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A B S T R A C T   

Aerogels are unique porous solids having exceptional low relative density together with high specific surface 
area, making them very attractive materials for scientific research and industrial applications. Polymer derived 
ceramic aerogels are a new class of materials obtained through the pyrolysis of sol-gel/preceramic polymers. 
Herein this review, some of the representative formation methods and applications of polymer derived ceramic 
aerogels are highlighted with a specific focus on the thermal, electrical, and adsorbent related properties.   

1. Introduction & brief definitions 

Aerogels are highly porous and thus extremely light components 
consisting of mostly air in their 3D solid networks; an ultra-low density, 
0.00016 g/cm3, carbon aerogel example standing on Setaria viridis is 
shown in Fig. 1(a). Since their introduction to the scientific community 
in the 1930s [1], a considerable research effort has been devoted to 
explore novel compositions because of their unique properties, espe
cially very low density (<0.5 g/cm3), high porosity (usually > 90%), 
high surface area (usually ~100–1000 m2/g) and low thermal conduc
tivity (<0.05 W m− 1 K− 1 at room temperature (RT)), making them an 
excellent choice for energy storage [2], thermal insulation [3,4], sensor 
[5–8] and wastewater treatment [9,10] applications. 

1.1. Aerogel processing 

Virtually all aerogels are produced by sol-gel technique following 
four important stages: sol and gel preparation, aging, and drying. Gel 
formation starts, first, with the hydrolysis of the precursor and then its 
condensation leads to the formation of a sol, i.e., to the dispersion of 
colloidal particles in the solution. After that, condensation reactions 
proceed, and a network of colloidal particles becomes a gel. After that, in 
the aging stage, the solid network is reinforced as the reaction progresses 
to completion. While the main aim of the drying process is to remove the 
solvent from the gel, depending on the selected drying path xerogels/ 
ambigels, cryogels and aerogels can be formed by ambient pressure, 
freeze, and supercritical drying. It is important to emphasize that the 

terminology describing what is an aerogel is not yet standardized and 
can be confusing. Starting from a gel that is not significantly affected by 
the drying process, one could obtain materials having basically the same 
microstructures by following different drying processes. Therefore, here 
in this review, aerogels are defined in a broad perspective as highly 
porous solids dried from gels without a collapse or significant destruction of 
the pore structure. 

The simplest drying route is the solvent removal by evaporation 
under ambient conditions, resulting in the formation of xerogel. Under 
atmospheric pressure and at low temperatures (generally below 100 ◦C), 
the structure is exposed to unconstrained shrinkage because of the high 
surface tension of the solvent, i.e., capillary forces occurring during 
drying, and thus processing speed/conditions should be carefully 
controlled to minimize the flaws. It is important to note that aerogel-like 
materials (meaning that properties are more like aerogels than those of 
xerogels) are also produced by ambient pressure drying instead of su
percritical drying route [11–13]. For this purpose, to decrease the 
liquid/vapor interfacial energy, the liquid can be exchanged with a 
solvent having low surface tension. Besides, one can consider applying 
additional treatments (e.g., utilization of drying control chemical additives 
(DCCA) [14]), to reduce the stresses created by these drying conditions, 
and under such settings the formed material is called ambigel [15]. 

In freeze-drying, the solvent is first frozen and then it is removed by 
sublimation to obtain cryogel. Finally, in the most commonly applied 
supercritical drying, the solvent is removed under supercritical condi
tions, higher than the critical temperature and pressure of the used 
solvent, to produce aerogel without the collapse of the matrix. This stage 
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is based on minimizing the pore shrinkage caused by the capillary forces. 
Among the available solvents, carbon dioxide (CO2) is the most 

widely used for supercritical drying because it is not only cost-effective, 
non-toxic, and non-explosive but also the requirements to bring it to 
supercritical conditions are relatively simple [16]. Besides, at the tem
peratures of use, it is actually inert contrary to some others for which 
super-critical conditions may also impose reactions that can be advan
tageous or disadvantageous but certainly affect the final product. In the 
CO2 supercritical drying route, the gel is placed in a pressure vessel, 
filled with liquid CO2, and solvent in the gel is periodically replaced with 
the liquid CO2. Subsequently, the vessel is brought to a supercritical 
region with critical temperature (31 ◦C) and pressure (7.37 MPa) of CO2. 
Then applied pressure and temperature are decreased to remove the 
available CO2, see the liquid-gas transition path shown in Fig. 1(b). In 
the supercritical region, there is no discrimination in liquid/vapor phase 
since the surface tension becomes negligible, i.e., the pore network is not 
exposed to shrinkage and a probable collapse. 

There are also other drying techniques such as subcritical drying at 
which the liquid surface tension is low or drying by microwave heating 
in which the inward travelling energy interacts with molecules and 
vaporizes the confined liquid before leaving. The latter system results in 
faster drying than that of the classical drying via evaporation in which 
initially the surface solvent layer is removed and the remaining liquid 
diffuses to the surface (generally long drying time for completion) 
[17,18]. Further details on the formation of the broadly called aerogel 
systems can be followed from recent books [19,20] and comprehensive 
reviews [21–26]. 

1.2. Common aerogel types 

Silica and carbon are by far the most investigated aerogel types, but 
there are many others including polymeric ones such as polyvinyl
chloride [29], polyimide [30–32], polyvinylidene-fluoride [33]. Com
posites, for example, polyvinylidene-fluoride/silica [34], polymethyl- 
methacrylate/silica [35], and ceramics like Si3N4 [36,37], SiC [38], 
YSZ [39], etc. However, due to inherent difficulty to process ceramics as 
aerogels by conventional ceramic formation techniques (limited cross- 
linking between ceramic building blocks), only a limited number of 
chemical compounds were able to be produced at present [40]. 

