

�−1 �
wn,k

�

�

�

�

pi

.

(4.16)
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Observe that both (4.15) and (4.16) are linear in dw, therefore solving these linear systems for dw
iteratively yields the numerical solution for the target system at the (n+ 1)-th time step.

Remark 4.2. The Picard linearization method also works for the case p ≥ 1 case. The reason we prefer
the Taylor linearization method over the Picard linearization method is that the former does much better
than the latter. More precisely, the first one requires less iteration at each time step. Nevertheless, for
both methods, choosing sufficiently small time step size implies a better starting value for the iteration
and faster convergence to the upper time step. In our numerical experiments, we choose sufficiently
small time steps so that both methods require at most 3 iterations per time step.

4.2. Observer design. In order to solve the plant-observer-error system numerically, we perform the
following steps.
Step i. In this step, we derive the numerical solution for the pde model (3.2) first by solving (4.1)

iteratively with (4.2) and then considering the change of variables s = −x + y , t = x to get

G(s, t;−r) = G(−x + y, x;−r) = k(L − y, L − x;−r) = p(x , y).

See Figure 3 for the contour plot of |p(x , y)| and the real and imaginary parts of p1(x).

FIGURE 3. Left: Contour plot of |p(x , y)| on ∆x ,y for L = π, β = 0.5, α = 1, δ = 0.5
and r = 0.2. Right: Real and imaginary parts of p1(x) = −iβp(x , L).

Step ii. As a second step, we solve the error system (1.15) numerically. The discretization procedure
is the same as solving the target system in Section 4.1.1. In addition, we approximate second
order spatial derivative of the trace term ũx x(L, t) by using the following one sided second order
finite difference scheme:

ũx x(L, t)≈
−ũM−3(t) + 4ũM−2(t)− 5ũM−1(t) + 2ũM (t)

h2
. (4.17)

Step iii. As a third step, we solve the target-observer system (3.9) numerically. We perform the same
discretization as we did in the previous step. Additionally we take ΥM

k as in (4.14). Note that
taking x = L in calculations given in (B.2) and using the boundary conditions w̃(L, t) = 0,
p(x , x) = 0 for the corresponding pde models, we obtain w̃x x(L, t) = ũx x(L, t). Therefore,
instead of writing w̃x x(L, t), we write ũx x(L, t) in the numerical scheme.

Step iv. The next step is solving the observer system (1.13). In order to achieve this, we use the in-
vertibility of the backstepping transformation. More precisely, for given ŵ, we find the inverse
image û as we did in the third step in Section 4.1.1.
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Step v. Finally we set

u(x , t) := û(x , t) + ũ(x , t) (4.18)

to deduce the numerical solution of the original plant.

4.3. Numerical experiments. In this part we give numerical simulations. The results are obtained
by taking M = 1001 spatial nodes and N = 5000 time steps. The backstepping kernel is derived by
performing the iteration (4.1) several times until the error goes below 10−12.
Experiment 1: Linear controller. Let us consider the following linear system







iut + iux x x + 2ux x + 8iux = 0, x ∈ (0,π), t ∈ (0, T ),
u(0, t) = g0(t), u(π, t) = 0, ux(π, t) = 0,

u(x , 0) = u0(x).
(4.19)

In the absence of the controller, the stationary function
�

3− e4i x − 2e−2i x
�

, shown in Figure 4, satisfies
the above system. So let us take the initial condition as

FIGURE 4. Uncontrolled solution for linear case.

u0(x) = 3− e4i x − 2e−2i x . (4.20)

We choose the damping coefficient as r = 1. Figure 5 represents the corresponding numerical results
in the presence of the controller. In Figure 6 at the left, we give the plots of L2-norms with respect to
different values of r. Obviously a larger value of r is required if one desires a more rapid decay of the
solution. On the other hand, looking at the right hand side of Figure 6, a significant damping effect is
achieved through a bigger control effort.
Experiment 2: Nonlinear model, p ≥ 1. Let us consider the nonlinear problem







iut + iux x x + 2ux x + 8iux + u|u|2 = 0, x ∈ (0,π), t ∈ (0, T ),
u(0, t) = g0(t), u(π, t) = 0, ux(π, t) = 0,

u(x , 0) = u0(x),
(4.21)
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FIGURE 5. Numerical results for the linear controller case. Left: Time evolution of
|u(x , t)|. Right: Contour plot of |u(x , t)|.

FIGURE 6. Left: Time evolution of |u(·, t)|2 for different values of r. Right: Control
gain |k(0, y)| for different values of r.

where the initial datum is chosen as in the previous example. See Figure 7 for the uncontrolled case. In
the absence of the controller, it seems numerically that the energy decays but with a slower rate. Recall
that our aim is actually to gain a rapid decay. For this purpose, we choose the damping coefficient r = 8.
This choice with the coefficients β = 1, α = 2 and δ = 8 are sufficient to gain exponential decay since
these values fulfill the conditions in Lemma 2.13. Indeed by a detailed calculation on the coefficient cα,ε

which comes from ε-Young’s inequality, one obtains cα,ε =
α2

ε =
4
ε where ε−β ≤ 0 or equivalently ε≤ 1

must be satisfied in order for (2.71) to hold. So, one can find an ε > 0 such that 2r −δ− cα,ε > 0 holds
true.

See Figure 8 for corresponding numerical results.
Experiment 3: Nonlinear model, 0 < p < 1. We now consider the case 0 < p < 1 for the nonlinear
problem. We take the same parameters and initial datum as in the previous example, except that now
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FIGURE 7. Uncontrolled solution for nonlinear case, p ≥ 1

we take p = 1
2 and the damping coefficient r = 5.






iut + iux x x + 2ux x + 8iux + u
p

|u|= 0, x ∈ (0,π), t ∈ (0, T ),
u(0, t) = g0(t), u(π, t) = 0, ux(π, t) = 0,

u(x , 0) = u0(x).
(4.22)

We have again cα,ε =
α2

ε =
4
ε where ε−3β ≤ 0 must hold in order for (2.82) to be satisfied. This implies

we can find an ε > 0 such that 2r−δ− cα,ε > 0 holds true. Hence, this selection of problem parameters
is sufficient in order to gain exponential decay.

See Figure 9 for corresponding numerical results.
Experiment 4: Linear observer. Let us consider the following model:







iut + 0.5iux x x + ux x + 0.5iux = 0, x ∈ (0,π), t ∈ (0, T ),
u(0, t) = g0(t), u(π, t) = 0, ux(π, t) = 0,

u(x , 0) = u0(x).
(4.23)

We initialize the error system by setting

ũ0(x) = e−20(x− π2 )
2

e5i(x− π2 ), (4.24)

and take the damping coefficient as r = 0.2. See Figure 10 for the numerical results associated with the
original plant. At the right hand side of Figure 10, we give the contour plot of the solution up to t = 0.5
in order to get a better intuition on the early behaviour of the evolution of the solution. In Figure 11,
we show how graphs of L2 norms of the original plant, observer model and error model behave in time.

