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ABSTRACT

MODELING AND ANALYSIS OF MOLECULAR SIGNALS IN
MULTISCALE MOLECULAR COMMUNICATION

This thesis focuses on modeling, analysis, and novel experimental techniques in

molecular communication (MC). The objective of this thesis is to develop novel engineer-

ing solutions and modeling approaches to enable MC applications. The first part of the

thesis is about microscale MC studies. In this part, a model of how a receiver nanomachine

measures and reconstructs a molecular signal is proposed with a probabilistic approach.

In the second part, macroscale MC studies with active transmitters are given. An

experimental setup which includes a sprayer emitting alcohol molecules as a transmitter

and an alcohol sensor as the receiver is employed. Using the data collected by this setup,

five statistical methods, a feature extraction algorithm and the fluid dynamics-based dis-

tance estimation algorithm are proposed for distance estimation. Furthermore, a novel

droplet-based signal reconstruction approach to channel modeling is proposed. Moreover,

MC is utilized to propose an end-to-end system model which considers pathogen-laden

cough/sneeze droplets as the input and the infection state of the human as the output. In

addition, the concept of mobile human ad hoc network which exploits the similarity of

airborne transmission-driven human groups with mobile ad hoc networks and uses MC as

the enabling paradigm is introduced.

Finally, macroscale MC studies with passive transmitters are detailed in the third

part. A novel experimental platform which consists of an evaporating alcohol source and

a sensor network is proposed. A sensor network based clustered localization algorithm is

proposed to estimate the location of the passive transmitter.
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ÖZET

ÇOK ÖLÇEKLİ MOLEKÜLER HABERLEŞMEDE MOLEKÜLER
SİNYALLERİN MODELLENMESİ VE ANALİZİ

Bu tez, moleküler haberleşmede (MH) modelleme, analiz ve yeni deneysel tekniklere

odaklanmaktadır. Bu tezin amacı, MH uygulamalarını mümkün kılmak için yeni mühendis-

lik çözümleri ve modelleme yaklaşımları geliştirmektir. Tezin ilk bölümü mikro ölçekli

MH çalışmaları hakkındadır. Bu kısımda, olasılıksal bir yaklaşımla bir alıcı nanomaki-

nenin bir moleküler sinyali nasıl ölçtüğüne ve yeniden oluşturduğuna dair bir model öner-

ilmektedir.

İkinci bölümde, aktif vericilerle makro ölçekli MH çalışmaları verilmektedir. Verici

olarak alkol molekülleri yayan bir püskürtücü ve alıcı olarak bir alkol sensörü içeren

deneysel bir düzenek kullanılmıştır. Bu düzenekle toplanan veriler kullanılarak, mesafe

kestirimi için beş istatistiksel yöntem, bir öznitelik çıkarma algoritması ve akışkan di-

namiğine dayalı mesafe kestirim algoritması önerilmektedir. Ayrıca, kanal modellemeye

yönelik yeni bir damlacık bazlı sinyalin yeniden oluşturulması yaklaşımı önerilmektedir.

Bu çalışmaların yanı sıra MH, patojen yüklü öksürük/hapşırık damlacıklarını girdi olarak

ve insanın enfeksiyon durumunu çıktı olarak kabul eden uçtan uca bir sistem modeli öner-

mek için kullanılır. Ek olarak, havadan bulaşma güdümlü insan gruplarının mobil tasarsız

ağlarla benzerliğinden yararlanan ve kolaylaştırıcı paradigma olarak MH’yi kullanan mo-

bil insan tasarsız ağı kavramı tanıtılmaktadır.

Son olarak, pasif vericilerle makro ölçekli MH çalışmaları üçüncü kısımda de-

taylandırılmaktadır. Buharlaşan bir alkol kaynağı ve bir sensör ağından oluşan yeni bir

deneysel platform önerilmektedir. Pasif vericinin konumunu kestirmek için bir sensör ağı

tabanlı kümelenmiş lokalizasyon algoritması önerilmektedir.
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CHAPTER 1

INTRODUCTION

1.1. Molecular Communication

One of our most important characteristics as humans is to constantly try to make

sense of what we live and our thoughts in the context of a story (Harari, 2014). We send

our thoughts to each other as a message by encoding it into voices, texts and pictures.

For example, human communities living as hunter-gatherers about 15,000 years ago were

sending us a message with the pictures they drew in Spain’s Altamira cave (Gombrich,

1995). The evolution of speech is actually one of the examples of our need to send a mes-

sage to each other. Over time, new ways to quickly send our messages to greater distances

have been developed. Now, thanks to technological tools such as smart phones, we can

send our messages to the other end of the world at the speed of light via electromagnetic

waves. So, do only humans send messages?

1.1.1. Molecular Communication in Nature

At microscale (nm to cm), the message exchange of unicellular organisms such as

bacteria is based on molecular communication (MC), which is one of the oldest commu-

nication methods in nature. Namely, messages are transmitted via special molecules and

interpreted by the sensing biological entities. For example, bacteria transmit signaling

molecules for other bacteria to indicate their existence to the other members of the bac-

terial community. According to the concentration level of the sensed molecules by these

receiver members, they decide whether there are sufficient bacteria in the bacterial com-

munity or not (quorum sensing) (Miller and Bassler, 2001). In addition, organized tissue

formation of cells in the human body is realized by the information that is transmitted to

organs in different parts of the body with signaling molecules called hormones. Hence,
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multicellular organisms such as humans also use MC for the information transfer among

biological cells (Atakan, 2014).

At macroscale (cm to m), many insect species communicate with each other using

chemicals called pheromones. For example, when ants find a food source, they carry the

food up to their nest in a string like a line. This "ant highway" is created by pheromones

that let each other know that they find food. The information generated in this way is

sensed by the other members of the ant colony and transmitted to the nest, allowing the

food found to be transferred to their nests quickly with the other members of the colony

receiving this information (Bossert and Wilson, 1963). Furthermore, plants are known to

use MC with each other through volatile organic compounds similar to pheromones. For

example, when the tomato plant detects the danger of herbivorous insects that can eat its

leaves, it can notify the surrounding tomato plants of the presence of this insect with the

molecules it secretes (Coppola et al., 2017).

1.1.2. Molecular Communication from the Perspective of

Communication Engineering

After introducing the use of MC in nature, we can move on to where and how MC

can be used in communication engineering. MC is a biologically inspired communication

paradigm where chemical signals are used instead of electrical signals to carry informa-

tion. MC is an emerging area combining biology, chemistry, biophysics and communi-

cation engineering. Biologists have been researching in this area for a long time, but the

research on MC by communication engineers is still in its infancy. MC can be performed

in aqueous or gaseous environments. Moreover, MC can be examined in microscale and

in macroscale (Farsad et al., 2016).

1.1.2.1. Microscale Molecular Communication

With the development of bio/nanotechnology, it has become possible to produce

nanomachines (NMs) which are defined as the artificial devices composed of the nanometer-

scale components. In the existing literature, the term NM mostly refers to bionanoma-
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chines, bionanorobots and genetically engineered cells (Atakan, 2014). While a single

NM is a very low-end machine with extremely limited capabilities, the interconnection

of the NMs forms nanonetworks and makes sophisticated bio/nanotechnology applica-

tions possible. It is important for the NMs to communicate among each other to perform

more complex tasks (Akyildiz et al., 2008, 2011). MC is one of the most prominent

communication paradigms for the interconnection of the NMs (Hiyama et al., 2005). A

diffusion-based MC system which is composed of a transmitter NM (TN) and receiver

NM (RN) is illustrated in Figure 1.1. In this MC system, information symbols which are

encoded in messenger molecules are released by the TN to be received by the RN. In

microscale, if there is not any fluid flow in the MC channel, the movement of the released

molecules is governed by free diffusion, i.e., Brownian motion (Berg, 1993).

Messenger
Molecules

Transmitter
Nanomachine

Receiver
Nanomachine

Receptor

Molecular Communication Channel

Figure 1.1. A diffusion-based MC system.

Nanonetworks can have biomedical, industrial, environmental and military appli-

cations (Akyildiz et al., 2008). Although there is not a commercialized application yet,

the most important applications of nanonetworks are biomedical applications such as tar-

geted drug delivery in the human body, cancer treatment and health monitoring (Atakan

et al., 2012). As shown in Figure 1.2, after a swarm of NMs forming a nanonetwork is

released into the body through a pill or injector, NMs can only target infected cells to de-

liver drug without harming healthy cells in a coordinated manner by communicating with

each other. In this way, the harmful effects of methods such as "chemotherapy", which is

widely used in cancer treatment and harms healthy cells, are eliminated.
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Figure 1.2. Targeted drug delivery application of a nanonetwork enabled by MC.

1.1.2.2. Macroscale Molecular Communication

Although MC is mostly studied in microscale, it paves the way for novel practical

macroscale applications which are introduced as follows. The pioneering experimental

study in macroscale MC is about establishing a communication link using an electrical

sprayer with a fan behind it, an alcohol sensor and alcohol molecules as the transmitter

(TX), receiver (RX) and messenger molecules, respectively (Farsad et al., 2013). For

this experimental setup, several channel models are proposed in (Farsad et al., 2014; Kim

et al., 2015) and its data rate is improved via multiple input multiple output (MIMO) tech-

nique in (Koo et al., 2016). Furthermore, it is shown that MC can be used in macroscale
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environments such as pipe networks where there is significant attenuation for electromag-

netic wave-based communication (Qiu et al., 2014; Guo et al., 2015). In (Farsad et al.,

2017), an experimental platform consisting of pumps, pipes and a pH meter is proposed.

This platform encodes the information symbols according to the pH level, as also used in

a macroscale fluidic platform explained in (Khaloopour et.al., 2019). Magnetic nanopar-

ticles which are sensed by a susceptometer (as a RX) are employed to encode information

symbols in (Unterweger et al., 2018). Another experimental platform is accomplished

by using an odor generator as the TX and a mass spectrometer as the RX (Giannoukos

et al., 2017; McGuiness et al., 2018, 2019). (Ozmen et al., 2018) proposes a platform

with a chemical vapor TX and photoionization detectors. Moreover, laser induced flo-

rescence technique is implemented for reception in an aqueous experimental platform for

macroscale MC (Abbaszadeh et.al., 2019). Similarly in Guo et al. (2020), it is shown that

vertical underwater MC via buoyancy is possible by the help of particle image velocime-

try for reception. Furthermore, MC is proposed to be used in mobile robot platforms

(Wang et al., 2015; Zhai et al., 2018). In (Zhai et al., 2018), an algorithm is proposed for

mobile RX robots to move towards a static sprayer, similar to a bacteria swarm.