2. Precursor derived ceramic aerogels 

It is possible to produce a variety of aerogels, belonging to the gen
eral Si-O-C-N-B system following the well-established precursor or 
polymer derived ceramic (PDC) route. PDC aerogels are a new class of 
materials obtained through preceramic polymer pyrolysis. This pro
cessing approach has distinct advantages, the most important of which is 
the low processing temperatures, i.e., they can be formed very easily by 
cost effective techniques (compression/injection molding, spinning, 
extrusion, etc.). Besides, they do not need sintering additives, and the 

obtained materials show enhanced creep resistance and thermal stability 
up to at least 1200 ◦C when compared with that of the similar compo
sitions formed by following conventional methods [41–43]. In the PDC 
aerogel production process, some differences may exist, such details can 
be followed from a comprehensive chapter which was specifically 
focused on the synthesis [44], here in addition to the properties 
collected from the published works, only brief information for the syn
thesis of few compositions will be indicated. 

One of the first publications in this regard was done by Aravind and 
Soraru [45] about sol-gel derived and ambient pressure dried aerogel- 
like structures (ambigels) which were pyrolyzed to form highly porous 
SiOC parts in 2010. A wide variety of decade-long works demonstrated 
the fruitfulness of the route and the formation of several other ceramic 
aerogel types in the PDC family (SiOC, SiC, SiC/C, SiCN, etc.), as 
detailed in Tables 1–3. It is presumed that PDC aerogel formation is akin 
to the precipitation polymerization of polymeric monodisperse particles 
[46], nevertheless, there is no conclusive research on the exact forma
tion mechanism. Accordingly, the papers in which the authors claimed 
to form aerogels by using preformed 1D nanostructure (e.g., SiC nano
fibers) as building blocks instead of dispersed particles or gels, are 
separately placed at the bottom of the tabulated data. This is because, in 
these works, components analogous to aerogels and having attractive 
properties, for instance, very low bulk density ~0.04 g/cm3 and a 
distinctive recoverable strain reaching ~40% [47] were demonstrated. 

2.1. Sol-gel and polymer processing of aerogels 

To the best of our knowledge, all PDC aerogels were produced either 
by (i) sol-gel chemistry or (ii) preceramic polymer processing. Sol-gel 
route involves the primary synthesis step for the required preceramic 
polymer by using hybrid silicon alkoxides including tetraethylorthosi
licate [48–50], methyldimethoxysilane [49], methyl-, ethyl-, propyl- 
and phenyl-trimethoxysilane [48,49,51]. These alkoxides are typically 
dissolved in ethanol and hydrolyzed with water to promote hydrolysis/ 
condensation reactions. One of the main advantages of this route is the 
possibility to blend different alkoxides to fine tune the composition of 
the resulting preceramic network in terms of Si/C/O atomic ratio. 
Controlling the composition of the precursor allows achieving, after 
pyrolysis, silicon oxycarbide ceramics with defined amounts of Si-C, Si- 
O bonds, and free carbon [52–54]. Moreover, further elements (B, Ti, Al, 
Zr, etc.) can be homogeneously introduced in the siloxane network in 
the sol-gel process using the corresponding alkoxides to obtain multi
component silicon oxycarbide glasses; Si-Metal-O-C [55,56]. Instead, 
when commercial preceramic polymers were used, aerogel processing is 
simpler since there is no need to synthesize the starting precursor. There 
are readily available, commercial preceramic polymers, and among 
them, polysiloxanes, polysilazanes, and polycarbosilanes are the most 
employed ones. 

Apart from the differences in the initial synthesis procedure, the rest 
of the processing follows the common steps. The crosslinking of the 

Fig. 1. (a) Ultra-low density (0.00016 g/cm3) carbon aerogel on Setaria viridis plant (Reproduced from [27] with permission John Wiley and Sons, Copyright 2013), 
and (b) CO2 unary phase diagram (Reproduced from [28] with permission American Chemical Society, Copyright 2002). 
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Table 1 
Precursor type (sol-gel and commercial preceramic polymer), processing parameters, and observed properties of SiOC-based aerogels. Apart from porosity related 
properties such as pore volume and diameter, surface area, additional features are collectively given under other properties column (valid for other tables as well).  

PDC 
aerogel 

Processing parameters Pore properties Other properties Possible applications Ref. 

Solvent Drying method Pyrolysis 

Commercial preceramic polymer 
SiOC ACE Supercritical drying 

[CO2] 
1000 ◦C 
1 h 
Ar 

Ø = 24 nm 
SSA = 180 m2/g 
Vpore = 1.09 cm3/g 

Qinsertion = 1280 mAhg− 1 

Qextraction = 600 mAhg− 1 

Qirreversible = 680 mAhg− 1  

(@C(360mAg− 1) 
η = 47–99% 

Anode for Li-ion batteries [72] 

SiOC ACE Supercritical drying 
[CO2] 
(8 days/  

41 ◦C/ 
95 bar) 

1200–1300 ◦C 
5 h 
Ar 

Ø < 10 nm & 
10–50 nm 
SSA = 33–530 m2/ 
g 
Vpore = 0.14–0.65 
cm3/g 

N.A. N.A. [63] 

SiOC ACE & 
Cy 

Supercritical drying 
[CO2] 
(4 days/  

45 ◦C) 

900 ◦C 
1–7 h 
Ar & H2/Ar 

Ø < 10 nm & 
20–30 nm 
SSA = 87–215 m2/ 
g 
Vpore = 0.15–0.87 
cm3/g 
ρb ~ 0.65–0.98 g/ 
cm3 

Qreversible ~ 900 mAhg− 1 (@C 
(360mAg− 1)) 
η = 35–52% 

Anode for Li-ion batteries [60] 

SiOC ACE Supercritical drying 
(N.A.) 

