2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)

Coverage Guided Multiple Base Choice Testing

Tugkan Tuglular
Dept. of Computer Engineering
Izmir Institute of Technology
Izmir, Turkey
tugkantuglular@iyte.edu.tr

Abstract—A coverage guided input domain testing approach
is presented with a feedback loop-controlled testing workflow
and a tool is developed to support this workflow. Multiple base
choices coverage criterion (MBCC) is chosen for systematic unit
test generation in the proposed approach and branch coverage
information is utilized as feedback to improve selection of bases,
which results in improved branch coverage. The proposed
workflow is supported with the tool designed and developed for
coverage guided MBCC-based unit testing.

Keywords— unit testing, input domain testing, multiple base
choices coverage criterion, branch coverage criterion, feedback
guided testing

1. INTRODUCTION

Developing unit tests is usually one of the responsibilities
of software developers, who do not necessarily have required
knowledge to design test cases and convert them to concrete
unit tests. However, developers easily learn how to run unit
tests and check their coverage using integrated development
environment (IDE).

In this process, there are two incidents that the developers
need to deal with. First, when they see a failed test, they start
debugging with fault localization. Although name of the failed
unit test helps a lot in such a case, naming unit tests is usually
not done as good as they should be. Some companies, such as
Google, have their own unit test naming standard, which is
enforced through peer reviews, but this is not the case for most
of small and medium software companies. Second, when they
see a lower coverage than the company’s expected standard,
they start looking for ways to improve coverage.

For the problems depicted here, there is a need for a clear
workflow supported with some automation. The proposed
approach aims to solve these problems through the following:

e gsystematic unit test generation in such a way that
rework for improvement is easy and effective

e naming unit tests so that fault localization is fast

e improving unit test coverage via a feedback-based
gray-box technique

The proposed method is a gray-box approach as a mixture
of input domain testing and path testing with branch coverage.
Input domain testing is a black-box technique, where input
parameters to a software under test (SUT) are determined
along with their equivalence classes using domain knowledge.
In the proposed approach, SUT is a method of an object-
oriented class and unit tests are generated at the granularity of
methods. Multiple base choices coverage (MBCC) [1]
criterion is chosen for systematic unit test generation in the
proposed approach. Once the input domain parameters with
their values representing equivalence classes are determined,
the developer decides on the base choices with respect to

Onur Leblebici
Univera, Inc.
Izmir, Turkey
onur.leblebici@univera.com.tr

MBCC. Then, unit test inputs are automatically generated
along with test names. Afterwards, the developer fills
expected outputs of unit test. Although this step can be
improved by model-based oracles, it requires modeling
knowledge, experience, and tool support, which are not
available in most of small and medium software companies.

Branch coverage is a testing criterion for path testing,
which is a white-box technique. Current IDEs along with the
unit test frameworks provide branch coverage values for each
method under test (MUT). Although branch coverage values
can be obtained easily, tool support for utilizing these values
to improve coverage is limited. Current IDEs only highlight
the blocks that are not covered. The proposed approach
enables developers to connect not covered blocks with input
domain parameters and to improve coverage by reworking on
the multiple base choices.

The novelty of the proposed approach lies in the tool
supported workflow that helps unit test developers to achieve
high branch coverage through domain testing. This gray-box
approach has a feedback loop, where lower value for branch
coverage triggers developer for better choices in MBCC,
which results in better branch coverage values. This loop
continues until the expected branch coverage is reached. The
proposed approach allows developers or companies to set their
desired or expected branch coverage percentage. Setting
coverage level is a cost/benefit trade-off. In the examples, we
set expected branch coverage level to 95%. The coverage
guided MBCC-based unit testing approach provides efficient
and systematic unit testing process for developers lacking test
case design knowledge and experience. For such developers,
the proposed approach helps faster achievement of desired
level of coverage criterion. The end result for companies
employing those type of developers is software with higher
quality and efficient use of developer time. Moreover, the tool
enables developers to save design knowledge of unit tests with
its archival feature.

The paper is organized as follows. After the fundamentals
and related work sections, the proposed approach is explained
in Section IV. Section V presents the developed tool for the
proposed approach with a running example along with the
results obtained. In Section VI experiences with the proposed
approach and tool are discussed. Section VII concludes the
paper and lists possible future work.

