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ABSTRACT 

 

TRACKING AND PREDICTION OF EVOLUTION OF COMMUNITIES 

IN DYNAMIC NETWORKS 

 

Communities are the most meaningful structures in dynamic networks. Tracking 

this evolution provides insights into the patterns of community evolution in networks over 

time and valuable information for decision support systems in many research areas such 

as marketing, recommender systems, and criminology. Previous work has focused on 

either high accuracy or time efficiency, but not on low memory consumption. This 

motivates us to develop a method that combines highly accurate tracking results with low 

computational resources. 

This dissertation first provides a brief overview of research in dynamic network 

analysis. Then, a novel space-efficient method, called TREC, for tracking the evolution 

of communities in dynamic networks is presented, where community matching using 

LSH with minhasing technique is proposed to efficiently track similar communities in 

terms of memory consumption over time. The accuracy of TREC is evaluated on 

benchmark datasets, and the execution time performance is measured on real dynamic 

datasets. In addition, a comparative algorithmic complexity analysis of TREC in terms of 

space and time is performed. Both theoretical and experimental results show that TREC 

outperforms competitor methods on both datasets in terms of combination of space, 

accuracy, and execution time. 

 Next, it is investigated that whether the TREC method is suitable for predicting 

the evolution of community areas. In this evaluation, a prediction study is conducted. A 

common methodology is followed which includes main steps such as feature extraction, 

feature selection, classifier training and cross validation. Experimental results show that 

TREC method is suitable for predicting evolution of communities. 
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ÖZET 

 

 

DİNAMİK AĞLARDA TOPLULUKLARIN GELİŞİMİNİN İZLENMESİ 

VE KESTİRİMİ 

 

 
Topluluklar dinamik ağlarda karşılaşılan anlamlı yapılardır. Bu ağlardaki 

toplulukların zaman içerisindeki olası gelişimlerinin takibi farklı alanlardaki araştırma ve 

karar destek sistemleri için değerli bilgiler sağlar; örneğin bilimsel araştırmalarda, sosyal 

ağlarda ilgi alanlarındaki değişimin incelenmesi ve suç kestiriminin sağlanmasında, 

reklam ve pazarlama sistemlerinin yönlendirilmesinde vb. Var olan çalışmalar ya yüksek 

başarıma ya da zaman verimliliğine odaklanmış, bellek kullanım verimliliği 

incelenmemiştir. Dolayısıyla, toplulukların gelişimini düşük hesaplama kaynağı 

kullanarak yüksek başarımla izleyebilecek bir yöntem geliştirme bu tezin motivasyonunu 

oluşturur. 

 Bu doktora tezinde, dinamik bir ağda, benzer toplulukları takip etmek ve benzerlik 

ilişki tipini belirlemede TREC adında özgün bir yöntem önerilmiştir. Yöntem, bellek 

kullanım verimliliği için LSH ve minhashing tekniği kullanılarak topluluk eşleştirmesi 

yapar. Önerilen TREC yönteminin sonuçlarına ait doğrulama ve çalışma zamanı gibi 

verimlilik analizleri gerçekleştirilmiştir. Yöntemin, benzer ve güncel olan en iyi 

çalışmalar ile karşılaştırılması ise; hem deneysel uygulamalar ile hem de kullanılan 

zaman ve bellek alanı açısından algoritmik karmaşıklık analizleri ile sağlanmıştır. 

Sonuçlar; TREC yönteminin bellek alanı gereksinimi, doğruluk ve çalışma zamanı 

tüketiminin kombinasyonu ile hem deneysel hem de gerçek veri setlerinde benzer 

çalışmalara göre üstünlük içerdiğini göstermiştir. 

 Tezin ana çalışmasına ek olarak; toplulukların gelişiminin kestiriminde TREC 

yönteminin uygulanabilirliği de değerlendirilmiş, makine öğrenmesine dayalı kestirimci 

bir çalışma yürütülmüştür. Bu aşamada, yeni bir makine öğrenmesi yöntemi geliştirilmesi 

ya da yeni bir yöntembilim önerilmesi hedeflenmemiştir. Bu nedenle, özniteliklerin 

belirlenmesi, özniteliklerin seçilmesi, sınıflandırıcıların eğitilmesi ve çapraz geçerlilik 

ana basamaklarını içeren yaygın bir yöntembilim izlenmiştir. Buradaki sonuçlar; TREC 

yönteminin kestirim alanında benzer çalışmalar ile eş başarım düzeyinde olduğunu ve 

uygulanabilir olduğunu göstermektedir. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Many real-world systems, such as communication networks, biological networks, 

and social networks, can be represented as complex networks in the digital world. 

Complex networks can be described in terms of graph structures consisting a set of nodes 

(i.e., elements in the network) and edges (i.e., connections between nodes). Recently, 

Dynamic Network Analysis (DNA) is drawing attention due to the tremendous increase 

in popularity and importance of dynamic networks such as social networks, scientific 

collaboration, and biological networks. Social networks are used to represent member 

relationships or interactions in the networks. Existing social networks provide rich and 

valuable information about their members. One of their main goals is to understand the 

relationships and interactions within the network over time. Figure 1.1 represents a 

sample social network in the form of a graph. 

 

 

 

 

Figure 1.1. An illustration of a sample social network modelled by a graph in which 

nodes represent people and edges represent their friendship (Source: Arredondo 2021) 
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One of the properties of complex networks is that they inherently contain a 

community structure. The community structure observed in the network can be of 

different natures, e.g. disjoint (nonoverlapping), overlapping, hierarchical and local. The 

disjoint community structure includes communities without overlap, as shown in Figure 

1.2. (a). That is, the members of this type of communities can be assigned to only one 

group. The overlapping community structure represents that a member of any community 

can have one or more memberships in other communities, as in Figure 1.2. (b). That is, a 

person can be a member of different interest groups in an online social network. The 

hierarchical community structure shows hierarchical grouping levels, as in Figure 1.2. 

(c). As for local communities, they show a different structure from a local point of view, 

but no structure from a global point of view, as in Figure 1.2. (d). In the context of this 

paper, the focus will be on disjoint community structures, as this is the most common 

community structure. 

 

 

 
 

Figure 1.2. An example of illustrating different types of communities: (a) disjoint, (b) 

overlapping, (c) hierarchical and (d) local communities (Source: Karataş and Şahin 

2018a) 

 

 

Since the diversity of the nature of communities in the given network is not known 

in advance and depends on the domain, the definition of community is an ill-defined 

concept (Fortunato 2010). Nevertheless, a commonly accepted definition of community 

according to the structure of the network is that within the community, members are 

strongly connected and across the community, members are loosely connected (Girvan 

and Newman 2002). Communities can be formed not only by structural similarities but 

also by functional similarities between members of the network (Newman 2004). 
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Therefore, recognizing community structure provides us with meaningful insights into 

network structure and its organizing principle. 

Community detection is the task of revealing the community structure of a 

snapshot of a network for a given time interval. It allows us to look at a mesoscopic level 

(i.e., group level). Therefore, there are many application domains where group-level tasks 

are performed. For example, community detection is used for market segmentation, 

community profiling, recommender systems, and more. The detailed application areas of 

community detection can be found in Reference (Karataş and Şahin 2018a). 

In real networks, the members and/or the relationships between members may 

change over time. It is obvious that the graph in Figure 1.1 cannot represent the evolution 

of networks over time. That is, one cannot infer the new/leaving members and 

established/terminated relationships from the static graph in the figure. Therefore, the 

dynamic network concept was developed to model the temporal evolution of networks 

over time (Rossetti and Cazabet 2018, Cazabet and Rossetti 2019). Moreover, when the 

network updates, the community structure of the network changes. That is, communities 

in the network may grow or shrink, new communities may even emerge, while some of 

them may disappear. An example scenario of possible community changes can be seen in 

Figure 1.3. Initially, there are some nodes with no connection in 𝑇1. Then, they create a 

community in 𝑇2. More members join the group; therefore, the community grows in 𝑇3. 

In 𝑇4, the community splits into two new groups; therefore, it is divided. The rest of the 

scenario shows the possible events that a community can undergo.  

 

 

 

Figure 1.3. A scenario for modifications over time for a single community (Source: 

Bródka, Saganowski, and Kazienko 2014) 
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 As communities evolve over time, detecting and tracking this evolution provides 

interesting and valuable information for decision support systems in many research areas 

such as criminology (Calvó-Armengol and Zenou 2004, Ferrara et al. 2014, Calderoni, 

Brunetto, and Piccardi 2017), marketing (Kempe, Kleinberg, and Tardos 2003), 

recommender systems (Zanin et al. 2008), and public health (Zhu et al. 2012, Fan, Yeung, 

and Wong 2013). 

 The most common strategy for identifying community evolution is to decompose 

network data into time steps and identify community structure using a community 

detection method such as Louvain (Blondel et al. 2008), CPM (Palla et al. 2005), Leiden 

(Traag, Waltman, and van Eck 2019), and Infomap (Rosvall and Bergstrom 2008). Many 

methods for characterizing community evolution focus on identifying evolutionary event 

types (i.e., “form”, “continue”, “grow”, “shrink”, “merge”, “split” and “dissolve”) and 

then examine the occurrence of these events. 

 Despite all the work done so far, there are still problems. Previous methods for 

tracking the evolution of communities in dynamic networks focus on the accuracy of the 

tracking results and their execution time is generally high. However, in the world of 

dynamic networks, low resource consumption is as important as accuracy, and none of 

the existing work touches the problem of developing a novel method with a combination 

of low space consumption, highest accuracy (currently it is 98%) and reasonable 

execution time for tracking community evolution. 

 

 

1.1 . Contributions of the Thesis 

 

 

 Before this section, a brief introduction to the problem area and the open problems 

of tracing the evolution of communities is given. This subsection lists the main 

contributions of this thesis. 

 The main objective of this thesis is to efficiently track the evolution of 

communities in dynamic networks. There is a supplementary goal in this thesis, which is 

to apply the solution provided for the main objective in predicting the evolution of 

communities. In this dissertation, a novel efficient tracking method TREC (TRacking 

Evolution of Communities) is proposed that is both resource efficient and at least as 
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accurate as competing works. The community detection method used does not matter as 

long as the detection method is used to identify the disjoint community structure.  

The main contributions of this thesis are listed as follows. 

 

 A novel method TREC, short for TRacking Evolution of Communities, for 

tracking the evolution of communities in dynamic networks is presented. It uses 

a combination of two probabilistic techniques such as Locality Sensitive Hashing 

(LSH) (Indyk and Motwani 1998) and minhashing (Broder 1997). 

 LSH with minhashing technique is used for the first time for tracking the evolution 

of communities. 

 The high resource consumption of previous work arises from the community 

matching problem. By using LSH with minhashing, the inefficiency of memory 

consumption in the community matching task is solved.  

 The efficiency and computational limitations of TREC is guaranteed by 

complexity analysis. 

 Creation of a ground truth event dataset to evaluate the prediction success. 

 

 

1.2 . Organization of the Manuscript  

 

 

 This subsection presents the outline of the manuscript of this dissertation. The 

main work developed in this dissertation is tracking the evolution of communities. The 

supplementary work to this is the application of the method for the main work to predict 

the evolution of communities in dynamic networks. 

 Chapter 2 presents the basics of community analysis starting from the graph data 

structure. 

 Chapter 3 focuses entirely on tracking the evolution of communities in dynamic 

networks. First, the problem domain is introduced, then a literature review of competing 

works is given. Then, the novel TREC method is presented as a solution. A performance 

analysis of the TREC method is then performed, both theoretically and experimentally. 

The theoretical analysis is performed with complexity analysis, while the practical 

analysis is performed with accuracy analysis and real-time memory and execution time 
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analysis for both benchmark datasets and real datasets such as AS, DBLP, Yelp and 2009 

Digg friendship. Finally, the results of the analysis are evaluated and the chapter is 

concluded. 

 Chapter 4 explains our case study using the TREC method to predict community 

evolution, and does not attempt to introduce any novelty in terms of a machine learning 

method or a prediction method. That is, Chapter 4 is an evaluation chapter that assesses 

the feasibility of using tracking results of the TREC method in predicting community 

evolution. Therefore, the field of community evolution prediction is first introduced. 

Then, a workflow for predictive analysis is presented. Then, the experimental study and 

preliminary results are presented. Finally, the results are discussed and brief concluding 

thoughts are given. 

 Chapter 5 concludes the thesis by summarizing the main contributions, discussing 

about the thesis, and pointing to possible research directions that have emerged from this 

study.   
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CHAPTER 2 

 

 

BASIC CONCEPTS 

 

 

 Computers are becoming more ubiquitous in our daily lives, in many forms such 

as mobile devices and even wearables. In particular, it is hard to imagine our lives without 

smart applications ranging from tracking and suggestion systems to health apps. When 

this is the case, our world is becoming more and more connected. Nearly all real-world 

systems, including social, biological, and technological systems, are represented by 

complex networks. These complex networks are represented with graphs in the digital 

world. 

 

 

2.1. Graphs 

 

 

 

  

  

 

 

Figure 2.1. An illustration of a toy (a) friendship graph and (b) follower graph 
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 In discrete mathematics, especially in graph theory, a graph is an abstract data 

structure for a set of objects that represents the relations pairwise in some sense. The 

objects are called vertices or nodes, and the pairs that belong together in each case are 

called edges or links. Depending on the real-world system being represented, the vertices 

and edges can represent different things. For example, if a graph is used to represent a 

social network, then the vertices and edges correspond to people and 

friendship/interaction, respectively. If it is a protein-protein interaction network, the 

vertices correspond to proteins and the edges correspond to interactions between pairs of 

proteins. 

 

 

 

 

Figure 2.2. Representation of a map with graphs (a) Geographical Map showing the 

Aegean region of Turkey (b) A weighted graph representation of the region where 

weights are the shortest distances in kilometers 
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Edges can be directed or undirected. Figure 2.1(a) and Figure 2.2(b) show two 

toy graphs as examples of undirected and directed graphs, respectively. If there is 

symmetry between the pairs, the edges are undirected. For example, friendship is a 

symmetric relationship. As shown in Figure 2.1(a), Alice is friends with Bob and Bob is 

friends with Alice. However, not all relationship types have symmetric/shared 

relationships, such as following-followed, sending short messages, and emails. Therefore, 

the interaction between vertices must be directed. As shown in Figure 2.1(b), Carol 

follows David, but this does not mean that David follows Carol, and the direction of the 

arrow on the edge shows who follows whom. Therefore, the interaction between pairs 

need not be mutual/symmetric. 

 Graphs can be weighted or unweighted. A weighted graph can be defined as a 

graph in which each edge is assigned a weight (can be an integer or a real number). If 

there are no weights on the edges or the weights of all edges are equal, then the graph is 

considered an unweighted graph. It depends on the problem being modeled whether a 

graph is weighted or unweighted.  

 For example, if the problem is modeling a friendship relation, which can be seen 

in the network in Figure 2.1(a), then all relations have the same importance (weight) and 

there is no need to assign weights to the edges. Another example: If the problem is to find 

the most efficient route in terms of distance between destinations that a person should 

visit given a list of certain destinations, then the distances between destinations need not 

be equal. Therefore, weighted graphs are suitable for solving this problem, where the 

weights represent the distances between pairs of destinations. To illustrate, suppose there 

is a salesman who needs to visit each city in the Aegean Region of Turkey shown in 

Figure 2.2(a). He is supposed to find the most efficient route for himself in terms of 

distances between cities (this problem is well known in theoretical computer science and 

computational mathematics and is called Traveling Sales Man). Therefore, one of the 

solutions is to model the problem as a weighted graph, where the nodes are the cities of 

the region, the edges are the links between the cities, and the edge weights are the labels 

indicating the distances between pairs of cities, as shown in Figure 2.2(b). 
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2.2. Community Structure 

 

 Complex networks such as communication networks, biological networks, and 

social networks inherently exhibit community structure. There is no universal definition 

for the term "community" (Fortunato, 2010). On the other hand, it is informally accepted 

as a subset of nodes that are closely connected to the rest of the network, and a community 

should have at least three members. Depending on the nature of the network, the 

community structure may consist of disjoint or overlapping communities. Figure 2.3(a) 

shows a simple illustration of nonoverlapping (disjoint) communities, where each node 

is a member of only one community. As can be seen in the figure, there are three 

communities, Community A, Community B, and Community C, and each member can 

belong to only one of them. Overlapping communities are the communities whose nodes 

are allowed to be members of more than one community. Figure 2.3(b) shows a simple 

illustration of overlapping communities, where Community A and Community B overlap, 

and Community B and Community C overlap. The overlapping nodes are shown with red 

circles. 

 

 

 

 

Figure 2.3. An example of illustrating disjoint (nonoverlapping) and overlapping 

communities 

 

 



11 

 

 Community detection is the task of uncovering the community structure of a 

snapshot of a network. It is a powerful tool to view a network from a mesoscale (group-

level) perspective. Therefore, it draws attention of many researchers from many different 

fields. For example, it is used for market segmentation, community profiling, 

recommender systems, and cybercrime detection, etc. Since the optimal selection of 

community members is a combinatorial problem, the exact solution of community 

detection can be NP-hard (Fortunato 2010). Therefore, heuristic solutions and 

approximation-based solutions are suitable for the problem. Both application areas of 

community detection are discussed in the paper (Karataş and Şahin 2018a) and existing 

methods for community detection are summarized. 

 The most common community detection methods are based on modularity 

optimization because of its ease of implementation and low consumption of execution 

time. Modularity (Q) is a metric that measures the modularity of a community structure. 

It is determined by the ratio of the high number of intra-community connections to the 

expected inter-community connections. It is formulated as in equation (2.1) (Chakraborty 

et al. 2017). 

 

 

𝑄 =  
1

2𝑒
∑ [𝐴𝑖𝑗 −

𝑑(𝑖)𝑑(𝑗)

2𝑒
]

𝑖,𝑗

 𝜎𝑖,𝑗   (2.1) 

 

 

where 𝐴𝑖𝑗 is the adjacency matrix of the network snapshot,  𝑒 is the number of edges in 

the graph, and 𝑑(𝑖) and 𝑑(𝑗) are the degrees of node i and j respectively. σ is the function 

that returns 1 if both node 𝑖 and 𝑗 in the same community, else returns 0. Modularity value 

lies between -1 and 1 where higher modularity values implies strongly connected 

community structure. 

 Although there are many methods based on modularity optimization, Louvain is 

one of the best methods in terms of its accuracy and low execution time consumption 

(Yang, Algesheimer, and Tessone 2016, and Karataş and Şahin 2018b). Moreover, its 

open-source code and application is easily accessible and can be found at the reference 

link (Waltman and Jan van Eck 2015). Blondel et al. (Blondel et al. 2008) present the 

Louvain algorithm. It uses a greedy local approach and performs a local moving heuristic  



12 

 

 

 

 

 

 

Figure 2.4.  An abstract illustration two main phases of Louvain algorithm (Source: 

Browet 2014) 
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to obtain an improved community structure. The local moving heuristic depends on 

repeatedly moving individual nodes from one community to another neighboring 

community, so that each node move leads to an increase in modularity. 

 Louvain is an iterative algorithm and contains two main phases in each iteration: 

Modularity Optimization with Local Moving Heuristics and Community Aggregation. In 

the first phase, it starts by considering each node in the network as a community. Then, 

the local shift heuristic is used to obtain an improved community structure by moving 

individual nodes from one community to another neighboring community until no further 

increase in modularity can be achieved. In the second phase, Louvain merges the all nodes 

that belong to the same community. Then, a network is built in which the nodes are the 

communities from the previous phase. The iterations continue until there is only one 

community. This process is illustrated in Figure 2.4. 

 

 

2.3. Dynamic Networks 

 

 

 

Figure 2.5. A sample scenario for possible community events 
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Traditional methods for analyzing networks model the network as a static graph 

that represents a frozen snapshot of the network at a particular point in time. However, 

this modelling does not capture the evolution of the network. Therefore, dynamic 

networks are modelled with dynamic graphs. A dynamic graph can be represented as a 

series of static graphs ordered over time, with each graph corresponding to a particular 

point in time. 

 Because relationships or interactions change over time, real-world networks are 

dynamic. Communities in the network may grow or shrink, new communities may even 

emerge, while some of them may disappear. An example scenario of possible changes in 

communities can be seen in Figure 2.5. At the beginning, there are some people without 

any connection. Then they form a community. Over time, more members join the 

community; thus, the community grows. May be some of the members lose their interest 

in the community and they leave it; thus, the community shrinks. Furthermore, 

communities can continue their lives either unchanged or unchanged within an upper 

limit. As the time passes, the community may split into some subcommunities or some 

communities can form a new and larger community by merging. Finally, a community 

may dissolve over time by losing its members. 

 Dynamic networks are important for many scenarios. First, when studying the 

spread of information, rumors, diseases, or changes in the network, dynamic networks 

can provide accurate estimates of changes/spreads. Second, when it comes to predicting 

patterns of change, dynamic networks can help in detecting the patterns, e.g., seasonal 

changes, etc. These patterns can also be used to predict future changes. Finally, dynamic 

networks are better suited to represent dense interactions between members/communities. 
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CHAPTER 3 
 

 

TRACKING EVOLUTION OF COMMUNITIES IN 

DYNAMIC NETWORKS 
 

 

In this chapter, a novel space-efficient method TREC (Tracking Evolution of 

Communities) is introduced for tracking the evolution of communities in dynamic 

networks. The main idea behind TREC method for space reduction is simply focus on 

community matching phase. Similarity preserving community signatures are created by 

minhashing technique instead of using real communities and LSH (Locality Sensitive 

Hashing) is used to identify possibly similar communities. 

 

 

3.1. Background and Problem Formulation 

 

 

 First, key terms and definitions are given in Section 3.1.1 and then the problem is 

defined in Section 3.1.2 to clarify the methodology of TREC (Tracking Evolution of 

Communities) for the readers. 

 

 

3.1.1. Concepts and Definitions  

 

 

 This study is concerned with dynamic networks represented by graphs. Note that 

the terms networks and graphs are used interchangeably in this manuscript. These 

dynamic networks/graphs contain community structure unless they are random networks. 