800 -  

1600 ◦C 
2 h 
N2 

SSA = 48–227 m2/ 
g 
Vpore = 0.18–0.29 
cm3/g 
ρb ~ 0.51–1.14 g/ 
cm3 

N.A. N.A. [73] 

SiOC 
& 
SiC 

ACE 
& 
Cy 

Supercritical drying 
[CO2] 

900 ◦C 
1 h 
Ar 

ϕT = 72–86% 
Ø = 10–90 nm 
SSA = 102–163 
m2/g 
Vpore = 0.39–0.72 
cm3/g 

Rads = 100% @Co = 1 mg/L 
(SiOC & SiC) 
qm = 44.2 mg/g 
(SiOC) 

Water purification [74] 

SiOC 
& 
SiCN 

ACE 
& 
Cy 

Supercritical drying 
[CO2] 
(5 days/  

45 ◦C/ 
100 bar) 
& 
Ambient pressure 
(3 days) 

900–1300 ◦C 
N2 

CO2 

NH3 

Ø = 5–200 nm 
SSA = 30–388 m2/ 
g 
Vpore = 0.21–0.84 
cm3/g 
ρb ~ 0.45–0.70 g/ 
cm3 

qm ~ 10 mg/g (Cr(III)) 
qm ~ 20–30 mg/g (Cr(VI)) 

Water purification [64] 

Sol-gel synthesized materials 
SiOC IPA Ambient pressure 

(21 days/  

50 ◦C) 

1000 ◦C 
3 h 
Ar 

Ø ~ 3–24 nm 
SSA = 132–452 
m2/g 
Vpore = 0.33–0.89 
cm3/g 

N.A. N.A. [45] 

SiOC IPA Ambient pressure 
(21 days/  

50 ◦C) 

1400 ◦C 
3 h 
Ar 

Ø = 2–20 nm 
SSA = 150 m2/g 
Vpore = 0.19 cm3/g 

τresp = 4 min (@5ppm NO2) 
5 min. (@5000 ppm H2) 
τrec = 2 min. (@5ppm NO2) 
1 min. (@5000 ppm H2) 

Gas sensor 
(for NO2, H2, detection) 

[67] 

SiOC IPA Ambient pressure 
(21 days/  

50 ◦C) 

800 -  

1100 ◦C 
1 h 
H2 

Ø ~ 2–6 nm 
SSA = 171–615 
m2/g 
Vpore = 0.18–0.58 
cm3/g 
ρb ~ 0.90–1.30 g/ 
cm3 

R = 55–78% (@ > 600 nm) 
R = 20–67% (@ 400 nm) 

Optical sensor [68] 

SiOC IPA Ambient pressure 
(2 days/ 
60 ◦C) 

1000 ◦C 
1 h 
Ar 

Ø = 2 nm & 
95–350 nm 
SSA = 354–488 
m2/g 
ρb = 0.27–0.34 g/ 
cm3 

σc = 1.45–3.17 MPa N.A. [69] 

SiOC EtOH Supercritical drying 
[CO2] 
(4 h/  

35 ◦C/ 
80 bar) 

1000 - 
1600 ◦C 
1 h 
Ar 

Ø = 10–1000 nm 
SSA = 10–247 m2/ 
g 

N.A. N.A. [75] 

SiOC N.A. [76] 

(continued on next page) 
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precursors forming a gel is done in an autoclave or a closed system to 
prevent the evaporation of the solvent (as known the used solvents have 
low boiling points). In the next stage, the obtained wet gel is periodically 
washed to remove the residuals (precursor, catalyst, etc.), followed by 
pivotal drying step including supercritical, freeze, and ambient pressure 
drying. Unconventional drying methods such as microwave or subcrit
ical drying have not been applied via the PDC route yet. Finally, the 
obtained dry polymeric aerogel is pyrolyzed yielding a PDC aerogel. 

It was shown that the microstructure of the PDC aerogels can be 
altered by controlling the dilution level and the type of solvent. Briefly, 
increasing the dilution causes an increase both in pore and particle size. 
The reason behind such an issue might be a decrease in the polymeri
zation rate, i.e., the nucleation rate of the particles [44]. Accordingly, 
enhanced total porosity and pore size of SiOCN aerogel was obtained 
when the higher volume of cyclohexane solvent was used [57]. 
Increasing the solvent solubility causes a larger pore size as well [44], 
although the exact reason for this measure is still unclear. In this regard, 
the effect of different solvents on the microstructural evolution of poly 
(methylhydrosiloxane)/divinylbenzene (PMHS/DVB) aerogels was 
studied. It was postulated that both swelling and solubility of the 
crosslinked preceramic polymer in various solvents were important to 
govern the final porosity characteristics. The reported SSA and average 
pore size of the aerogels obtained by using acetone were 392 m2/g and 
18.8 nm, respectively, which was higher than that of cyclohexane used 
ones (120 m2/g and 14.7 nm) [58]. Furthermore, the effect of super
critical drying temperature (40–50 ◦C for CO2) was also examined but 
the results did not give a clear trend [59]. 

While dilution level and the solvent type are important, unless it is a 
reactive atmosphere (such as H2, NH3, or CO2) [60,61], there was no 
clear effect on the microstructural evolution when the “inert” pyrolysis 
atmosphere was altered. It should be noted here that due to the high 
permeability and high specific surface area of the polymeric aerogels, 
the preceramic network is highly prone to react with the O2/H2O during 
pyrolysis. Accordingly, initially long inert gas purging time should be 
employed to remove moisture/oxygen in the tube, and a special specific 
care should be given throughout the manufacturing when oxygen is 
considered as an impurity [44]. 