5. OTHER BOUNDARY CONDITIONS

In this section, our goal is to extend the results of Section 2, Section 3, and Section 4 to another set
of boundary conditions given by (1.5), where the right hand Dirichlet boundary condition is replaced
by a second order boundary condition.
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(A) 3d plot of |u(x , t)|. (B) Contour plot of |u(x , t)|.

(C) Comparison of L2 norms of |u(x , t)| in the absence
(circle) and presence (square) of control.

FIGURE 8. Numerical results of the controlled nonlinear model for p ≥ 1.

5.1. Controller design. We consider the linearized model (1.18). In order to stabilize (1.18) we follow
the same strategy, that is, we use a backstepping transformation given by (1.19), where ` satisfies a suit-
able pde model given in (1.20) and w is the solution of a pde model which is known to be exponentially
stable with the given prescribed decay rate. The following is a suitable target model:











iwt + iβwx x x +αwx x + iδwx + irw= 0, x ∈ (0, L), t ∈ (0, T ),
w(0, t) = 0, wx(L, t) = 0, wx x(L, t) = 0,

w(x , 0) = w0(x)
.
= u0 −

∫ L

x `(x , y)u0(y)d y.

(5.1)

Multiplying the main equation above with w, integrating over (0, L) and taking the imaginary parts, we
get |w(·, t)|2 ® |w0|2e−r t , t ≥ 0. Recall that the backstepping transformation is bounded invertible and
therefore, we will have the same decay rate as for the solution of the original plant once we prove the
existence of a smooth kernel ` satisfying (1.20).
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(A) 3d plot of |u(x , t)|. (B) Contour plot of |u(x , t)|.

(C) L2 norm of |u(x , t)| in the presence of control.

FIGURE 9. Numerical results of the controlled nonlinear model for 0< p < 1.

5.1.1. Backstepping kernel. We find that (1.18) implies (5.1) if `(x , y) satisfies (1.20) (see Appendix C
for details). We have the following lemma.

Lemma 5.1. The boundary value problem (1.20) has a smooth solution.

Proof. Using the change of variables s ≡ y − x , t ≡ L − y , we see that ` is a solution of (1.20) if
G(s, t)≡ `(x , y) solves















3Gsst − 3Gt ts + Gt t t + iα̃(2Gts − Gt t) + δ̃Gt − r̃G = 0
�

Gss − 2Gst + Gt t + iα̃ (Gs − Gt) + δ̃G
�

(s, 0) = 0

G(0, t) = 0,

Gs(0, t) = − r̃ t
3 ,

(5.2)

where (s, t) ∈∆s,t .
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FIGURE 10. Numerical results for the observer case. Left: Time evolution of |u(x , t)|.
Right: Contour plot of |u(x , t)|.

In order to find a solution of (5.2), we convert it into an integral equation. To this end, we first write

Gsst = DG
.
=

1
3

�

3Gt ts − Gt t t − iα̃ (2Gts − Gt t)− δ̃Gt + r̃G
�

using the main equation. We integrate in t and use the boundary conditions to obtain

Gss(s, t) =
�

2Gst − Gt t − iα̃ (Gs − Gt)− δ̃G
�

(s, 0) +

∫ t

0

[DG](s,η)dη.

Now observing that

�

2Gst − Gt t − iα̃ (Gs − Gt)− δ̃G
�

(s, t)
�

�

�

t=0

=−
∫ t

0

�

2Gst t − Gt t t − iα̃(Gst − Gt t)− δ̃Gt

�

(s,η)dη

+
�

2Gst − Gt t − iα̃ (Gs − Gt)− δ̃G
�

(s, t),

and combining this with the previous expression, we obtain

Gss(s, t) =
�

2Gst − Gt t − iα̃ (Gs − Gt)− δ̃G
�

(s, t)

+
1
3

∫ t

0

�

−3Gt ts + 2Gt t t + iα̃ (Gts − 2Gt t) + 2δ̃Gt + r̃G
�

(s,η)dη.



42 STABILIZATION OF HIGHER ORDER SCHRÖDINGER EQUATIONS

(A) Original plant. (B) Observer model.

(C) Error model.

FIGURE 11. Time evolution of L2 norms.

Next we integrate the last expression with respect to s and use G(0, t) = 0 to obtain

Gs(s, t) =Gs(0, t) +

∫ s

0

�

2Gst − Gt t − iα̃ (Gs − Gt)− δ̃G
�

(ξ, t)dξ

+
1
3

∫ s

0

∫ t

0

�

−3Gt ts + 2Gt t t + iα̃ (Gts − 2Gt t) + 2δ̃Gt + r̃G
�

(ξ,η)dηdξ

=−
r̃ t
3
+ (2Gt − iα̃G) (s, t) +

∫ s

0

�

−Gt t + iα̃Gt − δ̃G
�

(ξ, t)dξ

+
1
3

∫ s

0

∫ t

0

�

−3Gt ts + 2Gt t t + iα̃ (Gts − 2Gt t) + 2δ̃Gt + r̃G
�

(ξ,η)dηdξ.
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Finally integrating with respect to s and using G(0, t) = 0 we obtain that the corresponding integral
equation for the pde model (5.2) is

G(s, t) =−
r̃
3

st +

∫ s

0

(2Gt − iα̃G) (ω, t)dω

+

∫ s

0

∫ ω

0

�

−Gt t + iα̃Gt − δ̃G
�

(ξ, t)dξdω

+
1
3

∫ s

0

∫ ω

0

∫ t

0

(−3Gt ts + 2Gt t t

+iα̃(Gts − 2Gt t) + 2δ̃Gt + r̃G
�

(ξ,η)dηdξdω

Hence, finding a smooth solution to the boundary value problem (1.20) reduces to proving that the
above integral equation has a smooth solution. The proof of the latter claim is similar to the proof of
Lemma 2.1. Indeed if we define the operators

P2,−2 f =
2
3

∫ t

0

∫ s

0

∫ ω

0

ft t t(ξ,η)dξdωdη−
∫ s

0

∫ ω

0

ft t(ξ,η)dξdω,

P1,−1 f = −
∫ t

0

∫ s

0

∫ ω

0

ft ts(ξ,η)dξdωdη+ 2

∫ s

0

ft(ξ,η)dξ,

P2,−1 f = −
2iα̃
3

∫ t

0

∫ s

0

∫ ω

0

ft t(ξ,η)dξdωdη+ iα̃

∫ s

0

∫ ω

0

ft(ξ,η)dξdω,

P1,0 f =
iα̃
3

∫ t

0

∫ s

0

∫ ω

0

fts(ξ,η)dξdωdη− iα̃

∫ s

0

f (ξ,η)dξ,

P2,0 f =
2δ̃
3

∫ t

0

∫ s

0

∫ ω

0

ft(ξ,η)dξdωdη− δ̃
∫ s

0

∫ ω

0

f (ξ,η)dξdω,

P2,1 f =
r̃
3

∫ t

0

∫ s

0

∫ ω

0

f (ξ,η)dξdωdη,

then the equation (2.11) is still satisfied where G is replaced by the solution of the current integral
equation and P = P2,−2 + P1,−1 + P2,−1 + P1,0 + P2,0 + P2,1. Moreover, equalities (2.14) still hold true up
to a constant factor. So existence of the smooth solution of the current integral equation follows from
the same arguments as in the proof of Lemma 2.1. �

5.1.2. Wellposedness. Introducing the notation w̃(x , t)
.
= er t w(x , t), we first investigate the wellposed-

ness of the following model:






iw̃t + iβ w̃x x x +αw̃x x + iδw̃x = 0, x ∈ (0, L), t ∈ (0, T ),
w̃(0, t) = 0, w̃x(L, t) = 0, w̃x x(L, t) = 0,

w̃(x , 0) = w̃0(x)
.
= w0(x).