In this thesis, we classify the TXs (or sources) as passive and active in macroscale

MC. Active TXs emit molecules with an initial force which causes an initial velocity,

whereas there is not any initial force to emit molecules in passive TXs.

1.2. Contributions

The contributions of this thesis in the field of micro- and macroscale molecular

communication can be listed as follows.

• A realistic model about the sensing of molecular signals by the receiver nano-

machines is developed.

• The first distance estimation methods including three novel data analysis-based

methods is developed and implemented experimentally for macroscale MC sys-

tems.

• The first feature extraction algorithm that processes molecular signals in macroscale

MC is introduced for statistical estimation methods.
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• A novel fluid dynamics-based distance estimation algorithm is developed for macro-

scale MC systems.

• An end-to-end system model is introduced for macroscale MC systems and vali-

dated by experimental data.

• The airborne transmission of pathogens between an infected and a susceptible hu-

man is modeled as a MC system for the first time in the literature.

• Mobile human ad hoc network architecture is conceptualized as a framework merg-

ing biology, fluid dynamics, medicine and epidemiology for the spread of infectious

diseases through airborne pathogen transmission.

• The first macroscale experimental MC platform for passive sources is developed

and implemented by using a sensor network.

• Sensor network-based clustered localization algorithm, which is the first localiza-

tion algorithm for passive sources, is introduced.

1.3. Organization of the Thesis

In this section, the organization of the thesis is given via the summaries of each

chapter as follows.

Part 1: Studies in Microscale Molecular Communication

Chapter 2 - Signal Reconstruction in Diffusion-based Molecular Communi-

cation: In this chapter, a model of how a reciver nanomachine (RN) measures and re-

constructs the molecular signal is proposed. The signal around the RN is assumed to

be a Gaussian random process instead of the less realistic deterministic approach. After

the reconstructed signal is derived as a Doubly Stochastic Poisson Process (DSPP), the

distortion between the signal around the RN and the reconstructed signal is derived as a

new performance parameter in MC systems. The derived distortion which is a function of

system parameters such as RN radius, sampling period and the diffusion coefficient of the

channel, is shown to be valid by employing random walk simulations. Then, it is shown

that the original signal can be satisfactorily reconstructed with a sufficiently low-level of
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distortion. Finally, optimum RN design parameters, namely RN radius, sampling period

and sampling frequency, are derived by minimizing the signal distortion. The simula-

tion results reveal that there is a trade-off among the RN design parameters which can be

jointly set for a desired signal distortion.

Part 2: Studies in Macroscale Molecular Communication with Active Sources

Chapter 3 - Distance Estimation Methods for a Practical Macroscale Molecu-

lar Communication System: Accurate estimation of the distance between the transmitter

(TX) and the receiver (RX) in MC systems can provide faster and more reliable commu-

nication. In addition, distance information can be used in determining the location of the

molecular source in practical applications. Existing theoretical models in the literature

are not suitable for distance estimation in a practical scenario. Furthermore, deriving an

analytical model is a nontrivial problem, since the liquid in the TX is sprayed as droplets

rather than molecules, these droplets move according to Newtonian mechanics, the size of

the droplets change during their propagation and droplet-air interaction causes unsteady

flows. Therefore, five different practical methods comprising three novel data analysis

based methods and two supervised machine learning (ML) methods, Multivariate Linear

Regression (MLR) and Neural Network Regression (NNR), are proposed for distance es-

timation at the RX side. In order to apply the ML methods, a macroscale practical MC

system, which consists of an electric sprayer without a fan, alcohol molecules, an alco-

hol sensor and a microcontroller, is established, and the received signals are recorded.

A feature extraction algorithm is proposed to utilize the measured signals as the inputs

in ML methods. The numerical results show that the ML methods outperform the data

analysis based methods in the root mean square error sense with the cost of complexity.

The nearly equal performance of MLR and NNR shows that the input features such as

peak time, peak concentration and the energy of the received signal have a highly linear

relation with the distance. Moreover, the peak time based estimation, which is one of

the proposed data analysis based methods, yields better results with respect to the other

proposed four methods, as the distance increases. Given the experimental data and fluid

dynamics theory, a possible trajectory of the molecules between the TX and RX is given.

Our findings show that distance estimation performance is jointly affected by unsteady

flows and the non-linearity of the sensor. According to our findings based on fluid dy-

namics, it is evaluated that fluid dynamics should be taken into account for more accurate
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parameter estimation in practical macroscale MC systems.

Chapter 4 - Fluid Dynamics-based Distance Estimation Algorithm for Macro-

scale Molecular Communication: In this chapter, a novel approach based on fluid dy-

namics is proposed for the derivation of the distance estimation in practical MC sys-

tems. According to this approach, transmitted molecules are considered as moving and

evaporating droplets in the MC channel. With this approach, the Fluid Dynamics-based

Distance Estimation (FDDE) algorithm which predicts the propagation distance of the

transmitted droplets by updating the diameter of evaporating droplets at each time step is

proposed. FDDE algorithm is validated by experimental data. The results reveal that the

distance can be estimated by the fluid dynamics approach which introduces novel param-

eters such as the volume fraction of droplets in a mixture of air and liquid droplets and

the beamwidth of the TX. Furthermore, the effect of the evaporation is shown with the

numerical results.

Chapter 5 - A Droplet-based Signal Reconstruction Approach to Channel

Modeling in Molecular Communication: In this chapter, a novel droplet-based signal

reconstruction (SR) approach to channel modeling, which considers liquid droplets as

information carriers instead of molecules in the MC channel, is proposed for practical

sprayer-based macroscale MC systems. Our proposed approach takes a two-phase flow

which is generated by the interaction of droplets in liquid phase with air molecules in

gas phase into account. Two-phase flow is combined with the SR of the RX to propose

a channel model. The SR part of the model quantifies how the accuracy of the sensed

molecular signal in its reception volume depends on the sensitivity response of the RX and

the adhesion/detachment process of droplets. The proposed channel model is validated

by employing experimental data.

Chapter 6 - A Molecular Communication Perspective on Airborne Pathogen

Transmission and Reception via Droplets Generated by Coughing and Sneezing:

Infectious diseases spread via pathogens such as viruses and bacteria. Airborne pathogen

transmission via droplets is an important mode for infectious diseases. In this chapter, the

spreading mechanism of infectious diseases by airborne pathogen transmission between

two humans is modeled with a molecular communication perspective. An end-to-end

system model which considers the pathogen-laden cough/sneeze droplets as the input

and the infection state of the human as the output is proposed. This model uses the
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gravity, initial velocity and buoyancy for the propagation of droplets and a receiver model

which considers the central part of the human face as the reception interface is proposed.

Furthermore, the probability of infection for an uninfected human is derived by modeling

the number of propagating droplets as a random process. The numerical results reveal

that exposure time affects the probability of infection. In addition, the social distance for

a horizontal cough should be at least 1.7 m and the safe coughing angle of a coughing

human to infect less people should be less than -25◦.

Chapter 7 - Mobile Human Ad Hoc Networks: A Communication Engineer-

ing Viewpoint on Interhuman Airborne Pathogen Transmission: Pathogens such as

viruses and bacteria play a vital role in human life, since they cause infectious diseases

which can lead to epidemics. Recent coronavirus disease 2019 epidemic has shown that

taking effective prevention measures such as wearing masks are important to reduce the

human deaths and side effects of the epidemic. It is therefore requisite to accurately model

the spread of infectious diseases whose one of the most crucial routes of transmission is

airborne transmission. The transmission models in the literature are proposed indepen-

dently from each other, at different scales and by the researchers from various disciplines.

In small scale, airborne transmission models using fluid dynamics do not consider the

facts about the survival of pathogens and their interactions with the human cells. In a

larger scale, the epidemiological models omit the knowledge from research areas such as

biology and fluid dynamics and make rough estimations by fitting statistical data. There-

fore, there is a need to merge all these research attempts. To this end, in this chapter,

we propose a communication engineering approach that melts different disciplines such

as epidemiology, biology, medicine, and fluid dynamics in the same pot to model air-

borne pathogen transmission among humans. In this approach, we introduce the concept

of mobile human ad hoc networks (MoHANETs). This concept exploits the similarity

of airborne transmission-driven human groups with mobile ad hoc networks and uses

molecular communication as the enabling paradigm. The aim of this chapter is to present

a unified framework using communication engineering, and to highlight future research

directions for modeling the spread of infectious diseases among humans through airborne

pathogen transmission. In this chapter, we first review the airborne pathogen transmission

mechanisms. Then, the MoHANET is given with a layered structure. In these layers, the

infectious human emitting pathogen-laden droplets through air and the exposed human to
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these droplets are considered as the transmitter and receiver, respectively. Our prelimi-

nary results show that the proposed MoHANET architecture can be employed to predict

the dynamics of infectious diseases by considering the propagation of pathogen-laden

droplets, their reception and mobility of humans. Moreover, the experimental methods

for the proposed approach are reviewed and discussed.

Part 3: Studies in Macroscale Molecular Communication with Passive Sources

Chapter 8 - Localization of a Passive Molecular Transmitter with a Sensor

Network: Macroscale MC, which has a potential for practical applications, is a promis-

ing area for communication engineering. In a practical scenario such as monitoring air

pollutants released from an unknown source, it is essential to estimate the location of the

TX. This chapter presents a novel Sensor Network-based Clustered Localization Algo-

rithm (SNCLA) for passive transmission by using a novel experimental platform which

mainly comprises a clustered sensor network (SN) with 24 sensor nodes and evaporating

ethanol molecules as the passive TX. In SNCLA, Gaussian plume model is employed to

derive the location estimator. The parameters such as transmitted mass, wind velocity,

detection time and actual concentration are calculated or estimated from the measured

signals via the SN to be employed as the input for the location estimator. The numerical

results show that the performance of SNCLA is better for stronger winds in the medium.

Our findings show that evaporated molecules do not propagate homogeneously through

the SN due to the presence of the wind. In addition, the estimation error of SNCLA

decreases for higher detection threshold values.