The plot given in Fig. 2 (right) displays the drying time/pore size 

data extracted from published studies (see Tables 1–3 as well). While 
freeze drying is the fastest drying method, it may take as long as 21 days 
via ambient pressure. Besides, generally speaking for the PDC route, 
aerogels with average pore sizes below 200 nm have been produced. It is 
worth to underline that most of the presented data was collected only by 
using N2 sorption analysis, and the accurately measurable pore size limit 
of the technique is already around the given upper boundary [62]. 

2.2. SiOC-based aerogels 

Among all, Silicon Oxycarbide (SiOC) is the most widely studied 
polymer derived ceramic composition because its precursors are the 
most economical ones, they are readily available, and can be handled 
and processed in an ambient atmosphere. As can be seen from Table 1, 
for SiOC aerogels, pore sizes in the range from 2 to few hundred nano
meters, specific surface area (SSA) reaching around 600 m2/g, and total 
porosity up to 96 vol% have been documented. Apparently, sol-gel 
chemistry is the most applied technique to synthesize SiOC aerogels. 

In a particularly intriguing study demonstrated the formation of 
transparent and colorless SiOC aerogels. The authors used bis(triethox
ysilyl)methane (BTEM) and bis(triethoxysilyl)ethane (BTEE) as pre
cursors for acid/base sol-gel formation, followed by the pyrolysis at 
800 ◦C under pure hydrogen (H2) atmosphere. Fig. 3(a)–(f) show the 
photographical images of the samples obtained in the study under 
different pyrolysis temperatures [68]. It was shown that H2 reacts with 
the organic side groups of polymers reducing in this way the amount of 
carbon in the formed PDC component [45,71]. Considering the observed 
variety of properties in Table 1, it is possible to state that SiOC aerogels 
can be considered for several applications, including as anodes for 
lithium-ion batteries, gas and optical sensors, and adsorbents for water 
purification. 

2.3. SiCN-based aerogels 

Although the final material yield was probably very low, an 
appealing N-doped carbide derived carbon (N-doped CDC) aerogel was 
obtained by using polysilazane derived SiCN aerogel as a substrate to be 
etched by halogen gas (chlorine). The produced aerogel with a high 

Table 1 (continued ) 

PDC 
aerogel 

Processing parameters Pore properties Other properties Possible applications Ref. 

Solvent Drying method Pyrolysis 

EtOH 
& 
HCl acid 

Supercritical drying 
[CO2] 

1000 ◦C 
2 h 
Ar 

Ø ~ 9 nm 
SSA = 531 m2/g 
Vpore = 0.97 cm3/g 
ρb = 0.4 g/cm3 

E = 1.42 GPa 
G = 0.54 GPa 

SiOC IPA Supercritical drying 
[EtOH] 

1200 ◦C 
1 h 
Ar 

Ø = 56 nm 
SSA = 198 m2/g 
Vpore = 0.65 cm3/g 
ρb = 0.3 g/cm3 

λ = 0.027 W m− 1 K− 1 @RT Thermal insulation [77] 

SiOC/BN NHEX Ambient pressure 
(3 days/ 
60 ◦C) 

900–1300 ◦C 
2 h 
N2 

Ø = 10–20 nm & 
< 69 nm 
SSA = 27–566 m2/ 
g 
Vpore = 0.26–1.12 
cm3/g 
ρb = 0.36–0.89 g/ 
cm3 

λ ~ 0.040–0.200 W m− 1 K− 1 

@RT 
λ ~ 0.150–0.750 W m− 1 K− 1 

@1300 ◦C 
σc = 2.2–20.3 MPa 

Thermal insulation [70] 

SiBOC EtOH Supercritical drying 
(N.A.) 

1200 ◦C Ø = 10–150 nm 
SSA = 293 m2/g 

λ = 0.138 W m− 1 K− 1 

(in vacuum @1500 ◦C) 
σc ~ 1.849 MPa, ε ~ 20% 

Thermal insulation [78] 

SiOCN EtOH Freeze drying & 
Vacuum drying 
(80 ◦C) 

450 - 
900 ◦C 
2 h 
N2 

Ø ~ 3–12 nm 
SSA ~ 25–827 m2/ 
g 

η = -8–75.9% Volatile carbonyl compound adsorbent & 
cigarette smoke filter 

[79] 

N.A. = Not available, Ø = pore diameter, ϕT = total porosity, SSA = specific surface area, Vpore = Pore volume, ρb = bulk/apparent density, σc = compressive strength, 
ε = strain, λ = thermal conductivity, E = Young’s modulus, G = shear modulus, Q = specific capacity, η = efficiency, τresp = response time, τrec = recovery time, R =
reflectance, Rads = % adsorbent, Co = initial concentration, qm = max. adsorption capacity, ACE = acetone, Cy = cyclohexane, EtOH = ethanol, HCl acid = hydro
chloric acid, IPA = isopropanol, NHEX = n-hexane. 
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surface area reaching around 1890 m2/g, was tested both for CO2 
adsorption (3.96–4.67 mmol.g− 1 at 1 bar, 0 ◦C), and electric double- 
layer capacitor electrode (EDLC, specific capacity of 140 F g− 1, at 10 
A g− 1 for 5000 cycles) [80], see Table 2. In another study, SiCN aerogel 
was obtained with cobalt nanoparticles formed via reverse micro- 
emulsion. It was shown that the microwave absorption (MA) perfor
mance of SiCN aerogel was enhanced by the formation of cobalt in the 
matrix. Carbon dangling bonds and porous structure also contributed to 
the MA properties [81]. A peculiar study demonstrated that SiCN aer
ogels had unexpected out-of-furnace oxidation (due probably to the 
reactive silicon radicals formed at the intermediate pyrolysis tempera
tures) leading to an uncontrolled increase of the oxygen content of the 
pyrolyzed ceramics, reducing microporosity, and overall stability of the 
formed aerogels [65]. 