(5.3)

To this end, let us introduce the operator A given by Aϕ := −βϕ′′′ + iαϕ′′ − δϕ′ with domain D(A) =
{ϕ ∈ H3(0, L) : ϕ(0) = ϕ′(L) = ϕ′′(L) = 0}.

Lemma 5.2. A generates a strongly continuous semigroup of contractions on
L2(0, L).



44 STABILIZATION OF HIGHER ORDER SCHRÖDINGER EQUATIONS

Proof. A is densely defined and closed. It is clear that D(A) is dense in L2(0, L). To show closedness,
let Aϕn → v in L2(0, L) with ϕn → ϕ in L2(0, L), ϕn ∈ D(A). Then, ϕn and Aϕn are bounded in
L2(0, L). From Gagliardo-Nirenberg’s inequality (Lemma 1.12), we can bound the first and second
order derivatives in terms of L2 norms of ϕn and ϕ′′′n :

|ϕ′n|2 ≤ c|ϕ′′′n |
1
3
2 |ϕn|

2
3
2 + c|ϕn|2, (5.4)

|ϕ′′n |2 ≤ c|ϕ′′′n |
2
3
2 |ϕn|

1
3
2 + c|ϕn|2. (5.5)

Using triangle’s inequality, the assumptions that β ,δ > 0, and ε−Young’s inequality, we can write

β |ϕ′′′n |2 − |α||ϕ
′′
n |2 −δ|ϕ

′
n|2 ≤ |Aϕn|2 ≤ c <∞,

which implies

|ϕ′′′n |2 ≤c + |α̃||ϕ′′n |2 + δ̃|ϕ
′
n|2 ≤ c + c|ϕ′′′n |

2
3
2 |ϕn|

1
3
2 + c|ϕn|2 + c|ϕ′′′n |

1
3
2

≤c + cε|ϕn|2 + ε|ϕ′′′n |2 ≤ cε + ε|ϕ′′′n |2.

It follows from the above inequality thatϕ′′′n is bounded in L2(0, L). This fact together with the bounded-
ness of ϕn in L2(0, L) and the Gagliardo-Nirenberg inequalities (5.4)-(5.5) imply that ϕ( j)n is bounded in
L2(0, L) for each j = 1, 2,3. Then, we can pass to a subsequence ofϕn (still denoted same) such thatϕ( j)n
weakly converges to some w j ∈ L2(0, L) for each j = 1, 2,3. We claim that (in the weak sense) w j = ϕ( j),
j = 1, 2,3. Indeed for any ψ ∈ C∞c (0, L), we have (ϕ( j)n ,ψ)2 = (−1) j(ϕn,ψ( j))2 → (−1) j(ϕ,ψ( j))2. On
the other hand, (ϕ( j)n ,ψ)2 → (w j ,ψ)2. Therefore, (−1) j(ϕ,ψ( j))2 = (w j ,ψ)2, which proves the claim.
We just showed that in particular ϕ ∈ H3(0, L). It is well known that H3(0, L) continuously embeds in
C2([0, L]). This means (a subsequence of) ϕn converges in C2([0, L]) to ϕ and therefore the boundary
conditions ϕ(0) = ϕ′(L) = ϕ′′(L) = 0 are satisfied. Thus, ϕ ∈ D(A). Finally, recall that Aϕn weakly
converges to −βw3 + iαw2 + δw1 = Aϕ. Since we also have Aϕn → v (in particular weakly), from
uniqueness of weak limit, we conclude that Aϕ = v.

Next we show that A is dissipative, that is for ϕ ∈ D(A) we show Re(Aϕ,ϕ) ≤ 0. Using integration
by parts, we have Re

∫ L

0 ϕ
′ϕ̄d x = |ϕ(L)|2

2 and Re
∫ L

0 ϕ
′′ϕ̄d x = −|ϕ′|22 and Re

∫ L

0 ϕ
′′′ϕ̄d x = |ϕ′(0)|2

2 which
yields

Re(Aϕ,ϕ) = Re

�

−
δ|ϕ(L)|2

2
− iα|ϕ′|22 −

β |ϕ′(0)|2

2

�

≤ 0.

As a last step, we observe that A∗ given by A∗ϕ := βϕ′′′ − iαϕ′′ + δϕ′ with domain D(A∗) = {ϕ ∈ H3 :
ϕ(0) = ϕ′(0) = ϕ(L) = ϕ′(L) = ϕ′′(L) = 0} is the adjoint operator of A. Similar calculations yield

Re(ϕ, A∗ϕ) = Re

∫ L

0

ϕ(βϕ′′′ − iαϕ′′ +δϕ′)d x = Re
�

iα|ϕ′|22
�

= 0,

so A∗ is dissipative. As a conclusion of [23, Cor 4.4, pg. 15], A is the infinitesimal generator of a
C0-semigroup of contractions on L2(0, L). �

Proposition 5.3. Let T > 0, w̃0 ∈ L2(0, L). Then (5.3) has a unique mild solution w̃ ∈ X 0
T0

which satisfies

|w̃|L∞(0,T ;L2(0,L)) + |w̃|L2(0,T ;H1(0,L)) ≤ C(1+
p

T )|w̃0|2 (5.6)

and the trace regularity w̃x(0, ·) ∈ L2(0, T ).
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Proof. Again we show this only formally. By Lemma 5.2, (5.3) admits a unique mild solution. To see
that (5.6) holds, we multiply (5.3) by the conjugate of w̃, integrate over (0, L) × (0, T ) and take the
imaginary parts to obtain

Im

∫ T

0

∫ L

0

iw̃t w̃d xd t + Im

∫ T

0

∫ L

0

iβ w̃x x x w̃d xd t

+ Im

∫ T

0

∫ L

0

αw̃x x w̃d xd t + Im

∫ T

0

∫ L

0

iδw̃x w̃d xd t = 0.

After some calculations, we find

|w̃|L∞(0,T ;L2(0,L)) + |w̃x(0, t)|2 + |w̃(L, t)|2 ≤ C |w̃0|2. (5.7)

Now, multiplying (5.3) by xw̃, integrating over (0, L)× (0, T ) and taking the imaginary parts, we get
∫ L

0

x |w̃(x , T )|2d x + 3β

∫ T

0

∫ L

0

|w̃x |2d xd t + Lδ

∫ T

0

|w̃(L, t)|2d t

=

∫ L

0

x |w̃0|2d x + 2αIm

∫ T

0

∫ L

0

w̃w̃x d xd t +δ

∫ T

0

∫ L

0

|w̃|2d xd t.