II. FUNDAMENTALS

Input domain testing is a black box testing approach,
where the code for SUT is unknown and only domain
information is used to develop test cases. It requires
partitioning input space into equivalence classes for each test
input parameter or variable and then selecting values from
each equivalence class to form test cases [2]. If there are more
than one input parameter, then the question “how should we

978-1-7281-8915-4/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS-C51114.2020.00020

53

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on April 26,2022 at 08:07:37 UTC from IEEE Xplore. Restrictions apply.

consider combinations among equivalence classes or
partitions?” arises. The terms “equivalence class” and
“partition” are used interchangeably.

If cartesian product of all partitions from all test input
parameters are considered, this approach is called strong
equivalence class testing [2] or all combinations coverage
criterion [1]. If only one partition from each test input
parameter used in test case development, this approach is
called weak equivalence class testing [2] or each choice
coverage criterion [1]. When all combinations coverage
criterion is the top element and each choice coverage criterion
is the bottom element in subsumption relations among choice-
based input space partitioning criteria given in Fig.1, multiple
base coverage and base coverage criteria exist in this order [1].

In base choice coverage criterion, a base choice partition
is chosen for each test input parameter, and tests are prepared
by holding all but one base choice constant and using each
non-base choice in each other test input parameter [1]. In
MBCC, multiple base choice partitions are chosen for each
test input parameter, and tests are formed by holding all but
one base choice constant for each base test and using each
non-base choice in each other characteristic [1]. As shown in
Fig.1, a coverage criterion subsumes the ones below.

All Combinations
Coverage

Multiple Base
Choices Coverage

|

Base Choices
Coverage

Each Choice
Coverage

Fig. 1. Subsumption relations among choice-based input space
partitioning criteria [1]

The IEEE defines unit testing as “the testing of individual
software or hardware units or groups of related units” [3].
Since unit testing can result in significant gains in software
quality [4], many unit testing frameworks have been
developed and they are integrated with IDEs. Although
structural (white-box) test data generation methods for unit
tests [5] have been around so long, unit testing frameworks
seem to be reluctant to add them to their functionality.

Path testing is a white-box technique. Branch coverage, as
a coverage criterion for path testing, is achieved when every
branch from a node is executed at least once by a test suite [6].
Branch coverage is more effective than statement coverage
but less effective than condition coverage, where condition
coverage requires 2" combinations of a predicate with n
conditions to be exercised [6].

III. RELATED WORK

Test case values should be determined in order to execute
test cases. Domain testing enables test practitioners to divide
the domain into partitions and select values from those
partitions [6]. One approach in partitioning is to use
equivalence classes for program inputs [7]. In contrast to this
black-box approach, White and Cohen [8] proposed a white-
box testing criteria where test values are determined using

54

program execution paths. This control-flow testing criteria is
improved with data-flow testing criteria [9], where dataflow
relationships in a program guide test data selection.

Feedback based testing approaches in the literature are
adaptive random testing (ADT) [10], adaptive combinatorial
testing [11], adaptive concolic testing [12], and search-based
testing [13]. All these techniques can be applied to unit test
generation. ADT was introduced to improve the fault-
detection effectiveness of random testing by distribute test
cases more evenly within the input space [10]. Adaptive
combinatorial testing is a feedback-driven combinatorial
testing approach aimed at working around masking effects
that are observed in combinatorial testing [11]. The main idea
of adaptive concolic testing is to improve the coverage
obtained by feedback-directed random test generation
methods, by utilizing concolic execution on the generated test
drivers and utilize non-linear solvers to generate new test
inputs for programs with numeric computations [12]. In
search-based testing, metaheuristic search techniques have
been applied to automate test data generation for structural and
functional testing [13]. The proposed approach differs from
structural, random, combinatorial, and search-based unit test
data generation approaches since it provides feedback to input
domain testing with coverage information.

Research on automatic test generation for unit testing has
been heavily on Java and JUnit. One of the first in this field,
“The JML and JUnit Way” uses a formal specification
language's runtime assertion checker to decide whether
methods are working correctly, thus automating the writing of
unit test oracles [14]. “Jartege” is another unit test generation
tool that generates random tests for Java programs specified
in JML using this specification as a test oracle in the JML-
JUnit way [15]. “Eclat” utilizes a technique for automatically
producing an oracle, i.e. a set of assertions, for a test input
from the operational model that is inferred from programs
correct executions [16]. Stock et al. proposed a technique for
automatic generation of a test suite from a given UML class
diagram of the system [17]. Sharma investigated automatic
generation of test suites from decision tables [18]. All this
research is on the generation of test oracles through models,
which require extensive modeling and formalism knowledge
that does not exist on the developer profile this paper aims for.