The community structure can be overlapping or disjoint (nonoverlapping) for both 

dynamic and static networks. Community detection can be viewed as a solution to the 

graph partitioning problem. In the simplest case, the evolution of communities is a time-
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ordered sequence of the same community. To track them, communities are first detected 

at each time step and then they are matched according to the similarity of their members 

to create the time-ordered sequence. 

 Jaccard Similarity (JS) is one of the most common measures for calculating the 

member similarity of a pair of communities. It takes real values in the range [0,1], where 

0 means that the communities are completely different, and 1 means that they are 

completely equal with respect to their members. It is suitable for many applications, such 

as textual similarity of documents and similarity of customers' buying habits. It is 

calculated by equation (3.1): 

 

 

𝐽𝑆(𝐶𝑡1
𝑖 , 𝐶𝑡2

𝑗
) =  

𝐶𝑡1
𝑖 ∩ 𝐶𝑡2 

𝑗

𝐶𝑡1
𝑖 ∪ 𝐶𝑡2

𝑗
  (3.1) 

 

 

where Ct1 
i  and Ct2

j
 are the compared communities, (𝑖, j) are the numbers to identify the 

communities, and (𝑡1, 𝑡2) are the current time steps of these communities. For a pair of 

communities to be considered similar, they must meet or exceed a similarity threshold 

(λ). In our study, if  JS (Ct1
i , Ct2

j
) ≥  λ, then this pair of communities (Ct1

i  and Ct2
j

) is 

accepted as similar. 

 

 

 

Figure 3.1. A simple illustration of the evolution of communities 

 



17 

 

Figure 3.1. shows a simple illustration of the evolution of a community, with the 

purple circles representing the communities in the evolution chain and the white circles 

representing the other communities and the arrows showing the evolved version of a 

community that just preceded it. The evolution of a community is represented by the 

sequence of matching communities over time steps. For example, the evolution of 

community 𝐶1
1 from time 𝑡 =  1 to 𝑡 =  5 can be represented as 𝐶1

1  =

 {𝐶1
1, 𝐶2

6, 𝐶3
8 , 𝐶4

11, 𝐶5
13}, with superscript and subscript labels indicating community 

identification numbers and time steps, respectively. Thus, the community tracking 

problem is defined as recognizing a set of similar communities between different specific 

time steps and tracking their evolutionary behavior over the lifetime of a dynamic 

network. 

 

 

 

Figure 3.2.  An illustration of community evolution events where i and j represent time 

steps where i < j 
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Table 3.1.  Definition and illustration of community evolution events 

 

Definitions of community evolution event types Reference 

To Figure 

3.2. 

Form:  

A new community 𝐶𝑡𝑖
forms at time 𝑡𝑖 . 

𝑓𝑜𝑟𝑚(𝐶𝑡𝑗
𝑎) = 𝑡𝑟𝑢𝑒; 𝑖𝑓 𝐽𝑆(𝐶𝑡𝑖

∗, 𝐶𝑗
𝑎) < 𝜆  𝑓𝑜𝑟 ∀𝐶𝑡𝑖

∗ ∈ 𝐺 at time 𝑡𝑖 𝑎𝑛𝑑  𝑡𝑖 < 𝑡𝑗 𝑎𝑛𝑑 |𝑉𝐶𝑡𝑖
𝑎| ≥ 3.    

(a) 

Grow: 

New members may join the community or some existing members may move between communities in graph 𝐺 over time; hence, some 

of the communities may grow. 

 

𝑔𝑟𝑜𝑤𝑡ℎ(𝐶𝑡𝑖

𝑎) = 𝑡𝑟𝑢𝑒;  

𝑖𝑓  ∃𝐶𝑡𝑗

∗ ∈  𝐺 at time 𝑡𝑗 𝑎𝑛𝑑 𝑡𝑖 < 𝑡𝑗 𝑎𝑛𝑑  𝐽𝑆 (𝐶𝑡𝑖

𝑎, 𝐶𝑡𝑗

𝑏) ≥   𝜆  𝑎𝑛𝑑 𝑎𝑛𝑑  1.05|𝑉𝐶𝑡𝑖
𝑎 | ≤ |𝑉𝐶𝑡𝑗

𝑏| 

(b) 

Continue:  

Communities can continue their lives either without any change or with changes within tiny upper or lower limits as 0.05 rate of change 

in community size.  

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒(𝐶𝑡𝑖

𝑎) = 𝑡𝑟𝑢𝑒;  

𝑖𝑓 ∃𝐶𝑡𝑗

𝑏 ∈ 𝐺 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡𝑗 𝑎𝑛𝑑 𝑡𝑖 < 𝑡𝑗, 𝑎𝑛𝑑 𝐽𝑆 (𝐶𝑡𝑖

𝑎, 𝐶𝑡𝑗

𝑏) ≥  𝜆 𝑎𝑛𝑑 0.95|𝑉𝐶𝑡𝑖
𝑎| < |𝑉𝐶𝑡𝑗

𝑏| <  1.05 × |𝑉𝐶𝑡𝑖
𝑎|. 

(c) 

Shrink:  

A portion of the members may leave a community and cause it to shrink. 

𝑠ℎ𝑟𝑖𝑛𝑘(𝐶𝑡𝑖

𝑎) = 𝑡𝑟𝑢𝑒; 

(d) 

(cont. on next page) 
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Table 3.1 (cont.) 

 

𝑖𝑓 ∃𝐶𝑡𝑗

𝑏 ∈  𝐺 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡𝑗 𝑎𝑛𝑑  𝑡𝑖 < 𝑡𝑗 , 𝑎𝑛𝑑 𝐽𝑆 (𝐶𝑡𝑖

𝑎, 𝐶𝑡𝑗

𝑏) ≥  𝜆, 𝑎𝑛𝑑  |𝑉𝐶𝑡𝑗
𝑏| ≤  0.95 |𝑉𝐶𝑡𝑖

𝑎|.  

Split:  

A community can split into subcommunities if the similarity threshold λ between the community and the set of subcommunities is 

satisfied at the following time step. 

𝑠𝑝𝑙𝑖𝑡(𝐶𝑡𝑖

𝑎) =  𝑡𝑟𝑢𝑒; 

 𝑖𝑓 ∃𝑆𝐶𝑡𝑗
∗ = {𝐶𝑡𝑗

1 , 𝐶𝑡𝑗

2 , . . . , 𝐶𝑡𝑗

𝑚} 𝑓𝑜𝑟 𝐶𝑡𝑖

𝑎 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡𝑖 𝑎𝑛𝑑 𝑡𝑖 < 𝑡𝑗,𝑎𝑛𝑑 ∀𝐶𝑡𝑗

∗ ∈ 𝑆𝐶𝑡𝑗
∗ , 𝐽𝑆(𝐶𝑡𝑖

𝑎, 𝐶𝑡𝑗

∗) ≥  𝜆. 

(e) 

Merge:  

Communities can form a new and larger community by merging. A set of communities 𝑆𝐶𝑡𝑖
= {𝐶𝑡𝑖

1 , 𝐶𝑡𝑖

2 , 𝐶𝑡𝑖

3 , . . . , 𝐶𝑡𝑖

𝑛 } merge, and form a 

community ∃𝐶𝑡𝑗

b ∈  𝐺 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡𝑗 > 𝑡𝑖. The similarity threshold λ is exceeded by each community of 𝑆𝐶𝑡𝑖
and 𝐶𝑡𝑗

b. 

𝑚𝑒𝑟𝑔𝑒 (𝑆𝐶𝑡𝑖
𝑎) =  𝑡𝑟𝑢𝑒;  

𝑖𝑓 ∃𝑆𝐶𝑡𝑖
= {𝐶𝑡𝑖

1 , 𝐶𝑡𝑖

2 , 𝐶𝑡𝑖

3 , . . . , 𝐶𝑡𝑖

𝑛 } 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡𝑖 < 𝑡𝑗 𝑎𝑛𝑑 ∃𝐶𝑡𝑗

b ∈  𝐺, ∀𝐶𝑡𝑖

∗ ∈ 𝑆𝐶𝑡𝑖
, 𝐽𝑆(𝐶𝑡𝑖

∗ , 𝐶𝑡𝑗

b) ≥  𝜆. 

(f) 

Dissolve:  

A community 𝐶𝑡𝑖
𝑎 dies over time by losing its members and then we cannot observe any community exceeding similarity threshold λ 

in the following steps. 

𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒(𝐶𝑡𝑖
𝑎 ) =  𝑡𝑟𝑢𝑒;  𝑖𝑓 ∄𝐶𝑡𝑗

∗ ∈  𝐺 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡𝑗 > 𝑡𝑖 𝑤𝑖𝑡ℎ 𝐽𝑆 (𝐶𝑡𝑖
𝑎 , 𝐶𝑡𝑗

∗) ≥ 𝜆  𝑎𝑛𝑑 |𝑉𝐶𝑡𝑖
𝑎| < 3 

(g) 
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Relationships/interactions between communities may change over time, so a 

community may experience some critical events. They are briefly mentioned in section 

2.3. All critical events are defined in Table 3.1 and the corresponding visualizations are 

shown in Figure 3.2. 

The evolution of a community may be observed either in consecutive or in 

nonconsecutive phases. If the evolution of communities is observed at each time step as 

in Figure 3.3, community 𝐶1
4 evolves continuously. The evolved version of the 

community from the previous time step is shown at each consecutive time step.  

 

 

 

Figure 3.3. A simple illustration of the consecutively evolving communities 

 

 

However, some communities may not be observed immediately after a particular 

time step, that is, a community cannot dissolve only after a step. This type of evolution 

of communities is called nonconsecutive evolution. A simple illustration is shown in 

Figure 3.4. for nonconsecutive evolving communities 𝐶1
1 and 𝐶1

3. As can be seen from the 

figure, the evolution of these communities is not observed at time steps 𝑡 = 3 and 𝑡 = 5. 

The number of communities in an evolution chain indicates the chain length, and 

the chain length is indicated by the character “L”.  For example, the evolution chain of 

the consecutively evolving community 𝐶1
4 shown in Figure 3.3 is 𝐶1

4 =

{𝐶1
4, 𝐶2

6, 𝐶3
9, 𝐶4

11, 𝐶5
13} and 𝐿(𝐶1

4) = 5. As another example, the evolution chain of 

nonconsecutively evolving community 𝐶1
4 is 𝐶1

3 = { 𝐶1
3, 𝐶2

6, 𝐶4
11} and 𝐿(𝐶1

4) = 3. 
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Figure 3.4. A simple illustration of the nonconsecutively evolving communities 

 

 

3.1.2. Problem Formulation 

 

 

 Let 𝐺𝑡  =  (𝑉𝑡, 𝐸𝑡)  be a graph representing a static network, where 𝑉𝑡 is the set of 

vertices (i.e., nodes) and 𝐸𝑡 is the set of edges at a given time step t. A dynamic network 

G can be denoted as a sequence of static networks such as 𝐺 =

 {𝐺1, 𝐺2, . . . , 𝐺𝑡𝑖𝑚𝑒𝑆𝑡𝑒𝑝𝐶𝑜𝑢𝑛𝑡}, where 𝑡 = 1,2, . . , 𝑡𝑖𝑚𝑒𝑆𝑡𝑒𝑝𝐶𝑜𝑢𝑛𝑡. A community is a 

subset of densely connected vertices of each time graph 𝐺𝑡, while it is loosely connected 

to the rest of 𝐺𝑡. There can be a number of 𝑘 distinct communities belonging to the same 

𝐺𝑡. A community detection method partitions the time graph 𝐺𝑡 into densely connected 

subgraphs (i.e., communities) such that 𝐶𝑡  =  {𝐶𝑡
1, 𝐶𝑡

2, … , 𝐶𝑡
𝑘}, where each community 𝐶𝑡

𝑖 

∈ Ct , 𝑖 = 1, . . , 𝑘 with vertex set and edge set of each community 𝐶𝑡
𝑖 = (𝑉𝑡

𝑖 , 𝐸𝑡
𝑖) as  𝐶𝑡

𝑖 ⊆

G𝑡.   

 

 

3.1.3. Evaluation Criteria for Methods for Tracking Evolution of 

Communities  
 

 

There are many different ways to track the evolution of communities. But there 

are some key criteria to characterize them and with this characterization it is possible to 

compare and evaluate the methods. These criteria are explained below: 
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Criterion #1 (Community Structure): As mentioned in Chapter 2, the 

community structure is either disjoint (nonoverlapping) or overlapping, depending on the 

type of network. For example, members of an OSN (Online Social Networks; such as 

Facebook, Twitter) may be members of many communities. In protein-protein interaction 

networks, on the other hand, groups of proteins that have the same specific function 

within the cell belong to a particular community. Therefore, the underlying community 

structure in the network influences the community detection algorithm used and the 

method used to track the evolution of communities. 

Criterion #2 (Ability of the community type to evolve): As mentioned in 

Section 3.1.1, some communities can evolve consecutively, while others evolve 

nonconsecutively in the same network. All existing methods for tracking community 

evolution already track consecutively evolving communities. However, some 

communities in real dynamic networks do not evolve consecutively. Therefore, to obtain 

more realistic results, an appropriate community evolution tracking method must be able 

to track both types of evolution. 

Criterion #3 (Coverability): Evolutionary events such as formation, growth, etc. 

are presented in Section 3.1.1. An appropriate method for tracking the evolution of 

communities must cover all possible evolutionary events. 

Criterion #4 (Recognise the ability to merge/split k communities): In real-

world networks, a community can be split into k-subcommunities and/or k-

subcommunities can be merged into one community, where 𝑘 ≥ 2. An appropriate 

method for tracking community evolution must support the detection of k-community 

merging and k-community splits. 

 

 

3.1.4. Minhashing 

 

 

Communities of members in real-world networks, such as social networks, are 

generally large. If the network includes hundreds of thousands or millions of community 

members, it may not be possible to store all the members that make up the communities 

in main memory. Even if all members fit in the main memory, the number of pairs may 
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be too large to evaluate JS (Jaccard Similarity) of each community pair. Therefore, there 

is a need to replace large communities with much smaller representations. 

One of the solutions is hashing to convert each community into a small signature, 

using a hashing function ℎ. The function h must have the following properties, where 𝑡1 

and 𝑡2 are time steps, 𝑥 and 𝑦 are the identification numbers of the communities. 

 h(𝐶𝑡1
𝑥 ) is the signature of community 𝐶𝑡1

𝑥  and it occupies less space in main 

memory than he members of the whole community. In this way, the signatures of 

all communities can be accommodated in main memory. If similarity(𝐶𝑡1
𝑥 , 𝐶𝑡2

𝑦
) is 

high, then Probability(h(𝐶𝑡1
𝑥 == ℎ(𝐶𝑡2

𝑦
)) is high. 

 If similarity(𝐶𝑡1
𝑥 , 𝐶𝑡2

𝑦
) is low, then Probability(h(𝐶𝑡1

𝑥 == ℎ(𝐶𝑡2
𝑦

)) is low. 

 

The choice of hashing function is closely related to the similarity metric used. 

Minhashing is the appropriate hashing function for computing JS (Leskovec, Rajamaran, 

and Ullman 2015). Minhashing is a technique introduced by Andrei Broder (Broder 1997) 

to find out duplicate pages on Alta Vista. It compresses large data sets into fixed-length 

sketches called "signatures". A minhashing function depends on the permutation of 

sets/groups/communities. The basic idea of minhashing is to hash each set into a small 

fixed length signature sig(set) such that:  

 

 sig(set) is small enough to fit the signature in main memory. 

  sim (set1, set2) is same as sim(sig(set1), sig(set2)) 

 

 

 

Figure 3.5. Main steps of process of how to compute minhash signatures 
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It is not computationally feasible to permute randomly a large adjacency matrix 

explicitly. Thus, there is need to mimic random permutation. Therefore, instead of picking 

n random permutations, n random hash functions from ℎ1 to ℎ𝑛 are picked. Then a 

signature matrix is constructed and its construction steps in Figure 3.5 are described 

below. (Leskovec, Rajamaran and Ullman 2015). 

 

Example: Computing minhash signatures 

  

Figure 3.6. An adjacency matrix, A, representing sample sets (e.g., groups or 

communities) and their respective members  

 

 

Just for completeness, let us compute a signature matrix for the adjacency matrix 

in Figure 3.6. as an example, where the sets are the groups (or communities) and the 

member IDs are the identification numbers of the members of those groups. Suppose there 

are two hash functions such as h1(x) = x+1 (mod 5) and h2(x) = 3x+1 (mod 5). X in the 

hash functions refers to the row numbers, so the permutations are effectively simulated. 

The entries of the adjacency matrix, A, are binary. The entry "1" represents the presence 

of a member, while the entry "0" represents the absence of a member. In Figure 3.6, Set1 

= {1,4}, Set2  = {3}, Set3 = {2,4,5} and Set4 = {1,3,4}. Note that these simple functions 

generate real permutations because the number of rows in A, 5, is a prime number. That 

is, the minhash functions, h1 , ⋯, hn  implicitly rearrange the rows of the matrix of the 

figure. 

In the first step, the values ℎ1(𝑟𝑜𝑤#), ℎ2(𝑟𝑜𝑤#), ⋯ , ℎ𝑛(𝑟𝑜𝑤#) are calculated. 

The values obtained can be seen in Figure 3.7. 
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In the second step, all entries of sig[] matrix are initialized to infinity. Figure 3.8. 

shows the initialized signature matrix, sig[]. 

 

 

 

 

Figure 3.8. Initialized signature matrix, sig[] 

 

 

In the third step, entry ‘1’s are scanned by A []. The minimum values generated 

by the hash functions are compared with the corresponding cell of  sig[] and the minimum 

of them is selected and assigned to the cell. For Set1, the minimum value ofh1 is 1 and 

sig[1, 1] is ∞. Therefore, sig[1,1] is assigned as 1. For the same set, the minimum value 

of h2 is 0 and sig[1,2] is ∞. Since 0 is less than ∞, sig[1,2] is assigned 0. 

 

Figure 3.7. The computed hash functions for the matrix of Figure 3.6. 
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Altered version of sig [] is below. 

 

 

 

After the computation of the minhash values for Set1 is complete, the minimum 

hash values for Set2 are determined. 

As can be seen, the minimum values are 3 and 2 generated by ℎ1 and ℎ2, 

respectively. Since the corresponding cells of the signature matrix span ∞ and are all less 

than ∞, the minimum hash values are 3 and 2. 

 

 

 

The updated version of the signature matrix is below. 
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As for Set3, the minimum hash values are 0 generated by both ℎ1 and ℎ2. Since 

the corresponding cells of the signature matrix contain ∞ and 0 is less than ∞, the minimal 

hash values are 0s. 

 

 

 

The updated version of the signature matrix is below. 

 

 

 

Lastly, minimum hash values are determined for Set4. 

 

 

 

As can be seen from the above figure, the minimum values are 1 and 0 generated 

byℎ1 and ℎ2, respectively. Since the corresponding cells of the signature matrix contain 

∞ and are all less than ∞, the minimum hash values are 1 and 0. The latest version of the 

signature matrix can be found below. 
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The Relation Between Minhash Signatures and Jaccard Similarity: 

 

There is a relationship between the minhashes of a pair of sets (e.g. groups, 

communities) and the Jaccard similarities (JS) between them. This relationship states that 

the probability of similarity between the minhash signatures of a pair of sets is equal to 

the JS of the pair of sets. To find out why this is so, we need to examine the row types of 

a pair of sets in terms of the members they contain. Then, the rows are divided into three 

classes, e.g., X (both contain the member), Y (one of them contains the member), and Z 

(none contains the member), as shown in the following table. Since only the number of 

rows of type X and type Y determine both JS and the probability of minhash signatures 

of a pair of sets is equal, the rows whose type is Z are negligible. 

 

Row Type Set1 Set2 

X 1 1 

Y 1 0 

Y 0 1 

Z 0 0 

 

Suppose there are x rows of type X and y rows of type Y in the minhash signatures 

of the set pair. Then, 𝐽𝑆 (𝑆𝑒𝑡1, 𝑆𝑒𝑡2) =  
𝑥

(𝑥+𝑦)
 .  

Let us focus on the probability that the minhash signatures of a pair of sets are 

equal. Since it is necessary to randomly permute the rows of the membership list/matrix 

of sets, the probability that we hit a row of type X before we hit a row of type Y is 
𝑥

(𝑥+𝑦)
 

. As can be seen, 𝐽𝑆 (𝑆𝑒𝑡1, 𝑆𝑒𝑡2) has the same relationship with P(ℎ(𝑆𝑒𝑡1), ℎ(𝑆𝑒𝑡2)).  

In Table 3.2, we compute the Jaccard similarity values of the adjacency matrix A 

from Figure 3.6 and the Jaccard similarity values for the signature matrix (sig[]). As can 

be seen from the table, the Jaccard similarities are preserved. That is, there is no similarity 

between Set1 and Set2, and Set2 and Set3 in the A matrix, the case is valid for the signature 
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matrix. Other values are only an approximation. The more hash functions there are, the 

better approximations are obtained. 

 

 

Table 3.2. Jaccard similarity for original matrix and approximate Jaccard Similarity for 

signature matrix sig[] 

 

 Set1-Set2 Set1-Set3 Set1-Set4 Set2-Set3 Set2-Set4 Set3-Set4 

Similarity 

over A[]  

0 0.2 0.4 0 0.2 0.2 

Similarity 

over sig[] 

0 0.5 1 0 0 0.5 

 

 

One may be concerned with the difference between exact similarities and 

approximate similarities calculated via minhash signatures. For example, the approximate 

similarity over their signatures is 50%, while the actual similarity between Set3 and Set4 

is 20%. On the one hand, the minhash procedure guarantees that if there is no similarity 

between two sets, it provides a similarity value of zero for them. On the other hand, as 

the number of hash functions increases, the approximation to exact similarity values gets 

better and better. Incidentally, this problem is completely solved by Line 14 of the 

pseudocode in Figure 3.18. In this line, the exact similarities of the communities are 

checked externally by 𝐽𝑆(𝐶𝑡𝑥
𝑘 , 𝐶𝑡𝑐

𝑐 ). Therefore, there is no need to worry about using 

approximate similarities. They are only used to quickly find similar communities by LSH. 