Applying ε-Young’s inequality to the second term at the right hand side, we have
∫ L

0

x |w̃(x , T )|2d x + 3β

∫ T

0

∫ L

0

|w̃x |2d xd t + Lδ

∫ T

0

|w̃(L, t)|2d t

≤
∫ L

0

x |w̃0|2d x + ε

∫ T

0

∫ L

0

|w̃x |2d xd t + (cε +δ)

∫ T

0

∫ L

0

|w̃|2d xd t.

We infer that

(3β − ε)
∫ T

0

∫ L

0

|w̃x |2d xd t ≤
∫ L

0

x |w̃0|2d x + T (δ+ cε)|w̃|2L∞(0,T ;L2(0,L)).

Now taking ε small enough and using (5.7), we obtain the desired result. �

The wellposedness result for (1.18) follows from w(x , t) = e−r t w̃(x , t), the bounded invertibility of
the backstepping transformation, and the same arguments as in the proof of Proposition 2.4. Thus, we
have

Proposition 5.4. Let T > 0, u0 ∈ L2(0, L), and g0 be as in (1.14), where ` is the backstepping kernel
constructed in Lemma 5.1. Then (1.18) has a unique mild solution u ∈ X 0

T0
which satisfies

|u|L∞(0,T ;L2(0,L)) + |u|L2(0,T ;H1(0,L)) ≤ c`(1+
p

T )|u0|2 (5.8)

and the trace regularity ux(0, ·) ∈ L2(0, T ).

The local wellposedness of the nonlinear plant follows as in Section 2.2.2 by using a fixed point
argument and the bounded invertibility of I − Υ`. Therefore, we have

Proposition 5.5. Let T > 0, p ∈ (0,4], u0 ∈ L2(0, L) (small if p = 4), and g0 be as in (1.14), where ` is
the backstepping kernel constructed in Lemma 5.1. Then (1.22) admits a unique solution u ∈ X 0

T0
for some

T0 ∈ (0, T].
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5.1.3. Stability. The proof of the following propositions are very similar to that of Proposition 2.11 and
Proposition 2.14, respectively, and is therefore omitted.

Proposition 5.6. Let r > 0, ` be the smooth backstepping kernel which solves (1.20) and u be the
solution of (1.18) where the feedback controller acting at the left Dirichlet boundary condition is cho-
sen as in (1.14). Then, |u(·, t)|2 ≤ c` |u0|2 e−r t , t ≥ 0, where c` ≥ 0 depending only on ` given by
c` =

�

�(I − Υ`)−1
�

�

2→2

�

1+ |`|L2(∆x ,y )

�

.

Proposition 5.7. Let r ′ > 0, then there corresponds some suitable r > 0 and a smooth backstepping kernel
` which solves (1.20) such that the solution u of (1.22), where the feedback controller acting at the left
Dirichlet boundary condition is chosen as in (1.14) satisfies |u(·, t)|2 ® |u0|2 e−r ′ t for t ≥ 0, provided that
|u0|2 is sufficiently small.

5.2. Observer design. We again use a backstepping transformation of the form (1.16) and arrive at
the following target error system which is exponentially stable with the desired decay rate:







iw̃t + iβ w̃x x x +αw̃x x + iδw̃x + irw̃= 0, in (0, L)× (0, T ),
w̃(0, t) = 0, w̃x(L, t) = 0, w̃x x(L, t) = 0, in (0, T ),
w̃(x , 0) = w̃0(x), in (0, L).

(5.9)

After some calculations (see Appendix D), we obtain that the error system (1.24) transforms to the target
error system (5.9), if p1(x) := −iβpy y(x , L) + αpy(x , L) − iδp(x , L) and p(x , y) solves the following
pde model:















px x x + py y y − iα̃(px x − py y) + δ̃(px + py)− r̃ p = 0,

p(0, y) = 0,

p(x , x) = 0,
d

d x px(x , x) = − r̃
3 (L − x)

(5.10)

where (x , y) ∈ ∆x ,y . This is exactly the same model as we obtained in (3.2). So using the same
procedure, a solution of the pde model (5.10) can be found by setting p(x , y) = k(L − y, L − x;−r)
where k(x , y) is a solution of (1.11).

In the current context, we choose the observer target system below that has the desired exponential
stability:



















iŵt + iβ ŵx x x +αŵx x + iδŵx + irŵ
+[(I − Υk)p1](x)w̃(L, t) = 0, x ∈ (0, L), t ∈ (0, T ),
ŵ(0, t) = 0, ŵx(L, t) = 0, ŵx x(L, t) = 0,

ŵ(x , 0) = ŵ0(x)
.
= û0 −

∫ L

x k(x , y)û0(y)d y.

(5.11)

Now, we can transform the observer model (1.23) into the observer target system above by using the
transformation

ŵ(x , t) = û(x , t)−
∫ L

x

`(x , y)û(x , y)d y, (5.12)

where ` satisfies the pde model (1.20).
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5.2.1. Wellposedness of plant-observer-error system. For ũ0 ∈ H3(0, L) satisfying the compatibility con-
dition ũ0(0) = 0, we have w̃0 ∈ H3(0, L) and moreover w̃0 satisfies the same compatibility condition
w̃0(0) = 0 due to the obvious relationship between ũ0 and w̃0 and boundary conditions of p. Therefore,
(5.9) has a solution w̃ ∈ X 3

T . Then, by using the bounded invertibility of the backstepping transformation
we infer that ũ ∈ X 3

T . Note that the function f = f (x , t) defined by f (x , t) = [(I − Υk)p1](x)w̃(L, t)
belongs to L1(0, T ; L2(0, L)); therefore we have w̃ ∈ X 0

T . Again by the bounded invertibility we obtain
û ∈ X 0

T . But u= û+ ũ; hence we have u ∈ X 0
T .

5.2.2. Stabilization of the plant-observer error system.

Lemma 5.8. Let w̃ be the solution of (5.9), then (i) |w̃(·, t)|2 ≤ |w̃0|2e−r t , (ii) |w̃(·, t)|H3(0,L) ® |w̃0|H3(0,L)e
−r t

for t ≥ 0.

Proof. Taking L2(0, L) inner product of (5.9) with w̃ and looking at the imaginary parts, we obtain (i).
In order to prove (ii), we differentiate (5.9) with respect to t, take the L2(0, L) inner product with w̃t
and integrate by parts. We get

d
d t
|w̃t(·, t)|22 + 2r |w̃t(·, t)|22 = −

�

β |wx t(0, t)|2 +δ|wt(L, t)|2
�

≤ 0, (5.13)

which implies
|w̃t(·, t)|2 ≤ |w̃t(·, 0)|H3(0,L)e

−r t . (5.14)
Now, (ii) follows from the fact that |w̃(·, t)|H3(0,L) ® |w̃(·, t)|2+ |w̃t(·, t)|2, which can be shown as (3.17),
and |w̃t(0)|2 = | − β w̃′′′0 + iαw̃′′0 −δw̃′0 + irw̃0|2 ≤ |w̃0|H3(0,L). �

Remark 5.9. Using the Sobolev trace theorem and the above lemma, it follows that |w̃(L, t)|® |w̃(·, t)|H1(0,L) ≤
|w̃(·, t)|H3(0,L) ≤ |w̃0|H3(0,L)e

−r t .