Different than most of the tools developed for the related
research, the supporting tool works with C# and MSTest unit
testing framework.

IV. PROPOSED APPROACH

The proposed approach defines a workflow that helps unit
test developers to achieve aimed branch coverage through
MBCC-based testing. High level algorithm of the proposed
workflow is presented using both Alg.1 and Alg.2. Alg.1
shows steps in MBCC-based testing. To include coverage
guidance, the proposed workflow is extended as in Alg.2. The
proposed workflow is supported with a tool, which is
explained in the next section.

The first step of Alg.1 is determination of the test input
parameters for the MUT. MUT parameters and return values
of the called methods within MUT are considered as test input
parameters. The second step is determination of equivalence
classes and their representative values for test input
parameters using the domain knowledge. In the next step, at
least one base for MBCC is decided. In the following steps,
test inputs and test names for unit test cases are automatically

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on April 26,2022 at 08:07:37 UTC from IEEE Xplore. Restrictions apply.

generated and then duplicate test cases are automatically
removed. At this point, the test suite is ready for test outputs.
Developer is expected to fill in test outputs for each test case.
Once the test suite is ready, unit test driver method is
automatically generated with test data but without specific
assert statements. After the developer has completed unit test
driver method, she runs it and checks for failed tests. Since
workflow for failed tests is not in the scope of this paper, that
step is omited here.

Alg. 1. MBCC-Based Unit Testing

® NN kW=

9.
10. generate_unit_test driver method()
11. complete unit test method
12. run unit test driver method

read test input parameters
for each parameter do
read partitions and representative values for each parameter
end for
read bases
generate_test_inputs_for test cases()
generate_test names_for test cases()
remove_duplicate test cases()
read test outputs for test cases

Authorized licensed use limited to:

The proposed workflow extends workflow outlined in
Alg.1 as seen in Alg.2. After completion of the steps in Alg.1,
branch coverage is checked. If it passes the desired level,
Alg.2 ends there. However, if it is below the desired level, then
the feedback loop is entered, and we let the coverage
information guide the improvement process. In the proposed
approach, coverage information is used only for guidance,
especially for two purposes:

1. Use coverage percentage to check if desired level is
reached because branch coverage is one commonly
used metric in industry.

Alg. 2. Coverage Guided MBCC-Based Unit Testing

run Alg. 1

read desired branch coverage

read branch coverage

while desired branch coverage < branch coverage do
read additional partition(s) with value(s) and/or base(s)
generate_test_inputs_for additional test_cases()
generate test names for additional test cases()
remove_duplicate test cases()

R B A o o

read test outputs for additional test cases
generate_unit_test_driver_method()

—_—
—_ O

complete unit test method

—_
»

run unit test driver method
13. read branch coverage
14. end while

If the coverage percentage is below the desired level, then
we consider each uncovered block providing a hint to improve
equivalence classes and bases. Once the developer decides on
the additional partition(s) with value(s) and/or base(s),
additional unit test cases are generated without duplicates and
their expected outputs are entered. Then the data rows for unit
test driver code is automatically generated from scratch. The
developer replaces existing data rows of unit test driver
method with the new data rows and updates assert
statement(s) if necessary. After that, the developer runs it and
checks for coverage percentage. The loop continues until the
desired coverage level is reached.

V. PROPOSED TOOL

The proposed workflow is supported with the tool
designed and developed for coverage guided MBCC-based
unit testing. The tool is named as Multi Base Choices
Coverage Tool and is shown in Fig.2.

2. Use uncovered blocks to obtain clues on the missed
equivalence classes and bases.
Muiti Base Choices Coverage Tool - O x
Save Rasommend GeneraleCode | TestClass Nome | DesmaServiesCalection | Test Method Name | AddService | eration [1
Input Domain
Input Hame. Input Type Delete A Equivalence Class Value Delete
. Bedean - | Dotte
implemertation Type ~ | Delete false Delete
Fy B e
lifetime: Enum | Delete
service Type | Delete
serviceName Sring ~ | Delete
= 9
Bases
decoratorEnabled implementation instance lfetime service service Name
> e | typeaf{MyService A [l ~ | E: feTime Singleton ~ ol)
MNumber OF Expected Outputs |1
Generated Test Inputs
decoratorEnabled implemertation instance Ifetime. service serviceName: expected ThrowsExpection s
» typeof (MyServiceA) null ieTime Singl. ol true
true typeof (MyServiceB) null feTime Singl.. ol false
true nul null ieTime Singl. ol tue
true new ifeTime Singl. il false
true typeof (MyServiceA) null ieTime Sco. ol false
true typeof (MyService) nuil feTime insta. nul faise
true typeof (MyServiceA) null EServicelnstance Life Time Singl.. null ol tue
e typeof (MyService) nul feTime Singl “MySenviceX" tue
true typeof (MyServiceA) null ifeTime Singl. "MyService" tue v

Fig. 2. Main screen of Multi Base Choices Coverage Tool

55

ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on April 26,2022 at 08:07:37 UTC from IEEE Xplore. Restrictions apply.