 

 

3.1.5. Locality Sensitive Hashing for Minhash Signatures 

 

 

 To determine the evolution of communities, one must know the similarity of pairs 

of communities. Suppose that one wants to calculate the exact similarity of pairs of 

communities in order to match them. This calculation needs (𝑡 − 1) × 𝑐2  comparison 

operations, where c is the number of average communities for each time step and t is the 

number of time steps in the dynamic network. If someone wants to know the exact 

similarity of each pair, there is nothing to reduce the work, but parallelism can help reduce 
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the time spent. Minhashing dramatically improves the comparison times between two 

communities. Note that the members of the community pairs must be compared if 

minhashing is not used. However, finding similar communities is still expensive. In fact, 

it is enough to know that the similarity between a community pair exceeds a lower bound 

(𝐿𝑆𝐻𝑆𝑇) to decide whether a community pair is similar. Therefore, focusing only on 

community pairs that are likely to be similar in the community matching phase is 

sufficient to track the evolution of communities without examining the similarity of 

individual pairs. LSH, short for Locality Sensitive Hashing, is an efficient technique to 

find out approximate near neighbors. Combining LSH with minhash signatures is so 

elegant for queries in Jaccard space. 

 

 

 

 

Figure 3.9.  Illustration of how LSH works 

 

 

Figure 3.9. shows the representation of the LSH table and buckets, and how the 

LSH technique works. A signature matrix is formed from the minhash signatures of each 
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community. Therefore, each column in the signature matrix sig[] is a signature of a 

particular community. The matrix sig[] is divided into 𝒃 bands, where each band contains 

the same number of 𝒓 rows. We denote the number of rows in the signature matrix as 𝑛, 

where 𝑛 = 𝑏 × 𝑟 and n is determined by the number of hash functions used. A part of a 

minhash signature whose length is r within a band is called a "pickle". A general approach 

to the LSH technique is to hash minhash signatures such that similar signatures are more 

likely to be hashed into the same bucket than dissimilar ones. Note that the same hash 

function can be used for all bands, but it is necessary to use separate bucket collections 

for each band.  

To hash likely similar signatures into the same bucket than dissimilar ones, LSH 

takes pickles and hashes them into a large number of buckets. In this way, the same 

pickles are hashed into the same buckets for each band. If there is at least one pickle with 

minhash signatures of a pair of different communities in the same bucket in the same 

band, they are considered as candidates. When LSH is queried for near neighbors of a 

community, only candidate pairs are returned. However, there is a possibility of false 

positives since the dissimilar pairs are in the same bucket. On the other hand, false 

negatives may occur if some similar signature pairs cannot be hashed into the same 

bucket. 

𝐿𝑆𝐻𝑆𝑇 (similarity threshold for LSH) is determined according to equation (3.2) as 

seen from the figure above. LSH guarantees that communities that are either equal to or 

greater than 𝐿𝑆𝐻𝑆𝑇   are returned with a certain probability value. Its calculation is 

explained below. 

 

 

𝐿𝑆𝐻𝑆𝑇 = (
1

𝑏
)

(1
𝑟⁄ )

(3.2) 

 

 

The probability that a community pair will become candidates that have a percent 

𝜆 similarity is calculated using equation (3.3). 

 

 

1 −  (1 − 𝜆𝑟)𝑏 (3.3) 
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The following steps show how to calculate equation (3.3). Assume that 

Community 1, 𝐶1, and Community, 𝐶2, and 𝜆 is the similarity threshold for LSH. 

 

Step 1: The Probability that 𝐶1 and 𝐶2 are identical in a particular band is 𝜆 𝑟. 

Step 2: The Probability that 𝐶1 and 𝐶2 are not similar in a particular band is 1 − (𝜆𝑟). 

Step 3: The Probability that  𝐶1 and 𝐶2 are not similar in any of the bands is (1 − (𝜆𝑟))𝑏. 

Step 4: The Probability that 𝐶1 and 𝐶2 are identical in at least one band is 1 −

 (1 − (𝜆𝑟))𝑏. That is, LSH consider 𝐶1 and 𝐶2 as a similar pair with this probability.  

 

In this thesis, 𝜆 first set to 0.1 between community signatures. Then, 𝐿𝑆𝐻𝑆𝑇 is 

determined as close as possible to λ. Later, the values of b and r are chosen experimentally 

to obtain the desired  𝐿𝑆𝐻𝑆𝑇.  By substituting these values into equation (3.3), the 

probabilities of the signature pairs discovered by LSH are calculated and presented in 

Table 3.3. 

 

 

Table 3.3. Probabilities of the signature pairs detected by LSH with respect to the λ 

 

Similarity between a minhash 

signature pair, 𝜆 

Probability of the pair have 𝜆 similarity 

detected by LSH, 1 − (1 − (𝜆𝑟))𝑏 

0.1 0.364 

0.2 0.841 

0.3 0.986 

0.4 1.000 

0.5 1.000 

0.6 1.000 

0.7 1.000 

0.8 1.000 

0.9 1.000 

 

 

The results in Table 3.3 show us that LSH recognizes the signature pairs that have 

10% similarity with 36% probability. Also, LSH recognizes the pairs with 20% similarity 
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with a probability of 84%. Moreover, it recognizes the pairs that have 40% similarity or 

more with 100% probability. As can be seen, as the similarity of the pairs increases, the 

recognition performance of LSH also increases. These results are quite satisfactory, 

especially with respect to the trade-off between time and space requirements in exact 

searching for similar communities of a given community. 

The reason for choosing λ as 0.1 is to determine the candidate community pairs 

that maximize the community relationships, including the community pairs that have a 

similarity of 10% with 36% probability in the analyzed dataset, over the LSH data 

structure. Moreover, our tracking process verifies the exact JS between these candidates 

with respect to their members. If the value of JS of the candidate pairs exceeds the λ-

value, then they are matched. The analysis of the event types over the time steps is done 

after the completion of our tracking process. 

   The application of “LSH for minhash signatures” in this study is explained in 

Section 3.3 Methodology. 

 

 

3.2. Related Work 

 

 

 Since understanding and explaining group-level dynamic networks are important 

for many research areas, tracking community evolution has emerged and continues to 

grow. In recent years, several studies have been published on this topic. To provide an 

up-to-date overview of the topic, we review the studies published in recent years. They 

are summarized below. 

Cazabet et al. (Cazabet, Rosetti, and Amblard 2017) present a distilled 

information on dynamic community detection, operations on communities (i.e., 

community events-growth, contraction, merge, splitting, birth, death, and resurgence), a 

classification of approaches, and give references of famous works in each class with their 

respective advantages and disadvantages. They classified the existing approaches into 

three groups according to the definition of what good dynamic communities are: Instant 

Optimal (independent detection of communities in each snapshot and matching 

communities), Temporal Trade-off (initial detection of communities in the first snapshot 

and sequential detection of communities in the next snapshot using the current network 
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and previous communities), and Cross-time detection of communities (a coupling graph 

is created from all snapshots and community detection is done in this graph). 

Saganowski et al. (Saganowski, Bródka, and Kazienko 2017) describe and review 

methods for tracking community evolution. These methods are designed for different 

types of social networks, such as disjoint, overlapping, or both. They provide basic ideas 

about all the methods they addressed in the paper. They also describe in detail the method 

of Asur et al. (Asur, Parthasarathy, and Ucar 2009), the method of Palla et al. (Palla, 

Derényi, Farkas, and Vicsek 2005), and Group Evolution Discovery (GED) (Brodka, 

Saganowski, Kaizenko 2012). 

 Rossetti and Cazabet (Rozetti and Cazabet 2018) introduce network models (i.e., 

temporal networks and network snapshots) and extend their classification in (Cazabet, 

Rosetti, and Amblard 2017) as a two-level one. The higher level categorization 

approaches are the same. At the second level (i.e., subcategorization), they further classify 

according to their community detection techniques, such as iterative similarity-based 

approaches, updating by global optimization, updating by set of rules, etc. Next, they 

discuss issues related to community evaluation, such as benchmarks, synthetic generators, 

and in the case of the existence of ground truth communities. They summarize the 

application areas of dynamic community detection for real-world problems and 

visualization. 

 A novel taxonomy introduced by Dakiche et al. (Dakiche, Tayeb, Slimani, and 

Benatchba 2019a) is a three-level classification of existing methods for tracking 

community evolution in dynamic social networks in terms of their network models (first 

level of tree structure), operating principles (second level), and algorithmic techniques 

(third level). This taxonomy is graphically represented in Figure 3.10. The figure shows 

four basic approaches according to their operating principles: 

 

(i) The independent community detection and matching approach includes methods 

that first detect the structure of communities at each time step separately and match 

these communities across consecutive or nonconsecutive time steps. All methods 

in this category aim to track the evolution of communities by identifying key 

community events (e.g., form, dissolve, growth, etc.) across community life cycles. 

Core-based methods identify one or more specific nodes for each community, 

called core nodes. For example, the nodes with the highest centrality value in the 
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network may be core nodes. Then, the methods determine community events that 

correspond to the core nodes. In the event-based methods, all nodes are considered 

to determine the community events. 

 

 

 

 

Figure 3.10. Classification chart of the existing tracking community evolution methods 

in dynamic social networks  

 

 

(ii) The dependent community detection approach includes methods that detect the 

community structure using the snapshot at time t and past community information 

(e.g., using the previous snapshot or some recent snapshots). In this approach, there 

are two main types of methods: evolutionary methods and cost function methods. 

Evolutionary methods build on or modify basic community detection algorithms, 

such as Louvain (Blondel, Jean-Loup, Renaud Lambiotte, and Lefebvre 2008). 

They initialize the community structure with the communities detected by these 

algorithms and re-run the modified basic algorithm. For cost function methods, they 
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use a cost function (e.g., any function to minimize community changes between 

successive snapshots, such as maximizing modularity between two successive 

snapshots). 

(iii) The Simultaneous Community Detection on All Snapshots approach includes 

methods that first construct a single from all snapshots and detect the community 

structure on the coupling (joint graph). The methods using this approach are either 

based on coupling graphs or on optimizing metrics. In methods based on coupling 

graphs, the basic idea is to construct a coupling graph and detect communities on 

this graph. For methods based on optimizing metrics, the basic idea is to design a 

metric that can be optimized directly on all given snapshots. 

(iv) Dynamic community detection on temporal networks involves methods that 

discover communities only on the first snapshot network and then change this 

community structure for each incoming update. 

 

 

 

 

Figure 3.11. An illustration of replacement of TREC method under Event-based 

Methods in Dakiche et al.’s taxonomy 
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With the exception of the taxonomy of Dakiche et al. (Dakiche, Tayeb, Slimani, 

and Benatchba 2019a), the other taxonomies summarized above are very similar and 

generally complementary. The Dakiche et al.’s taxonomy is the most recent and 

comprehensive taxonomy specifically for dynamic social networks. 

Our novel method TREC can be placed in the category of event-based methods in 

the taxonomy of Dakiche et al. as shown in Figure 3.11. TREC works with snapshot 

networks and uses an independent community detection and matching approach. It is an 

event-based method. Since TREC can be classified into this taxonomy, we explain the 

taxonomy in detail by describing the work on each category and discussing the advantages 

and disadvantages of each category in Appendix A. 

As competing works, the methods are examined in the literature under the same 

place in the taxonomy. These works are summarized below. 

Asur et al. (Asur, Parthasarathy, and Ucar 2009) proposed a simple method for 

identifying community events via a matching approach on time-step community 

membership matrices. They use MCL (Van Dongen 2000), a modularity-based algorithm, 

to detect community structures.  

Greene et al. (Greene, Doyle, and Cunnigham 2010) propose a model for 

community evolution over time. They obtain community structures at each time step as 

step communities. They represent each dynamic community by a timeline of its 

constituent step communities. The most recent observation in a timeline is called the front 

of the dynamic community. After matching communities via Jaccard similarity, the 

authors update the front elements and timelines for each dynamic community. 

Brodka et al (Bródka, Saganowski, and Kazienko 2012) develop the Group 

Evolution Discovery(GED) method. The core of this method is the inclusion measure, 

which allows to evaluate the inclusion of one community in another by combining both 

the group quantity (what number of members of the first group in the second group) and 

the quality (importance of all members in the group) of community members. Based on 

the inclusion measure, some rules for determining community events are established. 

Gliwa et al. (Gliwa, Saganowski, Zygmunt, Bródka, Kazienko, and Kozak 2012) 

propose a different method, which they call Stable Group Changes Identification(SCGI). 

They use the method CPM (Palla, Derényi, Farkas, and Vicsek 2005) for community 

detection and propose a modified Jaccard similarity instead of an inclusion metric. They 

assume that two communities are similar if the similarity is greater than 50%. 
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Takaffoli et al. (Takaffoli, Fagnan, Sangi, and Zaïane 2011) develop a method to 

improve community evolution tracking by defining rules. They perform matching 

operations communities not only between consecutive time steps but also between 

different time steps by using a simple greedy matching algorithm. 

Tajeuna et al. (Tajeuna, Bouguessa, and Wang 2016) propose a new method for 

modeling and tracking community evolution. They first independently identify the 

community structure at each time step. For each identified community, they find the 

number of members it has in common with all other communities. Then, for each 

identified community, they estimate a representative vector that contains members in 

common with the other communities. Next, they compare the representative vectors with 

a new similarity measure called mutual transition. Using this measure, they create rules 

to capture community events. 

Mohammadmosaferi and Naderi (Mohammadmosaferi and Naderi 2020) propose 

a new method ICEM (Identification of Community Evolution by Mapping) for tracking 

the evolution of communities. ICEM can identify both consecutive and nonconsecutive 

evolutions of communities. Basically, it determines evolution by tracking the members 

of communities within a global hash map. It assigns each member to a pair, where time 

represents the last observed time step and community represents the last observed 

community. In addition, it records the similarity of each community at a particular time 

step. Similarity lists and the hash map are used to determine the evolutions. 

Table 3.4. summarizes the characteristics of the most popular and recent methods 

that use the independent community detection and matching approach. The columns of 

the table indicate the names of the methods presented in related works. The attribute Year 

indicates the publication date of the work. The attribute CD algorithm indicates the 

community detection method used. The attribute Similarity Metric represents the 

similarity measure used by the tracking method to decide the similarity of a pair of 

communities. Jaccard similarity and modified Jaccard similarity are represented as "J." 

and "M.J." in Table 3.4. The attributes of the criteria are evaluation criteria, which are 

explained in subsection 3.1.3. Criterion #1 indicates whether the communities are 

overlapping or nonoverlapping (disjoint), and they are represented in the table as "O." 

and "NO.", respectively. Criterion #2 indicates the tracking ability of the methods for 

either/both consecutive and/or nonconsecutive evolutions. Criterion #3 lists the 
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undetected evolutionary events. Criterion #4 indicates whether the tracking method is 

able to detect k-community merge and split events. 

As can be seen in Table 3.4, some methods work with nonoverlapping 

communities (Asur, Parthasarathy, and Ucar 2009; Greene, Doyle, and Cunningham 

2010; Takaffoli, Fagnan, Sangi, and Zaïane 2011; Tajeuna, Bouguessa, and Wang 2016; 

Mohammadmosaferi and Naderi 2020) and the others work on overlapping communities 

(Bródka, Saganowski, and Kazienko 2013; Gliwa, Saganowski, Zygmunt, Bródka, 

Kazienko, and Kozak 2012). Markov Cluster Algorithm (MCL) (Van Dongen 2000), 

Louvain (Blondel, Guillaume, Lambiotte, and Lefebvre 2008), Local Community Mining 

(Chen, Zaïane, Goebel 2009), Infomap (Rosvall and Bergstrom 2008), and Leiden (Traag, 

Waltman, and Van Eck 2019) are the most common methods for detecting 

nonoverlapping community structures, while Clique Percolation Method (CPM) (Palla, 

Derényi, Farkas, and Vicsek 2005) is the most common method for detecting overlapping 

community structures. 
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Table 3.4. Overview of the mainstream and latest competitor methods 

 

 

 

 Methods 

Attributes 

Asur et al.  

(Asur,  

Pathasary, 

and Ucar 

2009) 

 

Greene et al. 

(Greene, 

Doyle, and 

Cunnigham,  

2010)  

Takaffoli et al.  

(Takaffoli, 

Fagnan, Sangi, 

Zaïane, 2011) 

GED  

(Bródka, 

Saganowski,  

and 

Kazienko 

2012 

SCGI 

(Gliwa,  

et al. 2012) 

Tajeuna et al.  

(Tajeuna, 

Bouguessa, and 

Wang 2016) 

ICEM 

(Moham-

madmosafer

i  

and Naderi 

2020) 

Year 2009 2010 2011 2012 2012 2016 2020 

CD 

algorithm 

MCL Louvain  LCM  CPM  CPM  Infomap  Louvain  

 

Leiden 

Similarity 

Metric 

M.J. J. 

 

A Specific 

Measure 

Inclusion 

measure 

M.J. Mutual Transition A Specific 

Measure 

Criterion #1 NO. NO. NO. O. O. NO. NO. 

Criterion #2 C. C. &limited  

NC. 

C. & NC. C. C. C. & NC. C. & NC. 

Criterion #3 Shrink, 

expand 

Continue Shrink, expand None None None None 

Criterion #4 No No Yes Yes Yes Yes Yes 

https://ieeexplore.ieee.org/author/37267257300


41 

 

It is obvious that all tracking methods detect consecutively evolving communities; 

however only some methods are capable of tracking nonconsecutively evolving communities 

(Takaffoli, Fagnan, Sangi and Zaïane 2011; Tajeuna, Bouguessa and Wang 2016; 

Mohammadmosaferi and Naderi 2020). However, only Greene et al.'s method (Greene, Doyle 

and Cunningham 2010) is limited to detecting the nonconsecutive evolution of a community 

for three consecutive snapshots.  

For criterion #3 (ability to detect events), the methods GED, SCGI, (Tajeuna, 

Bouguessa, and Wang 2016), and ICEM can all detect evolutionary events, but (Asur, 

Parthasarathy, and Ucar 2009; Takaffoli, Fagnan, Sangi, and Zaïane 2011) and (Greene, Doyle, 

and Cunningham 2010) do not detect shrink/expand and continue events, respectively. 

For criterion #4; the methods (Asur, Parthasarathy, and Ucar 2009) and (Greene, Doyle, 

and Cunningham 2010) cannot track whether k-community merge and split occurs, and the 

others support k-community merge and splits. However, in real networks, k-communities can 

merge and a community can split into k-communities. 

As for the similarity metric used by the methods, the most common metric is Jaccard 

similarity. Takaffoli et al. (Takaffoli, Fagnan, Sangi, and Zaïane 2011) accept a pair of 

communities as similar if the proportion of their common members is equal to or greater than 

k (i.e., predefined similarity threshold) of the largest community. The inclusion measure of 

GED combines both quantity (i.e., one community includes how many members of another) 

and quality of community members (i.e., social importance of community members, e.g., 

degree of centrality, degree betweenness degree, page rank). ICEM calculates similarity based 

only on the ratio of intersection to size of a community. An appropriate method for tracking the 

evolution of communities must have some desired functional and performance characteristics 

below. 

 

Desired Functional Properties: 

(i) It should be able to track both consecutively and nonconsecutively evolving communities. 

(ii) It should be able to detect all evolutionary events. 

(iii) It should be able to track merge and split events for more than two communities.  

 

Desired Performance Characteristics: 

(i) It should produce highly accurate tracking results.  

(ii) It should have low memory consumption.  

(iii) It should have reasonable execution time. 
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Current studies focus on either accuracy or time efficiency, but not both. And also many 

of them do not consider algorithmic complexity analysis to represent and measure their 

scalability. Moreover, none of the methods in the literature consider space efficiency. However, 

in the world of dynamic networks, low resource consumption is definitely a key element to 

improve the usability of solutions. This is the motivation to propose the TREC method, which 

has all the desired properties. 

 

 

3.3. Methodology 

 

 

In this study, the task of tracking community evolution can be divided into three basic 

steps: Network Representation, Community Detection, and Evolution Analysis, as shown in 

Figure 3.12. In the first step, the network data is represented as a sequence of static networks. 

To do this, the network data is decomposed into time steps. In the second step, an existing static 

community detection method is applied to all time steps in the network and the underlying 

community structure of the network is revealed. In the last step, the life chain of communities 

across the time steps is revealed by matching communities and creating their evolution chains.

  

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Main steps of tracking evolution of communities 

 

Network 

Representation 

 

Community 

Detection 

Evolution 

Analysis 



43 

 

After reviewing related work, it appears that there is a need for an event-based method 

for tracking community evolution that detects all types of evolutionary events for both 

consecutively and nonconsecutively evolving communities with highly accurate tracking 

results while consuming low resources, especially in terms of memory space. This need 

motivates us to develop TREC. 

Since the network representation and community detection steps are default for all related 

methods for tracking community evolution, they are not explicitly included in the steps of the 

TREC method, as can be seen in Figure 3.13. Additionally, the Louvain method (Blondel, 

Guillaume, Lambiotte, and Lefebvre 2008) is used to detect communities. Since the Louvain 

method is one of the best methods among community detection methods (Yang, Algesheimer, 

and Tessone 2016; Karataş and Şahin 2018b) in terms of both accuracy and execution time, it 

is preferred. The Louvain method detects disjoint communities. However, there is no obligation 

to use the Louvain algorithm, instead any community detection method can be used for disjoint 

communities. 

The main steps of the evolution analysis of TREC can be seen in Figure 3.13. The 

following subsections explain the main steps in detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.13. Main steps of TREC method 

 

1. Community Representation

2. Building Minhash Signatures

3. Building LSH Table and Buckets

4. Tracking Similar Communities over Time
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Step 1. Community Representations 

 

 For each time step, there is a text file containing the community members on each line 

(vertex identifiers only, with each vertex identifier represented by positive integers). These text 

files are first created and kept on disk. Then they are loaded into main memory as a single 

community vector map 𝑣. This vector map 𝑣 contains community identifiers and current time 

step information as corresponding key-value pairs. The map is conceptually illustrated in Figure 

3.14. 