To show the exponential decay of the solution of the target observer model, we follow same steps
given in (3.2)-(3.28) by considering the trace estimate given in Remark 5.9. Hence, we have the propo-
sition below.

Proposition 5.10. Let ε > 0 be fixed and small, r > 0, and (u, û, ũ) be the solution of the linear plant-
observer-error system. Then, components of the solution (u, û, ũ) satisfy

(i) |u(·, t)|2 ≤ cε,k,p,û0,ũ0
e−(r−εck,p)t + cp |ũ0|H3(0,L) e

−r t ,
(ii) |û(·, t)|2 ≤ cε,k,p,û0,ũ0

e−(r−εck,p)t , and
(iii) |ũ(·, t)|H3(0,L) ≤ cp |ũ0|H3(0,L) e

−r t , respectively,
where cε,k,p,û0,ũ0

, ck,p, and cp are nonnegative constants depending on their sub-indices.

5.3. Numerical results. In this section we will present our numerical simulations. We use the same
numerical design that we give in Section 4. But now, due to the boundary conditions, we make our
numerical calculations on the space

XM :=
�

w= [w1 · · ·wM ]
T ∈ CM

	

(5.15)

with the property that

w1(t) =0, (5.16)

wM−2(t)− 4wM−1(t) + 3wM (t)
2h

=0, (5.17)

−wM−3(t) + 4wM−2(t)− 5wM−1(t) +wM (t)
h2

=0. (5.18)
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Note that the last condition is the one sided second order finite difference scheme that approximates
the boundary condition ux x(L, t) = 0.
Experiment 1: Linear Controller. Consider the following linear model







iut + iux x x + ux x + 2iux = 0, x ∈ (0,π), t ∈ (0, T ),
u(0, t) = g0(t), ux(π, t) = 0, ux x(π, t) = 0,

u(x , 0) = u0(x).
(5.19)

with the initial condition

u0(x) = sech
�

8
�

x −
π

2

�2�

exp
�

4i
�

x −
π

2

��

. (5.20)

See Figure 12 for the uncontrolled solution. Choosing r = 1, we obtain the results shown in Figure 13.

FIGURE 12. Uncontrolled solution for the linear case.

Experiment 2: Nonlinear Controller, p ≥ 1. Consider the following lnoninear model






iut + 0.5iux x x + ux x + 2ux + u|u|3
p

|u|= 0, x ∈ (0,π), t ∈ (0, T ),
u(0, t) = g0(t), ux(π, t) = 0, ux x(π, t) = 0,

u(x , 0) = u0(x).
(5.21)

with the initial condition

u0(x) = 3e−16(x− π2 )
2

e4i(x− π2 ) + 5e−16(x− 3π
4 )

2

e4i(x− 3π
4 ). (5.22)

The uncontrolled solution is shown in Figure 14. See Figure 15 for the numerical results in the controlled
case. In this example, we take r = 1.5.
Experiment 3: Nonlinear Controller, 0< p < 1. Next we consider the following nonlinear model:







iut + iux x x + ux x + 2iux + u 4
p

|u|= 0, x ∈ (0,π), t ∈ (0, T ),
u(0, t) = g0(t), ux(π, t) = 0, ux x(π, t) = 0,

u(x , 0) = u0(x).
(5.23)
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(A) 3d plot of |u(x , t)|. (B) Contour plot of |u(x , t)|.

(C) Comparison of L2 norms of |u(x , t)| in the absence
(circle) and presence (star) of control.

FIGURE 13. Numerical results of the controlled linear model.

with the initial condition

u0(x) = sech
�

8
�

x −
π

2

�2�

exp
�

4i
�

x −
π

2

��

. (5.24)

The uncontrolled solution is shown in Figure 16. See Figure 17 for the controlled case. We take the
damping coefficient r = 1.5.

6. CONCLUDING REMARKS

In this paper, we designed the left endpoint Dirichlet backstepping boundary controller for higher
order Schrödinger equations. Our setup was that two homogeneous Dirichlet-Neumann or Dirichlet-
second order boundary conditions were imposed at the opposite (i.e. right) endpoint of the boundary.
This setup has the advantage that the boundary value problem for the backstepping kernel model be-
comes wellposed, and moreover the sought after kernel becomes smooth.
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FIGURE 14. Uncontrolled solution for nonlinear case, p ≥ 1.

On the other hand, if one considers the problem of inserting a controller or two controllers at the
right hand side, then it turns out that the pde model for the kernel becomes overdetermined. The
same issue also occurs in other third order equations such as the Korteweg-de Vries (KdV) equation
[9]. In addition, it is not difficult to show that such a kernel model will not have a smooth solution
[22]. This problem was first treated by [11] via extending the overdetermined kernel model from a
triangular domain into a rectangular domain and using the exact (Neumann) boundary controllability
property for the underlying dynamics. The drawback was that it only applied to domains of uncritical
lengths since it relied on the exact controllability, which only holds for such domains. Most recently,
the first two authors introduced another approach in [22] which is based on using an imperfect kernel
by disregarding one of the boundary conditions from the overdetermined kernel model. This approach
eliminated the dependence on the type of domain, but the exponential decay rate could not be made as
large as possible.

We should remind the reader that this technical issue does not occur if the controller acts from the
right endpoint with two boundary conditions specified at the left; see for instance [25] and [26]. How-
ever, the location and type of boundary conditions are determined by the intrinsic nature of the physical
model, and one in general does not have the chance to choose the number of boundary conditions at a
particular endpoint.

We leave the theory of right endpoint controllability and related numerical work to a future paper,
as the length of the current text is getting too long.

APPENDIX A. DEDUCTION OF KERNEL PDE MODEL (1.11)

In this section, we present the details of the calculations for obtaining the kernel model given in
(1.11). Differentiating (1.7) in t, replacing ut(y, t) by−βuy y y(y, t)+iαuy y(y, t)−δuy(y, t), integrating



STABILIZATION OF HIGHER ORDER SCHRÖDINGER EQUATIONS 51

(A) 3d plot of |u(x , t)|. (B) Contour plot of |u(x , t)|.

(C) Comparison of L2 norms of |u(x , t)| in the absence
(circle) and presence (star) of control.