2.4. SiC-based aerogels 

In the pioneering work, SiC/C aerogels were obtained by the pyrol
ysis of carbon-enriched (via divinylbenzene addition) polycarbosilane 
aerogel, see Table 3. The resultant material, suitable for surface func
tionalization, was anticipated to perform better for high temperature 
sorption and catalysis than that of the carbon aerogels in harsh envi
ronments [86]. In a recent study, a composite aerogel was produced 
from biphenylene-bridged polysilsesquioxane with organic intercalated 
(cloisite 30B) nanoclay mineral, followed by high temperature pyrolysis 
(1500 ◦C) inducing carbothermal reduction and forming SiC/C aerogels 
[87]. While the authors claimed after such a cumbersome process to 
form SiC nanowire aerogels, there was not a gel formation and therefore 
the formed material was a highly porous SiC monolith with 3D network 
of nanowires instead of an aerogel [88]. 

Table 2 
Processing parameters and observed characteristics for preceramic polymer derived SiCN-based aerogels.  

PDC aerogel Processing parameters Pore properties Other properties Possible applications Ref. 

Solvent Drying method Pyrolysis 

Commercial preceramic polymer 
SiCN Cy Supercritical drying 

[CO2] 
(4 days/  

50 ◦C/ 
100 bar) 

1000–1500 ◦C 
1 h 
N2 

ϕT = 95–96%  

Ø ~ 30–40 nm 
SSA ~ 153–165 m2/ 
g 
Vpore = 0.56–0.58 
cm3/g 

N.A. N.A. [82] 

SiCN Cy Supercritical drying 
[CO2] 
(5 days/ 45 ◦C/  

100 bar) 

450 -  

1000 ◦C 
1 h 
Ar 

Ø = 3–100 nm 
SSA = 75–725 m2/g 
Vpore = 0.24–0.83 
cm3/g 

N.A. N.A. [65] 

SiCN Cy Freeze drying 
(-78 ◦C/24 h) 

1000–1400 ◦C 
2 h 
N2 

Ø ~ 18–22 nm 
SSA ~ 106–235 m2/ 
g 
Vpore = 0.49–0.56 
cm3/g 
ρb ~ 0.19 g/cm3 

RL = -43.37 / − 31. 69 dB  

d = 2–4.5 mm 
Effective bandwidth = 3.8–6.6 GHz 

Electromagnetic wave 
absorbent 

[66] 

SiCN  

/ 
N-doped CDC 
aerogel 

Cy Supercritical drying 
[CO2] 
(5 days/  

45 ◦C/ 
100 bar) 

450 -  

1200 ◦C 
1 h 
Ar 

SSA = 706–1887 
m2/g 
Vpore = 0.21–0.97 
cm3/g 

CO2 adsorption 3.96–4.67 mmol g− 1 

@1bar, 0 ◦C 
Specific capacity ~ 140F g− 1 

@10 A g− 1 for 5000 cycles 

Adsorbent for CO2 and EDLC [80] 

SiCN/Co Cy Freeze drying 
(N.A.) 

800 ◦C 
2 h 
N2 

Ø = 21–31 nm 
SSA = 54–109 m2/g 
Vpore = 0.28–0.42 
cm3/g 

RL = -38.29/-24.31 dB 
d = 0.9–1.6 mm 
Effective bandwidth = 5.5–10.9 GHz 

Microwave absorbent [81] 

SiCN(O) Cy 
& 
DBE 

Supercritical drying 
[CO2] 
(43 ◦C/  

100 bar) 

1000 -  

1600 ◦C 
1 h 
N2  

Ø = 1–48 nm 
SSA ~ 9–129 m2/g 
Vpore = 0.04–1.05 
cm3/g 

N.A. N.A. [83] 

SiOCN Cy Freeze drying 
(-75 ◦C/16 h) 

1000 ◦C 
2 h 
N2 

Ø = 2–100 nm 
SSA = 114–134 m2/ 
g 
Vpore = 0.43–0.49 
cm3/g 
ρb ~ 0.11–0.25 g/ 
cm3 

N.A. Catalysis, separation, and 
sorption 

[57] 

SiBCN/ 
graphene 

THF Supercritical drying 
[CO2] 

800 -  

1200 ◦C 
1 h 
N2 

Ø ~ 5 nm 
SSA ~ 102 m2/g 
Vpore = 1.43 cm3/g 

σc ~ 0.2 MPa N.A. [84] 

SiBCN/ 
ZrO2 

THF Supercritical drying 
[CO2] 

750 -  

1550 ◦C 
1 h 
N2 

Ø = 10–70 nm 
SSA ~ 108–211 m2/ 
g 
Vpore = 0.49–1.57 
cm3/g 

N.A. N.A. [85] 

N.A. = Not available, Ø = pore diameter, ϕT = total porosity, SSA = specific surface area, Vpore = Pore volume, ρb = bulk/apparent density, RL = reflection loss, d =
absorbent thickness, σc = compressive strength, Cy = cyclohexane, DBE = Dibutyl ether, THF = tetrahydrofuran. 
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Table 3 
Precursor type (sol-gel and commercial preceramic polymer), processing parameters, and observed properties of SiC-based aerogels.  