The workflow explained above also outlines how to use
the developed Multi Base Choices Coverage Tool. To
demonstrate the tool, Add Service method of Dexmo Service
Collection class written in C# is used as a running example.
AddService method is responsible for adding new items
(service definitions) into the DexmoServiceCollection
instance. It has 76 lines of code with the following method
signature:

public void addService(DexmoServiceDescription description);

The main screen of Multi Base Choices Coverage Tool is
composed of four panels. The top panel contains buttons along
with MUT and its class as well as iteration number. The Input
Domain panel enables the developer to enter test input
parameters with its type and equivalence classes with
representative values. The chosen base(s) are entered using the
Bases panel. The bottom panel shows on-the-fly generated test
inputs for test cases.

In the Bases panel, each row represents a base in MBCC.
The selected equivalence classes and their representative
values for test input parameters form a base. Test cases are
automatically generated by keeping base value for the first
parameter constant and alternating values for other
parameters. Then same operation is performed by keeping
base value for the second parameter constant and alternating
other values. This operation is repeated for all test input
parameters in the base. Automatically generated test cases
may contain same test case more than once. When it is
recognized the second test case is eliminated and not shown in
the bottom panel.

Although not shown in the bottom Generated Test Inputs
panel, test case names are also automatically generated in the
following format:

Test Case Number [, InputName:Value]* [,ExpectedOutput:Value,]*

Our experience has shown that developers have hard time
to remember and understand a test case if it fails. Therefore,
we choose such a test case naming format. Since the
developers are familiar with the domain and they follow the
principle of keeping representational gap (between the
concepts used in real life and identifiers/names used for
variables, types/classes and methods in code) low, they are
able to see immediately what is wrong with the failed test case.
Moreover, this principle helps us in analyzing uncovered
blocks and therefore improving equivalence classes and base
choices.

Once the developer is ready with base choices and that
means test inputs and test names are automatically ready, she
can enter expected output(s) for each test case using the main
screen of the Multi Base Choices Coverage Tool. Generate
Code button takes the developer into a dialogue screens where
she finds generated unit test driver method template with data
rows representing unit test cases as given in Fig.3. As industry
best practice, unit test data should be presented in rows above
the test driver method. However, its representation changes
with respect to unit testing framework utilized. In our case, the
representation in Fig.3 reflects MSTest unit testing
framework. The proposed workflow expects the developer to
copy and paste the generated unit test driver method to the
IDE, which is in our case Microsoft Visual Studio™, and
complete it with necessary assert statement(s), such as shown
in Fig.4.

After executing unit test driver method, the developer
checks coverage percentage as shown in Fig.5 and compares
it with the desired percentage. If it is lower than the desired,
then improvement loop in Alg.2 should be run. Before
explaining that, it should be noted that to archive unit test
designs, the developer can use Save button. She can save a test
design with or without coverage information, which is noted
in the upcoming dialogue screen.

GenerateCodeDialog

public static IEnumerable<object[]> TestAddService_Data
{
get
{
List<object[]> data = new List<object[]>()
baseNo 1 => decoratorEnabled: true, implementation:
data.Add(new object[] { true, typeof(MyServiceA), null,
data.Add(new object[true, typeof(MyServiceB), null
data.Add(new object[] { true,
data.Add(new object[] { true,
data.Add(new object[] { true,
data.Add(new object[] { true,
data.Add(new object[true,
data.Add(new object[] { true,
data.Add(new object[] { true,
data.Add(new object[
return data;

typeof (MyServiceA),

typeof (MyServiceA),
typeo erviceA),
typeof (MyServiceA),
typeof (MyServiceA),
typeof (MyServiceA),
typeof (MyServiceA),

P

[DynamicData(nameof (TestAddService Data))]
[TestMethod]