Chapter 9 - Conclusions and Future Research Directions: In this chapter the

concluding remarks of the thesis are summarized and future research directions are given.
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CHAPTER 2

SIGNAL RECONSTRUCTION IN DIFFUSION-BASED

MOLECULAR COMMUNICATION

2.1. Introduction

In diffusion-based molecular communication (MC), the transmitter nanomachine

(TN) sends information symbols to the receiver nanomachine (RN) by emitting different

levels of molecule concentrations. Then, the RN senses the surrounding molecule con-

centration levels to reconstruct the signal emitted by the TN. In order to understand the

performance of the MC systems more clearly, the accuracy of the signal reconstruction

needs to be investigated.

In fact, the accuracy of concentration sensing is studied in the biophysics domain

where the cell is considered as a molecule concentration measuring device. In the bio-

physics literature, there are two approaches about how the cell infers information about

its environment by sensing the molecule concentration. The first approach is perfect mon-

itoring where the cell is modeled as a permeable sphere and counts the molecules inside

its volume. The second approach is perfect absorbing, where the cell is assumed to count

the molecules hitting its surface. The first work about the molecule concentration mea-

surement of a cell is given by Berg and Purcell (Berg and Purcell, 1977). In this pio-

neering paper, how a cell can measure the constant molecule concentration as a perfect

monitoring device and as a perfect absorbing device with receptors are proposed. The

uncertainty, which is defined as the mean square fluctuation of the measured molecule

concentration, is derived for a constant molecule concentration outside the cell. In (En-

dres and Wingreen, 2008), the cell is modeled as a perfect absorber which counts the

molecules with the receptors on its surface. Furthermore, the cell is modeled as a gradient

sensing device for perfect monitoring and perfect absorbing models. It is stated that the

perfect absorbing model is better than the perfect monitoring model both in concentra-
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tion measurement and gradient sensing, since the previously counted molecules are not

counted again and removed from the medium (Endres and Wingreen, 2008). Another

method for the concentration measurement is the maximum likelihood estimation (MLE)

which is derived by using the probability of time series for the receptor occupancy by the

molecules (Endres and Wingreen, 2009). The uncertainty of the estimate is found to be

better by a factor of two according to the Berg-Purcell limit given in (Berg and Purcell,

1977). This corresponds to the fact that cells can sense the molecule concentration two

times more accurate with MLE. The comparison of these models and sensing limits are

given in (Aquino et al., 2016).

In the existing literature of diffusion-based MC, there are two assumptions about

the reception of the RNs. The first one is that the molecule concentration around the RN

is assumed to be constant (Pierobon and Akyildiz, 2010, 2011b). In (Pierobon and Aky-

ildiz, 2010), the reception process is given as a transformation process. However, there

is no derivation of what this process is related to. In (Pierobon and Akyildiz, 2011b), the

molecule concentration outside the RN, which is modeled as a receiver with receptors, is

given as a deterministic function and an additive reception noise is defined before the re-

ception which is employed to model the random effects of the molecule-receptor binding

process. Similarly, an additive counting noise is defined (Pierobon and Akyildiz, 2011a)

and employed in the literature (Lin et al., 2018; Mosayebi et al., 2018; Lin et al., 2019) to

model the error between the constant signal outside the RN and the reconstructed signal,

but the distortion between them is not derived in these studies. Furthermore, the additive

noise approach is used in several studies about non-coherent signal detection (Li et al.,

2017, 2016b,a; Liu et al., 2019). However, these papers focus on mitigating the effect of

inter-symbol interference due to the long-tail nature of the channel impulse response, not

the sensing model of the RN. The second assumption about the reception of the RNs, is

that the molecule concentration is assumed to be sensed perfectly by the RNs (Kilinc and

Akan, 2013; Srinivas et al., 2012; Noel et al., 2014b; Mustam et al., 2017). In (Atakan

and Akan, 2010), the reception of the RN is modeled by defining a virtual reception vol-

ume which we utilize for our study. However, (Atakan and Akan, 2010) only focuses on

the derivation of a realistic channel model and the molecular communication rate on that

channel and issues of signal reconstruction are not addressed.

Due to the stochastic nature of the molecule movements, the mentioned two as-
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sumptions in the literature cannot be realistic. None of the studies in the diffusion-based

MC literature assumes the molecule concentration as a random process and derives an

error, which can occur during the molecule sensing process of the RN. In this study,

a novel approach is proposed without any need for these assumptions. The existing

molecule concentration around the RN is modeled as a Gaussian random process result-

ing the reconstructed signal as a Doubly Stochastic Poisson Process (DSPP). In the neuro-

spike communication channel (Aghababaiyan et al., 2018a; Maham and Kizilirmak, 2018;

Aghababaiyan et al., 2018b), the DSPP is also used to model the input spike-trains rather

than modeling of concentration around the RN. Furthermore, in those works, how accu-

rate a molecular concentration around the RN is reconstructed is not investigated. With

the random process approach, the signal reconstruction performance is investigated by

deriving a signal distortion function, which is the Mean Square Error (MSE) between the

existing signal around the RN and the reconstructed signal. By using the random walk

simulation of the molecules, the derived distortion function, which consist of the system

parameters such as the RN radius, diffusion coefficient and sampling period, is validated.

In addition, the distributions of the original and the reconstructed signals are generated.

The results show that the RN can reconstruct the surrounding signal with a small dis-

tortion, if the system parameters are appropriately selected. Besides the derivation of

the distortion during the signal reconstruction, our work contributes to the literature by

revealing the relation between the signal reconstruction and the RN design. We obtain

optimum RN design parameters using the cases where the signal distortion function is

minimum with respect to the corresponding parameter. The trade-off among the RN de-

sign parameters is shown with the numerical results. Through the extensive analytical and

numerical analyses, the optimal design parameters of the RN such as the RN radius and

sampling frequency are investigated by minimizing the signal distortion.

The remainder of the chapter is organized as follows. In Section 2.2, the motiva-

tion to find the accuracy of the molecular signal reconstruction is given. In Section 2.3,

the system model for the signal reconstruction is introduced. The distortion of the recon-

structed signal in the MSE sense is derived in Section 2.4. The validation of the system

model and the numerical results are presented in Section 2.5. In Section 2.6, the optimum

design parameters of the RN are derived and analyzed. This study was first introduced in

(Atakan and Gulec, 2019).
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2.2. Motivation

In this section, our motivation for the system model is explained by using a one di-

mensional scenario. Due to its simplicity, one dimensional movement of the molecules is

used to show the concept that the random movements of the molecules cause the molecule

concentration (or the molecular signal) to be a random process. This concept can be ap-

plied to realistic three dimensional scenarios. Let us consider a TN emitting molecules

instantaneously as a single spike to send an information symbol to the RN. The molecule

concentration around RN can be given by

C =
Q√

4πDt
e

−r2
4Dt , (2.1)

where Q is the number of the molecules, C is the molecule concentration, D is the diffu-

sion coefficient, r is the distance from the TN and t is the propagation time (Bossert and

Wilson, 1963).

Actually, (2.1) characterizes the average behavior of molecule concentration at a

certain distance from the TN. However, the instantaneous molecule concentration changes

randomly due to the random walk phenomenon which is utilized to model the diffusion

of the molecules. According to this phenomenon, molecules make random steps to the

right or to the left direction with equal probability on the x axis. Their successive steps

are statistically independent from their previous steps. The random movements cause the

molecule concentration to change randomly at each instant of the diffusion. Therefore, the

molecule concentration generates a random process rather than a constant value given in

(2.1). This is illustrated in Fig. 2.1 where the solid line represents the theoretical model

in (2.1) and the oscillating line represents the random process generated via a random

walk simulation. Due to the randomness of the molecules, the molecule concentration

needs to be modeled by a random process instead of a deterministic function. Therefore,

our main motivation is to investigate how accurate the RN reconstructs the surrounding

signal, which is modeled as a random process, as given in the next section.
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Figure 2.1. The comparison of the theoretical model and the random walk simulation
for the molecule concentration with the parameters Q = 104, D = 10−11

m2/s , r = 10 µm, (step time) τ = 10−3 s, (step length) δ = 0.0447 µm.

Figure 2.2. Signal reconstruction model for the RN.

2.3. System Model

A model to perceive and reconstruct the signal around the RN is proposed in this

section. The RN is assumed to be a perfect absorber meaning that a molecule is received,

when it hits its surface. In this way, the RN senses the molecule concentration during

certain observation periods, i.e., samples the signal. It is also assumed that no chemical

reaction occurs during the movement of the molecules. Let s(t) be the random process

that shows the number of the molecules outside the RN and x(t) be the counted number of

the molecules by the RN. This model is illustrated in Fig. 2.2. Due to the large number of

the molecules, s(t) is assumed to be a Gaussian random process with meanm(t), variance

v(t) and autocovariance R(t1, t2). The RN counts the molecules along a sampling period

T and it is assumed that the number of the molecules does not change in this period. An
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Figure 2.3. Existing signal outside the RN and the sampled signal.

analogy with the delta modulation can be established to understand the relation between

s(t) and x(t). As illustrated in Fig. 2.3, si and xi, which are measured along T , are the

ith samples of s(t) and x(t), respectively. Since s(t) is assumed to be a Gaussian random

process, si is assumed as a Gaussian random variable with N(µs, σ
2
s).

In order to define a molecular signal as the changing concentration levels around

the RN, it is essential to specify a volume in which the RN is located similar to the

virtual reception volume approach employed in (Atakan and Akan, 2010) as illustrated in

Fig. 2.4. In this figure, VN denotes the volume of the RN and VR stands for the reception

volume, in which the molecular signal exists. a and b are the radii of the spherical volumes

NMRN

ab

Reception Volume of the RN

Molecule

VN

VR

Figure 2.4. Reception volume of the RN and a single molecule.
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VN and VR, respectively. When a molecule is received by the RN, it is consumed and not

released to VR again. The probability that the molecule emitted at the distance y from the

center of the RN can reach its surface within time t can be found through the first-hitting

time probability of the random walk as follows (Ziff et al., 2009; Bai et al., 2016; Yilmaz

et al., 2014)

F (y, t) =
a

y
erfc
(
y − a√

4Dt

)
, (2.2)

where D is the diffusion coefficient, a is the radius of the RN and erfc(.) is the comple-

mentary error function. This capture can be used to find the hitting rate of the molecules

to the surface of the RN. Since the capture of a molecule is an event with two possi-

ble outcomes as "capture" or "escape", xi can be assumed as a random variable with a

binomial distribution. Due to the large number of molecules around the RN, the bino-

mial distribution can be approximated to Poisson distribution. Thus, xi is assumed to

have a Poisson distribution in our study. On the other hand, the spatial distribution of

the molecules around the RN is given as follows. It is assumed that the molecules in the

reception volume are uniformly distributed over the interval (a, b) where b > a. By using

the mean distance of the molecules to the surface of the RN, i.e., a+b
2

, the average number

of molecules which can hit the surface of the RN within a sampling interval can be given

as,

λ = F

(
a+ b

2
, T

)
si, (2.3)

where F (a+b
2
, T ) is abbreviated as F (T ) in the rest of the chapter. Here, λ is the rate of

the Poisson random variable xi depending on another random variable si. All the symbols

and variables used in Section 2.3 and 2.4 are summarized in Table 2.1.