PDC aerogel Processing parameters Pore properties Other properties Possible applications Ref. 

Solvent Drying method Pyrolysis 

Commercial preceramic polymer 
SiC & BN N.A. Freeze drying 

(N.A.) 
1400–1500 ◦C 
1–3 h 
Ar 

ρb ~ 0.0001 g/cm3 λ ~ 0.002 W m− 1 K− 1 

(in vacuum @RT) 
λ ~ 0.020 W m− 1 K− 1 

(in air @RT) 
αl = -1.8 × 10-6 per oC 
ν = -0.25 
E = 25 kPa 

Thermal insulation [40] 

SiC/C Cy Supercritical 
drying [CO2] 
(4 days/  

50 ◦C/ 
100 bar) 

1000–1500 ◦C 
1 h 
Ar 

Ø ~ 7–500 nm 
ϕT = 90–93% 
SSA = 96–444 m2/g 
Vpore = 0.31–0.79 cm3/ 
g 

σc ~ 1.6 MPa High temperature sorption and 
catalysis 

[86] 

SiC/TiO2 THF  
Supercritical 
drying [CO2] 
(8 h/ 
45 ◦C/ 
80 bar) 

600 -  

1200 ◦C 
1 h 
N2 

Ø ~ 23 nm 
SSA = 58 m2/g 
Vpore = 0.22 cm3/g 

N.A. Catalysis, separation, and 
sorption 

[59] 

Sol-gel synthesized materials 
SiC ACE Supercritical 

drying 
[CO2] 

700 ◦C 
12 h 
Ar 

Ø ~ 9 nm 
SSA = 232 m2/g 
ρb ~ 0.157 g/cm3 

Eg = 3.2 eV Catalytic, electronic, 
photonic, and 
thermal 
applications 

[89] 

SiC 
& 
SiC/C 

EtOH Supercritical 
drying 
[CO2] 

1500 ◦C 
5 h 
Ar 

ϕT ~ 91–95% 
Ø = 1–27 nm 
SSA = 251–892 m2/g 
Vpore = 0.97–2.6 cm3/g 

N.A. Various [90,91] 

SiC 
& 
SiC/C 

DMF 
& 
DMA 

Ambient pressure 
(1 day/60 ◦C) 

1200 - 
1500 ◦C 
4 h 
Ar 

ϕT = 91% 
SSA = 796–1050 m2/g 
Vpore = 0.64–0.80 cm3/ 
g 

N.A. Various [92,93] 

SiC/C IPA Supercritical 
drying 
[CO2] 

1500 ◦C 
4 h 
Ar 

ϕT ~ 95–97% 
SSA ~ 1155–2258 m2/ 
g 
Vpore = 3.57–6.14 cm3/ 
g 

N.A. Helium storage and catalysis [87] 

SiC/mullite EtOH Supercritical 
drying 
[CO2] 

1250–1450 ◦C 
5 h 
Ar 

Ø ~ 6–11 nm 
SSA = 67–301 m2/g 
Vpore = 0.17–0.90 cm3/ 
g 

N.A. N.A. [94] 

SiC/C/SiO2 EtOH Supercritical 
drying 
[CO2] 

1300–1500 ◦C 
5 h 
Ar 

ϕT ~ 83–89% 
Ø ~ 5–9 nm 
SSA = 144–746 m2/g 
Vpore = 0.34–1.02 cm3/ 
g 

λ = 0.035–0.053 W m− 1 

K− 1 @RT 
σc ~ 0.52–1.86 MPa 

Thermal insulation [95] 

SiC/C/SiO2 IPA Ambient pressure 
(~3–4 days/ 
RT-140 ◦C) 

1500 ◦C 
5 h 
Ar&N2 

ϕT ~ 86% 
SSA = 366–490 m2/g 

λ ~ 0.121 W m− 1 K− 1 @RT 
σc ~ 1.5 MPa 
E = 76 MPa 

N.A. [96,97] 

Si3N4 EtOH Supercritical 
drying [CO2] 
(4 h/  

50 ◦C/ 
100 bar) 

1400–1550 ◦C 
5 h 
N2 

Ø < 5 nm & >200 nm 
SSA = 189–638 m2/g 
Vpore = 0.84–1.74 cm3/ 
g 
ρb = 0.121–0.312 g/ 
cm3 

λ = 0.045–0.061 W m− 1 

K− 1 @RT 
Thermal insulation [37] 

Others 
SiC nanowires 

(Polymer derived 
aerogel) 

N.A. N.A 1300 ◦C 
6 h 
Ar 

ρb ~ 0.03 g/cm3 

Nanowire diameter 
(D) = 80–100 nm 

λ = 0.030 W m− 1 K− 1 

(in He @RT) 
λ = 0.230 W m− 1 K− 1 

(in He @900 ◦C)  

σc = 0.11 MPa 

Thermal insulation [88] 

SiC nanofiber (Polymer 
derived aerogel) 

TBA Freeze drying 
(-60 ◦C/48 h) 

1200–1450 ◦C 
2 h 
Ar 

ϕT ~ 99% 
Nanofiber diameter 
(D) ~ 600 nm 

λ = 0.025–0.031 W m− 1 

K− 1 @RT  

RL = -21.41 dB @10.5 
GHz 
Effective bandwidth =
9–11.5 GHz, d = 3 mm  

σc ~ 0.01–0.03 MPa 
ε ~ 40% (@35 kPa) 

Thermal insulation, 
Electromagnetic wave 
absorbent 

[47] 

(continued on next page) 
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In a different recent study, both SiC and BN aerogels with hyperbolic 
architectures were formed. These structures including nano-layered 
double-pane walls demonstrated to have both negative linear thermal 
expansion coefficient and Poisson’s ratio [40]. This study, in fact, 
illustrated one more time how fruitful can be the PDC route to manu
facture deliberately designed intricate components. 