FIGURE 15. Numerical results of the controlled nonlinear model, p ≥ 1.

by parts in y , and using the boundary conditions u(L, t) = ux(L, t) = 0, we get

wt(x , t) =ut(x , t)−
∫ L

x

k(x , y)ut(y, t)d y

=ut(x , t) +

∫ L

x

k(x , y)[βuy y y(y, t)− iαuy y(y, t) +δuy(y, t)]d y

=ut(x , t) + k(x , y)[βux x(y, t)− iαux(y, t) +δu(y, t)]Lx

−
∫ L

x

ky(x , y)[βuy y(y, t)− iαuy(y, t) +δu(y, t)]d y

=ut(x , t) + βk(x , L)ux x(L, t)

− k(x , x)[βux x(x , t)− iαux(x , t) +δu(x , t)]

− ky(x , y)[βux(y, t)− iαu(y, t)]Lx

+

∫ L

x

ky y(x , y)[βuy(y, t)− iαu(y, t)]d y −δ
∫ L

x

ky(x , y)u(y, t)d y

=ut(x , t) + βk(x , L)ux x(L, t)

− k(x , x)[βux x(x , t)− iαux(x , t) +δu(x , t)]

+ ky(x , x)[βux(x , t)− iαu(x , t)]− βky y(x , x)u(x , t)

−
∫ L

x

[βky y y(x , y) + iαky y(x , y) +δky(x , y)]u(y, t)d y.

(A.1)
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FIGURE 16. Uncontrolled solution for the nonlinear case 0< p < 1.

Similarly, differentiating (1.7) in x , up to order three, we obtain

wx(x , t) = ux(x , t)−
∫ L

x

kx(x , y)u(y, t)d y + k(x , x)u(x , t), (A.2)

wx x(x , t) =ux x(x , t)−
∫ L

x

kx x(x , y)u(y, t)d y + kx(x , x)u(x , t)

+
�

d
d x

k(x , x)
�

u(x , t) + k(x , x)ux(x , t),

(A.3)

and

wx x x(x , t) =ux x x(x , t)−
∫ L

x

kx x x(x , y)u(y, t)d y

+ kx x(x , x)u(x , t) +
d

d x
[kx(x , x)]u(x , t)

+ kx(x , x)ux(x , t) +
d2

d x2
[k(x , x)]u(x , t)

+ 2
�

d
d x

k(x , x)
�

ux(x , t) + k(x , x)ux x(x , t).

(A.4)
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(A) 3d plot of |u(x , t)|. (B) Contour plot of |u(x , t)|.

(C) Comparison of L2 norms of |u(x , t)| in the absence
(circle) and presence (star) of control.

FIGURE 17. Numerical results of the controlled nonlinear model for 0< p < 1.

We find that
iwt + iβwx x x +αwx x + iδwx + irw

=iut(x , t) + iβk(x , L)ux x(L, t)− ik(x , x)[βux x(x , t)− iαux(x , t) +δu(x , t)]

+ iky(x , x)[βux(x , t)− iαu(x , t)]− iβky y(x , x)u(x , t))

− i

∫ L

x

[βky y y(x , y) + iαky y(x , y) +δky(x , y)]u(y, t)d y

+ iβux x x(x , t)− iβ

∫ L

x

kx x x(x , y)u(y, t)d y + iβkx x(x , x)u(x , t)

+ iβ
d

d x
[kx(x , x)]u(x , t) + iβkx(x , x)ux(x , t) + iβ

d2

d x2
[k(x , x)]u(x , t)

+ 2iβ
�

d
d x

k(x , x)
�

ux(x , t) + iβk(x , x)ux x(x , t)

+αux x(x , t)−α
∫ L

x

kx x(x , y)u(y, t)d y +αkx(x , x)u(x , t)

+α
�

d
d x

k(x , x)
�

u(x , t) +αk(x , x)ux(x , t)

+ iδux(x , t)− iδ

∫ L

x

kx(x , y)u(y, t)d y + iδk(x , x)u(x , t)

+ iru(x , t)− ir

∫ L

x

k(x , y)ut(y, t)d y.

(A.5)
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Recall from (1.6) that

iut(x , t) + iβux x x(x , t) +αux x(x , t) + iδux(x , t) = 0. (A.6)

Therefore, the right hand side of (A.5) can be rewritten as

− i

∫ L

x

��

β(ky y y + kx x x) + iα(ky y − kx x) +δ(ky + kx) + rk
�

(x , y)
�

u(y, t)d y

+
�

3iβ
d

d x
kx(x , x) + ir

�

u(x , t) + iβk(x , L)ux x(L, t)

+
�

d
d x

k(x , x)
�

[3iβux(x , t) + 2αu(x , t)] .

(A.7)

Assuming k(x , L) =
d

d x
k(x , x) = 0 and β

d
d x

kx(x , x) = −
r
3

, we can make sure that (A.7) vanishes.

Note that the condition k(x , L) =
d

d x
k(x , x) = 0 can be rewritten as k(x , L) = k(x , x) = 0 since k(x , x)

is constant and equal to k(L, L) = 0.

APPENDIX B. DEDUCTION OF KERNEL PDE MODEL (3.2)

In this section, we present the details of the calculations for obtaining the kernel model given in
(3.2). Differentiating (1.16) in t, replacing w̃t(y, t) by −β w̃ y y y(y, t) + iαw̃ y y(y, t)− δw̃ y(y, t)− rw̃,
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integrating by parts in y , and using the boundary conditions w̃(L, t) = w̃x(L, t) = 0, we get

ũt(x , t) =w̃t(x , t)−
∫ L

x

p(x , y)w̃t(y, t)d y

=w̃t(x , t) +

∫ L

x

p(x , y)[β w̃ y y y(y, t)− iαw̃ y y(y, t) +δw̃ y(y, t) + rw̃]d y

=w̃t(x , t) + p(x , y)[β w̃x x(y, t)− iαw̃x(y, t) +δw̃(y, t)]Lx

−
∫ L

x

py(x , y)[β w̃ y y(y, t)− iαw̃ y(y, t) +δw̃(y, t)]d y

+

∫ L

x

p(x , y)rw̃(y, t)d y

=w̃t(x , t) + βp(x , L)w̃x x(L, t)

− p(x , x)[β w̃x x(x , t)− iαw̃x(x , t) +δw̃(x , t)]

− py(x , y)[β w̃x(y, t)− iαw̃(y, t)]Lx

+

∫ L

x

py y(x , y)[β w̃ y(y, t)− iαw̃(y, t)]d y

−
∫ L

x

(δpy(x , y)− rp(x , y))w̃(y, t)d y

=w̃t(x , t) + βp(x , L)w̃x x(L, t)

− p(x , x)[β w̃x x(x , t)− iαw̃x(x , t) +δw̃(x , t)]

+ py(x , x)[β w̃x(x , t)− iαw̃(x , t)]− βpy y(x , x)w̃(x , t)

−
∫ L

x

[βpy y y(x , y) + iαpy y(x , y) +δpy(x , y)− rp(x , y)]w̃(y, t)d y.