 

 

 

 

 

 

 

Figure 3.14. Community vectors representation for time steps 

 

The abbreviation 𝑡𝑠𝑐 stands for "time step count", which is the available number of time 

steps for the dataset used. The 𝑡 is the time index and 1 ≤ 𝑡 ≤ 𝑡𝑠𝑐. For each time step t, there 

is a finite number of communities and the average number of communities is represented by 𝑐. 

The "total number of communities" - 𝑡𝑐𝑐 defines the maximum number of communities 

detected for all 𝑡𝑠𝑐 time steps. 

 

Step 2. Building Minhash Signatures 

 

Originally, the minhashing implementation works with binary vectors, but it is extended 

to integer vectors and continuous variables (Chamberlain, Levy-Kramer, Humby, and 

Deisenroth 2018).  Figure 3.15 (a) shows the representation of communities in the network with 

binary vectors. The length of each community vector is equal to the total number of unique 

nodes in the network. The presence of all unique node identification numbers (e.g., n) is scored 

as 0 or 1, where 1 indicates presence and 0 indicates absence in the vectors. Figure 3.15 (b) 

shows the representation of communities in the network with integer vectors. In an integer 

community vector, only the identification numbers of the existing nodes are included. 

𝐶1 = {𝐶1
1, 𝐶1

2, … , 𝐶1
𝑘} 

𝐶2 = {𝐶2
𝑘+1, 𝐶2

𝑘+2, … , 𝐶2
𝑙} 

… … 

𝐶𝑡𝑠𝑐 = {𝐶𝑡𝑠𝑐
𝑧+1, 𝐶𝑡𝑠𝑐

𝑧+2, … , 𝐶𝑡𝑠𝑐
𝑡𝑐𝑐} 
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Therefore, the length of each vector is variable and corresponds to the number of nodes in the 

community. Note that tsc is the total number of steps (e.g., the total number of time steps that 

make up the network) and tcc is the total number of communities. 

 

 

 

 

Figure 3.15. Vector representation of communities (a) Binary vector representations and (b) 

Integer vector representations 

 

 

The general implementation with the use of bit vectors is described in reference 

(Leskovec, Rajaraman, and Ullman 2015). In this study, the minhashing implementation is 

performed using integer vectors since the member identifiers are represented by positive 

integers. Then community signatures are generated using these integer community vectors. 

Minhashing uses several universal hash functions (H) such as 𝐻𝑖(𝑥) =  𝑎𝑥 +

𝑏 𝑚𝑜𝑑 𝑝, 𝑖 = 1, . . , ℎ where ℎ is used number of hash functions, 𝑎, 𝑏 are random integers and 𝑝 

is a prime where greater than or equal to the number of unique nodes in the dynamic network 

data set. Using minimum hash values for x satisfies the random sampling requirement for the 

community representation. Therefore, each community integer vector (containing all the 

member IDs of the community) is passed through these h-functions and the minimum hash 

values for each of the hash functions used are selected. At the end of this process, a two-

dimensional signature matrix is obtained. 

Figure 3.16 shows an example of a signature matrix. The columns of the matrix 

represent community signatures, the rows represent hash functions used, and each cell contains 
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the associated minimum hash result for the hash function over those community members. 𝑡𝑐𝑐 

(total community count) is the number of communities and 𝑡𝑠𝑐 is the total time steps in the 

network data. 

 

 

 

 

Figure 3.16. An example of signature matrix 

 

 

Step 3. Building LSH Table and Buckets 

LSH with minhashing technique is used to identify the similarity of communities in 

Jaccard space. In LSH, the signature matrix generated by minhashing is divided into 𝑏 bands, 

where each band contains 𝑟 rows. This form of the signature matrix is called the "LSH table", 

which is shown in Figure 3.17(a). These 𝑟 rows in each band and their intersecting cells of 

columns contain partial signatures of communities. Each of these signature parts is referred to 

as a "pickle". A set of buckets are created by grouping similar community IDs in a band. Each 

band has its own set of buckets as shown in Figure 3.17 (b). If there is no similar community 

under a band, the number of buckets for that band can be equal to the maximum number of 

communities. If two communities exist in at least one bucket, they are considered as a candidate 

pair for similarity. For example, in Figure 3.17(b), communities 𝐶1
1, 𝐶3

537 and 𝐶5
2880 have the 

same pickle value (24, 34); therefore, they are grouped in the same bucket, which may represent 

similar communities. 
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Step 4. Tracking similar communities over time 

The use of minhash signatures affects both the use of main memory and the ease of 

finding near neighbors of a given community query in LSH. Moreover, filtering over LSH 

buckets significantly reduces the computation time in community matching. To evaluate the 

contributions of using minhash signatures and LSH data structure, additional experimental 

studies are conducted. The results of these experiments are presented and discussed in Section 

3.4.3. Furthermore, concrete measurements for the use of combining LSH with minhash 

signatures in TREC are given in Section 3.4. 

 

 

 

 

Figure 3.17. An example of “how LSH with minhashing works”. (a) LSH table and (b) LSH 

Bucket Collections 
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The main idea of the pseudocode shown in Figure 3.18 is to filter dissimilar 

communities and possibly provide similar communities for a given community via formed LSH 

buckets and create/save evolution chains in a text file. Then, the time steps of the filtered 

communities are checked to decide whether the community is consecutively or 

nonconsecutively evolved. Then, the evolutionary chains of the tracked communities are stored 

in a text file. The pseudocode is as follows. 

 

 

Input: L (List of communities to be tracked), λ, LSH 

Output: tlistFile (A text file to store tracking information of similar communities) 

 

 

 
 

Figure 3.18. A Pseudocode of how to track similar communities over time 

 

 

The tracking algorithm shown in Figure 3.18 takes L (a list of communities to track), 

the similarity threshold λ, LSH (LSH table and bucket collections) as input. Recall that this 

algorithm works with nonoverlapping communities detected by the Louvain algorithm 

(Criterion #1), and λ is a similarity threshold parameter. Loop A ensures that the tracking 

process is executed for each community to be tracked. That is, it is used to keep/store the 
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evolution chains of each community to be tracked in a separate row in tlistFile. Loop B is used 

to execute the next time steps after a time step in which the community was born, if the 

evolution is not continuous (Criterion #2). Loop C is used to continue tracking when a tracked 

community splits into new subcommunities (Criterion #4). In addition, the communities 

returned by the LSH query are examined for all tracked communities. If the community returned 

by LSH evolves consecutively, Loop D runs; otherwise, Loop E runs for nonconsecutively 

evolving communities. Both loops D and E test the similarities of community pairs with Jaccard 

similarity. After the evolution chain of a tracked community, it is stored in tlist. When all 

communities in L are processed, tlist is stored in tListFile. 

 

 

 

 

Figure 3.19. An example of (a) content of tListFile (b) its correspondent conceptual schema 

 

 

Figure 3.19 (a) and 3.19 (b) show an example of the contents of tListFile and its 

conceptual scheme. Each line contains an evolutionary chain of a community. For example, 

𝐶1
56  in Line 1 has no other following community in its evolutionary chain. That is, 𝐶1

56  was 

born and is never observed again during the observation; thus, it dissolves. Communities 𝐶1
61 

and 𝐶1
277 are merged and 𝐶2

1134  is born. Community 𝐶4
2026  is split into two subcommunities 

𝐶5
2587 and 𝐶5

2851. Note that the evolution events are labelled with another subroutine that takes 

tlistFile as input and returns a text file containing the evolution of the communities with event 

labels (Criterion #3). Basically, it uses the definitions of the communities' evolution events 
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given in Table 3.1. Moreover, it strictly follows the event formulations in the implementation, 

which allows k-merge/k-splits cases (Criterion #4). 

 

 

3.4. Experimental Study 

 

 

 This section presents the data sets used, the experimental setup, the performance and 

accuracy analysis of TREC, and the evaluation of the results. 

 

 

3.4.1. Datasets 

 

 

 In this subsection, the datasets used in the experiments are explained in the following 

subsections. Subsection 3.4.1.1 includes the benchmark datasets and subsection 3.4.1.2 explains 

the real datasets.  

 

 

3.4.1.1. Benchmark Datasets 

 

 

 The Greene et al. benchmark datasets (Greene, Doyle, and Cunningham 2010) are used 

for accuracy analysis. As they contain ground truth information on communities at all time steps 

and are accessible online at http://mlg.ucd.ie/dynamic. The datasets are constructed from four 

different synthetic graphs, each containing five static networks, meaning that there are five time 

steps (t) with 15000 nodes (n) to simulate nonconsecutively evolving communities, and 

containing all event types of community evolution. In the BirthDeath dataset, the authors 

randomly create 40 additional communities and randomly remove 40 communities. In the 

Expand dataset (Grow-Shrink), they create graphs in which 40 randomly selected communities 

grow or shrink by 25%. In the MergeSplit dataset, the authors simulate 40 communities that 

split and 40 communities that merge. In the Nonconsecutiveness dataset, they randomly hide 

10% of the members at each time step. 
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The similarity thresholds (λ), the number of hash functions (h), the number of rows (r) 

and the number of bands (b), and in the last column LSH similarity threshold (𝐿𝑆𝐻𝑆𝑇) for the 

benchmark datasets are given in Table 3.5. λ and 𝐿𝑆𝐻𝑆𝑇 values are assumed to be 0.10. That is, 

the minimum similarity ratio between two communities must be 10% to be called similar. 

 

 

Table 3.5. Specific parameters used in the accuracy experiment 

 

Benchmark dataset λ h r b LSH_ST 

BirthDeath 

0.10 90 2 45 0.10 
Expand 

MergeSplit 

Nonconsecutiveness 

 

 

3.4.1.2. Real Datasets 

 

 

The execution time performance of TREC for dynamic large networks is evaluated on real 

networks. These datasets are: 

 

 Autonomous Systems (AS) dataset (Leskovec, Kleinberg, and Faloutsos 2005) contains a 

daily communication network of routers from logs. Daily unweighted undirected graphs are 

constructed from December 1999 to January 2000, where each node has a router 

identification number and each edge indicates the relationship between each node. 

 

 The DBLP dataset (Tang, Zhang, Yao, Li, Zhang, and Su 2008) contains the authors' co-

publications. Data mining and artificial intelligence domains are used to construct 

unweighted and undirected graphs between the years 2001 and 2013, where each node 

represents the authors and each edge represents the co-authorships and citations of the 

publications. 

 

 The Yelp dataset (Yelp Inc. 2019) contains user reviews about businesses, but user 

friendships are important for our study. Therefore, monthly unweighted friendship graphs 
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are constructed for each user who has at least one friend from October 2013 to July 2014, 

where each node represents users and each edge represents a friendship. 

 The 2009 Digg friendship dataset contains friendship information on the Digg platform 

(Hogg and Lerman 2012). Bimonthly, undirected, and unweighted friendship graphs are 

created from July 2007 to July 2009. Each node represents a user and each edge represents 

a friendship. The dataset is available in the reference (Lerman, 2012). 

 

 

3.4.2. Experimental Configuration 

 

 

In these experiments, the rate of change of community size is assumed to be 5% to 

determine continuation, growth, and shrinkage events. The parameters 𝜆, ℎ, 𝑟, 𝑏 and 𝐿𝑆𝐻𝑆𝑇 for 

TREC are assigned as {0.10, 90, 2, 45, 0.10} respectively.  

For the experimental analysis, a laptop with the following configuration is used. Intel (R) 

Core(TM) i7-4712MQ CPU @ 2.30 GHz. Processor, 64-bit Win10 operating system and 16 

GB memory. All the methods of competitor tracking and TREC are implemented using C++. 

 

 

3.4.3. Impact of using Minhashing and LSH 

 

 

The following experiments are conducted to show and compare the effects of minhashing 

and LSH techniques separately on the proposed method TREC in terms of their accuracy and 

required runtimes. These experiments are used to verify and validate each method used in this 

proposed novel solution: 

 

 Minhashing provides the ability to compute approximate Jaccard similarity values between 

two community signatures using a signature matrix. Therefore, the method 

"minhashing_effect_TREC" is developed to show the effects of using minhashing only, 

which uses the approximate similarity measures instead of the exact JS measures to 

determine the similarity of two communities. In this experiment, approximate similarities 

are used in community matching returns from LSH queries. 
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 In addition, the method "LSH_effect_TREC" is developed to show the effect of applying 

the LSH technique. Here, the LSH table and buckets are removed from TREC. Instead, 

approximate JS values of minhash signatures of communities are calculated for all 

community pairs and then for each community their similar communities are kept in a hash 

map instead of LSH table and bucketing. In this map structure, the community IDs are the 

keys and their similar communities are the corresponding values. 

 

 

 

 

Figure 3.20. (a) Accuracy and (b) running time consumptions of TREC, 

minhashing_effect_TREC and LSH_effect_TREC methods 

 

 

The TREC, minhashing_effect_TREC, and LSH_effect_TREC methods are run 

separately on the benchmark datasets. Figure 3.20(a) and Figure 3.20(b) show the accuracy and 

runtime consumption of the methods. 

The runtime consumption of TREC and minhashing_effect_TREC are very close. 

Minhashing_effect_TREC consumes slightly less time because it only checks the similarity of 

the signatures. As can be seen in Figure 3.20(b), the time consumption of LSH_effect_TREC is 

ten times higher than the others. As expected, the time consumption of LSH_effect_TREC is too 

high because it checks the signatures of each community pair. Therefore, the hybrid usage of 

minhashing and LSH in TREC provides better accuracy with reasonable running times and is 

evaluated in Section 3.4.4 below. 
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3.4.4. Performance and Evaluation of TREC 

 

 

The studies of Asur et al. (Asur, Pathasary, and Ucar 2009), Greene et al. (Greene, 

Doyle, and Cunnigham 2010), and Takaffoli et al. (Takaffoli, Fagnan, Sangi, Zaïane 2011) are 

not considered competitors of TREC because they cannot detect some evolutionary events such 

as shrink, growth, and continue. However, TREC can detect all types of evolutionary events. 

In addition, the GED (Bródka, Saganowski, and Kazienko 2012) and SCGI (Gliwa et al. 2012) 

methods are not considered competitors of TREC because they work with overlapping 

community structures and only with continuously evolving communities. TREC, on the other 

hand, operates with a disjoint community structure and can track both consecutive and non-

consecutive evolving communities. 

Therefore, the method of Tajeuna et al. (Tajeuna, Bouguessa, and Wang 2016) and the 

ICEM method (Mohammadmosaferi and Naderi 2020) are considered as competitors of TREC 

because they share the same functional properties, such as tracking type (e.g., both consecutive 

and non-consecutive evolutions), k-community merging/splitting, tracking capability 

(detecting all event types), and working with disjoint community structures. Moreover, both the 

method of Tajeuna et al. and ICEM are the most recent methods in related works. 

The performance of our new TREC method is investigated in terms of three main 

components such as complexity analysis, accuracy analysis, and execution time analysis by 

comparing the competitors' methods.  

 

 

3.4.4.1. Complexity Analysis 

 

 

 Time and space complexity are studied as performance measures because they are very 

important in determining the computational limits of methods to determine the usefulness of 

the method.  

 Therefore, in this subsection, the required computation time and memory of TREC are 

calculated and the corresponding complexity values of the competitor's works are given to show 

the usefulness of TREC method compared to others. The network modeling and community 

detection steps are excluded from the complexity analysis because they are common steps for 

all tracking methods. Therefore, as mentioned earlier, TREC has four basic steps (as shown in 
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Figure 3.13). However, the computation of minhash signatures has the highest computation 

time as 𝑂(ℎ𝑛𝑡), where ℎ is the number of hash functions used and 𝑛 is the number of unique 

members in the network, and 𝑡 is the total time steps. The community representations, LSH 

table, and buckets reside in main memory during the execution of TREC. Therefore, the total 

memory required is 𝑂(𝑛 +  2𝑣), where 𝑣 is the number of total community vectors (or number 

of communities) over all time steps. 

 

 

Table 3.6. Complexity analysis of TREC and competitor methods 

 

Method Time Complexity Space Complexity 

Tajeuna et al.’s method 

 
𝑂(𝑣2 𝑙𝑜𝑔(𝑣)) 𝑂(𝑣2) 

ICEM with Evolution 

Chain 
𝑂(𝑡𝑛𝑙𝑜𝑔(𝑛)) 𝛰(2𝑛) 

TREC 

 
𝑂(ℎ𝑛𝑡) 𝛰(𝑛) 

GED 𝛰(𝑡𝑐2𝑛) 𝛰(3𝑛) 

 

 

Required computation time and memory TREC and competing methods can be seen in 

Table 3.6. Since the ICEM method (Mohammadmosaferi and Naderi 2020) does not generate 

evolutionary chains, a balance must be found between ICEM and TREC in terms of generating 

evolutionary chains of communities. Therefore, a subroutine is added to the ICEM method and 

its title is concatenated with "with Evolution Chain". 

Note that the method GED is the most primitive method among the competing methods. 

That is, it cannot track nonconsecutively evolving communities, consumes the most memory 

and CPU time among them. Therefore, it is not compared with the others after this point. 

 

 

3.4.4.2. Accuracy Analysis 

 

 

Another performance measure is the accuracy of the tracking results of the TREC 

method. Since accuracy is as important as the other performance measures, this subsection 

examines the accuracy of the TREC method and compares it to the work of its competitors. 
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For an objective and consistent comparison, the same benchmark datasets and 

community detection method (Louvain (Blondel, Guillaume, Lambiotte, and Lefebvre 2008) 

are used for all competing methods. NMI values (Danon, Diaz-Guilera, Duch, and Arenas 2005) 

are used to measure the accuracy of detected community structures. NMI is one of the 

conventional cluster validation techniques for the case where the ground truth cluster structure 

is known. It measures the accuracy of the detected community structure by comparing it with 

the ground-truth community structure. It takes real values between 0 and 1. The higher the NMI 

values are, the more successful communities are detected. 

 

 

Table 3.7. Accuracy scores of the methods per datasets 

 

 Tajeuna et al.’s method ICEM with Evolution Chain TREC 

BirthDeath 0.994451 0.966588 0.994537 

Expand 0.98348 0.983544 0.982961 

MergeSplit 0.938352 0.9567722 0.946782 

Nonconsecutiveness 0.989222 0.9913834 0.990556 

Average score 
0.976 

0.974 0.979 

 

 

For each time step, a community structure is generated from the tracking list. NMI 

compares the detected community structures with the ground truth community information for 

each time step and generates some kind of similarity value representing accuracy. The NMI 

values for each dataset are calculated for all methods via dedicated software referred in 

(Lancichinetti, Fortunato, and Kertész 2009). 
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Table 3.8. The highest memory usage in Mega Bytes during their executions and Execution Time of the methods 

 

   Methods 

  Dataset Characteristics Tajeuna et al.’s method ICEM TREC 

  t n c 
(1)  

in MB 
(2) 

 
(1)  

in MB 
(2) 

 
(1)  

in MB 
(2) 

 

B
en

ch
m

ar
k
 

D
at

as
et

s 

Birthdeath 

5 15000 

577 5.8 16 min. 28 s. 3.6 1.3 s. 2.9 9.2 s. 

Expand 584 5.9 19 min. 52 s. 4 1.6 s. 2.9 9.9 s. 

MergeSplit 611 6 21 min. 24 s. 3.8 1.7 s. 2.9 10.2 s. 

Nonconsecutiveness 538 5.9 12 min. 43 s. 3.7 1.8 s. 2.8 9.3 s. 

R
ea

l 
 D

at
as

et
s AS 15 6521 23 2.2 19.9 s. 1.9 0.92 s. 1.3 1.5 s. 

DBLP 13 7672 357 10.5 6 h. 6 min. 3.7 1.56 s. 3.6 21 s. 

Yelp 10 2344970 6847   352.5 2.47s. 60.9 11.2 s. 

2009 Digg friends 12 64183 329 7.9 44 min. 46s. 10.3 5.1 s. 3.8 12.6 s. 
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Table 3.7 shows the accuracy results of the TREC method and its competitors for 

each data set in terms of NMI values. All methods show almost the same accuracy for the 

“Expand” and “Nonconsecutiveness” datasets. The Tajeuna et al. method and the TREC 

method are very close in terms of accuracy, while the ICEM with Evolution Chain method 

has lower accuracy than them for the “BirthDeath” dataset. The Tajeuna et al.’s method 

shows the lowest performance for the “MergeSplit” dataset. ICEM with Evolution Chain 

method shows the best performance for the dataset and TREC method is in between. 

Figure 3.21 illustrates the accuracy performance given in Table 3.7.   

 

 

 

 

Figure 3.21. Accuracy values of the TREC and its competitors on the datasets  

 

 

When the average accuracy performance scores of the methods are regarded, it is 

seen that Tajeuna et al’s method, ICEM with Evolution Chain and the TREC method 

accuracy values are {97.6, 97.4 and 97.9} in percentages. Thus, it is concluded that their 

performances are almostly same. 
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Tajeuna et al.’s method ICEM with Evolution Chain TREC
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3.4.4.3. Real Time Memory and Execution Time Analysis 

 

 

 The last performance measure considered is the real-time storage and execution 

time performance of TREC and its competitors. The reason is that both performances are 

important in the world of dynamic networks. The most common method of profiling 

software applications is to use "Diagnostic Tools". Since TREC and its competitors are 

implemented in C++, a free and reliable tool for this language is needed. After searching 

available diagnostic tools on the Internet, it was found that Visual Studio meets the 

requirements. Therefore, this profiling task is performed in Visual Studio 2019 

Community Edition environment. With these tools, it is possible to analyze CPU and 

memory usage in both debugging and execution phases. In our analysis, we consider CPU 

time and memory usage in the execution phase.  