A Poisson process is generally employed as a counting process and it can be de-

fined as a random process which has independent increments being Poisson distributed.

The rate of the Poisson process can be generalized as the time-varying intensity func-

tion, i.e., λ(t). When the intensity function is constant, the Poisson process is homoge-

neous, whereas the Poisson process is nonhomogeneous when the intensity function is

time-dependent. The intensity function may be unknown in some situations and cannot

be treated as constant. In such circumstances, it is reasonable to consider the intensity

function as a random process. When the intensity function of the nonhomogeneous Pois-

son process is another random process, the Poisson process is called a Cox process or a

Doubly Stochastic Poisson Process (DSPP) (Cox, 1955).
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Table 2.1. Symbols and Variables used in Section 2.3 and 2.4.

Symbol/Variable Definition
VR Reception volume
VN Volume of the RN
a Radius of the RN
b Radius of the reception volume
T Sampling period
s(t) Gaussian random process showing the number of

the molecules in VR
m(t) Mean of s(t)
v(t) Variance of s(t)
R(t1, t2) Autocovariance of s(t)
x(t) Doubly stochastic Poisson process showing the

number of the molecules counted by the RN
λ(t) Intensity of x(t)
si Random variable showing the ith sample of s(t)
µs Mean of si
σ2
s Variance of si
λ Rate of xi
F (y, t) The first-hitting time probability of a molecule

emitted at a distance y within time t
E Signal distortion

In our system model, the intensity function of x(t) can be found by replacing the

Gaussian random variable si with the Gaussian random process s(t) in (3). This intensity

function is given by

λ(t) =
F (T )

T
s(t), (2.4)

where the intensity function is normalized by a factor of 1
T

due to the definition of the rate,

which is the number of molecules hitting the surface of the RN within unit time. Since the

intensity of x(t) is another random process given in (2.4), x(t) is a DSPP. Furthermore,

s(t) can be assumed as a stationary random process, since it is constant along a sampling

period T .

Using the knowledge that x(t) is a DSPP which is defined for t ≥ t0 and s(t) is a

stationary Gaussian random process, the mean of x(t) can be given as (Valderrama et al.,

1995)

E{x(t)} =

∫ t

t0

E{λ(u)}du =

∫ t

t0

E

{
F (T )

T
s(u)

}
du

=
F (T )

T

∫ t

t0

m(u)du, (2.5)
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where E{.} represents the expectation operator. To find the variance of x(t), the autoco-

variance of λ(t) is needed which is derived as

Cov{λ(t1), λ(t2)} = E {[λ(t1)− E{λ(t1)}] [λ(t2)− E{λ(t2)}]}

= E

{
F (T )

T
[s(t1)−m(t1)]

F (T )

T
[s(t2)−m(t2)]

}
=

(F (T ))2

T 2
R(t1, t2), (2.6)

where Cov{.} shows the covariance operator. Then, by using (2.6), the variance of x(t)

is given as (Valderrama et al., 1995)

V ar{x(t)} = 2

∫ t

t0

∫ t2

t0

Cov{λ(t1), λ(t2)}dt1dt2 +

∫ t

t0

E{λ(u)}du

=
2 (F (T ))2

T 2

∫ t

t0

∫ t2

t0

R(t1, t2)dt1dt2 +
F (T )

T

∫ t

t0

m(u)du, (2.7)

where V ar{.} is the variance operator. The second moment of x(t) can be calculated by

using (2.5) and (2.7) in the formula E{x2(t)} = V ar{x(t)}+ (E{x(t)})2 as given by

E{x2(t)} =
2 (F (T ))2

T 2

∫ t

t0

∫ t2

t0

R(t1, t2)dt1dt2 +
F (T )

T

∫ t

t0

m(u)du

+

(
F (T )

T

∫ t

t0

m(u)du

)2

. (2.8)

The statistical properties of the DSPP x(t) is employed to derive the signal recon-

struction distortion in the next section.

2.4. Derivation of the Signal Distortion

In this section, the signal distortion between the signal outside the RN and the

reconstructed signal is derived as a Mean Square Error (MSE). The signal distortion, i.e.,

the MSE (E), is given by

E =
E{(si − xi)2}

V 2
=
E{s2

i } − 2E{sixi}+ E{x2
i }

V 2
, (2.9)

where si is a Gaussian random variable withN(µs, σ
2
s) showing the number of the molecules

in the volume between the outer boundary of the reception volume and the RN, (VR−VN),

xi is a doubly stochastic Poisson variable showing the counted number of the molecules

in VN , V is the volume. Here, E is derived by using concentrations of the molecules inside
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and outside the RN. Therefore, (2.9) includes the volume V where those molecules are

located. Also in (2.9), VR is calculated as 4
3
πb3 and similarly VN is calculated as 4

3
πa3.

Since the counted number of the molecules by the RN depends on the number of the

molecules outside the RN, random variables xi and si are dependent. The second term of

the numerator in (2.9) consists of the product of these two dependent random variables.

The expected value of this product can be found by

E{sixi} = ρsixiσxiσsi + E{xi}E{si}, (2.10)

where ρsixi is the correlation coefficient between xi and si. After substituting (2.10) in

(2.9), the volumes can be clarified to find the molecule concentrations by writing explicitly

the volumes for each term as given by

E =
E{s2

i }
(VR − VN)2

− 2ρsixi
σxi
VN

σsi
(VR − VN)

− 2
E{xi}
VN

E{si}
(VR − VN)

+
E{x2

i }
V 2
N

. (2.11)

In (2.11), the numerator of the first term can be found as E{s2
i } = σ2

s + µ2
s. To

find the second and the third term of the numerator in (2.9), the first and second moments

of x(t) is employed. E{x2
i } can be found as given in equation (2.12) by setting t0 = iT

and t = (i + 1)T in (2.8) where i ≥ 0 is an integer. Subsequently, the signal distortion

becomes as given by (2.13).

E{x2
i } = E{x2(t)}

∣∣∣∣t=(i+1)T

t0=iT

=
2 (F (T ))2

T 2

∫ (i+1)T

iT

∫ t2

iT

R(t1, t2)dt1dt2

+
F (T )

T

∫ (i+1)T

iT

m(u)du+

(
F (T )

T

∫ (i+1)T

iT

m(u)du

)2

. (2.12)

E =
σ2
s + µ2

s

(VR − VN)2
− 2

[
µs

(VR − VN)

F (T )

T

∫ (i+1)T

iT

m(u)

VN
du

+
ρsixiσs

(VR − VN)VN

√∫ (i+1)T

iT

∫ t2

iT

2 (F (T ))2R(t1, t2)

T 2
dt1dt2+

∫ (i+1)T

iT

F (T )m(u)

T
du

]

+
1

V 2
N

[
2 (F (T ))2

T 2

∫ (i+1)T

iT

∫ t2

iT

R(t1, t2)dt1dt2 +
F (T )

T

∫ (i+1)T

iT

m(u)du

+

(
F (T )

T

∫ (i+1)T

iT

m(u)du

)2
]
. (2.13)

Since s(t) is assumed to be a stationary random process, the mean, variance and

autocovariance can be written as m(t) = µs and v(t) = R(t1, t2) = σ2
s for one sample
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measured along T . Using this assumption, E can be simplified in a time interval from 0

to T as given in (2.14) which is used to obtain the numerical results in the next section.

E =
σ2
s + µ2

s

(VR − VN)2
−

2ρsixiσs

√
F (T )

[
F (T )σ2

s + µs

]
− 2F (T )µ2

s

VN(VR − VN)

+

F (T )

[
F (T )σ2

s + µs + F (T )µ2
s

]
V 2
N

. (2.14)

2.5. Validation of the Signal Distortion Function & Numerical

Results

In this section, the derived E given in (2.14) is validated through random walk

simulations. In addition, the numerical results are given and analyzed by evaluating the

signal distortion function. Furthermore, the distributions of the signal outside the RN and

the reconstructed signal are observed. The simulation parameters for the numerical results

are given in Table 2.2 and the random walk simulation parameters are given in Table 2.3.

In the simulation experiments, the signal outside the RN is calculated by dividing the

number of molecules si to the volume between the boundary of VR and the boundary of

VN as shown in Fig. 2.4. Similarly, the concentration received by the RN is found by

dividing the received number of molecules xi to VN .

Table 2.2. Simulation Parameters.

Parameters Values
µs 102

σ2
s 102

Correlation coefficient (ρsx) 0.75
Diffusion coefficient (D) 10−12 m2/s
Radius of the VN (a) 1 µm
Radius of the VR (b) 2− 3 µm
Sampling period (T ) 0 - 0.25 s

The aim of the numerical result part is to observe the accuracy of the signal recon-

struction of the RN for different MC system parameters, such as radius of the reception
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Table 2.3. Random Walk Simulation Parameters.

Parameters Values
µs 102

Diffusion coefficient (D) 10−12 m2/s
Radius of the VN (a) 1 µm
Radius of the VR (b) 2− 3 µm
Time (t) 0− 0.25 s
Step time (τ ) 10−3 s
Step length (δ) 0.0447 µm

volume, sampling period and diffusion coefficient. In the light of these results, the sig-

nal reconstruction performance can be improved by adjusting the MC system parameters

appropriately.

2.5.1. Validation of the Theoretical System Model

A random walk simulation is performed to show that the signal distortion function

is valid. In the random walk simulations, a molecule is assumed to make a random move-

ment in every τ seconds with a step length of δ meters on x, y and z axes separately. Every

step of a molecule, whose step length can be calculated by δ =
√

2Dτ , is independent

from its other steps (Berg, 1993).