{
Test method body

null, EServicelnstanceLifeTime
null, EServiceInstanceLifeTime
null, EServiceInstancelifeTime
null, EServiceInstanceLifeTime
null, EServiceInstanceLifeTime

instance: null,
EServiceInstanceLifeTime.Singleton, typeof(IMyServiceA), null, true, T
EServiceInstanceLifeTime.Singleton, typeof
null, null, EServiceInstancelLifeTime.Singleton, typeof(IMyServiceA), null, true, “Te
new MyServiceA(), EServiceInstanceLifeTime.Singleton, typeof(IMyServiceA),
.ScopeBasedSingleton, typeof(IMyServiceA), null, false
.InstancePerRequest, typeof(IMyServi
.singleton, null, null, true,

.Singleton, typeof(IMyServiceA)
.Singleton, typeof(IMyServiceA), "MySer
false, typeof(MyServiceA), null, EServiceInstanceLifeTime.Singleton, typeof(IMyServiceA), null,

public void TestAddService(bool decoratorEnabled, Type implementation, object instance, Enum lifetime, Type service, String serviceName, object expectedThrowsExpection, string
0

lifetime: EServiceInstanceLifeTime.Si
MyServiceA), null, false,

Case No:

C
dec:

null, false

eA),

c null, false,
C No deco

Fig. 3. Automatically generated unit test driver method template in C# for MSTest unit testing framework

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on April 26,2022 at 08:07:37 UTC from IEEE Xplore. Restrictions apply.

56

[DynamicData(nameof (TestAddService_Data))]
[TestMethod]

public void TestAddService(bool decoratorEnabled, T

= service,

{

1 collection = new DexmoSe

collection.A
var description =
{
DecoratorEnabled = decoratorEnabled,|
Implementation = implementation,
Instance = instance,
Lifetime =
Service =
ServiceInterceptors = null,
ServiceName = serviceName
b
try { collection.addSe
catch (Exception)
{
if (!expectedThrowsException) { throw; }
else { return; }

rvice,

ice(description); }

if (string.IsNullOrEmpty(description.ServiceName))
Assert.IsTrue(collection.IsService

lse

e

Assert.IsTrue(collection.IsService

e implementation, object instance, EServiceInstancelifeTime
serviceName, bool expectedThrowsException, string)

lifetime,

istered(description.Service));

tered(description.Service, description.ServiceName));

Fig. 4. Developer completed unit test driver method

Fig. 5. Coverage information in Microsoft Visual Studio™

To improve MBCC-based unit test design, we propose an
automated recommendation mechanism. This mechanism is
implemented in the Multi Base Choices Coverage Tool. It
gives recommendation on which test input parameter(s) may
be evaluated in that code block so that the developer can work
on the missing equivalence class(es) and base(s) by analyzing
uncovered blocks. The developer should choose one of the
uncovered blocks indicated by the IDE, in our case Microsoft
Visual Studio ™ and copy-paste it to dialogue screen appears
after clicking Recommend button. When OK button is pressed
as shown in Fig.6, if there is a recommendation it is shown in
the following dialogue screen such as the one given Fig.7.

Source Code - B %

Please paste the uncovered source code block into below area and press Ok to get recommendations

o | B

Fig. 6. Request recommendation for an uncovered block

The Generalized Levenshtein Distance Algorithm [18] is
utilized to match identifiers in the uncovered block with the
test input parameters. The Levenshtein distance between two
words is the minimum number of single-character edits (i.e.
insertions, deletions, or substitutions) required to change one
word into the other [19]. The developer can work on the
recommended test input parameter either by adding new
equivalence classes to it or by adding it as a base.

Once the developer enters additional partition(s) with
value(s) and/or base(s), Multi Base Choices Coverage Tool
automatically generates additional unit test cases without
duplicates and asks the developer to enter expected outputs for

57

these additional test cases. Then the data rows for unit test
driver code is automatically generated from scratch. The
developer replaces existing data rows of unit test driver
method with the new data rows and updates assert
statement(s) if necessary. After that, the developer runs it and
checks for coverage percentage. The loop continues until the
desired coverage level is reached.

You should define new equivalence class values for input ‘lifetime’. Also
you can define new bases.

Fig. 7. Base recommendation for an uncovered block

At each iteration, the developer improves coverage using
MBCC-based test case design. For the running example, it
took us four iterations to reach company set level of coverage,
which is 95%. Screenshots of the Multi Base Choice Coverage
Tool for the remaining iterations are given in the Appendix.