3. Applications of PDC aerogels 

Aerogels have recently drawn considerable attention in energy 
storage applications, for example, carbon-based aerogels are used both 
as anodes and cathodes for lithium-ion [99–101], lithium-sulfur 

[102–104], and sodium-ion [105,106] batteries. Alternatively, they 
also find use in supercapacitors [107–111], an example for Mxene-rGO 
(Ti3Cr2Tx-reduced graphene oxide) aerogel is given in Fig. 4(a) [108]. In 
the same direction, sol-gel derived SiOC aerogel was tested as an anode 
for Li-ion batteries. The aerogel obtained by pyrolysis at 1000 ◦C/Ar 
demonstrated a reversible capacity as high as 650 mAh/g along with 
good cycling stability [72]. Shao et al. [112] designed a composite N- 
doped graphene aerogel-supported SiOC which was tested as anode for 
Li-ion batteries. At low charge rates, a stable reversible charge capacity 
of 751 mAh/g was observed, at high charge rates of 1480 mA/g, ~95% 
(352 mAh/g) capacity retention was achieved even after 1000 consec
utive cycles. In another study [60], electrochemical properties of SiOC 

Table 3 (continued ) 

PDC aerogel Processing parameters Pore properties Other properties Possible applications Ref. 

Solvent Drying method Pyrolysis 

SiC nanowires 
(Sol-gel derived 
aerogel) 

EtOH Ambient pressure 
(5 h/100 ◦C) 

1550 ◦C 
2 h 
Ar 

ρb = 3–35 mg/cm3 

Nanowire diameter 
(D) ~ 30–280 nm 

λ ~ 0.025–0.034 W m− 1 

K− 1 

@RT  

E/Es = 10-8-10-7 

Cyclic fatigue test: 
<20% @100 cycle 

Thermal insulation  [98] 

N.A. = Not available, Ø = pore diameter, ϕT = total porosity, SSA = specific surface area, Vpore = Pore volume, ρb = bulk/apparent density, σc = compressive strength, 
ε = strain, λ = thermal conductivity, αl = linear thermal expansion coefficient, ν = Poisson’s ratio, E = Young’s modulus, E/Es = relative Young’s modulus, Eg = direct 
band gap, RL = reflection loss, d = absorbent thickness, ACE = acetone, Cy = cyclohexane, EtOH = ethanol, IPA = isopropanol, THF = tetrahydrofuran, TBA = tert- 
butanol, DMF = N,N-dimethylformamide, DMA = N,N-dimethylacetamide. 

Fig. 2. Classification of drying methods, and the plot for drying time vs. pore size extracted from the currently available published works (note that here only the 
works, giving the data for both drying time and pore size which is mostly obtained from N2 sorption as a distribution represented with dashed lines, are given) 
[37,45,57,60,63–70]. It should also be underlined that drying time is extracted as given in the works without normalization with sample dimensions. 

Fig. 3. Photographical images of the gels and aerogels pyrolyzed in hydrogen at 800–1100 ◦C obtained from (a–c) BTEM, and (d–f) BTEE as precursors, respectively 
(Reproduced from [68] with permission Royal Society of Chemistry, Copyright 2015). 
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aerogels were examined for materials fabricated under different condi
tions such as solvent type (acetone or cyclohexane), pyrolysis atmo
sphere (Ar or Ar/H2), and it was shown that the sample pyrolyzed in Ar/ 
H2 provided a high reversible capacity of 200 mAh/g at high charging/ 
discharging rate of 20C (7200 mA/g). Zera et al. [80] produced N-doped 
carbide derived carbon aerogels (N-CDC) by pyrolysis of polysilazane 
precursor, followed by chlorine gas etching of as-formed SiCN aerogel. 
The N-CDC aerogel was tested as an electrode for EDLC and showed a 
specific capacity of 140 F g− 1, at 10 A g− 1 for 5000 cycles with no 
appreciable aging. 

Apart from energy storage applications, due to inherent high surface 
area, aerogels are widely claimed to be decent purification agents 
(mainly adsorbent) for metal ions, oil, and other organic compounds 
found in the contaminated water [9,111,113–115] as well as drug de
livery materials [116,117]. Bruzzoniti et al. [74] compared the 
adsorption behavior of PDC aerogels with foams, and demonstrated that 
aerogels provided higher adsorption capacity in relation to those of the 
foams due to higher SSA reaching 163 m2/g. In another work, the metal 
ion adsorption efficiency of SiOC and SiCN aerogels was compared [64]. 
While both types of aerogels provided high adsorption capacities as 30 
and 20 mg/g (after 1 h) for Cr(VI), they did not show decent sorption for 
Cr(III). In the same vein, the adsorption of harmful compounds in 
cigarette smoke was examined by using SiOCN aerogel, having a surface 
area of 827 m2/g. The highest removal efficiency was reported to be 
~76% for crotonaldehyde [79]. 

PDC aerogels have also been studied as biosensors [118,119], pres
sure [120] as well as gas (e.g. CO, H2, NO2, and CO2) [64,67,74,79,80] 
sensors. The SiOC aerogel had a good response to 5 ppm NO2 at 300 ◦C, 
which completely disappeared at 400 ◦C, and from this temperature it 
responded to H2 [67]. Fig. 4(b) illustrates the dynamic response of SiOC 
aerogel sensor to 5 ppm NO2 from RT to 250 ◦C. Dire et al. [68] sug
gested that transparent SiOC aerogels (SSA as 171–615 m2/g) pyrolyzed 
under H2 in between 800 and 1100 ◦C can be used as optical sensors for 
different gases. 