Similarly, differentiating (1.16) in x , up to order three, we obtain

ũx(x , t) = w̃x(x , t)−
∫ L

x

px(x , y)w̃(y, t)d y + p(x , x)w̃(x , t), (B.1)

ũx x(x , t) =w̃x x(x , t)−
∫ L

x

px x(x , y)w̃(y, t)d y + px(x , x)w̃(x , t)

+
�

d
d x

p(x , x)
�

w̃(x , t) + p(x , x)w̃x(x , t),

(B.2)

and

ũx x x(x , t) =w̃x x x(x , t)−
∫ L

x

px x x(x , y)w̃(y, t)d y + px x(x , x)w̃(x , t)

+
d

d x
[px(x , x)]w̃(x , t) + px(x , x)w̃x(x , t) +

d2

d x2
[p(x , x)]w̃(x , t)

+ 2
�

d
d x

p(x , x)
�

w̃x(x , t) + p(x , x)w̃x x(x , t).

(B.3)
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We find that

iũt + iβ ũx x x +αũx x + iδũx + p1(x)ũx x(L)

=iw̃t(x , t) + iβp(x , L)w̃x x(L, t)

− ip(x , x)[β w̃x x(x , t)− iαw̃x(x , t) +δw̃(x , t)]

+ ipy(x , x)[β w̃x(x , t)− iαw̃(x , t)]− iβpy y(x , x)w̃(x , t)

− i

∫ L

x

[βpy y y(x , y) + iαpy y(x , y) +δpy(x , y)− rp(x , y)]w̃(y, t)d y

+ iβ w̃x x x(x , t)− iβ

∫ L

x

px x x(x , y)w̃(y, t)d y + iβpx x(x , x)w̃(x , t)

+ iβ
d

d x
[px(x , x)]w̃(x , t)

+ iβpx(x , x)w̃x(x , t) + iβ
d2

d x2
[p(x , x)]w̃(x , t)

+ 2iβ
�

d
d x

p(x , x)
�

w̃x(x , t) + iβp(x , x)w̃x x(x , t)

+αw̃x x(x , t)−α
∫ L

x

px x(x , y)w̃(y, t)d y +αpx(x , x)w̃(x , t)

+α
�

d
d x

p(x , x)
�

w̃(x , t) +αp(x , x)w̃x(x , t) + iδw̃x(x , t)

− iδ

∫ L

x

px(x , y)w̃(y, t)d y + iδp(x , x)w̃(x , t) + p1(x)w̃x x(L, t).

(B.4)

Assuming p(x , x) = 0 and p1(x) = −iβp(x , L), the right hand side of (B.4) reduces to

�

3iβ
d

d x
px(x , x)− ir

�

w̃(x , t)

− i

∫ L

x

[βpy y y(x , y) + iαpy y(x , y) +δpy(x , y)− rp(x , y)]w̃(y, t)d y

− i

∫ L

x

[βpx x x(x , y)− iαpx x(x , y) +δpx(x , y)]w̃(y, t)d y.

(B.5)

On the other hand, from the boundary condition ũ(0) = w̃(0) = 0, we get 0 =
∫ L

0 p(0, y)w̃(y, t), which
implies p(0, y) = 0.
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APPENDIX C. DEDUCTION OF THE KERNEL PDE MODEL (1.20)

In this section, we present the details of the calculations for obtaining the kernel model given in
(1.20). Differentiating (1.19) in t, replacing ut(y, t) by −βuy y y(y, t) + iαuy y(y, t) − δuy(y, t), inte-
grating by parts in y , we get

wt(x , t) =ut(x , t)−
∫ L

x

`(x , y)ut(y, t)d y

=ut(x , t) +

∫ L

x

`(x , y)
�

βuy y y(y, t)− iαuy y(y, t) +δuy(y, t)
�

d y

=ut(x , t)

+ β

�

`(x , y)ux x(y, t)− `y(x , y)ux(y, t) + `y y(x , y)u(y, t)

�

�

�

�

L

x

−
∫ L

x

`y y y(x , y)u(y, t)d y

�

− iα

�

`(x , y)ux(y, t)− `y(x , y)u(y, t)

�

�

�

�

L

x

+

∫ L

x

`y y(x , y)u(y, t)d y

�

+δ

�

`(x , y)u(y, t)

�

�

�

�

L

x

−
∫ L

x

`y(x , y)u(y, t)d y

�

.

Multiplying the last expression by i, using the boundary conditions ux(L, t) = ux x(L, t) = 0 and rear-
ranging the terms u(L, t), u(x , t) ux(x , t) and ux x(x , t), we obtain

iwt(x , t) =iut(x , t) +

∫ L

x

�

−iβ`y y y(x , y) +α`y y(x , y)− iδ`y(x , y)
�

u(y, t)d y

+ u(L, t)
�

iβ`y y(x , L)−α`y(x , L) + iδ`(x , L)
�

+ u(x , t)
�

−iβ`y y(x , x) +α`y(x , x)− iδ`(x , x)
�

+ ux(x , t)
�

iβ`y(x , x)−α`(x , x)
�

− iβ`(x , x)ux x(x , t).

(C.1)

Next we differentiate (1.19) up to the order three and multiply the results by iδ, α and iβ , respectively
to obtain

iδwx(x , t) = iδux(x , t)−
∫ L

x

iδ`x(x , y)u(y, t)d y + iδ`(x , x)u(x , t), (C.2)

αwx x(x , t) =αux x(x , t)−
∫ L

x

α`x x(x , y)u(y, t)d y

+αu(x , t)
�

`x(x , x) +
d

d x
`(x , x)

�

+αux(x , t)`(x , x),

(C.3)
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and

iβwx x x(x , t) =iβux x x(x , t)−
∫ L

x

iβ`x x x(x , y)u(y, t)d y

+ iβu(x , t)

�

`x x(x , x) +
d

d x
`x(x , x) +

d2

d x2
`(x , x)

�

+ iβux(x , t)
�

`x(x , x) + 2
d

d x
`(x , x)

�

+ iβux x(x , t)`(x , x).

(C.4)

Adding (C.1), (C.2), (C.3) and (C.4) side by side together with

irw(x , t) = iru(x , t)− ir

∫ L

x

`(x , y)u(y, t)d y

we obtain
iwt + iβwx x x +αwx x + iδwx + irw

=iut + iβux x x +αux x + iδux

+

∫ L

x

u(y, t)
�

−iβ
�

`x x x + `y y y

�

−α
�

`x x − `y y

�

− iδ
�

`x + `y

�

− ir`
�

(x , y)d y

+ u(L, t)
�

iβ`y y(x , L)−α`y(x , L) + iδ`(x , L)
�

+ u(x , t)

�

iβ

�

`x x(x , x)− `y y(x , x) +
d

d x
`x(x , x) +

d2

d x2
`(x , x)

�

+α
�

`x(x , x) + `y(x , x) +
d

d x
`(x , x)

�

+ ir
�

+ ux(x , t)
�

iβ
�

`x(x , x) + `y(x , x) + 2
d

d x
`(x , x)

��

.