The improvements obtained throughout these four
iterations are presented in Table I and explained below:

e Afteriteration 1, 62,10% coverage is obtained.

e After iteration 2, where we added "EServicelnstance
LifeTime.PerMatchingScopeBasedSingleton" item
into "lifetime" input's equivalence class, coverage is
improved to 68,55%.

e Atiteration 3, we added "typeof(IMyServicel)" item
into "service" input's equivalence class resulting in
74,19% coverage.

e With the fourth iteration, where the base "decorator:
false, implementation: typeof(MyServicel), instance:
null, lifetime: EServicelnstanceLifeTime.Singleton,
service: typeof(IMyServicel), serviceName:null"
defined, coverage reached to 95,97% passing the
desired level.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on April 26,2022 at 08:07:37 UTC from IEEE Xplore. Restrictions apply.

TABLE 1. IMPROVEMENT THROUGH COVERAGE GUIDED MBCC-BASED TESTING FOR DEXMOSERVICECOLLECTION.ADDSERVICE METHOD
Iteration # # of Bases # of Test Cases Test Execution Time Total Blocks Covered Blocks Block Coverage
1 1 10 18 ms 124 77 62,10%

2 1 11 18 ms 124 85 68,55%

3 1 13 19 ms 124 92 74,19%

4 2 26 20 ms 124 119 95,97%

For each iteration, test execution times are 18, 18, 19, and
20 milliseconds in average, respectively. They are obtained
after 10 trials on a Windows 10 Pro v. 1909 - 64bit machine
with Intel Core 17-9750H @2.6GHz CPU and 16 GB RAM.

For the methods with one base, developers easily reach the
desired level of coverage using our tool. With more bases, the
test design process gets harder. In the following section, it is
discussed why the proposed approach and tool is necessary for
efficient unit testing.

VI. DISCUSSION

The proposed workflow supported with the Multi Base
Choices Coverage Tool is for software developers who have
limited knowledge and experience on formal approaches,
modeling, and test case design but know the software domain
and unit testing.

Our experience shows that the proposed approach and tool
is useful for the methods under test that has more than one
base. For a MUT having a base, developers can easily produce
inline test data. However, we still insist to use our tool because
of its archival feature. If that method changes in the future,
even the same developer has hard time remembering
equivalence classes and selected values for those classes. If a
MUT has more than one base, then developer is confused in
selection order of bases. With our tool, trial and error is fast
and cheap.

While using the proposed approach and tool, it is better to
take just one uncovered block and work on it in one iteration
since it is hard to know which uncovered blocks will be
covered with added equivalence class(es) and base(s). We
haven’t observed any infeasible test cases during the use of
approach and tool. However, if it happens, the developer
leaves the expected output for that test case empty in the
generated test inputs panel and the tool recognizes it as an
infeasible test case and do not include in the automatically
generated unit test driver method template code.

Developers feel the control of test design with our tool for
several reasons. First of all, adding partitions and values are
very easy as well as selecting them. Second, duplicate test
cases are automatically eliminated. Third, while entering test
case outputs, developers have another chance to evaluate their
selection of partitions and values and if necessary, they can
easily change them. Each change is automatically reflected on
the test cases in the tool, there is no need to press any buttons.
Fourth, since test cases are systematically generated human
error is eliminated in this step. Fifth, test driver with inline test
data is automatically generated within a second. Sixth, giving
a hint about an uncovered block for missing equivalence class
is a feature that developers enjoy. Finally, the archival feature
helps developers to store the knowledge of test design for
future use.

Assuming the developer has the domain knowledge of the
MUT, time required for determining test input parameters,

58

equivalence classes and their respective values as well as
bases takes 3 to 5 minutes. Entering test case expected outputs,
which is the second manual task that the developer should
complete, requires more time and that time changes with
respect to the number of test cases. Our developers needed 15
to 20 minutes to fill in the expected outputs for a MUT like in
the running example. Once the test driver is automatically
generated, filling in the assert statements takes 8 to 10 minutes
for a MUT like in the running example. If new bases were
required, then comparatively low additional time would be
necessary.

For the running example, we asked one developer to
prepare unit tests with our tool and another one without our
tool. While the one using our tool finished within half an hour,
the other one needed half a day. When we asked the one, who
didn’t use our tool, what troubled him mostly, the answer was
that he got lost among test cases. For high number of bases,
our approach with the tool is a necessity. One drawback of our
approach is possible redundancy in test cases. However, with
the automation brought by our tool, this drawback is
minimized.

VII. CONCLUSION

A coverage guided MBCC-based unit testing approach is
presented with a feedback loop-controlled testing workflow.
The proposed workflow is supported with a tool. Multiple
base choices coverage criterion is chosen for systematic unit
test generation in the proposed approach and branch coverage
information is utilized as feedback to improve selection of
bases, which results in improved branch coverage.