During the random walk simulation, the following assumptions are made. The

initial distance of the molecules to the center of the RN is assumed as (a + b)/2 which

is the midpoint of the boundaries of VR and VN , as given in the theoretical model. A

molecule in VR is received, when it hits the RN. After the reception of a molecule, it is

not released to VR again. Every received molecule is only counted once, since the RN

is assumed to be a perfect absorber. Until the end of the random walk simulation, no

additional molecule can enter the VR. Using these assumptions, the numerical and the

random walk simulation results for the signal distortion (E) as a function of the sampling

period are given in Fig. 2.5 (a) and (b), respectively. In both of the figures, the signal

distortion functions have approximately the same convex structure and nearly the same

minimum points. This shows that the signal distortion function given in (2.14) is valid.

Small differences are observed in signal distortion values between Fig. 2.5 (a) and Fig.

2.5 (b) which can be clarified as follows. In the random walk simulation, the molecules
22



start walking from the midpoint between the boundaries of VR and VN and during the

sampling period they can move out of the VR. However, in the theoretical model, it is

assumed that during the sampling period the number of the molecules is constant and

the number of the molecules inside the VR can decrease if and only if the molecules are

received by the RN.
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Figure 2.5. Signal distortion vs. sampling period for different VR radii (a) theoretical
calculation (b) random walk simulation.

The numerical results given in this section validates the signal distortion function

derived in Section 2.4 for the system model given in Section 2.3. Using this signal dis-

tortion function, the effect of the system parameters is examined in the next subsection.

2.5.2. Numerical Results

In this part, we first observe the signal distortion function for three different VR

radii as given in Fig. 2.5 (a). The different molecular signals (concentration values) are

obtained by changing the radius of VR, i.e., b, while keeping the number of molecules in

VR constant. As the VR becomes smaller, the signal distortion values fall more steeply to

their minimum values, since the hitting rate of the molecules increases in a smaller vol-

ume. This also shows that the RN can respond faster for smaller values of VR. As the RN

samples for a longer duration, it can capture more molecules. However, after reaching the

minimum of the signal distortion function which gives the optimum sampling period on
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the x-axis, the RN captures more molecules than it needs to calculate the valid molecule

concentration around it. Therefore, the signal distortion increases after the minimum of

the signal distortion function. This result reveals that the RN can increase its signal recon-

struction performance by increasing the sampling period, only until the minimum signal

distortion point.
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Figure 2.6. Distributions of the signal in VR and the reconstructed signal with the pa-
rameters D = 10−12 m2/s, µs = 102, σ2

s = 102, b = 2 µm (common
parameters), (a) T = 0.06 s, a = 1 µm, (b) T = 0.12 s, a = 1.3 µm .

In Fig. 2.6 (a) and (b), the fitted distributions of the original signal samples,

s/(VR − VN), and the reconstructed signal samples, x/VN , are shown for different pa-

rameters. The results are obtained as follows. First, a Gaussian distribution for s is

generated. Then, by using the distribution of s, the distribution of x is calculated by gen-

erating a Poisson distribution with the rate given in (2.3) for 106 samples. In Fig. 2.6 (a),

the signal in VR has a Gaussian distribution with N (3.41 × 1018, 1.17 × 1035), while the

reconstructed signal has also a Gaussian distribution with N (2.37 × 1018, 6.22 × 1035),

since the distribution of the reconstructed signal converges to Gaussian distribution due to

the large number of samples. The difference between the mean values of the distributions

corresponds to the distortion of the signal reconstruction. Furthermore, the figure reveals

that the signal reconstruction can cause errors, when an information transfer from the TN

to the RN takes place. However, when the system parameters are appropriately set, the

signal can be reconstructed with a small distortion as observed in Fig. 2.6 (b).

In Fig. 2.7, the effect of the diffusion coefficient on the signal distortion is illus-

trated. For a larger diffusion coefficient, F (T ) increases more rapidly. This rapid increase
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Figure 2.7. Signal distortion vs. sampling period for varying diffusion coefficients
with a = 1 µm and b = 2 µm.

causes the signal distortion with the larger D to reach its minimum value more quickly.

If the RN continues to count the molecules after the minimum of the signal distortion

function, the concentration difference grows, since the captured molecules increase and

the remaining molecules in VR decrease. After the minimum point of the signal distortion

function, the signal distortion goes up as fast as the magnitude of the diffusion coefficient

, due to the faster movement of the molecules in a less dense environment. To obtain

minimum signal distortion, the optimization of the RN design parameters is essential, as

discussed in the next section.

2.6. Receiver Nanomachine Design

In this section, optimum parameters such as RN radius (a), sampling period (T )

and sampling frequency (f ) are examined for the RN design. First, we focus on the

optimum sampling period, i.e., Topt. The sampling period needs to be estimated in order

to calculate the receiving time and the information rate of the RN.

By means of the signal distortion function given in (2.14), the optimum parame-

ters can be derived. Since the signal distortion function is convex as observed with the

numerical results in Section 2.5, Topt can be found by solving the equation for T as given
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by
∂E(T )

∂T
= 0. (2.15)

When the sampling period is set as Topt, the minimum signal distortion is obtained.

The derivative of E with respect to T is given in (2.16) where z = b−a
4
√
DT

. However, the

derived expression of Topt is a long equation and cannot be written in this chapter. In-

stead, the numerical comparison of the signal distortion for a constant T and Topt is given

in Fig. 2.8. To derive Topt, an approximation such that erfc(x) = e−c1x−c2x
2 , where c1 =

1.09500814703333 and c2 = 0.75651138383854, is used (Tsay et al., 2013). Further-

more, it is assumed that e−c1z−(c2+1)z2 ≈ e−c1z−(c2+2)z2 , e−2c1z−2c2z2 ≈ e−2c1z−(2c2+2)z2 ,

e−2c1z−(2c2+1)z2 ≈ e−2c1z−(2c2+2)z2 to solve the equation for Topt. The numerical results

in Fig. 2.8 show that the derived Topt gives better results and validate that the sampling

period is optimum, when it is compared with a constant sampling period.
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Figure 2.8. Constant and optimum sampling period comparison for D = 10−12 m2/s,
b = 2a and µs = σ2

s = 102.

∂E
∂T

= − 9(b− a)Dµ2
se
−z2

16a2(a+ b)(b3 − a3)π5/2(DT )3/2

+
9(b2 − a2)Dµse

−z2 + 36a(b− a)Dµ2
se
−z2erfc(z) + 36a(b− a)Dσ2

se
−z2erfc(z)

32(a+ b)2a5π5/2(DT )3/2

− 18ρsxσ
3
sa(b− a)De−z

2erfc(z) + 9(b2 − a2)Dµse
−z2 + 18a(b− a)σ2

sDerfc(z)

32a2π5/2(a+ b)(b3 − a3)(DT )3/2

√
2aµs(a+ b)erfc(z) + 4a2σ2

s (erfc(z))2
.

(2.16)
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Figure 2.9. Signal distortion vs. a and T surface plot for µs = 102, σ2
s = 102, D =

10−12 m2/s and b = 2a.

Another critical parameter of the RN is its radius. It is essential to choose the

optimum radius for the minimum MSE signal reconstruction. Similar to Topt, the optimum

RN radius, i.e., aopt, can be found by solving

∂E(a)

∂a
= 0. (2.17)

If the second derivative of E(a) is positive, its minimum can be calculated. The first

derivative of the E(a) with respect to a and the solution for aopt are too long equations to

write here. Instead, the numerical results regarding the relationship among a, T , f and

the signal distortion are examined.

Assuming that b = 2a, the combined effect of the system parameters on the signal

distortion is shown in Fig. 2.9. As the size of the RN grows, the RN needs more time

to collect the sufficient number of molecules required for the desired concentration value

around it and thus, to reduce the signal distortion. This stems from the fact that, while the

surface of the RN increases proportionally with a2, its volume increases proportionally

with a3. To balance this situation, the RN extends its sampling period. Regarding the

Topt values, as the RN radius increases, the RN needs more time to reconstruct the signal,

but has a lower signal distortion due to the larger capture probability of the molecules.

This shows that there is a trade-off among a, T and the signal distortion. When a larger

RN size is chosen to have a lower signal distortion, a longer optimum sampling period

is required. On the contrary, if the RN is desired to respond faster for reception, its cost
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Figure 2.10. Signal distortion vs. a and f surface plot for µs = 102, σ2
s = 102, D =

10−12 m2/s and b = 2a.

is a worse signal reception. Therefore, RN sampling period and its corresponding signal

distortion are essential to determine the optimum RN radius, i.e., aopt.

The sampling frequency, which is calculated by f = 1
T

, can be used to design

a RN efficiently. The combined effect of the sampling frequency, RN radius and signal

distortion can be seen in Fig. 2.10. An analysis similar to the sampling period can be

made for the sampling frequency. As the RN radius increases, the sampling frequency and

signal distortion decrease at the optimum frequency points, i.e., fopt. The relation among

the signal distortion, sampling frequency and the RN radius is required to be considered

for the RN design. When a smaller RN is chosen, the signal distortion and fopt becomes

higher. Hence, the cost for a smaller RN with the minimum signal distortion is a lower

quality communication and a more complex structure for a faster signal processing.

It is not always possible to design the RN according to the optimum parameters. In

such cases, a signal distortion constraint can be defined. Due to the convexity of the signal

distortion function, a range within the minimum and maximum values of the sampling pe-

riod (or sampling frequency) can be determined for the given signal distortion constraint.

Subsequently, the RN radius can be chosen according to this range of the sampling period

(or sampling frequency).
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CHAPTER 3

DISTANCE ESTIMATION METHODS FOR A PRACTICAL

MACROSCALE MOLECULAR COMMUNICATION

SYSTEM

3.1. Introduction

Beside the usage of molecular communication (MC) in microscale as given in

Chapter 2, it can also be employed in macroscale (cm to m). In nature, animals like

bees, flies or ants use MC to send messages over several meters with the help of the

pheromones. Similar to the existing methods in nature, pheromones can be exploited for

long range communication among NMs as proposed in (Giné and Akyildiz, 2009). On the

other hand, the macroscale MC concept was employed in a practical MC system, which

consists of an electric sprayer controlled by a microcontroller as the transmitter (TX), a

metal-oxide alcohol sensor connected to a microcontroller as the receiver (RX) and al-

cohol molecules as the messenger molecules, to send information symbols over a few

meters (Farsad et al., 2013). The channel and noise models are proposed for this macro-

scale MC system in (Farsad et al., 2014) and (Kim et al., 2015). It was observed that there

is a nonlinearity in the channel which differs from conventional communication systems.