 Table 3.8 shows some properties of the dataset and the performance measures for 

the execution time of TREC and its competitors. Both benchmark datasets and real 

datasets are considered in the table. The column "Dataset Characteristics" contains the 

subcolumns “t”, “n” and “c” for each dataset. The subcolumn “t” indicates the number 

of time steps that make up the dynamic network. The subcolumn “n” specifies the number 

of nodes that each dataset has. The subcolumn “c” specifies the number of average 

communities per time step. The "Methods" column contains the performance results of 

TREC and its competitors such as the Tajeuna et al.'s method and the ICEM method. The 

subcolumns "(1) in MB" show the highest memory consumption in Mega Bytes and the 

subcolumns "(2)" show the CPU consumption in seconds/minutes and hours during the 

execution time of each method. 

 Profiling using the Tajeuna et al.’s method is performed on the Yelp dataset until 

our storage space is exhausted. About six hours (eg., exactly 356 minutes) pass until this 

point, and the highest memory used is 636.2 MB. Therefore, the actual performance of 

the method for this dataset cannot be measured, and the values are marked with "" sign 

in the corresponding cells of Table 3.9.    

Examination of Table 3.8 shows that the Tajeuna et al.’s method has the highest 

memory and execution time consumption. The TREC method has the lowest memory 

consumption while ICEM with Evolution Chain method has the lowest execution time. 

The results are evaluated in detail in the following subsection.  
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3.4.5. Discussion on the Results 

 

 

 In this subsection, the algorithmic (time and space analysis) and analytical 

(accuracy and real time analysis including the memory space and execution time 

requirements) results of the TREC method and its competitor methods are evaluated.  

Table 3.9 shows the order of complexity of the TREC method and the competing 

methods. As can be seen from the table, the TREC method and the ICEM with Evolution 

Chain method have linear complexity in terms of space and time. On the other hand, the 

Tajeuna et al.’s method has a quadratic complexity in terms of time and space. Comparing 

the complexity order of the two methods, it can be seen that the time complexity of the 

ICEM with Evolution Chain method is lower than that of the TREC method, while the 

space complexity of the TREC method is lower than that of the ICEM with Evolution 

Chain. 

 

 

Table 3.9. Complexity orderings of TREC and competitor methods 

 

Time 

Complexity 

Ordering 

𝑂(𝑡𝑛𝑙𝑜𝑔(𝑛))  <  𝑂(ℎ𝑛𝑡)  <  𝑂(𝑣2 𝑙𝑜𝑔(𝑣)) 
i.e., ICEM with Evolution Chain < TREC < Tajeuna et al.’s 

method 

 

Space 

Complexity 

Ordering 

𝛰(𝑛)  <  𝛰(2𝑛)  <  𝑂(𝑣2) 
i.e., TREC < ICEM  with Evolution Chain < Tajeuna et al.’s 

method 

 

 

From Figure 3.21 and Table 3.7, it can be seen that all the methods show almost 

the same accuracy performance and the percentage accuracy on benchmark datasets is 

around 98%. The accuracy of the methods on real datasets cannot be measured because 

the datasets do not contain real community information. 

 Table 3.8 is a summary table of some of the properties of the datasets, the highest 

memory usage in megabytes, and the execution time for the methods. From the table, it 

can be seen that the method of ICEM with Evolution Chain requires the least execution 

time and the runtime consumption of TREC is close to it. However, the method of Tajeuna 

et al. is the most time consuming among them and requires more than 750 times of 
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execution time for the same data sets. Moreover, it cannot work with the "Yelp" dataset 

(although it takes about 6 hours to reach this point), while the other two methods finish 

their execution in seconds. 

In terms of space required by the methods, the method of Tajeuna et al. is the most 

space-consuming among them, while the TREC method is the most space-efficient, as 

shown in Table 3.8. The ICEM with Evolution Chain method requires a memory space 

equal to the constant multiple of the memory requirement of the TREC method. 

As shown in Table 3.8, the number of nodes and the number of time steps are the 

same in the benchmark datasets. For the benchmark datasets, the memory requirement of 

the TREC method is almost the same even if the number of communities is increased, 

since the communities are represented by minhashing with small fixed-length signatures. 

The most notable difference in the execution time of the Tajeuna et al.'s method can be 

seen in the table. 

 As shown in Table 3.8, the number of nodes and the number of time steps used to 

construct the network are different for real datasets. The Tajeuna et al.’s method tends to 

consume more execution time and memory as the number of communities increases. The 

TREC method and the ICEM with Evolution Chain method consume more memory when 

the number of nodes in the dataset increases, as shown in the table. The methods tend to 

consume more execution time when the communities are dense, as in the "2009 Digg 

friends" dataset. 

In summary, all the methods compared are functionally the same but differ in their 

performance in terms of space requirements and execution time. As shown in Table 3.8 

and Table 3.9, the Tajeuna et al.'s method is inefficient compared to the TREC method 

and the ICEM with Evolution Chain method in terms of both memory requirements and 

execution time. Moreover, there is a time-space trade-off between ICEM with Evolution 

Chain and the TREC method. While the ICEM with Evolution Chain method outperforms 

the TREC method in terms of execution time, the TREC method outperforms the ICEM 

with Evolution Chain method in terms of memory requirements and slightly better 

accuracy.  
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3.5. Concluding Thoughts and Future Work 

 

In this section, we introduce a space-efficient new method for tracking community 

evolution in dynamic networks - TREC. TREC uses an independent community detection 

and matching approach. In this approach, communities can first be detected for each time 

step by any community detection method. Then, the detected communities are matched 

in terms of temporal order only if they are similar, which is called community matching 

in TREC. Most of the computational resources are used for the community matching step. 

Competitors' works focus either only on accuracy of tracking results or on fast 

computation, but none of them focus on low memory consumption. However, in the world 

of dynamic networks, resource consumption is crucial. TREC consumes less memory 

compared to competing works by extracting signatures of communities with minhashing 

and speeds up the task of finding similar communities by pruning the meaningless 

community comparisons with LSH. LSH with minhashing technique is used for the first 

time in tracking community evolution with TREC method. Compared methods and TREC 

method are functionally same but vary in terms of their performance characteristics. 

Compared with the work of competitors, TREC method is superior in terms of memory 

consumption and slightly more accurate tracking results with reasonable runtime.  

In further research, TREC method can be extended as: (i) a fast comparison of 

similar communities in the same LSH buckets can be performed through parallelization, 

(ii) TREC can be modified to work with overlapping community structures, and (iii) 

TREC can be combined with machine learning models to predict the future evolution of 

communities. 
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CHAPTER 4 
 

 

A CASE STUDY: PREDICTING COMMUNITY 

EVOLUTION WITH RESULTS of TREC METHOD 
 

 

 "Can TREC results be used to predict community evolution in dynamic 

networks?". This chapter is dedicated to answering this research question and does not 

introduce a novelty in either machine learning classifiers or prediction methodology.  

Therefore, the task of predicting community evolution is first presented. Then a 

brief literature review is given. Then the workflow we use for this task is described. Then, 

the preliminary results are presented. Finally, the results are discussed and concluding 

considerations are given. 

 

 

4.1. Predicting the Evolution of Communities 

 

 

 

Figure 4.1. Fundamental steps of predicting community evolution 

 

 

The task of predicting the evolution of communities can be divided into two basic 

steps; evolution analysis and predictive analysis (see Figure 4.1). In the evolution analysis 

step, the evolution of communities is tracked. Recall that the TREC method is one of the 

tools for community evolution analysis. The predictive analysis step takes the output of 
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the evolution analysis step (i.e., evolution chains with event labels) as input, processes it, 

and returns a list of predicted events such as "grow", "continue", "shrink", "merge", 

"split", and "dissolve", respectively. 

Note that the length of an evolution chain (L) is measured by the number of 

communities in the chain. Suppose that  we are given { 𝐶1
4, 𝐶2

6 , 𝐶4
12} as an evolution chain, 

then L = 3.  

 

 

4.2. Related Work 

 

 

Similar to tracking the evolution of communities, predicting their future members 

or evolution events is one of the main topics. Currently, there are two different prediction 

tasks: "link prediction" and "evolution event prediction". Link prediction is about 

predicting the probability that two currently unconnected nodes will be connected in the 

next time step (Liben-Nowell and Kleinberg 2007). However, the focus of this case study 

is on predicting community evolution events.  

Papers in the literature of the last decade (between 2011 and 2021 years) are 

examined. Since the TREC method uses the independent community detection approach, 

the focus is on the works that use this approach. The most widely used approach to predict 

community evolution is the use of machine learning classifiers. The works that use this 

approach follow a two-step methodology: (1) analyzing community evolution and (2) 

applying supervised classifiers based on selected community features. Related work is 

summarized below. 

In their paper, Brodka et al. (Bródka, Kazienko, and Kołoszczyk 2012) present 

and evaluate a supervised learning method for predicting the evolution of communities 

with respect to six events of community evolution such as growing, shrinking, continuing, 

merging, splitting, and dissolving. They use the Group Evolution Detection method 

(GED) (Bródka, Saganowski, and Kazienko 2012) to detect events between successive 

time steps and create event sequences to describe the evolution of a given community. 

Each event sequence consists of the member sizes and events of all three previous 

communities. These sequences serve as input to the classifiers such as Naïve Bayes, 

Decision Tree, Random Forest and others provided by WEKA Data Mining Software 
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(Hall, Frank, Holmes, Pfahringer, Reutemann, and Witten 2009) to predict the next event 

for a given community.  

İlhan and Öğüdücü (Ilhan and Ögüdücü 2013) propose a new approach to predict 

the next event of a community using a time series ARIMA model. In their study, 

community events are predicted by predicting community characteristics. The feature 

values are used to classify the possible events. 

Takaffoli et al. (Takaffoli, Rabbany, and Zaïane 2014) use a two-step technique 

to predict the near future of a community through supervised learning. In this technique, 

they first decide whether the community survives, and then make the prediction whether 

the community survives. They diversify the type of features by using not only structural 

features of the community, but also features of influential members, temporal changes in 

features, contextual attributes, and features of past events. They consider only 

evolutionary sequences that have only two lengths. 

Saganowski et al. (Saganowski, Bródka, Zygmunt, Kazienko, and Koźlak 2015) 

present two methods for predicting the following evolution event of a community. The 

first method uses the Stable Group Changes Identification (SGCI) method (Gliwa, 

Brodka, Zygmunt, Saganowski, and Kazienko et al. 2013) and the other uses the GED 

method (Bródka, Saganowski, and Kazienko 2013). They use the CPM method (Palla, 

Derényi, Farkas, Vicsek 2005) for community detection. The authors use evolution chain 

lengths, group features (e.g., size, density, leadership, etc.), node features (e.g., total 

degree, in-degree, etc.), and group aggregation (e.g., sum, average, minimum, and 

maximum). They then perform feature selection using ordinary (J48 and Random Forest) 

and ensemble classifiers (AdaBoost and Bagging). They conclude that longer group 

history leads to better prediction and the most recent group history has the largest impact 

on the next community change.  

Diakidis et al. (Diakidis, Karna, Fasarakis-Hilliard, Vogiatzis, and Paliouras 

2015) address the problem of predictability of community evolution as a task of 

supervised learning. However, they predict four events of community evolution, namely 

continuation, shrinking, growth and dissolution. They use both sequential (e.g., 

Conditional Random Fields with Linear Chain and with Skip Chain) and ordinary 

classifiers (e.g., Naïve Bayes, Bayes Net, Logistic Regression, SVM, etc.) for the 

prediction task and compare the performance of the classifiers. These classifiers were 

trained on structural (e.g., size, density, etc.), content (topic diversity with TF-IDF), and 
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contextual features (e.g., number of hashtags, size of tweets, and number of tweets with 

promotional URLs, etc.), as well as the previous state of a community as features for 

Twitter. They conclude that the sequential features are better than the ordinary ones 

because they also capture the past information first. 

Pavlopoulou et al. (Pavlopoulou, Tzortzis, Vogiatzis, and Paliouras 2017) present 

a framework for predicting community evolution. They study how past evolutions of a 

community influence the prediction of four evolution events such as growth, 

continuation, shrink, and dissolution. They use some structural (e.g. density, cohesion, 

diameter, etc.) and temporal features (e.g. lifespan, aging, join nodes ratio and left nodes 

ratio, etc.) for prediction through supervised learning. They also specify the number of 

ancestors to be used for computing temporal features, e.g., two or four ancestors 

according to their dataset from Mathematics Stack Exchange. They used the GED method 

(Bródka, Saganowski, and Kazienko 2013) to track community evolution and Support 

Vector Machine (SVM) with RBF kernel (an exponential kernel) as a classifier for 

predicting the next evolution event. However, they did not consider merge and split 

events. 

Dakiche et al. (Dakiche, Tayeb, Slimani, and Benatchba 2019b) proposed a 

method for predicting community evolution by capturing the interdependence of rates of 

change in characteristics describing a community over time instead of actual values. They 

looked only at rates of change in the structural and influential member characteristics of 

a community. They examined the length of evolution sequences and concluded that the 

length of the sequences directly affects the amount and quality of information obtained. 

However, the quality of information may decrease with long sequences. 

Dakiche et al. (Dakiche, Tayeb, Benatchba, and Slimani 2021) propose a new 

framework for studying the distribution of activities over time to enable proper 

partitioning of the network. They claim that a properly partitioned network enables more 

accurate prediction of community events. After applying their novel network partitioning 

method, they proceed with a simple prediction method. That is, they apply the method 

GED (Bródka, Saganowski, and Kazienko 2013) to detect group evolutions. Then they 

proceed to the prediction part. For this task, they specify characteristics. In their study, 

structural (e.g., density, cohesion, size ratio, etc.) and influential member characteristics 

(e.g., average leadership degree, average leadership closeness, and average leadership 
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Table 4.1. Overview of the mainstream approaches for predicting community evolutions 

 

Study Brodka et al. 

(Bródka, 

Kazienko, and 

Kołoszczyk 

2012) 

İlhan& 

Öğüdücü 

(Ilhan and 

Ögüdücü 2013) 

Takaffoli  

et al. 

(Takaffoli, 

Rabbany, and 

Zaïane 2014) 

Saganowski  

et al. 

(Saganowski, 

Bródka, 

Zygmunt, 

Kazienko and 

Koźlak 2015) 

Diakidis  

et al. 

(Diakidis, 

Karna, 

Fasarakis-

Hilliard, 

Vogiatzis, 

and Paliouras 

2015) 

Pavlopoulou 

et al. 

(Pavlopoulou, 

Tzortzis, 

Vogiatzis, and 

Paliouras 2017) 

Dakiche et al. 

(Dakiche, 

Tayeb, 

Slimani, and 

Benatchba 

2019b) 

Dakiche et al. 

(Dakiche,  

Tayeb,  

Benatchba, 

and Slimani 

2021) 

Year 2012 2013 2014 2015 2015 2017 2019 2021 

Tracking 

Method 

GED A specific 

method 

A specific 

method 

SCGI GED GED GED GED 

Prediction 

Manner 

C C C &N 

 

C C C C C 

Event  

missed 

None None Continue None Merge 

Split 

Merge 

Split 

None None 

Software CFinder1 

Weka2 

Weka  MODEC 

Weka 

CFinder 

Weka 

CFinder  

Weka  

CRFsuite 3 

Weka CFinder  

Weka  

 

Weka 

 

                                                           
1 http://www.cfinder.org/ 
2 https://www.cs.waikato.ac.nz/ml/weka/ 
3 http://www.chokkan.org/software/crfsuite/ 

http://www.cfinder.org/
https://www.cs.waikato.ac.nz/ml/weka/
http://www.chokkan.org/software/crfsuite/
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eigenvector) are used. Later, well-known supervised learning classifiers such as J48, 

Random Forest, Bagging and SVM were used.  

Table 4.1 summarizes related works, with some important criteria listed in the first 

column. For tracking, they mainly use GED (Bródka, Saganowski and Kazienko 2013), 

SCGI (Gliwa, Brodka, Zygmunt, Saganowski and Kazienko et al. 2013) and some 

specific methods developed by them. In the "Prediction Manner" row, the studies make 

predictions for consecutively or nonconsecutively evolving networks or both, where C 

stands for consecutively evolving communities and N for nonconsecutively evolving 

communities. Only the ML model of Takaffoli et al. (Takaffoli, Rabbany, and Zaïane 

2014) can predict the next stage of a community either at the next time step or at later 

time steps. While the method of Brodka et al. (Bródka, Kazienko, and Kołoszczyk 2012), 

Saganowski et al. (Saganowski, Bródka, Zygmunt, Kazienko, and Koźlak 2015), the 

method of İlhan and Ögüdücü (Ilhan and Ögüdücü 2013), and the two methods of Dakiche 

et al. (Dakiche, Tayeb, Slimani, and Benatchba 2019b and Dakiche, Tayeb, Benatchba, 

and Slimani 2021) detect all possible events of community evolution, others cannot 

characterize all events for prediction. For software attributes, Weka is used for 

developing, training, and testing ML models, CFinder is used for applying CPM (Palla, 

Derényi, Farkas, Vicsek 2005) and MODEC (Takaffoli, Sangi, Fagnan, and Zaïane 2011) 

for community tracking, and CRFSuite is used for sequential classifiers such as 

Conditional Random Fields (CRF) (Lafferty, McCallum, and Pereira 2001). 

After reviewing the literature, the following conclusions are drawn: 

1. If the distribution of event classes is highly imbalanced, a balancing dataset 

process is required. 

2. The features (i.e., properties of communities) used may be structural, 

temporal, contextual, and/or leadership specific. One, all, or a combination of 

the feature types may be used. 

3. Since dependencies between features and the presence of unrelated features 

on the prediction event are possible, features must be eliminated. 

4. All related works can use different methods to track community evolution, 

such as GED, SCGI or specific methods they introduce. So we can use TREC 

as well. 

5. To be realistic, predictions must be made for both continuously evolving and 

nonconsecutively evolving communities, although all related works make 
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predictions only for continuously evolving communities, with the exception 

of the work of Takaffoli et al. (Takaffoli, Rabbany, and Zaïane 2014). 

6. All types of evolutionary events must be predicted except "form". Since a 

community must be formed to predict its evolution. 

7. All related works use WEKA as machine learning software. So we can use it 

as well. 

 

 

4.3. Workflow for Prediction Community Evolution 

 

 

In this section, we explain the workflow we use to predict community evolution. 

Before diving into our workflow, we summarize predictive analysis below.  

Predictive analysis (or predictive modeling) is a technique that uses mathematical 

and computational methods to predict an event or outcome. It should be noted that it does 

not define what exactly will happen in the next time step, but helps us identify the pattern 

of behavior for prediction. That is, a machine learning model is used to predict an outcome 

in a future state based on the changes in the model inputs. These model inputs are called 

features, and the outcome variable is called a response variable. In our case study, a 

response variable (e.g., a class type) is a community-related property that can quantify 

changes in a community over time. A feature is a property (e.g., a community 

characteristic) that can influence the response variable. 

Figure 4.2 illustrates the workflow we used. The numbers from 1 to 5 denote the 

processes. The community information files of a dynamic network serve as inputs to the 

first process (e.g., evolution analysis with TREC) and the second process (e.g., obtaining 

ground truth events for communities). The output of the first process is used for the third 

process (e.g., the preparation of training data). The training data is then used in the fourth 

process (e.g., training the classification models) for training the machine learning 

classifiers. In the fifth process (e.g., k-fold Cross Validation), the prediction success of 

the classifiers is tested and evaluated. At the end of the workflow, summary files are 

created for the prediction results. In the remainder of this section, the workflow is 

described and evaluated in detail. 
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4 5 

Figure 4.2.  The workflow we follow for this case study 
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Process 1.  Evolution Analysis with TREC 

 

 

 

 

 

 

 

As a reminder, an evolving community is characterized by the sequence of 

communities that were followed during its lifetime. As for the evolution chain (i.e., 

evolution history) indicates the status of the evolving community at a particular time step. 

For example, consider the evolution chain shown in Figure 4.3. Since it contains split 

events, it is written as different evolution chains, as many as there are splits. Therefore, 

the following evolution chains occur. 

 

 

 

A.  

 

 

Chain 1:  , ,   , } 

Chain 2:  , ,   , } 

Chain 3:  , ,   , } 

Figure 4.3. A sample evolution for community  
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 If one wants to label the evolution events in the evolution chain, then the same 

chains are written in the form below. This form is especially needed for preparing input 

for the prediction. 

 

Chain 1: form   continue   continue   split  

Chain 2: form  continue   continue   split  

Chain 3: form  continue   continue   split  

 

Therefore, this process takes information about the community structure of the 

dynamic network as input and produces a text file of evolution chains with events as 

output. The output file (e.g. evolutionChainswithEvents.txt), shown in the figure below, 

contains all evolution chains with different lengths for all tracked communities. 

 

 

 

 

 

 

 

 

 

Process 2.  Obtaining Ground Truth Events for Communities 

 

Supervised machine learning classifiers learn from labeled data. After learning 

from the labeled data, they classify the test data by associating patterns to the unlabeled 

data. Later, their decisions are compared with the labels of the test data to measure the 

classification performance. Since we use supervised machine learning classifiers for 

prediction, we need ground truth data. The process for obtaining ground truth data is 

explained in Appendix B. The output of this process (e.g., groundTruth.txt) is shown in 

the figure below. This file contains information about the community and the ground truth 

pair on each line. 
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Process 3.  Preparation of the Training Data 

 

 This process takes the output of the TREC method (e.g. 

evolutionChainswithEvents.txt) and generates the training data. It contains some 

subprocesses such as slice evolution chains by lengths, feature determination and convert 

files by slicing events into arff format for WEKA. The slice evolution chains by lengths 

subprocess is fed with the output of the TREC method. This subprocess slices the 

evolution chains by chain length and adds the next community identification number and 

generates the output text files.  

 

 

 

 

 

 

 

The output files are seen in the figure below for L = 1, L=2 and L=3. 