Electromagnetic wave absorption capacity of SiCN aerogels was first 
analyzed by Zhao et al. [66]. Insertion of cobalt particles, the presence of 
carbon dangling bonds and porous structure improved the microwave 
absorption of Co/SiCN aerogels produced by reverse emulsion [81]. PDC 
aerogel made by using electrospun SiC nanofibers provided the mini
mum reflection loss (RL) value of − 21.41 dB at 10.5 GHz [47]. 

Other important application fields for PDCs aerogels are inspired by 
the specific features of these materials which are, on one side the ultra- 
high temperature stability and on the other their multifunctionality. In 
particular, SiBCN PDCs have shown the highest thermal stability [122] 
as well as the highest glass transition temperature [123,124] for amor
phous materials. Accordingly, thermal insulation becomes one of the 
most popular application areas of PDC aerogels especially at low 

temperatures since they provide very low thermal conductivity due to 
high porosity. Some materials such as silica has very low (skeleton) 
thermal conductivity, thus the aerogel made of it provides much lower 
overall thermal conductivity [125]. Such feature makes these aerogels 
very attractive low temperature thermal insulators to be used in 
refrigerator systems [126], windows [127], clothes [128]. However, 
while SiO2 aerogels can only be used up to ca. 600 ◦C (above that 
temperature sintering causes pore collapse and densification), precursor 
derived SiC aerogels were shown to maintain their mesoporous structure 
up to 2000 ◦C [44]. 

Room temperature thermal conductivity as low as 0.027, 0.049, and 
0.040 W m− 1 K− 1 were reported for sol-gel synthesized SiOC aerogel 
having SSA of 198 m2/g [77], sol-gel derived and supercritical dried 
Si3N4 aerogel [37] and sol-gel derived boron nitride/silicon oxycarbide 
(BN/SiOC) aerogel [70], respectively. Remarkably, even at 1300 ◦C the 
latter material demonstrates the thermal conductivity (via laser flash) as 
low as 0.750 W m− 1 K− 1. Likewise, Li et al. [88] showed that the thermal 
conductivity (measured in He) of polymer derived SiC nanowire aero
gels increases from 0.030 to 0.230 W m− 1 K− 1 with increasing temper
ature from 25 ◦C to 900 ◦C. In another study [78], sol-gel synthesized 
SiBCO aerogel yielded 0.138 W m− 1 K− 1 thermal conductivity at 
1500 ◦C (tested under vacuum). The increase in the bulk density leads to 
higher thermal conductivity, as recently documented for SiC nanowire 
aerogels in which a bulk density increase from 3 to 35 mg/cm3 results in 
the thermal conductivity increase from 0.025 to 0.034 W m− 1 K− 1 [98]. 

Several potential applications of PDCs aerogels have yet not been 
explored. For example, PDCs possess numerous other functional prop
erties spanning from ultra-high chemical resistance in acid and/or basic 
environments [129–131], high temperature piezoresistivity [132], 
photoluminescence [133], filtration [134], to biomedical applications 
[135]. Although until now there have been no reports, high temperature 
stable carbide- and nitride-based PDC aerogels can be used not only in 
those but also in several other applications, for example, as catalyst 
support for a highly exothermic chemical reaction such as CO2 metha
nation, etc. [136]. While this list can be extended, we believe that the 
preceding examples are adequate to illustrate the wide application 
range. The interested reader is referred to the previous works to explore 
other types of aerogel utilization areas. [28,137–139]. 

4. Concluding remarks 

The current status of the polymer/precursor derived ceramic (PDC) 
aerogels is discussed in this topical review. At present, the production 
techniques are not yet able to provide monolithic aerogel samples with 
the reasonable cost in an industrially acceptable time frame (may take 
several weeks to manufacture). The obtained components showed a 
limited range of properties, e.g., pore sizes only below 200 nm, unless 

Fig. 4. (a) Schematic view of the energy storage system with Mxene-rGO aerogel (Reproduced from [108] with permission John Wiley and Sons, Copyright 2019), 
and (b) Dynamic response data of SiOC aerogel sensor to 5 ppm NO2 from RT to 250 ◦C (Reproduced from [121] with permission Elsevier, Copyright 2014). 
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additionally treated generally few hundred m2/g specific surface area 
range, and poor mechanical properties, restricting the widespread use. 
On the other hand, various properties related to PDC aerogels, for 
instance, the effect of pore size or composition on the compressive 
strength or creep, thermal shock resistance, has not been investigated in 
detail yet. Ceramers -incompletely pyrolyzed preceramic polymers that 
combine both ceramic and polymeric bonds- are particular types of PDC 
materials with transient micro-mesoporosity formed at 600–800 ◦C. 
While some works reported the formation of such aerogels, research 
specifically oriented to their applications e.g., indoor air and wastewater 
purification is still lacking. Accordingly, systematic studies to alter the 
processing conditions (such as drying and pyrolysis) may affect the 
microstructural evolution, and therefore, mechanical, structural, and 
thermal properties, are needed. Beyond that certainly, new PDC aerogel 
compositions and systems, including composite aerogels with 1D 
nanostructure additions to enhance the structural integrity, should be 
explored. Although no study to date has specifically examined the for
mation of different PDC aerogel shapes (e.g. thin films, 3D printed 
complex parts), it is highly possible to produce aerogels in various forms 
by following contemporary (additive manufacturing) and traditional 
manufacturing processes via PDC route. 
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