A similar MC system is proposed to be employed in confined structural environments

consisting of several pipe types. It was shown that MC provides reliable communica-

tion, whereas electromagnetic wave based communication cannot (Qiu et al., 2014). The

data rate of the practical MC system can be increased by multiple input multiple output

(MIMO) MC system configuration as proposed and experimentally shown in (Lee et al.,

2015) and (Koo et al., 2016). In these two papers, an air compressor is used instead of a

fan to emit molecules. In (Zhai et al., 2018), a method to mitigate inter-symbol interfer-

ence is proposed for an experimental MC system similar to the platform given in (Farsad

et al., 2013), except the fan behind the TX. (McGuiness et al., 2018) proposes to employ
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an odor generator as the TX and a mass spectrometer with a quadrupole mass analyzer as

the RX for macroscale MC.

The macroscale experimental studies focus mostly on channel modeling which

does not agree with theoretical studies in the literature. However, except the propaga-

tion delay, these channel models do not clearly state the relationship among the physi-

cal parameters such as the distance between the TX and RX or the number of released

molecules by the TX. By knowing the distance before the communication starts, a higher

communication rate can be achieved via arranging the parameters such as the number of

released molecules (Atakan and Akan, 2007; Eckford, 2007; Nakano et al., 2013; Pier-

obon and Akyildiz, 2013). Furthermore, the deployment of the receivers can be arranged

autonomously in a nanonetwork with the distance information known by the RX. The

distance estimation can also be used to find the location of a molecular source in various

environmental monitoring applications. Therefore, it is important to estimate the distance

between the TX and RX, which is the main purpose of this chapter.

The first proposed distance estimation protocols are based on two-way transmis-

sion. In (Moore et al., 2010), four distance estimation protocols are proposed which are

based on measuring the round trip time (RTT) and signal fading in amplitude or fre-

quency for a 1-D diffusion channel. In these protocols, the TX transmits a signal and the

RX transmits a feedback signal with a different type of molecule, when the transmitted

signal is received. Then, the TX estimates the distance, when it receives the feedback

signal. These protocols are expanded in (Moore et al., 2012). The RTT protocol is im-

proved for a 2-D diffusion channel with a more realistic microscale MC model in (Moore

and Nakano, 2012). Since using feedback signals is time consuming and increases in-

terference in the communication channel, it is reasonable to estimate the distance at the

RX side with a single transmission. Accordingly, two distance estimation schemes with

a one-way transmission are proposed in (Huang et al., 2013). Here, the RX measures the

received peak concentration or the time interval between the first and second peaks to esti-

mate the distance. These schemes require less time with respect to two-way transmission

protocols, but they are derived for a 1-D diffusion channel, and the estimation accuracy is

not improved significantly. In (Noel et al., 2014a), a lower bound for distance estimation

accuracy is derived for the diffusion channel without any flow and initial drift. In another

study, two distance estimation schemes, where emission time is considered as a parame-
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ter, are proposed for a 3-D scenario in a diffusion channel (Wang et al., 2015b). The first

scheme uses the peak time of the received signal, and the second scheme, which gives

more accurate results, uses the received energy to estimate the distance. The same au-

thors propose an algorithmic distance estimation scheme and two parameter optimization

methods in (Wang et al., 2015a) for a 3-D diffusion channel. When compared with (Wang

et al., 2015b), this scheme has a worse distance estimation performance, requires a more

complex receiver and needs more time for estimation. In (Lin et al., 2019), a distance

estimation protocol is proposed to estimate the distance in a 3-D diffusion channel in the

presence of additive noise and inter-symbol interference by using maximum likelihood

estimation. This proposed method has a high accuracy with a cost of high complexity.

All of the distance estimation methods in the literature consider an ideal mi-

croscale channel model where the transmitted molecules do not have an initial velocity,

the molecules move according to Brownian motion and the TX transmits and the RX re-

ceives the signals perfectly. However, this channel model is not realistic for macroscale

MC. Furthermore, there is no distance estimation method for macroscale situations in

the literature. In this chapter, we propose five distance estimation methods for a practical

macroscale scenario, where molecules propagate indoors with an initial velocity and with-

out any constant flow in a 3-D medium, i.e., air. Three of the proposed methods are novel

data analysis based methods, and two of them include supervised machine learning (ML)

methods. To collect data for the purpose of using them in these methods, an experimental

setup similar to the tabletop platform in (Farsad et al., 2013) is employed. In this setup,

an electric sprayer without a fan is the TX that emits alcohol molecules and a metal-oxide

alcohol sensor is the RX. The TX and RX are controlled with a microcontroller via a

computer to record the received signals. A novel algorithm is proposed to extract features

from the measured signals by the RX. For the first time, the distance estimation is made

with supervised ML methods for a practical macroscale MC system. Multivariate linear

regression (MLR) and neural network regression (NNR) are used as ML methods which

use the extracted features as inputs. The experimental data are used as the training and test

data of these methods. Afterwards, the collected data are analyzed and three distance esti-

mation methods are proposed which are less complex but less accurate than ML methods.

The first data analysis based method is power based distance estimation, which employs

the relation between the distance and the received power to transmitted power ratio. In
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the second data analysis based method, which is the peak time based distance estimation,

the relation between the peak time of the received signal and the distance is exploited.

At long distances (170 cm and longer), this method has the best results among the data

analysis based methods. Combined distance estimation is the third method, which uses

a combination of the power based and peak time based estimation. Furthermore, all of

these applied methods are compared by discussing the numerical results. It is shown that

ML methods perform better than the data analysis based methods.

The existing theoretical models which are based on the diffusion of the molecules

are insufficient to explain the experimental results. Actually, the TX emits liquid droplets

instead of molecules. During the propagation of the droplets, their size change dynami-

cally, they are affected by the Newton’s laws of motion and interact with the air molecules.

As detailed in Section 2.2, it is difficult to consider all of these effects for deriving an ana-

lytical expression to estimate the distance. This gives us the motivation to employ ML and

data analysis based methods for distance estimation. Moreover, an analysis is made on

the experimental data. Experimental findings show that the movement of the molecules

in a practical scenario is also affected by some flows accompanying diffusing molecules.

In particular, the analyses reveal that unsteady flows can affect the propagation of the

molecules in addition to the diffusion, even if there is no fan behind the TX. Correspond-

ingly, a possible trajectory of the transmitted molecules in the communication channel

is given. In addition, our analysis based on experimental findings indicate that the non-

linear characteristic of the sensor can cause measurement errors at lower distances. The

main result of these analyses is that a fluid dynamics perspective is needed for channel

modeling and parameter estimation in MC for macroscale practical scenarios. Also, open

research directions are indicated by analyzing the numerical results.

The rest of the chapter is organized as follows. In Section 3.2, the experimental

setup, which is used for data collection, is explained. Section 3.3 gives the motivation

for using the ML and data analysis based methods. Data collection procedure is ex-

plained in Section 3.4. The proposed feature extraction algorithm is given in Section 3.5.

The supervised ML methods, which are applied to estimate the distance in this chapter,

are briefly introduced in Section 3.6. In Section 3.7, the proposed distance estimation

methods based on data analysis are given. In Section 3.8, the numerical results for the

implemented methods are presented and compared. Moreover, received signals and the
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motion of the molecules are analyzed with a fluid dynamics perspective. The study given

in this chapter was first published in (Gulec and Atakan, 2020a).

3.2. Experimental Setup

In this section, the experimental setup of a practical macroscale MC system is

explained in order to collect data for distance estimation. This system consists of a trans-

mitter (TX), a receiver (RX) and a propagation channel similar to the tabletop molecular

communication system in (Farsad et al., 2013). However, unlike (Farsad et al., 2013),

there is no fan in our system. TX transmits molecular signals by spraying ethyl alcohol

molecules having an initial velocity with an Instapark electric sprayer. This sprayer has its

own battery in it and can be controlled with a microcontroller via a custom switch circuit.

The RX receives the molecular signals with an MQ-3 alcohol sensor which gives the best

performance among the low-cost metal oxide alcohol sensors (Farsad et al., 2013). The

TX and RX are both controlled with an Arduino Uno microcontroller board which is con-

nected to a computer. The block diagram of the system is given in Figure 3.1. As shown

in this diagram, only one microcontroller board and one computer is used for simplicity

and perfect synchronization between the TX and RX.

Electric
Sprayer MQ3 Sensor

Arduino Uno
Microcontroller

Board 

Computer

Transmitter  Receiver

ChannelTe
xt

Te
xt

Custom Switch
Circuit

Figure 3.1. Block diagram of the experimental setup.

The TX is controlled with a computer via an Arduino microcontroller board so

that the spraying duration, i.e., emission time (Te), can be arranged. The TX and RX were
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100 cm high from the ground and the experiments were carried out in a laboratory. The

molecule concentration in the environment is sensed by the MQ-3 sensor and analog volt-

age values corresponding to the measured molecule concentration are sent to the Arduino

microcontroller board. This analog signal is digitized with a 10-bit analog to digital con-

verter by the microcontroller board. Finally, the received signal is sent to the computer

from Arduino microcontroller board to be recorded. The components of the TX and RX

can be seen in Figure 3.2. The motivation of our proposed distance estimation methods in

this chapter for this experimental setup is given in the next section.

Figure 3.2. Components of the transmitter (left) and the receiver (right).

3.3. Motivation

In this section, the motivation of using ML and data analysis based methods for

distance estimation in a practical macroscale scenario is given. The distance estimation

methods in the literature are based on the theoretical models considering that the trans-

mitted molecules only diffuse in the medium with or without a constant flow. However,

these models are not realistic for our scenario due to the challenges given as follows:

• The liquid ethanol is sprayed as droplets rather than molecules (Rothe and Block,

1977; Ghosh and Hunt, 1994).

• The diameter of a spherical droplet (100−800 µm (Al Heidary et al., 2014)) is much
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larger than the diameter of an ethanol molecule (0.44 nm (Carmo and Gubulin,

1997)). Therefore, it is not appropriate to characterize the motion of transmitted

droplets as the Brownian motion (Al Heidary et al., 2014; De Cock et al., 2017).

• After the transmission of the droplets, they break up into smaller droplets (Ghosh

and Hunt, 1994). Furthermore, the ethanol droplets can evaporate in the MC chan-

nel. Hence, the diameters of the droplets change as they move through the air

(Al Heidary et al., 2014).