 

 

 

 

 

 

 

 

 

 

⋮ 
C1 dissolve 

C158 grow 

C1091 continue 

C1926 split 

⋮ 

evolutionChains 

withEvents. txt 
Evolution Chain files by length 
Including Future Community 

⋮ 
C1 form    C1 

C158 form C1091 

C1091 continue   C1542 

C1542 continue   C1926 

C1542 continue   C1973 

⋮ 

⋮ 
C158 form C1091 continue C1542 

C1091 continue C1542 continue C1926 

C1091 continue C1542 continue C1973 

⋮ 

⋮ 
C158 form C1091 continue C1542 continue C1926 

C158 form C1091 continue C1542 continue C1973 

 ⋮ 

When L = 1 
When L = 2 

When L = 3 
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Later, the feature determination subprocess comes into play. After reviewing the 

literature, it is found that structural, temporal and leadership features of communities are 

considered. Structural features such as size, density, and cohesiveness of communities, 

temporal features such as the extent to which structural features change over time, and 

leadership features are generic features. That is, these types of features are calculated 

based on the structure of the network and are not dependent on a specific area. The 

features identified are explained in Appendix C. 

 

 

 

After identifying the features, we can focus on the flow of the process, which is 

shown in the following figure. The values of the identified features are obtained using the 

graph visualization tool Gephi4. Then the process replaces the community identification 

numbers with the feature values and the next community identification number with the 

ground truth events. At this point, some files are generated for different chain lengths. In 

the figure below, one of the generated files can be seen (Evolution Chain file of length 1 

with Feature Values and Ground Truth Events text file). 

                                                           
4 https://gephi.org/  

https://gephi.org/
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Next, the third subprocess comes into play, shown in the figure below. This 

subprocess slices the text files according to their evolution event types. Then, these sliced 

text files are converted to the arff (e.g., attribute-relation file format) extension to feed 

the classifiers from WEKA. 

 

 

 

 The arff files contain two main segments, namely attributes and data. In the 

attribute segment, the name and type of each attribute must be specified. The data segment 

consists of the records obtained from the evolution chain files by length with the feature 

values and the ground truth event files, where only the ground truth event is replaced by 

a binary value by the sliced event. This is because community evolution prediction is 

modeled as some binary classification problems. The following figure shows some 

example lines of the arff file for the merge event with L =1.  

Note that in this study, six binary classification problems are defined such that a 

response variable for each evolution event is a binary categorical variable. That is, each 

response variable takes yes or no values such as continue{yes,no}, grow{yes,no}, 

shrink{yes,no}, merge{yes,no}, split{yes,no} and dissolve{yes,no}. 
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Process 4.  Training the Classifier Models 

 

 This process includes some subprocesses such as (i) determining the classifiers, 

(ii) balancing the training data, (iii) feature selection, and (iv) executing the classifiers as 

shown in the following figure.  

 

 

 

In the first subprocess (e.g., determine classifiers), the supervised machine 

learning classifiers for the prediction task are determined. The selected classifiers are the 

most common ones such as Decision Tree, Random Forest, Bagging, k-NN. Table 4.2 

shows the general names of the identified classifiers and their specific names at WEKA. 

It should be noted that all of them are interpretable models (i.e., people can easily 

understand the decisions made by the classifier). A summary of how the classifiers work 

and examples of each can be found in Appendix D. 

In this case study, the MergeSplit benchmark dataset is used. Even though the 

name of the dataset suggests that it contains only merge and split events, all types of 

events are included. To decide whether to perform the second subprocess (e.g., balance 
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the training dataset), we first need to check whether the event distributions in the dataset 

are fair or not. 

 

 

Table 4.2. Name of the Classifiers and their correspondents in WEKA 

 

General Name Correspondent Name in WEKA 

Instance-based learner  

(K-nearest neighbors classifier, k-NN) 

IBk 

C4.5 Decision Tree J48 

Random Forest Random Forest 

Bootstrap Aggregating Bagging 

Random Tree Random Tree 

 

 

 

Table 4.3. Event frequencies according to the chain lengths of the benchmark dataset 

 

 

 

Table 4.3 shows the event frequencies as a function of the chain length of the 

dataset. The first column shows the possible chain lengths used to create the training 

datasets. The second column shows the number of instances that were used to train the 

classifiers. The last column "Future Events" lists the number of occurrences in the ground 

truth. As a reminder, the process of labeling the ground truth data is explained in 

Appendix B. As can be seen from the table, there is an imbalance in the distribution of 

the number of future events. To avoid the problem of overfitting (e.g., a classifier learns 

Chain 

Length 

(L) 

# of 

instances 

Future Events 

   Grow Shrink Continue Split Merge Dissolve 

L=1 2130 663 501 392 269 162 143 

L=2 1341 363 311 240 168 159 100 

L=3 640 162 136 113 73 109 47 

L=4 3 0 0 0 1 0 2 
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better the future events "grow" that have the highest number of instances with respect to 

"dissolve"), it is necessary to balance the training datasets. For the second subprocess, we 

used the function WEKA class balancer. This balancer changes the weights of the events 

so that they have the same importance. As shown in the table, there are only three 

instances for training the classifiers when the chain length is four. Since there are few 

instances, there is no chance to train the classifiers to get accurate results. 

The third subprocess (e.g., feature selection) is necessary because there may be 

irrelevant or correlated features in the data sets. The presence of irrelevant features and 

correlations between features may have some negative effects, such as a decrease in 

prediction success, a decrease in the performance of the training and execution process, 

and complex prediction models. By using feature selection methods in WEKA (e.g., 

wrapper subset evaluator over J48), these effects are eliminated. For different evolution 

chain lengths, different features are automatically selected by the wrapper method. The 

wrapper method performs learning-based feature selection and is a combination of a 

search method (for combining features to create different feature subsets) and attribute 

evaluator components (for evaluating the feature subset provided by the search method). 

In this study, the BestFirst method is used as the search method and J48 is used as the 

attribute evaluator. 

 

 

Table 4.4.  Selected features that gives the highest success score per future event 

 

Event 
Chain 

Length 

# of 

SF 
Selected Features (SF) 

Grow 1 6 size, density, cc, cohesion, leadersEigen, event 

Shrink 
3 6 

density, cc, cohesion, leasdersDegreeCentrality, 

LeadersEigen, event 

Continue 

3 6 

C1 and C2 LeadersEigen, C3Size, 

C3LeadersDegreeCentrality, C3Event, 

Delta2LeadersCount 

Split 
1 7 

size, density, cc, avgDegreeCentrality, leadersCount, 

LeadersEigen, event 

Merge 3 4 C3Size, C3Density, C3AvgDegreeCentrality, C3event 

Dissolve 
3 6 

C1Event, C2LeadersDegreeCentrality, C2LeadersEigen, 

C3Density, C3event, delta1LeadersEigen 
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Table 4.4 lists the selected features that have the highest predictive success per 

event. In the first column, "Event", the event values to be predicted are given. In the 

second column, the lengths of the evolution chains leading to this value are given. The 

third and final column lists the number of features selected and the features selected, 

respectively. 

 As the last subprocess, the classifiers on the dataset with selected features are 

executed. 

 

Process 5.  K-fold Cross Validation 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. K-fold Cross Validation process 

 

 

Doing training and testing processes on the same data is a methodological mistake. 

Since the classifiers already learn the labels of the instances in the data, they will perform 

perfectly in the data but fail on prediction on new instances unseen yet (overfitting). 

Holding a part of the dataset as a test set to avoid from overfitting is a way. However, the 

prediction scores of this method will not be very reliable because there is only one test 

set yet. K-fold cross validation provides a complete solution to this problem. It is a 

process that follows the procedure shown in Figure 4.4. 

The k values are chosen as ten in this study because in the related works doing k-

fold cross validation use k as ten. In Figure 4.5, as an example, the 5-fold cross-validation 

process is visualized.  There is an assumption that the dataset is shuffled randomly. Then 

dataset is split into k (five) subsets. Then a subset is held as a test set (validation set) while 

1. Shuffle the dataset randomly 

2. Split the dataset into k subdatasets 

3. For each subdataset S 

a. Hold a part of the S as test set 

b. Hold remaining parts of the S as training set 

c. Fit a model on the training set 

d. Evaluate the fitted model on the test set (validation) 

e. Store the evaluation score and discard model 

4. Average the stores evaluation scores 
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the other subsets are held as the training set. On the current training set, a classifier model 

is trained and tested the current test set. For k times, test and training subsets are hold, a 

model is trained and the model performance is measured. Finally, performance scores are 

averaged.  

 

 

 

Figure 4.5. Visualization of an example of 5-fold Cross Validation 

 

 

Prediction task inputs and outputs in WEKA 

 

 For the completeness of predictive analysis explanation, input and output of this 

analysis should be specified. In Figure 4.6, the input and output of the machine learning 

classifier for the prediction task in WEKA are illustrated.  Input files contain training 

data. They are the files with the extension “. arff” and they include feature values and 

ground truth events for specified evolution chains. Classifiers such as Ibk, J48, Random 

forest, Bagging, and Random tree are the machine learning models to be used for 

prediction tasks in the context of this study. In general, the output of the prediction task 

is the labels per instance in training data. 
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  Figure 4.6. Prediction task inputs and outputs in WEKA 

 

 

 

 

Figure 4.7. A sample training set for predicting merge event for WEKA 

 

 

For illustration, a sample WEKA input (arff- Attribute Relation File Format) from 

merge evolution event as training set is provided in Figure 4.7. This file contains two 

main parts such header and data. In the header, the name of the relation and a list of 

attributes (the columns in the data) and their types. In the data part, the feature values of 

each tracked community are written as a separate line/vector. Just a kind reminder, the 

only attribute merge is the response variable. As is seen from the figure, features have 

values with different scales. Normalization is required before calculating Euclidean 
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distance when classifiers use this distance for the decision process. Otherwise, the 

features have large numbers dominates when measuring the distance. 

 

 

 

Figure 4.8.  A sample output for decision task in WEKA 

 

 

However, the output of the process is seen as a little bit different in the figure 

because the output of the prediction process in WEKA is a text file including some 

statistics such as accuracy, errors made by the classifiers, and a confusion matrix showing 

True Positives, True Negatives, False Positives, and False Negatives. To be concise, a 

sample of produced output files by Ibk in WEKA for merge evolution events is shown in 

Figure 4.8. The output file includes a detailed summary about the errors done by the 

classifier and a detailed accuracy information. The evaluation metric F-measure used to 

evaluate the success of prediction is explained in the next subsection. 
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4.4. Experimental Results 

 

 

Several measures have been suggested to evaluate the classification performance. 

The most often used are accuracy, precision, recall, and F-measure for binary classifiers. 

The F-measure is the harmonic mean of precision and recall, which is calculated as in 

equation (4.1). It takes a value between 0 and 1 where the higher F-measure values show 

that predictions are more successfully done. Note that F-measure can be calculated 

because ground truth event information for each evolution is already known. The role of 

TREC in producing ground-truth dataset is explained in Appendix B. 

 

 

 

 

 

  Table 4.5. The highest prediction success values in terms of F-measure per events  

 

Classifiers Events Over all 

 Grow Shrink Continue Split Merge Dissolve  

Bagging 0.70 0.67 0.74 0.91 0.96 0.80 0.79 

J48 0.70 0.68 0.76 0.92 0.97 0.82 0.80 

Random Forest 0.72 0.65 0.71 0.96 0.98 0.78 0.78 

Random Tree 0.70 0.62 0.60 0.94 0.96 0.76 0.76 

IBk 0.70 0.62 0.64 0.94 0.96 0.77 0.76 

 

 

Table 4.5 shows the classification performance for each particular evolution event 

provided by each classifier used in the experiment. In the first column, the classifiers used 

are listed. The second column (“Events”) shows the F-measures per event. The last 

column shows the overall prediction performance per the classifiers.  

 Table 4.6 shows the performance of the classifiers for all chain lengths. In the first 

column, the classifiers reside. The other columns list F-measure values according to the 
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chain lengths from one to three, respectively. Note that evaluation of these results are 

evaluated in the following subsection. 

 

 

Table 4.6. Overall performance of the classifiers with respect to chain lengths 

 

Classifiers L=1 L=2 L=3 

Bagging 0.79 0.77 0.77 

J48 0.78 0.78 0.80 

Random Forest 0.78 0.75 0.77 

Random Tree 0.76 0.73 0.73 

IBk 0.76 0.77 0.72 

 

 

4.4.1. Discussion on the Results 

 

 

According to the experimental results in Table 4.4, the performance of the 

classifiers is close to each other. However, the highest score is belonging to J48 and in 

the second-order Bagging classifier comes.  

According to the results shown in Table 4.5, chain lengths make difference in 

prediction results, but there is no general pattern obeyed by all classifiers. For example, 

Bagging, Random Tree, and Ibk show an inverse relation with chain length on the 

performance while J48 shows a direct relation with chain length.   

Table 4.7. summarizes the highest accuracy in F-measure at which chain length 

and by which classifier, which makes it easier to discuss the experimental results. As seen 

from the table, split and merge events are predicted with a great performance which is 

higher than 0.95. However, the lowest prediction success occurs for shrink events. 

Prediction performance of dissolve, continue, and grow events lies between prediction 

accuracy of merge and shrink events. 

 After examining summary Table 4.7, one question comes to mind as usual:” Why 

Random Forest and J48 performed better than other classifiers?” The answer lies in the 

data in our study because both classifiers are better to reduce the variance in the dataset 
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than the other classifiers. In our training dataset, some features used such as size, density 

and cohesion, and degree centrality of leaders have high variance.  

 

 

Table 4.7. The highest success in terms of accuracy in percentage with specific chain 

length and classifier 

 

 
Success  (F-measure) Len Classifier 

Grow 0.73 1 RF 

Shrink 0.68 3 J48 

Continue 0.76 3 J48 

Split 0.96 1 RF 

Merge 0.98 3 RF 

Dissolve 0.82 3 J48 

 

 

 Random Forests reduces variance in two ways: (i) training on different samples 

of the data and (ii) using a random subset of features. In the first way, the data are selected 

for decision tree construction with replacement. That is, each sample has an equal chance 

of being selected and can be selected more than once, which is called bagging. In our 

experiment, bagging with 100 iterations is used by default. In the second way, Random 

Forests uses a certain number of features in each decision tree. Suppose five features are 

selected and we have twenty features. Unfortunately, we left out fifteen features. 

However, the Random Forest is a collection of decision trees and five random features 

are used in each tree. If there are enough decision trees, all features are already used. In 

this study, the number of attributes is randomly examined by default. Therefore, the 

correlation between the created decision trees is low, resulting in low variance. 

J48 reduces the variance in the following way. It aims to build the smallest 

possible decision tree. It uses information gains for branching. For this reason, it 

calculates the information gains for all features and then sorts them according to their 

gains. According to their ranks, they are placed in the decision tree. The information gain 

can be considered as inversely proportional in some sense in the decision tree domain. 

That is, the highest information gain implies the lowest variance. Therefore, J48 performs 

its branching by reducing the variance. 
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4.4.2. Concluding Thoughts 

 

 In summary, this chapter is devoted to investigating whether the TREC method 

can be extended to include a simple strategy for predicting the evolution of communities. 

That is, this chapter does not aim at novelty in the form of a new machine learning 

classifier and prediction method. The experimental results provide hope, and based on 

these results, it can be said that TREC has been extended for community evolution 

prediction. The most difficult to detect events such as merge and split events are predicted 

with very high performance. However, the success in predicting growing, shrinking, and 

continuing events can be increased by adding new structural or temporal features or by 

tuning the parameters of the classification models in future work. A friendly note: The 

parameters of the classifiers used are default values given by WEKA. 
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CHAPTER 5 

 

 

CONCLUSION 

 

 

The main objective of this study is to solve the problem of resource consumption 

in tracking community evolution, since resource consumption is as important as accuracy. 

However, this problem has not been addressed before our study. The most common 

solution to the tracking problem involves two main steps: (i) the independent detection of 

communities at each time step of the network, and (ii) the matching of detected 

communities over time. In studying these steps, it has been shown that the highest 

resource consumption occurs in community matching. Therefore, this research focuses 

on this part of the problem.  

 Therefore, our novel space-efficient method TREC (presented in Chapter 3) 

focused on solving the community matching problem. The key idea is to combine LSH 

and minhashing methods. Minhashing is in detail responsible for storing communities in 

much less memory by extracting their signatures. LSH is responsible for quickly finding 

similar communities of a queried community. With the guarantee that LSH definitely 

detects the similar communities with 40% or more. Moreover, a detailed banding analysis 

of LSH is performed in this chapter. Moreover, the effect of using minhash signatures 

and LSH is also evaluated. 

 Table 5.1 lists our goals and shows whether TREC achieves them. As can be seen 

from the figure, our novel TREC satisfies all goals according to our motivation. The 

functional goals are met by all competing methods, but they differ with respect to the 

performance goal. They have almost the same accuracy values. However, TREC has the 

lowest memory requirement. In terms of execution time consumption, TREC is the 

second best method and the execution time results are reasonable. In summary, TREC is 

the best method for evolution analysis on local computers due to its memory efficiency. 

To show the computational limitations of TREC, both space and time complexity analysis 

are performed. Then, the real-time analysis of memory usage and execution time is 
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measured using a diagnostic tool. It is found that the real-time analysis results are 

consistent with the theoretical results. 

 

 

Table 5.1. Our goals of a method for evolution of communities tracking 

 

 Goals TREC 

Functional 

Goals 

Tracking both consecutively and nonconsecutively evolving 

communities 

 

Identifying all evolution event types  

Supporting k-community merge/split  

Performance 

Goals 

Providing the highest accuracy  

A reasonable execution time  

The least memory consumption   

Showing its computational boundaries  

 

 

 As a complementary task, a case study is developed in Chapter 4. The study aims 

to answer the question whether the TREC method can be extended to the prediction of 

community development. Thus, it is not the aim of this chapter to present a new machine 

learning method or a method for predicting the evolution of a community. In order to 

predict the future of a community, it is necessary to know its evolution history. This is 

where the TREC method comes in. It tracks the evolution of communities and creates 

evolutionary chains. Then it is the turn of predictive analysis. For the analysis, a database 

application is developed that automatically determines the ground truth evolution events. 

Experimental results show that TREC can be used for this purpose. 

 

 The contributions of this dissertation is listed below. 

 

 A novel, space-efficient TREC (TRacking Evolution of the Communities) method 

for tracking community evolution is proposed. 

 A combination of LSH and minhashing techniques is proposed in community 

matching to solve the problem of high resource consumption. 
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 A complexity analysis of TREC is performed to evaluate its computational 

limitations. 

 A dataset of evolution events is constructed to evaluate the success of prediction. 

 

The research can continue, with some challenges still to be overcome, as follows. 

 

 Reducing resource consumption in tracking evolution of communities can be tackled 

for a dynamic network with an overlapping community structure. If TREC is to be 

extended by researchers, the event detection rules and tracking algorithm to handle 

overlapping community structure need to be updated. Then the tracking algorithm 

needs to be updated. 

 There are no publicly available benchmark datasets for evolution events to serve as 

a ground truth in prediction. Therefore, such benchmarks are a valuable contribution. 

 Neither open source codes nor executables are available for the latest tracking 

methods (published between 2011 and 2021). If researchers want to conduct a 

comparative study or evaluate the success of their new method, they need to 

implement the relevant work. Therefore, it would be a valuable contribution for many 

researchers to make the implementations of such methods available as libraries and 

datasets, especially for comparative studies. 
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APPENDIX A 

 

A TAXONOMY OF METHODS FOR TRACKING 

EVOLUTION OF COMMUNITIES 
 

 

In this section, a summary for each method for tracking evolution of communities 

by framing them in the Dakiche et al.’s taxonomy (Dakiche,Tayeb, Slimani and Benatchb 

a 2019a). The taxonomy is a three-level classification of existing methods for tracking 

community evolution in dynamic social networks with respect to their network models 

(first level of tree structure), their functioning principles (second level) and algorithmic 

techniques (third level). The chart of taxonomy in 3.10 is repeated just for the sake of 

completeness of the section.  

 

 

 

 

Figure 3.10. Classification chart of the existing tracking community evolution methods 

in dynamic social networks  
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The taxonomy divides methods for tracking evolution of communities into four 

categories according to their methodological principles; the methods using (i) 

independent community detection and matching approach, (ii) dependent community 

detection; (iii) simultaneous community detection and (iv) dynamic community detection 

on time-dependent networks. 

 

I) The Methods Using Independent Community Detection and Matching 

Approach 

Any method for tracking evolution of communities adopted this approach contains 

two-stage. In first stage, the method takes a dynamic network with some time steps as 

seen in Figure A.1(a) and detect community structures on all time steps independently (in 

Figure A.1(b)). In the second stage, communities found on successive time steps are 

matched as seen in Figure A.1. (c)-(d).  Evolution of communities is seen in Figure A.1. 

(e). Our novel method TREC can be categorized under this type. Therefore, the methods 

under this category is investigated in Section 3.2. 

 

 

 

Figure A.1. Independent community detection and matching approach (Source: 

Cazabet, Rossetti and Amblard 2017) 
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Hopcroft et al.’s work (Hopcroft, Khan, Kulis and Selman 2004) can be regarded 

as one of the pioneer work for event-based methods. It first detects implicit communities. 

It makes run a community detection algorithm for each time step for several times, then 

takes into consideration most appeared communities during detection. Then it does 

agglomerative hierarchical clustering between successive snapshots via their matching 

function.  

Palla et al. (Palla, Derényi, Farkas and Vicsek 2005) regard communities as 

composed of cliques. They use Clique Percolation Method (CPM) to detect communities. 

Then, they build joint graphs for each two sequential time steps and apply CPM again. 

They use a correlation function and a stationary parameter to find overlap between two 

states of a community and to denote average correlation of community states, 

respectively.   

Bourqui et al.’s program (Bourqui, Gilbert, Simonetto, Zaidi, Sharan and Jourdan 

2009) detects major structural changes over time via an overlapping community detection 

algorithm. It identifies community events by using community overlaps. Then, by using 

Minimum Spanning Tree (MST) to reveals hierarchies between communities. 

Asur et al. (Asur, Parthasarathy and Ucar 2009) proposed a simple method to 

identify community events via matching approach on time step community membership 

matrices. They use MCL (Van Dongen 2000), a modularity-based algorithm, to detect 

community structures. 