The Multi Base Choices Coverage Tool automatically
generates unit test case names and test case inputs once the
developer enters test input parameters, equivalence classes
with representative values, and bases. After the developer fills
in expected outputs for unit test cases, the tool automatically
generates unit test driver method template, where only assert
statements are missing. After completion of assert statements
and execution of unit test method, branch coverage percentage
is checked using Microsoft Visual Studio™ IDE. Then
following the proposed feedback loop, branch coverage is
advanced by improving MBCC.

As future work, we plan to convert the tool into an add-on
for Microsoft Visual Studio™. The developed tool generates
unit test driver method template with respect to MSTest unit
testing framework. However, the tool can be enhanced to
support other unit testing frameworks. Moreover, we plan to
have a Java and JUnit version of it. In this version of the tool,
test case outputs are filled by the developer. This step can be
improved by automated oracles, which is left as future work
as well. Moreover, we plan to improve the recommendation
mechanism using Gensim (https://github.com/RaRe-Techno
logies/gensim), which is an advanced NLP library for
similarity retrieval.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on April 26,2022 at 08:07:37 UTC from IEEE Xplore. Restrictions apply.

[10]

[11]

REFERENCES

P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2016.

A. P. Mathur, Foundations of software testing, 2/e. Pearson Education
India, 2013.

N. Juristo, A. M. Moreno, and W. Strigel, “Guest editors’ introduction:

[12]

2011 International Symposium on Software Testing and Analysis,
2011, pp. 243-253.

P. Garg, F. Ivanc¢i¢, G. Balakrishnan, N. Maeda, and A. Gupta,
“Feedback-directed unit test generation for C/C++ using concolic
execution,” presented at the 2013 35th International Conference on
Software Engineering (ICSE), 2013, pp. 132-141.

; AR >, [13] P. McMinn, “Search-based software test data generation: a survey,”
Software testing practices in industry,” IEEE software, vol. 23, no. 4, Software testing, Verification and reliability, vol. 14, no. 2, pp. 105—
pp. 19—;1, 2006.)) 156, 2004.
E. Dustin, Eﬁ"ecttve Sof tware Testing: 50 Ways to l_mp rove Your [14] Y. Cheon and G. T. Leavens, “A simple and practical approach to unit
Software Testing. Addison-Wesley Longman Publishing Co., Inc., testing: The JML and JUnit way,” presented at the European
2002. L« . P th Conference on Object-Oriented Programming, 2002, pp. 231-255.
B. Korel, . Automated test da,lta generation for programs wit [15] C. Oriat, “Jartege: a tool for random generation of unit tests for java
procedures,” ACM SIGSOFT Software Engineering Notes, vol. 21, no. classes,” in Quality of Software Architectures and Sofiware Quality,
3, pp- 209-215, 1,996' . . Springer, 2005, pp. 242-256.
R. Blnder,A Testing ob]ect—orlgnted systems: models, patterns, and [16] C. Pacheco and M. D. Emnst, “Eclat: Automatic generation and
to0ls. Addison-Wesley Professional, ,2000' . . classification of test inputs,” presented at the European Conference on
G. J. Myers, “The art of software testing. 1979,” A4 Wiley-Interscience Object-Oriented Programming, 2005, pp. 504-527.
P ubltcat{on. “ . [17] M. Stock, A. Brucker, and J. Doser, “Automatic Generation of JUnit
L.J. White and E. I. Cohen, “A domain strategy for computer program Test-Harnesses,” Semester Thesis, Swiss Federal Institute of
testing,” IEEE transactions on software engineering, no. 3, pp. 247— Technology, Zurich, Switzerland, 2007
257, 1980. " . . [18] M. Sharma, “Automatic generation of test suites from decision table-
M. J. I—Larrold and G. Rothermel, “P er'forml'ng data flow testing on theory and implementation,” presented at the 2010 Fifth International
classes,” ACM SIGSOFT Software Engineering Notes, vol. 19, no. 5, Conference on Software Engineering Advances, 2010, pp. 459-464.
Pp- 15*:‘63’ 1994. K« . N [19] L. Yujian and L. Bo, “A normalized Levenshtein distance metric,”
T. Y. Chen, H. Leung, gnd L. Ma > Adz?ptlve random testing, IEEE transactions on pattern analysis and machine intelligence, vol.
presented at the Annual Asian Computing Science Conference, 2004, 29, no. 6, pp. 1091-1095, 2007.
pp- 320-329. . , [20] N. Babr, “The Levenshtein Distance Algorithm,” Oct. 02, 2018.
E. qulu, % Yllma;, M. Bj C(’)’hen, and A. Porter, Feedbgck driven https://dzone.com/articles/the-levenshtein-algorithm-1 (accessed Apr.
adaptive combinatorial testing,” presented at the Proceedings of the 26, 2020)
Appendix
Multi Base Choices Coverage Tool - o X
Save Recommend Generate Code | Test Class Name [DexmoServiceCollection | Test Method Name [AddService teation 2 2
Input Domain
Input Name: Input Type Delete A Equivalence Class Value Delete
- 5 DEOw - Dt
implemertation Type v | Delete false Delete
instance Object + | Delete .
Ifetme Enum « | Delete
service Type v | Delete
serviceName Sting v | Delete
Bases
decoratorEnabled implementation instance ifetime service serviceName
3 true [typecf(MyServiceA) ~ [l v feTime Singleton |- | A ~ [l v
Number Of Expected Outputs |1 =
Generated Test Inputs
instance ifetime service serviceName expected ThrowsExpection A
» N - seicen ndl E feTme Sngl A nl tase
true typeof (MyServiceB) null feTime Singl. null false
true null nul E feTime Singl null true
true typeof(MyServiceA) new My A E feTime Singl nul false
true typeof(MyServiceA) nul feTime Sco nul false
true typeof(MyServiceA) null feTime Insta nul false
true typeaf (MyServiceA) nul feTime Per nul tue
true typeof(MyServiceA) nul EServicelnstanceLfe Time Singl... nul nul true
true typeof (MyServiceA) nul feTime Singl tue v