• The evaporation of the droplets generates diffusing molecules. These molecules are

subject to boundaries for an indoor practical scenario. Moreover, it is very difficult

to determine whether the indoor boundaries with various geometries are absorber

or reflector.

• The transmitted droplets start their movement with an initial velocity. The interac-

tion of these droplets with the air molecules cause unsteady flows, e.g., turbulent

flows, which cause the velocity of droplets fluctuate randomly (Begg et al., 2009;

Maxey, 1987) (see Section 3.8.3.2).

In our case, the droplets are sprayed with an initial velocity and potential energy

due to its height (100 cm) from the ground to reach the RX at least 100 cm away from the

TX on the horizontal axis. The initial energy is converted into kinetic energy and the air

resistance (or aerodynamic drag) decreases the velocity of the droplets. Furthermore, the

gravity affects the vertical positions of the droplets. Here, a mechanistic model from the

fluid dynamics literature is applied to show the motion of the spherical liquid droplets for

different sizes in 2-D without considering dynamically changing droplet size, the evapo-

ration of droplets and unsteady flows. This model is based on the Newton’s second law

of motion and calculates the change in the velocity as given by (De Cock et al., 2017)

∂vx
dt

= −3CDρav
2
x

4ρda
(3.1)

∂vz
dt

=
3CDρav

2
z

4ρda
− g, (3.2)

where vx and vz are the velocity of the droplet in x and z axes, respectively, a is the droplet

diameter, ρa and ρd are the densities of the air and droplet, respectively, g is the gravity

acceleration and CD is the drag coefficient which is related with the air resistance. This

35



coefficient is given as CD = 24/Re + 1.5 (Barati et al., 2014) where Re is the Reynolds

number. Re is defined as Re = v a
νa

where v is the velocity of the droplet and νa is the

kinematic viscosity of air. The droplets are assumed to start their movement as parallel

to the ground with the same initial velocity. For the numerical results, the initial velocity

on the horizontal axis is given as vx(0) = 10 m/s which is used as an average velocity

value for the droplets in (De Cock et al., 2017). The positions of the droplets in x and z

axes using this model are given in Figure 3.3. The numerical values for the experimental

parameters are given in the caption of Figure 3.3.
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Figure 3.3. Trajectory of different-sized droplets in x and z-axis by using Newtonian
mechanics with the parameters vx(0) = 10 m/s, vz(0) = 0 m/s, ρa = 1.2
kg/m3, ρd = 789 kg/m3, νa = 1.516× 10−5 m2/s, g = 9.81 m/s2.

In this figure, larger droplets travel a larger distance, since they decelerate less

than smaller droplets. This figure also illustrates that droplets with different sizes are

affected by the gravity. However, this model is not sufficient for all of the droplets which

arrive at the RX for a distance of at least 100 cm, since unsteady flows, changing size and

evaporation of droplets are not considered.

For distance estimation, it is highly difficult to derive an analytical expression,

which can take all of the aforementioned effects into account and this derivation is be-

yond the scope of this chapter. Therefore, it is reasonable to use the alternative practical

methods such as data analysis, linear regression and neural networks for estimating the

distance accurately. With these methods, these effects on the collected signals are implic-

itly modeled and employed for distance estimation. Next, the experimental procedure is
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explained to collect data and implement distance estimation methods.

3.4. Data Collection

This section provides detailed information on the collection of data by using the

experimental setup given in Section 3.2 to be used for the proposed distance estimation

methods. When the TX transmits a signal, the molecules begin to propagate in the air with

an initial velocity supplied by the TX. When the TX stops transmitting, the RX starts to

record the molecular signal for 100 seconds for distances up to 180 cm and 300 seconds

for longer distances. During the experiments, only one single puff is transmitted from the

TX to estimate the distance for one measurement. The transmissions are repeated for three

different emission times as Te = {0.25, 0.5, 0.75} s and eleven different distances between

100 cm and 200 cm with 10 cm steps. The parameter ranges and replication numbers for

the experiment are given in Table 3.1. A break was taken for at least 5 minutes between

consecutive measurements. During this break, the laboratory is ventilated by opening the

door and the window to reduce the molecule concentration level inside the laboratory. By

the help of this “break and ventilate" procedure, the effect of the remaining molecules

from previous transmissions is minimized. Without applying this procedure, the noise

level increases and thus, it gets more difficult to detect the signal by the RX side. In order

to estimate the distance between the TX and RX, it is essential to extract the features from

the signals to employ them as inputs to ML methods, as discussed in the next section.

Table 3.1. The experimental parameters and their ranges.

Parameter Value
Te {0.25, 0.5, 0.75} s
d {100, 110, 120,..., 190, 200} cm

Replication for each Te in every distance 10
Replication for each distance 30

Number of total measurements 330
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3.5. Feature Extraction

In this section, a novel feature extraction algorithm is proposed. This algorithm

processes the received molecular signals to produce features, which can be defined as

the input variables characterizing the output variable to be estimated for ML algorithms

(Christopher, 2016). The variables which are used in Sections 3.5 and 3.7 are summarized

in Table 3.2.

Table 3.2. Summary of the variables used in Sections 3.5 and 3.7.

Variable Definition
Te Emission time
d Actual Distance
d̂ Estimated distance
Ao Initial offset level
Athr Threshold amplitude
K Detection threshold
C[n] Measured molecule concentration
y[n] Output of the moving average filter
W1 The number of samples before the nth sample of the moving

average filter
W2 The number of samples after the nth sample of the moving av-

erage filter
tpeak Peak time
Cpeak Peak molecule concentration
tlow Time showing the 10% reference point on the rising edge of the

measured signal
Clow Molecule concentration showing the 10% reference point on the

rising edge of the measured signal
thigh Time showing the 90% reference point on the rising edge of the

measured signal
Chigh Molecule concentration showing the 90% reference point on the

rising edge of the measured signal
R Rise time on the rising edge of the measured signal
∆C Molecule concentration level difference between Chigh and Clow
G Gradient on the rising edge of the measured signal
NR Number of the received signal samples up to tpeak
ER Received energy up to tpeak
PR Received power up to tpeak
PT Transmitted power
PR Average received power
PT Average transmitted power
a1, b1 Curve fitting parameters of power based estimation
tpeak Average peak time
a2, b2 Curve fitting parameters of peak time based estimation
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The choice of the features is important, since it affects the performance of the

ML algorithms. Eight features which are tlow, Clow, R, ∆C, G, tpeak, Cpeak and ER are

extracted from the collected data. Three of the measured signals at 100, 160 and 200

cm are shown in Figure 3.4 in order to justify the choice of the selected features. In

this figure, the delay time, which is defined as the beginning time of the detection of

the transmitted molecules, increases, as the distance increases. tlow gives a more reliable

information about the delay time due to the fluctuations of the signal. Clow also decreases,

as the distance increases. Since the signal attenuates as the distance increases, the peak

points (tpeak, Cpeak) and the received energy (ER) of the signals contain information about

the distance. Furthermore, as the distance increases, the slope of the signals’ rising edge

decreases. This shows that R, ∆C and G are informative features. To the best of our

knowledge, the proposed feature extraction algorithm which is summarized in Figure 3.5,

is the first one that processes the real measured molecular signals.
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Figure 3.4. Received signal at (a) d = 100 cm , (b) d = 160 cm (c) d = 200 cm.

As the first step of the feature extraction algorithm, Ao, which is defined as the

initial offset level characterized by the average of the measured sensor voltage, is deter-

mined. Ao is calculated by averaging the first p samples of the signal, before the transmit-

ted molecules start to be sensed by the RX. In order to avoid considering the transmitted

molecules by the TX, p is selected as 5 empirically for our experimental scenario. The

molecule concentration level is measured as the voltage values received from the MQ-3

sensor. Ao corresponds to the average molecule concentration level which is measured

before the transmitted signal arrives. After Ao is determined, the detection threshold is

given by the equation

K = Ao + Athr, (3.3)
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where Athr is set to 0.1 volts. The value of Athr is chosen sufficiently high according to

our observations in order to detect the transmitted signal. The derivation of a selection

criterion for Athr requires to handle the related detection theory together with the prob-

ability distributions of the observed molecular signals. This is beyond the scope of this

chapter.

Subsequently, smoothing the received signal is needed due to the fluctuations

in the signal originated from the random movements of the molecules. The signal is

smoothed by filtering with a moving average filter whose input-output relationship is

given by (Oppenheim, 1999)

y[n] =
1

1 +W1 +W2

W2∑
k=−W1

C[n− k]. (3.4)

Here, (W1 + W2 + 1) gives the window size which is chosen as 7 by setting W1 =

W2 = 3. This window size is chosen empirically in order to eliminate the ripples on

the signal without changing its general shape. Increasing the window size makes the

signal smoother. However, if the window size is greater than 7, the values of the extracted

features begin to diverge from their original values.

Subsequent to smoothing operation, the detection block is accomplished. In this

block, a decision is made whether the signal is above the predetermined K or not. If

there is no detection, then the RX waits for the new signal. Otherwise, the first peak of

the signal is detected. According to our observations, there can be more than one peak

in the received signal, after the redundant peaks are eliminated by the smoothing filter.

The number of these peaks increase as the distance increases, since the variance of the

time distribution that the molecules take to reach the sensor is getting larger. The first

peak time is considered as the reference time to calculate the features, since it is assumed

that the majority of the molecules arrive at the RX until the first peak time. In order to

find the first peak point of the signal, the first derivative of the signal’s samples is taken.

The first negative sample index at the point where the sign of the first derivative changes

from positive to negative values gives the peak of the signal. After that, the nearest local

minimum point before the first peak of the signal is detected. The same method to find the

peak point of the signal can be used to find the first minimum point of the signal. When

the signal is inverted, the first peak point gives the first minimum point of the signal.

The features extracted from the first peak of the signal are shown in Figure 3.6. Here, the
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Figure 3.5. Feature Extraction Algorithm.
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Figure 3.6. Extracted features from the received signal.

peak time and molecule concentration values are recorded as tpeak and Cpeak, respectively.

Afterwards, the part of the signal which is between the peak and minimum points is treated

as the rising edge of a pulse. The positive-going bilevel waveform consisting of high and

low levels is obtained to extract the information which can change according to distance.