Greene et al. (Greene, Doyle and Cunningham 2010) propose a model for 

evolution of communities over time. They obtain community structures on each time step 

as step communities. They represent each dynamic community by a timeline of its 

constituent step communities.  The most recent observation in a timeline is referred to as 

the front of the dynamic community. After authors make matching between communities 

via Jaccard similarity, they update front elements and timelines for each dynamic 

community. 

Brodka et al. (Bródka, Saganowski and Kazienko 2012) develop Group Evolution 

Discovery(GED) method. Heart of this method is inclusion measure, allows to evaluate 

the inclusion of one community in another one, which combines both group quantity 

(what number of members of first group in second group) and quality (all member 

importance in the group) of community members. Based on inclusion measure, they put 

some rules to determine community events.  
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Gliwa et al. (Gliwa, Saganowski, Zygmunt, Bródka, Kazienko and Kozak 2012) 

propose another method so-called Stable Group Changes Identification(SCGI). They used 

CPM method (Palla, Derényi, Farkas and Vicsek 2005) for community detection and they 

propose modified Jaccard similarity instead of inclusion metric. They assume that two 

communities are similar if similarity is greater than 50%. 

Takaffoli et al. (Takaffoli, Fagnan, Sangi and Zaïane 2011) develop a method for 

improve the tracking evolution of communities by defining rules. They do matching 

operations communities not only between sequential time steps but also among different 

time steps by using a simple greedy matching algorithm.   

Sun et al. (Sun, Tang, Pan and Li 2015) focus on event detection on online social 

networks on successive snapshots. They find communities using Louvain algorithm 

(Blondel, Guillaume, Lambiotte and Lefebvre 2008) on each time step. Then, they create 

a correlation matrix to see relations between communities at time 𝑇 and 𝑇 + 1. According 

to this matrix, they define some evolution rules for community events. 

Tajeuna et al. (Tajeuna, Bouguessa and Wang 2016) propose a new method to 

model and track community evolution. They first independently identify community 

structure in each time step. For each detected community, they find the number of shared 

members with all other communities. Then, they estimate a representative vector that 

includes shared members with remaining communities for each detected community. 

Next, compare representative vectors by using a new similarity measure so-called mutual 

transition. Via this measure, they create rules to capture community events.  

Mohammadmosaferi and Naderi (Mohammadmosaferi and Naderi 2020) propose 

a novel method ICEM (Identification of Communitiy Evolution by Mapping) for tracking 

evolution of communities. ICEM can identify both consecutive and 

nonconsecutive evolutions of communities. It basically determines the evolution by 

tracking members of the communities within a global hash map. It maps each member to 

a <time, community> pair where time represents the last observed time step and 

community represents the last observed community. Additionally, it keeps similarity of 

each community at a specific time step. By using 

both similarity lists and the hash map, it determines the evolutions. 

As for, core-based methods in this approach, they evaluate community evolution 

over time based on core (special) nodes. Wang et al. (Wang, Wu and Du 2008) proposed 

CommTracker software. They determine core nodes according to their centrality values 
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in the network. The higher centrality value is better nominee to be a core node.  The 

mapping of communities is done according to the mutual core nodes between pairs of 

communities at different snapshot networks. Finally, the tracking of communities is done 

by tracking the core nodes. 

Another core-based method is proposed by Chen et al. (Chen, Wilson, Jin, 

Hendrix and Samatova 2010). They define communities as some maximal cliques of 

network. They introduce Graph representatives (e.g., common members of two selected 

graphs) and Community representatives (e.g., common members of same community on 

all snapshot networks) concepts to prune search space. They first find graph 

representatives to avoid redundant communities and detect communities. Then, for each 

community selects a member as community representative. Next, they use community 

representatives to establish a relationship between communities of different snapshots. 

Finally, they apply some decision rules to determine community events. 

 

II) Dependent Community Detection  

 

The methods adopted this approach process iteratively evolution of the network 

with two steps: bootstrap and update. Both evolutionary and cost-based methods, in first 

step (bootstrap), take an evolving network with some snapshots as seen in Figure A.2. (a) 

and detect community structures on first time step (in Figure A.2. (b)). However, they 

adopt different ways in the second step (update). Evolutionary methods found successive 

communities by using community structure or core nodes are found previous step and 

successive time step network while cost-based methods try to do minimum modification 

on communities on two consecutive snapshots. Update step is seen in Figure A.2. (c)-(d). 

Evolution of communities is seen in Figure A.2. (e). 

The methods existing in the literature using dependent community detection is 

below. 

Dinh et al.’s method (Dinh, Xuan and Thai 2009) is based on Clauset Newman 

Moore (CNM) community detection algorithm (Clauset, Newman and Moore 2004). 

Authors regard last snapshot communities as initial state and put each newly incoming 

member into a singleton community. After, CNM is re-run to obtain the new communities 

at the current snapshot network. 
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Figure A.2. Dependent community detection approach (Source: Cazabet, Rossetti and 

Amblard 2017) 

 

 

Wang and Fleury (Wang and Fleury 2010) initialize Louvain algorithm (Blondel, 

Guillaume, Lambiotte and Lefebvre 2008) with core nodes found previous snapshot 

network. They define core nodes as survival members of the same community after some 

re-runs of a community detection algorithm.  After, they re-run Louvain to obtain the new 

communities at the current snapshot network.  

Similar to Wang and Fleury’s work (Wang and Fleury 2010), Aynaud and 

Guillaume (Aynaud and Guillaume 2010a) propose a method based on Louvain algorithm 

(Blondel, Guillaume, Lambiotte and Lefebvre 2008). They propose initialize algorithm 

at time T+1 with the communities found at time T. In addition, they add a parameter to 

avoid community drift (e.g.  to evolve invalid communities). 
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Guo et al. (Guo, Wang and Zhang 2014) detect communities via modularity 

optimization for dynamic weighted network snapshots. For each snapshot, they build an 

input matrix, represents a trade-off between adjacency matrices of current and previous 

snapshots.  Then, they apply a modified modularity optimization community detection 

algorithm.  

Aston and Hu (Aston and Hu 2014) propose Dynamic Structural Clustering 

Algorithm for Networks (DSCAN), which is an improved version of SCAN (Xu, Yuruk, 

Feng and Schweiger 2007) algorithm that works for static networks. DSCAN performs 

SCAN on the first time step. Then for all consecutive time steps, it obtains the difference 

in edges between the two time steps. If there are edge changes, then the network is 

updated from the nodes of each edge change of the networks. During the update of edges, 

a node can become core, or a node can no longer be a core node. When a change in the 

network is detected and needs to be updated, an existing cluster id or a new cluster id is 

propagated through all structurally connected nodes to form a new community.  

Aktunc et al. (Aktunc, Toroslu, Ozer and Davulcu 2015) propose Dynamic Smart 

Local Moving (dSLM) algorithm for dynamic networks, which is an improvement of 

SLM (Waltman and Van Eck 2013) algorithm that works for static networks. They regard 

dynamicity in the form of edge insertions and deletions. dSLM performs SLM on first 

time step. Then for all consecutive time steps, it obtains the difference in edges between 

the two time steps. If there is new-coming node, dSLM needs to try only one node 

movement which is to move newly added node from its singleton community to its only 

neighbor community. Since it appears to increase the modularity of the network, dSLM 

places the new node to another community. Because the initial community structure is 

known to be the one that maximizes the modularity of the network, there is no other node 

movement trying that can increase modularity. By this way, the dSLM runs faster than 

SLM. 

Gao et al. (Gao, Luo and Bu 2016) propose an evolutionary algorithm for 

community evolution based on leader nodes. Leader members are an adopted concept 

from Khorasgani et al.’s work (Khorasgani, Chen and Zaiane 2010). A leader member is 

the most central member her community. Each community is regarded as a union of a 

leader member and set of followers that come together and close to their leaders. Authors’ 

algorithm builds communities from the leader members to track communities. 
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Some works (Gauvin, Panisson and Cattuto 2014; Ma and Dong 2017; Al-Sharoa, 

Al-khassaweneh and Aviyente 2017) represent temporal relations or activities among 

users as a 3-way tensor (e.g., an adjacency matrix and time dimension), and they 

examined to community evolution with non-negative factorization the tensors in recent 

years. Some of them use cost functions as well. 

As for cost-based methods, Chakrabarti et al.’s work (Chakrabarti, Kumar and 

Tomkins 2006) is one of the pioneer works introduce community evolution over time. 

Authors introduce snapshot quality and history cost which quantifies the accuracy of 

partitioning of the current snapshot and quantifies the difference between partitioning on 

current time step and previous time step correspondingly. Their method calculates 

snapshot and cost quality for each time step, then choose the partition is the one with high 

snapshot and low history cost. 

Lin et al. (Lin, Chi, Zhu, Sundaram and Tseng 2009) introduce FacetNet software 

that allows multi-membership (e.g. belonging to more than one communities) property 

for the nodes for a specific time step. Unlike Chakrabarti et al.’ s method (Chakrabarti, 

Kumar and Tomkins 2006), they introduce snapshot cost instead of snapshot quality to 

quantify the accuracy of the current snapshot. They use Kullback-Leibher method 

(Kullback and Leibler 1951) to count for snapshot cost and history cost. Unfortunately, 

FacetNet says nothing much what happens in group level. Rather, it says what happen to 

specific nodes.  Therefore, a user need to analyze the result of the program and assign 

community event on by own. 

Another cost-based algorithm is DYNMOGA, a genetic algorithm to optimize 

multi-objective quality function, proposed by Folino and Pizzuti (Folino and Pizzuti 

2014). The authors aim to maximize partition quality for current snapshot via modularity 

maximization while maximize Normalized Mutual Information (NMI) (Danon, Diaz-

Guilera, Duch and Arenas 2005) between community structure of the current time step 

and previous time step to ensure a smooth evolution of communities. 

 

III) Simultaneous Community Detection on All Snapshots  

The methods adopted this approach aim to detect community structure on all time 

steps given. In this category, methods are divided into two sub groups: methods based on 

coupling graphs and methods based on optimization metric. Both methods take an 

evolving network with some time steps as seen in Figure A.3.(a) as an input. Coupling 
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graph-based methods build a unique network by binding all time steps in a manner that 

keeps community structures aligned over time. Then, runs a single community detection 

algorithm on this new network. On the other hand, optimization metric-based methods 

build metrics that can be optimized on all time steps over time. Detection of communities 

relevant on all time steps is seen in Figure A.3.(b). Finally, evolution of communities is 

seen in FigureA.3. (c). 

 

 

 

 

Figure A.3. Simultaneous Community Detection approach (Source: Cazabet, Rossetti 

and Amblard 2017) 

 

 

Jdidia et al. (Jdidia, Robardet and Fleury 2007) propose to add edges between 

nodes in successive time steps to obtain a coupling graph. They define two types of edges; 

identity edges and transversal edges. Identity edges are occurred between same nodes in 

different snapshots whereas transversal edges connect the nodes at least one common 

neighbor in consequent snapshots. After building joint graph, authors of the work run 

Walktrap, a static community detection algorithm, (Pons and Latapy 2005) to trace group 

membership over time.  
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Similarly, Mucha et al. (Mucha, Richardson, Macon, Porter and Onnela 2010) add 

links between same nodes in different snapshots, and run a generalized version of Louvain 

algorithm (Blondel, Guillaume, Lambiotte and Lefebvre 2008) to optimize modularity 

metric.  

Additionally, Mitra et al. (Mitra, Tabourier and Roth 2012) work on specific 

networks composed of links like citation networks.  They show that it is possible that run 

a community detection algorithm for static networks for these kinds of networks. They 

use Louvain algorithm (Blondel, Guillaume, Lambiotte and Lefebvre 2008) to detect 

community structure due to its speed and being scalable. 

As for optimizing metric methods, Aynaud and Guillaume et al. (Aynaud and 

Guillaume 2010b) use a modified version of Louvain algorithm to detect community 

structures. They optimize average modularity of group of nodes over several time steps. 

 

IV) Dynamic Community Detection on Temporal Networks 

 

The methods in this category work on temporal networks and aim to detect 

community structure in an online manner by following series of modifications (addition 

 or deletion) of members(nodes) or relations (edges) for each time step.  The methods take 

an evolving network with an initial time step and two modifications as seen in Figure A.4. 

(a) as an input. First, they determine initial community structure on the first snapshot as 

seen in Figure A.4 (b)).  They do modifications sequentially on the community structure 

for each incoming update as seen in Figure A.4. (c)-(d). Finally, evolution of communities 

is seen in Figure A.4. (e).  

 Cazabet et al. (Cazabet, Amblard and Hanachi 2010) propose iLCD (intrinsic 

Longitudinal Community Detection) algorithm. iLCD modifies community structure by 

regarding path lengths and its robust second neighbors. It can identify overlapping 

communities as well. However, it considers only addition of members or relations not 

removals of them.  

Nguyen et al. (Nguyen, Dinh, Xuan, Thai 2011) propose QCA (Quick Community 

Adaptation) method that contains update strategies. QCA method is based on modularity 

maximization by assigning a “force”- attracts a node towards to a community. It finds 

initial community structure using Louvain algorithm (Blondel, Guillaume, Lambiotte and 

Lefebvre 2008).  
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Figure A.4. Dynamic Community Detection on Temporal Networks approach 

(Cazabet, Rossetti and Amblard 2017) 

 

 

Additionally, Nguyen et al. (Nguyen, Dinh, Tokala and Thai 2011) propose 

another method so-called AFOCS (Adaptive FOCS) algorithm. AFOCS adopts same 

strategies with QCA (Nguyen, Dinh, Xuan, Thai 2011) but it is modified to handle 

overlapping algorithms. The modification is done via their FOCS (Finding Overlapping 

Community Structure) procedure which founds dense subgraphs that high possibly have 

overlaps. 
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Bhat and Abulaish (Bhat and Abulaish 2015) propose HOCTracker software for 

tracking the evolution of hierarchical and overlapping communities in online social 

networks. The program a log-based approach for matching operations for evolutionary 

community events.  

Cordeiro et al. (Cordeiro, Sarmento and Gama 2016) propose a method, which 

modifies Louvain algorithm (Blondel, Guillaume, Lambiotte and Lefebvre 2008). The 

method aims to maximize modularity gain function by just manipulating updated 

members or relations and left unchanged the other parts of the network.  

Rossetti et al. (Rossetti, Pappalardo, Pedreschi and Giannotti 2017) propose 

TILES algorithm that follows an online iterative procedure for extracting and tracking 

overlapping communities. Their algorithm takes their name domino tiles because it 

follows a domino effect strategy. That is, whenever an update occurs, it exploits label 

propagation procedure locally.  

Agarwal et al. (Agarwal, Verma, Agarwal and Chakraborty 2018) propose a 

novel dynamic community detection method, DyPerm, that optimizes permanence 

community scoring metric. Permanence is a vertex-based community quality metric that 

measures the probability of a vertex to already assigned community and the pulled 

degree by the neighbor communities (Chakraborty, Dalmia, Mukherjee and Ganguly 

2017). DyPerm only modifies communities that incoming update effects by keeping 

other parts of the network unchanged. Authors also give a theoretical guarantee how can 

achieve permanence maximization via local updates.  

 

Discussion on the Approaches 

In this chapter, an adopted taxonomy and framed methods for tracking evolution 

of communities in dynamic networks in the taxonomy are presented. Then, most related 

works on the related approaches are presented. In what follows, there is a discussion about 

the main approaches explained above.   

The methods using Independent Community Detection can use any static 

community detection algorithms and matching functions directly. They can parallelize 

community detection on each snapshot for time saving as well. However, those methods 

suffer from unstable nature of community detection algorithms. That is, those community 

detection algorithms can produce different partitioning even on same dataset if works 

multiple times.  
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The methods using Dependent Community Detection approach do not need to 

detect communities from scratch. Instead, they use previous community structure. 

However, neither they have a chance of using parallelization nor use of classical 

community detection algorithms. They try but cannot guarantee stability.  

As for the methods using Simultaneous Community Detection on All Snapshots, 

they do not suffer from instability problem. However, they are not convenient methods 

for real time or highly dynamic networks.  

The methods using Dynamic Community Detection on Temporal Networks 

approach do not suffer instability problem and low complexity of community updates 

because they only concern the communities they update. They are suitable for highly 

dynamic networks. On the other hand, they cannot use static community detection 

algorithms without modification, and they can evolve invalid communities, i.e. 

community drift problem. 

 As it is clear that each approach has its own pros and cons. According to 

requirements, more appropriate one is chosen.  
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APPENDIX B 
 

DECIDING GROUND-TRUTH EVENTS  
 

 

F1-score is used to evaluate the accuracy of the prediction results, the harmonic 

mean of precision (in Equation 1), and recall (in Equation 2). True Positives (TP) occur 

when the response variable (evolution event) is classified as positive (yes) by the 

classifiers while it is positive in fact.  Similarly, False Negatives (FN) occur where the 

response variable is classified as negative (no) by the classifiers while it is positive in 

fact. As for False Positives (FP), they occur where the response variable is classified as 

positive by the classifier while it is negative. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
TP

(TP +  FP)
                                       (1) 

 

 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
TP 

(TP +  FN)
                                                (2) 

 

 

To evaluate the success of the prediction results, it is necessary to know the ground 

truth evolution events, since ground truth information is the basis for determining TP, FP, 

and FN. For this reason, it may be helpful to use a process like the one in Figure A.5 to 

determine the events. That is, the process takes the community structure of all the time 

steps that make up the dynamic network and generates a text file that contains ground 

truth events for communities as output. This process also includes community matching, 

as it can determine the evolution events based on whether they match or not. Therefore, 

this section explains the process for determining ground truth events in this study. 
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To implement such a process, a specific database application is developed. The 

application first stores the information about members (Nodes table) and communities 

(Communities table) as our base dataset. Then, some auxiliary tables (other tables except 

Communities table and Nodes table) are created during the process. Figure A.6. shows a 

ERD (entity-relationship diagram) of this database. As can be seen in the figure, the 

Communities table contains the identification numbers of the communities, the time step 

at which the community forms, and the number of nodes in the community. The Nodes 

table stores a member's time information that specifies its community. The Matches table 

stores ground truth events including community pairs, their respective time steps, and the 

member size of the communities. The Intersections table temporarily stores the values 

used to calculate the Jaccard similarity between community pairs, as well as the similarity 

values. Finally, the NotMatchedCommunities table temporarily stores the identification 

numbers of communities that do not match another community. Note that all columns 

except the Event column are numbers and the Event column is a string. 

 

 

 

 

Figure A.6. ERD diagram of the database application 

Figure A.5. Input and output of the ground-truth event determination process 
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Since we only have information about communities and nodes that form 

communities as input to the process, the Communities and Nodes table is populated except 

for the csize column of the Communities table. Note that the data filling is done by 

software that we developed in the Java language. 

 

 

 

 

Figure A.7. A pseudocode for the process to determine ground-truth events 

 

 

A pseudocode for this process can be seen in Figure A.7. The process takes the 

database whose ERD diagram is shown in Figure A.6 and the event decision rules in 

Table 3.1. Note that Table 3.1 and the figure referenced in the table (Figure 3.2) are 
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repeated only for completeness. Next, the process generates groundtruth.txt, a text file 

containing the community identification number and the associated ground truth event on 

each line as output. 

 

 

 

 

Figure 3.2.  An illustration of community evolution events where 𝑖 and 𝑗 represent time 

steps where 𝑖 < 𝑗 
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 In Line 1 of the pseudocode, the number of members of the communities is 

queried with the following query. Then, the column csize of the Communities table is 

filled with the results of nodeCount. 

select COMMUNITY_ID, count(node_id) as nodeCount from nodes 

where nodes.community_id IN (select community_id from communities) 

group by community_id 

ORDER BY community_id ASC; 
 

Table 3.1.  Definition and illustration of community evolution events 

 

Definitions of community evolution event types Reference 

To Figure 

3.2. 

Form:  

A new community 𝐶𝑡𝑖
forms at time 𝑡𝑖 . 

𝑓𝑜𝑟𝑚(𝐶𝑡𝑗
𝑎) = 𝑡𝑟𝑢𝑒; 𝑖𝑓 𝐽𝑆(𝐶𝑡𝑖

∗, 𝐶𝑗
𝑎) < 𝜆  𝑓𝑜𝑟 ∀𝐶𝑡𝑖

∗ ∈ 𝐺 at time 𝑡𝑖 𝑎𝑛𝑑 𝑡𝑖 <

𝑡𝑗 𝑎𝑛𝑑 |𝑉𝐶𝑡𝑖
𝑎| ≥ 3.    

(a) 

Grow: 

New members may join the community or some existing members may move 

between communities in graph 𝐺 over time; hence, some of the communities may 

grow. 

 

𝑔𝑟𝑜𝑤𝑡ℎ(𝐶𝑡𝑖

𝑎) = 𝑡𝑟𝑢𝑒;  

𝑖𝑓  ∃𝐶𝑡𝑗

∗ ∈  𝐺 at time 𝑡𝑗 𝑎𝑛𝑑 𝑡𝑖 < 𝑡𝑗 𝑎𝑛𝑑 𝐽𝑆 (𝐶𝑡𝑖

𝑎, 𝐶𝑡𝑗

𝑏) ≥

 𝜆 𝑎𝑛𝑑  1.05|𝑉𝐶𝑡𝑖
𝑎 | ≤ |𝑉𝐶𝑡𝑗

𝑏| 

(b) 

Continue:  

Communities can continue their lives either without any change or with changes 

within tiny upper or lower limits as 0.05 rate of change in community size.  

 

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒(𝐶𝑡𝑖

𝑎) = 𝑡𝑟𝑢𝑒;  

𝑖𝑓 ∃𝐶𝑡𝑗

𝑏 ∈ 𝐺 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡𝑗 𝑎𝑛𝑑 𝑡𝑖 < 𝑡𝑗, 𝑎𝑛𝑑 𝐽𝑆 (𝐶𝑡𝑖

𝑎, 𝐶𝑡𝑗

𝑏) ≥  𝜆 𝑎𝑛𝑑  

0.95|𝑉𝐶𝑡𝑖
𝑎| < |𝑉𝐶𝑡𝑗

𝑏| <  1.05 × |𝑉𝐶𝑡𝑖
𝑎|. 