Fig. 8. Main screen of Multi Base Choices Coverage Tool for iteration 2

59

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on April 26,2022 at 08:07:37 UTC from IEEE Xplore. Restrictions apply.

Multi Base Choices Coverage Tool - a X
e [om] || GewmGate | Tes oMo [GomoServesColodion | T Mabod Nome [MiSoves | tewen 3]
Input Domain
Input Name Input Type Delete A
> Boolean v
implementation Type | Delete
instance Object | | Delete
Ifetime Enum ‘v | Delete
service Type v | Delete
serviceName Sting ‘v | Delete
. = v
Bases
implementation instance lfetime: service serviceName
» ' typeof (MyServiceA) v ol v Sngleton | |t I~ |t |v
. v I~ S I~ I+] v
Number Of Expected Outputs |1 |2
Generated Test Inputs
» typeof (MyServiceA) nul feTime Singl. A ull
true | typeof(MyService B) null Singl. null
true ul nul Sngl null
true typeof{MySenvice) nul Time Singl... null
tue typeof(MyServiceA) new My Time. Singl nul
true typect(MyServiceA) nul Time.Sco... A nul
true typeck(MyServiceA) nul nsta... % null
true typeof(MyServiceA) nul Per... null
tue typeof(MyServiceA) nul Time.Singl... |l null
Fig. 9. Main screen of Multi Base Choices Coverage Tool for iteration 3
Multi Base Choices Coverage Tool - o X
Save][Open] | Generate Code Test Method Name |AddService heration & 13
Input Domain
Input Name Input Type Delete A Equivalence Class Value Delete
» Boolean v » Delete
implementation Type ~ | Delete false Delete
instance Object | Delete .
lfetime Enum | Delete
service Type v | Delete
serviceName. String v | Delete
e z 5
Bases
instance Ifetime: service
3 true |typeof(MyServiceA) ~ Inull v Singleton v v ol v
false v v lnul v Sngleton v [v null v
. v < < v ~ T
Number Of Expected Outputs |1 2]
Generated Test Inputs
decoratorEnabled implemertation instance Wetme service
» typeof (MyServiceA) nul feTime Singl... | . |l
true typeof (MyServiceB) rul i “—‘sm!H Il
true nul null feTime Singl... | o [l
tue typeo(MyService 1) rull feTime Singl... | null
true typeof(MyServiceA) new My feTime Singl... | null
tue typeof (MyServiceA) null feTime Sco... | nul
true |typect(MyService) null e Time Insta. A [t
tue typeaf (MyService) null feTime Per. nul
tue |typeof(MyServiceA) nul feTime Singl..|null nul

Fig. 10. Main screen of Multi Base Choices Coverage Tool for iteration 4

60

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on April 26,2022 at 08:07:37 UTC from IEEE Xplore. Restrictions apply.