Using the relation d
d x `(x , y) = `x(x , x) + `y(x , x) we see that if

d
d x
`(x , x) = 0, (C.5)

then the term in front of ux(x , t) inside the square brackets is zero. From this assumption and d
d x `(x , y) =

`x(x , x) + `y(x , x), the term in front of u(x , t) inside the square brackets is equivalent to

3β
d

d x
`x(x , x) + r = 0. (C.6)

On the other hand, letting x = L on (C.2), we see that it is enough to assume that `(L, L) = 0 in order to
ensure ux(L, t) = wx(L, t) which, from (C.5), implies `(x , x) = 0. Again letting L = 0 in (C.4), we force
`x(L, L) = 0 in order to ensure ux x(L, t) = wx x(L, t), and from (C.6) this implies `x(x , x) = r(L−x)

3β .

APPENDIX D. DEDUCTION OF THE KERNEL PDE MODEL (5.10)

In this section, we present the details of the calculations for obtaining the kernel model given in
(5.10). Differentiating (5.10) in t, replacing w̃t(y, t) by −β w̃ y y y(y, t) + iαw̃ y y(y, t)−δw̃ y(y, t), inte-
grating by parts in y , we get

ũt(x , t) = w̃t(x , t)−
∫ L

x

p(x , y)w̃t(y, t)d y
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= w̃t(x , t) +

∫ L

x

p(x , y)
�

β w̃ y y y(y, t)− iαw̃ y y(y, t) +δw̃ y(y, t) + rw̃(y, t)
�

d y

= w̃t(x , t)

+ β

�

k(x , y)w̃x x(y, t)− py(x , y)w̃x(y, t) + py y(x , y)w̃(y, t)

�

�

�

�

L

x

−
∫ L

x

py y y(x , y)w̃(y, t)d y

�

− iα

�

p(x , y)w̃x(y, t)− py(x , y)w̃(y, t)

�

�

�

�

L

x

+

∫ L

x

py y(x , y)w̃(y, t)d y

�

+δ

�

p(x , y)w̃(y, t)

�

�

�

�

L

x

−
∫ L

x

py(x , y)w̃(y, t)d y

�

+ r

∫ L

x

p(x , y)w̃(y, t)d y.

Multiplying the last expression by i, using the boundary conditions w̃x(L, t) = w̃x x(L, t) = 0, and
rearranging the terms w̃(L, t), w̃(x , t) w̃x(x , t) and w̃x x(x , t), we obtain

iũt(x , t) =iw̃t(x , t)

+

∫ L

x

�

−iβpy y y(x , y) +αpy y(x , y)− iδpy(x , y) + irp(x , y)
�

w̃(y, t)d y

+ w̃(L, t)
�

iβpy y(x , L)−αpy(x , L) + iδp(x , L)
�

+ w̃(x , t)
�

−iβpy y(x , x) +αpy(x , x)− iδp(x , x)
�

+ w̃x(x , t)
�

iβpy(x , x)−αp(x , x)
�

− iβp(x , x)w̃x x(x , t)

(D.1)

Next we differentiate (5.10) up to order three and multiply the results by iδ, α and iβ , respectively, to
obtain

iδũx(x , t) = iδw̃x(x , t)−
∫ L

x

iδpx(x , y)w̃(y, t)d y + iδp(x , x)w̃(x , t), (D.2)

αũx x(x , t) = αw̃x x(x , t)−
∫ L

x

αpx x(x , y)w̃(y, t)d y

+αw̃(x , t)
�

px(x , x) +
d

d x
p(x , x)

�

+αw̃x(x , t)p(x , x), (D.3)
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and

iβ ũx x x(x , t) = iβ w̃x x x(x , t)− iβ
∂

∂ x

∫ L

x

px x(x , y)w̃(y, t)d y

+ iβ
∂

∂ x

�

w̃(x , t)
�

px(x , x) +
d

d x
p(x , x)

�

+ w̃x(x , t)p(x , x)
�

= iβ w̃x x x(x , t)−
∫ L

x

iβpx x x(x , y)w̃(y, t)d y

+ iβ w̃(x , t)

�

px x(x , x) +
d

d x
px(x , x) +

d2

d x2
p(x , x)

�

+ iβ w̃x(x , t)
�

px(x , x) + 2
d

d x
p(x , x)

�

+ iβ w̃x x(x , t)p(x , x).

(D.4)

Adding (D.1), (D.2), (D.3) and (D.4) together with ũ(L, t) = w̃(L, t) side by side we obtain

iũt + iβ ũx x x +αũx x + iδũx + p1(x)ũ(L, t)

=iw̃t + iβ w̃x x x +αw̃x x + iδw̃x + p1(x)w̃(L, t)

+

∫ L

x

w̃(y, t)
�

−iβ
�

px x x + py y y

�

−α
�

px x − py y

�

− iδ
�

px + py

�

+ irp
�

(x , y)d y

+ w̃(L, t)
�

iβpy y(x , L)−αpy(x , L) + iδp(x , L)
�

+ w̃(x , t)

�

iβ

�

px x(x , x)− py y(x , x) +
d

d x
px(x , x) +

d2

d x2
p(x , x)

�

+α
�

px(x , x) + py(x , x) +
d

d x
p(x , x)

��

+ w̃x(x , t)
�

iβ
�

px(x , x) + py(x , x) + 2
d

d x
(x , x)

��

.

which is, by (1.24) and (5.9), equivalent to

0=− irw̃(x , t)

+

∫ L

x

w̃(y, t)
�

−iβ
�

px x x + py y y

�

−α
�

px x − py y

�

− iδ
�

px + py

�

+ irp
�

(x , y)d y

+ w̃(L, t)
�

p1(x) + iβpy y(x , L)−αpy(x , L) + iδp(x , L)
�

+ w̃(x , t)

�

iβ

�

px x(x , x)− py y(x , x) +
d

d x
px(x , x) +

d2

d x2
p(x , x)

�

+α
�

px(x , x) + py(x , x) +
d

d x
p(x , x)

��

+ w̃x(x , t)
�

iβ
�

px(x , x) + py(x , x) + 2
d

d x
(x , x)

��

.

Using the relation d
d x p(x , y) = px(x , x) + py(x , x) we see that if

d
d x

p(x , x) = 0, (D.5)
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then the term in front of w̃x(x , t) inside the square brackets is zero. From this assumption and d
d x p(x , y) =

px(x , x) + py(x , x), the term in front of w̃(x , t) inside the square brackets together with −irw̃(x , t) is
equivalent to

3β
d

d x
px(x , x)− r = 0. (D.6)

On the other hand, letting x = L on (D.2), we see that we must have p(L, L) = 0 in order to ensure
ũx(L, t) = w̃x(L, t) which, from (D.5) implies p(x , x) = 0. Again letting L = 0 in (D.3), we force
px(L, L) = 0 in order to ensure ũx x(L, t) = w̃x x(L, t) and from (D.6) this implies px(x , x) = − r(L−x)

3β .
Also, letting x = 0 in the backstepping transformation (1.16), we obtain p(0, y) = 0 in order to ensure
ũ(0, t) = w̃(0, t). Finally, assuming

p1(x) = −iβpy y(x , L) +αpy(x , L)− iδp(x , L) (D.7)

we obtain the pde model (5.10).
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