(c) 

Shrink:  

A portion of the members may leave a community and cause it to shrink. 

𝑠ℎ𝑟𝑖𝑛𝑘(𝐶𝑡𝑖

𝑎) = 𝑡𝑟𝑢𝑒; 

(d) 

(cont. on next page) 
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Table 3.5 (cont.) 

 

𝑖𝑓 ∃𝐶𝑡𝑗

𝑏 ∈  𝐺 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡𝑗 𝑎𝑛𝑑  𝑡𝑖 < 𝑡𝑗, 𝑎𝑛𝑑 𝐽𝑆 (𝐶𝑡𝑖

𝑎, 𝐶𝑡𝑗

𝑏) ≥  𝜆, 𝑎𝑛𝑑 |𝑉𝐶𝑡𝑗
𝑏|

≤  0.95 |𝑉𝐶𝑡𝑖
𝑎|. 

 

Split:  

A community can split into subcommunities if the similarity threshold λ between 

the community and the set of subcommunities is satisfied at the following time 

step. 

𝑠𝑝𝑙𝑖𝑡(𝐶𝑡𝑖

𝑎) =  𝑡𝑟𝑢𝑒; 

 𝑖𝑓 ∃𝑆𝐶𝑡𝑗
∗ = {𝐶𝑡𝑗

1 , 𝐶𝑡𝑗

2 , . . . , 𝐶𝑡𝑗

𝑚} 𝑓𝑜𝑟 𝐶𝑡𝑖

𝑎 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡𝑖 𝑎𝑛𝑑 𝑡𝑖 < 𝑡𝑗,𝑎𝑛𝑑 ∀𝐶𝑡𝑗

∗ ∈

𝑆𝐶𝑡𝑗
∗ , 𝐽𝑆(𝐶𝑡𝑖

𝑎, 𝐶𝑡𝑗

∗) ≥  𝜆. 

(e) 

Merge:  

Communities can form a new and larger community by merging. A set of 

communities 𝑆𝐶𝑡𝑖
= {𝐶𝑡𝑖

1 , 𝐶𝑡𝑖

2 , 𝐶𝑡𝑖

3 , . . . , 𝐶𝑡𝑖

𝑛 } merge, and form a community ∃𝐶𝑡𝑗

b ∈

 𝐺 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡𝑗 > 𝑡𝑖. The similarity threshold λ is exceeded by each community of 

𝑆𝐶𝑡𝑖
and 𝐶𝑡𝑗

b. 

𝑚𝑒𝑟𝑔𝑒 (𝑆𝐶𝑡𝑖
𝑎) =  𝑡𝑟𝑢𝑒;  

𝑖𝑓 ∃𝑆𝐶𝑡𝑖
= {𝐶𝑡𝑖

1 , 𝐶𝑡𝑖

2 , 𝐶𝑡𝑖

3 , . . . , 𝐶𝑡𝑖

𝑛 } 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡𝑖 < 𝑡𝑗 𝑎𝑛𝑑 ∃𝐶𝑡𝑗

b ∈  𝐺, ∀𝐶𝑡𝑖

∗ ∈ 𝑆𝐶𝑡𝑖
,

𝐽𝑆(𝐶𝑡𝑖

∗ , 𝐶𝑡𝑗

b) ≥  𝜆. 

(f) 

Dissolve:  

A community 𝐶𝑡𝑖
𝑎 dies over time by losing its members and then we cannot 

observe any community exceeding similarity threshold λ in the following steps. 

𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒(𝐶𝑡𝑖
𝑎 ) =  𝑡𝑟𝑢𝑒;  𝑖𝑓 ∄𝐶𝑡𝑗

∗ ∈  𝐺 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡𝑗 > 𝑡𝑖  𝑤𝑖𝑡ℎ 𝐽𝑆 (𝐶𝑡𝑖
𝑎 , 𝐶𝑡𝑗

∗)

≥ 𝜆  𝑎𝑛𝑑 |𝑉𝐶𝑡𝑖
𝑎| < 3 

(g) 

 

 

Two pointers, 𝑡 and 𝑗, are used to point to the time steps including communities 

to be compared. The pointer 𝑡 points to the time step to be processed, and the pointer 𝑗 

points to the incoming time steps for matching in both consecutive and nonconsecutive 

time steps. Initially, both pointers point to the first time step, as seen in Line 2. 

The identification numbers of the 𝐶𝑡 (e.g. communities in time step 𝑡) are retrieved 

with the following query. Then they are manually copied to the table 

NotMatchedCommunities, as seen in the Line 3. 
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select distinct community_id  

from nodes 

where timestep = 1 

order by community_id ASC;  
 

In the Loop A (Line 4 - Line 15) the pointer 𝑡 goes chronologically through the 

time steps except for the last one, which tells us the current time step. In the Loop B (Line 

5 - Line 13), the pointer 𝑗 points to the incoming time steps to determine the communities 

to match with the communities in the time step specified by 𝑡. For example, the 

communities in the time step 1 are compared with the communities to match with the 

communities in the time step 2. If there are communities that do not match, then they are 

compared to the communities in time step 3. This task continues in all time steps as long 

as there are communities that have not yet been matched. After all possible comparisons 

have been made, 𝑡 points to the next time step as long as it points to the immediately 

preceding time step of the last time step (tsc), and 𝑗 is matched with 𝑡, as seen in line 15. 

Loop B is explained in more detail in the following section. 

In the Line 6, pointer 𝑗 is moved to next time step. The information of the 

communities whose identification numbers are in the table NotMatchedCommunities and  

𝐶𝑗 is inserted into the table Intersections, except for the column JS, as seen in Line 7. The 

following query is used for this task. 

 

insert into intersections (c1_id, c2_id, commonnodecounts) 

select t1.community_id as c_t1, t2.community_id as c_t2, count(t1.node_id)  /*for 

finding shared number of nodes in a community pair*/ 

from nodes t1, nodes t2 

where t1.timestep=1 and t2.timestep=2 and t1.node_id=t2.node_id 

group by t1.community_id, t2.community_id  

ORDER BY t1.community_id ASC;  

  

The size of the first and second communities is determined by the following two 

queries. They are then manually copied to the column c1size and the column c2size of the 

Intersections table. 
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select t1.c1_id, t2.csize as c1size from intersections t1, COMMUNITIES t2 

where t1.c1_id = t2.COMMUNITY_ID; /*to obtain the size of the first community in 

the record.*/ 

select t1.c2_id, t2.csize as c2size from intersections t1, COMMUNITIES t2 

where t1.c2_id = t2.COMMUNITY_ID; /*to obtain the size of the second community 

in the record.*/ 

 

Then, the values of Jaccard Similarity (JS) are calculated using the query below 

for the community pairs in the Intersections table (see Line 8). Then the values of JS are 

manually copied to the JS column in the Intersections table (see Line 9). 

 

select c1_id, c2_id, commonnodecounts, c1size, c2size, 

commonnodecounts/(c1size+c2size-commonnodecounts) as js 

from intersections; /*to calculate js*/ 

 

 Next, the table Matches is populated with the required values for its columns from 

the table Intersections and the table Communities if the value JS of a community pair is 

greater than or equal to 0.1 (e.g., similarity threshold - the lowest value above which a 

community pair is considered similar). The task can be seen in Line 10. 

 

/*fill the Matches table*/ 

insert into matches 

select t1.c1_id, t1.c2_id, t2.birth_timestep,  t3.birth_timestep, t1.c1size, t1.c2size 

from intersections t1, communities t2, communities t3 

where t1.js>= 0.1 and t1.c1_id=t2.community_id and t1.c2_id=t3.community_id  

order by c1_id ASC; 

 

Later, the records in the table NotMatchedCommunities are deleted with the 

following query, as seen in Line 11. 

 

delete from notmatchedcommunities; 

 



122 

 

Next, the communities in time step 𝑡 that do not match the communities in time 

step 𝑗 are found and inserted into the table NotMatchedCommunities, as seen in Line 12. 

 

insert into notMatchedCommunities 

select distinct(c1_id) from intersections  

where intersections.c1_id not in(select c1 from matches) 

order by intersections.c1_id; 

 

The records of the table Intersections are cleared with the query below as seen in Line 13. 

 

delete from intersections; 

 

If there are still nonmatching communities from 𝐶𝑡, after loop B finishes, it means 

that these communities are dissolved. They are appended to the table Matched with t1 and 

t2 as "1", as seen in Line 14. These “1” values are sentinel values that inform us about 

the dissolve events. 

 

/*to add dissolved communities to Matches table*/ 

 insert into matches 

 select t1.cid, t1.cid, 1 as t1, 1 as t2, t2.csize, t2.csize 

 from notmatchedcommunities t1, communities t2 

 where t1.cid=t2.community_id; 

 

At the end of Loop A, ground-truth events are determined by the decision rules, 

as seen in Line 16 of the Figure A.7. 

Form events are not considered because a community must be formed to predict 

community evolution. To populate the Event column in the table Matches, the following 

query is used. For example, sentinel values are searched for dissolve events. When found, 

the event of the associated record is updated as "dissolve". 

 

update matches 

set event = 'dissolve' 

where t1 = 1 and t2 = 1; 
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Later, the split events are determined using the following query. In this query, the 

communities divided into more than or equal to two are searched, and then the column 

Event in the table Matches is updated as "split". 

 

update matches 

set event = 'split' 

where c1 IN (Select c1 from matches 

              group by c1 

              having count(C1) >1); 

 

 Next, merge events are identified using the query below. This query looks for the 

communities of which more than one has been merged into a larger community, and then 

updates the column Event in the table Matches as "merge". 

 

update matches 

set event = 'merge' 

where c2 IN (Select c2 from matches 

             where event is null 

             group by c2  

             having count(C2)>1); 

 

Finally, the events "grow", "shrink", and "continue" are recognized in order. 

Corresponding queries can be found below. In these queries, the events are determined 

based on the change in the number of members of the matching communities. The column 

Event in the table Matches is then updated. 

 

/*GROW*/ 

update matches 

set event = 'grow' 

where event is null and t1<t2 and (c1size*1.05) < c2size; 

 

/*SHRINK*/ 

update matches 
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set event = 'shrink' 

where event is null and t1<t2 and c2size< (c1size*0.95); 

 

/*CONTINUE*/ 

update matches 

set event = 'continue' 

where event is null; 

 

After labeling events in the table Matches, the second community (C2) and the 

column Event in the table are copied into a text file (groundtruth.txt).  In this way, the 

ground-truth events for the prediction task are obtained. For the repetition of this analysis 

and further use of these tables and codes by other researchers; they are shared in the link: 

https://github.com/akaratas/groundTruthEvents . 

 

https://github.com/akaratas/groundTruthEvents
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APPENDIX C 
 

FEATURE DETERMINATION SUBPROCESS 
 

 

In this context of this case study, structural, temporal, and leadership features of 

the communities are considered as well, which will be relevant for the prediction of 

community evolution.  

 

Table A.1. Structural features of the communities 

 

No Type Feature Description Definition 

1 Structural 

 

Size (S) Number of nodes in community 

k at time t ( )  

2 Structural Density (D) Ratio of edges (E) to the 

maximum possible edges. 
 

3 Structural Clustering 

Coefficient  

(CC) 

Ratio of the sum of the 

clustering coefficient(cc) of the 

community nodes to the 

number of nodes(n) in the 

community. 

 

4 Structural Cohesion 

(Ch) 

Strength of connections inside 

the community in relation to the 

connections outside(OE) of it. 
 

5 Structural Average 

Degree 

Centrality 

(ADC) 

Ratio of the sum of degrees of 

the nodes in the community  

to the number of nodes in the 

community. 

 

6 Structural event Currently occurred event for the 

community such as dissolve, 

grow, shrink, merge and split 
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The name of the features, their types, description, and definitions in Table A.1, 

Table A.2, and Table A.3 are listed. In the first column “No”, the selected features are 

numbered. In the second column “Type”, the type of the feature as structural, temporal, 

or leadership features are specified. In the third column “Feature”, the name and 

abbreviation of the features are given. In the fourth column “Description”, the explanation 

for each feature is provided. In the last column, the definitions of the specific features 

reside. 

In Table A.1, regarded structural features of the communities are listed. In the 

table, feature titles, descriptions of the features, and definitions of the features are placed. 

In Table A.2, regarded temporal features between communities are listed. As is seen from 

the table, feature names start with a  symbol. This symbol indicates the difference 

among the features written in curly brackets. For illustration,  feature gives the 

difference between size. 

Influential members (e.g., leaders of communities) can play important roles in the 

evolution of communities. For example, if a leader leaves one community, her followers 

may become less active or disperse to other communities as well. In this case, the 

community may lead to community shrink or even dissolve.  Because of this intuition, 

some features of influential members are decided to be regarded. 

Influential members of communities are determined according to their 

Eigenvector centrality values. These values are obtained via the Gephi graph visualization 

library5. If the value is equal to or higher than 0.5, then it is regarded as one of the leaders 

in this study. The features of influential members specified in Table A.4. are considered 

because of the number of leaders in a community (LC), the average values of Eigenvalues 

(LE), and the average of degree values (LDC) of leaders of a community can affect and 

tell about node transitions among communities. The node transitions may affect evolution 

events that a community may undergo. For example, if the number of leaders decreases, 

it may mean this community split, shrink or dissolve events. 

In our study, all considered features are real values, and only “event” feature is a 

categorical variable and it is converted to integer values with the encoding below in the 

training dataset. In the first column of Table A.4., the values of the event feature and in 

the second column their corresponding integer codes used for encoding are listed.  

                                                           
5 https://gephi.org/ 
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Table A.2. Temporal features of the communities 

 

No Type Feature Description Definition 

7 Temporal 

 

The change amount in size 

between current 

community  at time   and 

previous community  at 

time step  

 

8 Temporal 

 

The change amount in 

density between current 

community  at time   and 

previous community  at 

time step  

 

9 Temporal 

 

The change amount in 

average clustering 

coefficient between current 

community  at time   and 

previous community  at 

time step  

 

10 Temporal 

 

The change amount in 

cohesion between current 

community  at time   and 

previous community  at 

time step  

 

11 Temporal 

 

The change amount in 

average degree centrality 

between current 

community  at time   and 

previous community  at 

time step  
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Table A.3. Leadership features of the communities 

 

No Type Feature Description Definition 

12 Leadership 

Features 

Leaders Count 

(LC) 

the number of leaders of current 

community  at time     

13 Leadership 

Features 
Leaders Eigen 

(LE) 

is the average of Eigen values of 

leader nodes in the current 

community  at time   

14 Leadership 

Features 

Leaders Degree 

Centrality 

(LDC) 

the average of degree values of 

leader nodes in the current 

community  at time   

 

 

 

Table A.4. Codes of Values of Event feature 

 

Event Correspondent Integer Value 

Form 1 

Continue 2 

Grow 3 

Shrink 4 

Merge 5 

Split 6 

Dissolve 7 
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APPENDIX D 
 

SELECTED MACHINE LEARNING CLASSIFIERS 
 

 

 In this section, we summarize the operation of the selected machine 

learning classifiers. Moreover, for the sake of completeness, each of them is exemplified 

in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.8. An example of “how Ibk (k-NN) works” 

 

 

IBk (K-nearest neighbor classifier) (Aha and Kibler 1991) is one of the 

common supervised learning classifiers. Additionally, it makes lazy learning where there 

is no training of the model but the model memorizes the training set. At the decision time, 

the model searches for the k-nearest neighbors and decides in favor of the majority of 

class labels that neighbors belong to. The distance among the neighbors is gauged with 

distance functions. In this study, the Euclidean distance function is used because our 

features are real-valued vectors (floating-point and integer values). Just a kind note, since 

Ibk automatically does the normalization process, there is no need to do it explicitly. 
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Otherwise, there is a need for a normalization process. On the other hand, according to 

the characteristic of the dataset worked on other distance metrics such as Manhattan (city 

blocks) and Hamming can be used. Manhattan distance is usually preferred when high 

dimensionality comes to two integer-valued vectors. Hamming distance is used to 

measure the distance between two binary vectors. 

In Figure A.8, there is an illustration of how Ibk (Aha and Kibler 1991) classifier 

makes the decision. In the example, there are some labeled instances either Class 1 or 

Class 2. Let us assume that there is a new instance, indicated with a question mark symbol 

in the figure, to be classified by the classifier. If k is chosen as 3, then the three neighbors 

that have the least distance to the new instance (e.g., 3-near neighbors) are determined. 

According to the figure, there are two Class 1 instances while there is one instance from 

Class 2 and the classifier decides in favor of Class 1 because of its majority in terms of 

instance counts. Likewise, k is chosen as five, then the classifier decides in favor of Class 

2 because of its majority in near neighbors. 

 

Table A.5. Weather.arff file 

 

Outlook Temperature Humidity Windy Play? 

sunny 85 85 false no 

sunny 80 90 true no 

overcast 83 86 false yes 

rainy 70 96 false yes 

rainy 68 80 false yes 

rainy 65 70 true no 

overcast 64 65 true yes 

sunny 72 95 false no 

sunny 69 70 false yes 

rainy 75 80 false yes 

sunny 75 70 true yes 

overcast 72 90 true yes 

overcast 81 75 false yes 

rainy 71 91 true no 

 

 

J48 (C4.5 Decision Tree) (Quinlan 1993) is a Decision Tree Classifier that can 

be used to make a decision based on a sample of data. The classifier aims to create as a 

small tree as possible. The classifier decides what feature is placed at the root according 
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to the information gain (IG) of the features. That is, the feature that has the highest IG is 

placed on the root. In Table A.5, there is a weather dataset provided in Weka 3.8 example 

datasets. On this dataset, how J48 creates a decision tree is explained in the next 

paragraphs. 

The features {Outlook, Temperature, Humidity, Windy} are feature variables in 

type {categorical, integer, integer, binary} respectively. J48 can work with real-valued 

variables, categorical variables, and binary-valued variables. First, J48 calculates IG for 

all features, then sorts them according to their IG accordingly. According to their ranks, 

they are placed on the decision tree. The calculation of IG values for each feature is shown 

below in detail. To calculate IG, the entropy of playing golf and entropy of play golf due 

to the outlook feature must be known.  

Therefore,  

Entropy (Play Golf)  = −∑ 𝑝𝑖 log2 𝑝𝑖
𝐶
1  

                                  = −[P(yes) log2 𝑃(𝑦𝑒𝑠) +  P(no) log2 𝑃(𝑛𝑜)] 

   = − [(
9

14
) log2 (

9

14
) + (

5

14
) log2 (

5

14
)] 

= 0,94 

Entropy (Play Golf, Outlook) =  ∑ 𝑃(𝐶)𝐸(𝐶)𝐶
1  

 =P(Sunny)Entropy(Sunny)+P(Overcast) Entropy (Overcast) +P(Rainy) Entropy 

(Rainy)  

= 0,693 

IG (Outlook)  = Entropy (Play Golf) - Entropy (Play Golf, Outlook)  

= 0,94 −  0,693   

  = 0,247 

The same steps for other features are repeated. Just for the simplification, in Figure 

A.9., frequency tables are IG of each feature is given. When the features are ranked 

according to their information gains, the final decision tree is created and visualized in 

WEKA as seen in Figure A.8. 
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Figure A.9. Frequency tables and information gains of the features in the Weather 

dataset6 

 

 

In Figure A.10, the main feature is outlook. If the outlook is sunny or rainy then 

J48 further analyzes the humidity or windy, correspondently. If humidity is high, then 

class label of the instance is yes (play). If outlook is rainy, further classification takes 

place to analyze windy feature. If the outlook is overcast, then the label of instance is 

yes (play). The numbers written on the leaf nodes and in the parenthesis show the 

instances which obey the classification. For example, four instances play golf when the 

overlook is overcast. 

 

 

                                                           
6 https://www.saedsayad.com/decision_tree.htm 

Figure A.10. Visualization of the decision tree created by J48 classifier in WEKA 
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Random Forest (Breiman 2001) classifier consists of a large number of relatively 

uncorrelated decision trees as a committee. The key concept behind it is the wisdom of 

crowds. That is, each tree in the forest makes its decision, then the forest decides in favor 

of the class with the majority of the votes. In Figure A.11, there is an example random 

forest that makes a prediction. When a new instance comes to prediction, the classifier 

sends the instance to each decision tree inside, then each tree make its own decision. The 

classifier counts the votes and make final decision in favor of decision of the majority. 

 

 

 

Figure A.11. An illustration of decision process for an example random forest classifier 

 

 

There is a prerequisite for a random forest classifier to perform well. The 

prerequisite is that decision trees building the forest need to be relatively uncorrelated (or 

low correlated). In this way, the individual errors of the trees do not affect others. This 

prerequisite is provided via bagging and feature randomness processes. Both processes 

together ensure each decision tree in the forest diversifies each other, which leads to low 

correlation/relatively uncorrelation among the trees.   

Bagging (Breiman 1996), short for Bootstrap Aggregation, is a process that 

allows each tree to randomly sample from the dataset with replacement. This process 
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brings in different trees because decision trees are very sensitive to the training data. That 

is, small changes on the training set result in significantly different trees. Bagging neither 

split the training set into smaller chunks nor trains decision trees on these chunks. Rather, 

it allows random samples from the training set with replacement with the size of the 

training set. That is, each decision tree is trained on different data coming from the 

training set but the same size. Future randomness is a process that allows each tree to 

pick only a random subset of features. In this way, different features are used to make 

decisions. This process forces even more variation among the trees, which results in more 

diversification amongst the trees. 

As for Bagging as a classifier model, a bagging process is run to create multiple 

random samples to train the classifiers. Then, classifiers selected as many as the number 

of samples are run on these samples. Each classifier makes its own decision and the results 

are averaged. Bagging as a classifier model is data-dependent and it well performs when 

the training data has low bias and high variance.  

Random Trees7 are the combination of single model trees and Random Forest 

ideas. Model trees are trees considering K randomly chosen features at each node to 

calculating the entropy of each node. This approach increases diversity among the 

decision trees in the forest and improves generalization in general. 

 

                                                           
7 https://weka.sourceforge.io/doc.stable-3-8/weka/classifiers/trees/RandomTree.html 
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