As illustrated in Figure 3.6, 10% reference point of the signal gives two features as tlow

and Clow and similarly 90% reference point of the signal is chosen to represent thigh and

Chigh. These reference points are found by calculating the points at 10% and 90% of the

time indices for the time interval between the peak and minimum points. The rise time

(R) of this waveform is calculated by measuring the time between tlow and thigh. Another

extracted feature for this signal is ∆C which is defined as the difference in the amplitude

level during the rise time measurement points.

The seventh feature is the gradient, which is derived by G = ∆C/R. G gives the

change during the rise time, which can be discriminating according to different distances.

Finally, the received energy up to tpeak is calculated by the formula

ER =

NR∑
n=1

|C[n]− Ao|2. (3.5)

In this formula, the received molecule concentration level is decreased by the existing

noise level to eliminate its effect. Furthermore, the energy is found up to tpeak, since

the time-dependent function of the concentration values has a long tail and it gets much

42



longer, as the distance increases. In the next section, the ML algorithms that is used in

this chapter is introduced.

3.6. Supervised Machine Learning Methods for Distance Estimation

ML has a key role in science and engineering, since it facilitates the estimation

of the desired outputs without changing the system model for changing inputs. It pro-

vides the ability to improve the estimation models adaptively which is called “learning".

When the inputs and outputs are known during the training of the ML system, it is called

“supervised" learning. In supervised ML, classification and regression are two ways of

estimation where the former tries to estimate the discrete results for a discrete output and

the latter deals with the estimation of the results of a continuous output. In this chapter,

ML techniques, such as MLR and NNR are used for the first time to estimate the dis-

tance between a TX and an RX in a MC system. Next, the mentioned ML methods are

introduced briefly.

3.6.1. Multivariate Linear Regression

MLR is a simple method to estimate the output according to the model equation

given below

d̂ = θ0 +
m∑
j=1

θjxj, (3.6)

where θ0 is the bias, m is the number of the features, xj’s and θj’s represent the features

and the unknown coefficients, respectively (Friedman et al., 2008). (3.6) can also be

expressed in matrix form as

d̂ = xθ, (3.7)

where x is an N × (m+ 1) matrix of features, θ is a column vector of (m+ 1) elements

representing the coefficients, d̂ is a column vector of N elements showing the estimated

distance and N is the number of samples. Each row of x shows one sample having an

extra 1 as the first element of each row. N represents the number of training samples for

the training period and the number of test samples while the distance is estimated using
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(3.7). The model coefficients are chosen during the training period to minimize the cost

function given by the formula below

J(θ) =
1

N

N∑
i=1

(di − d̂i)2, (3.8)

By using the least squares method in the training period, the coefficients are determined

by

θ = (xTx)−1xTd, (3.9)

where d is a column vector withN elements showing the actual distances for training. Af-

ter finding the coefficients by the training according to (3.9), the distance can be estimated

by (3.7) where N shows the number of test samples.

3.6.2. Neural Network Regression

NNR is a ML method inspired by the neurons in the brain. It has a layered struc-

ture which includes an input layer, one or more hidden layers and an output layer. These

layers consist of nodes like neurons connecting the input layer to the output layer with

weights (Friedman et al., 2008). As illustrated in Figure 3.7, the weights (Θ’s) are ar-

ranged as the elements of a function that maps the input values (xi) to an output value,

which is the estimated distance (d̂) in our case, with minimum error.

The relation between the input layer and the hidden layer (aj) can be given by

a
(k)
j = g

(
n∑
i=0

θ
(k)
ji xi

)
, (3.10)

where θ(k)
ji shows the weight that connects the ith node to the jth node between the layers

(k) and (k + 1), a(k)
j is the jth hidden node in the kth layer, xi is the input values defined

from 0 to n and g(.) is the activation function. The relation between the hidden layer and

the output layer can be defined as

d̂ = g

(
p∑
j=0

θ
(k)
ji xi

)
, (3.11)

where the number of the hidden nodes in the hidden layer is defined from 0 to p. Here,

the input and hidden nodes with the subscript “0" are defined as the bias units. In this
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Figure 3.7. General structure of a neural network for regression with one output node
and a single hidden layer.

chapter, the hyperbolic tangent sigmoid function is used as the activation function which

is given by

g(z) =
2

1 + e−2z
− 1. (3.12)

The training of the neural network can be made with backpropagation algorithms.

In these algorithms, the weights are initialized generally with random values and the out-

put of the network is calculated in the forward direction. Then, using the output and

the values of the hidden nodes, the errors are calculated in the reverse direction and the

weights are arranged iteratively to obtain minimum error between the estimated and actual

output values. In this chapter, Levenberg-Marquardt (LM) backpropagation algorithm,

which is one of the most popular and fastest algorithms, is employed to train the neural

network (Hagan and Menhaj, 1994). Before giving the update mechanism of the LM al-

gorithm, some definitions are made as follows. A pattern is defined as the number of the

input-output pairs of the neural network. Each different path from the input layer to the

output layer gives a different pattern which is indexed from 1 to r. The training error for

the ith pattern is given by

ei = ri − oi, (3.13)

where ri is the desired output and the oi is the trained output of the neural network for the
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ith pattern. Moreover, the error vector (e) is given as

e =
[
e1 e2 . . . er

]T
, (3.14)

where ei is the training error for the ith pattern. Similarly, the sum of the squares function

is given by

E(θ) =
1

2

r∑
i=1

e2
i , (3.15)

where θ is the weight vector of N elements representing all of the weights in the neural

network. The LM algorithm updates these weights to converge the minimum training

error by minimizing E(θ). For this operation, Jacobian matrix is used which can be given

as

J =


∂e1
∂θ1

∂e1
∂θ2

. . . ∂e1
∂θN

∂e2
∂θ1

∂e2
∂θ2

. . . ∂e2
∂θN

...
... . . . ...

∂er
∂θ1

∂er
∂θ2

. . . ∂er
∂θN

 , (3.16)

where θi represents the weights defined from 1 to N . The weight update rule of the LM

algorithm in matrix form is given by

θl+1 = θl −
(
JTl Jl + µI

)−1
Jlel, (3.17)

where l is the index of iterations, I is the identity matrix, µ is a positive coefficient related

with the learning rate.

In LM algorithm, E(θ) is computed and checked to see, if it decreases. If E(θ)

decreases, then µ is reduced by a step size γ which is a user defined parameter. Otherwise,

µ is increased by γ. The algorithm continues to iterate until it reaches to a predetermined

threshold value for E(θ) (Hagan and Menhaj, 1994). After the weights are determined

by the training with LM algorithm, the distance can be estimated by using (3.11). Next,

novel distance estimation methods based on data analysis are introduced.

3.7. Distance Estimation Methods Based on Data Analysis

The features extracted by the proposed algorithm in Section 3.5 are employed

to derive novel distance estimation methods in this section. For the first method, the

relation among the average received power, average transmitted power and the distance
46



are exploited. Next, the average peak time and distance relation is used for the second

estimation method. Finally, these two methods are combined to derive the third distance

estimation method.

3.7.1. Power Based Distance Estimation

By using the received energy up to tpeak, which is calculated in Section 3.5, the

received power (PR) is calculated with the formula

PR =
ER
NR

=
1

NR

NR∑
n=1

|C[n]− Ao|2. (3.18)

PR is averaged over 10 measurements for each Te, i.e., 0.25 s, 0.5 s and 0.75 s, at each

distance. Hence, we obtain three average power (PR) values according to three different

Te’s for each distance.
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Figure 3.8. Transmitted signal for Te = 0.25s.

On the other hand, the transmitted power (PT ) is measured and averaged over 4

measurements for three different values of Te to obtain the average transmitted power

(PT ). The measurements are made by placing the sensor to a very close proximity of the

TX, which is assumed to generate a rectangular molecular pulse within Te. The measured

transmitted signal for 0.25 s emission time, is shown in Figure 3.8. PT values are 7.3598,

9.3666 and 11.0108 W for 0.25, 0.5 and 0.75 s emission times, respectively. Afterwards,
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PR and PT values are employed to derive a relation with the distance between the TX

and RX. Figure 3.9 shows that there is a decreasing exponential relation among these

parameters for three different emission times.
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Figure 3.9. PR/PT vs. distance for different emission times.

The relation between PR/PT and the distance is exploited to derive a function by

using curve fitting techniques with the data illustrated in Figure 3.9. The function defining

the relation between PR/PT and the distance, is best fitted for the curve fitting model with

the equation
PR

PT
= a1e

b1d, (3.19)

where a1 and b1 are the curve fitting parameters. The curve fitting is made by using non-

linear least squares method which minimizes the sum of squared errors. LM algorithm,

which is explained in detail in Section 3.6, is used to estimate the a1 and b1 coefficients

in an iterative way. Furthermore, other algorithms such as the Newton or Gauss-Newton

(GN) can be employed for curve fitting (Hansen et al., 2013). While the Newton algo-

rithm has a more stable convergence than the GN algorithm, it has a cost of calculating

second order derivatives. The GN algorithm is less complex, since it calculates first order

derivatives instead of second order derivatives and thus, it has a faster (but less stable)

convergence. The LM algorithm performs better than the GN algorithm in terms of sta-

bility for convergence with the cost of higher complexity. By using the LM algorithm,

the measured data and their corresponding fitted curves are given in Figure 3.10 and the
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calculated a1 and b1 parameters with the Root Mean Square Error (RMSE) values for each

Te are given in Table 3.3.
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Figure 3.10. Measured PR/PT vs. the distance and their fitted curves for (a) Te = 0.25
s, (b) Te = 0.5 s and (c) Te = 0.75 s.

As observed from the figure, the measured PR/PT decreases exponentially by the

distance. This relation can be employed to estimate the distance by pulling out d in (3.19)

which is given by

d̂ =
1

b1

ln

(
PR
PTa1

)
, (3.20)

where average power values are replaced with the measured power values and ln(.) shows

the natural logarithm.

Table 3.3. Curve fitting parameters for power based distance estimation.

Te a1 b1 RMSE

0.25 s 2.724 -0.03116 0.0096
0.5 s 13.4001 -0.04146 0.0211
0.75 s 3.1888 -0.02973 0.0171

3.7.2. Peak Time Based Distance Estimation

In this method, similar to the power based distance estimation, the extracted tpeak

feature is averaged over the measured values for each distance. The averaging is per-

formed separately for three different emission times as 0.25, 0.5 and 0.75 s. As observed
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in Figure 3.11, there is an increasing exponential relation between the average peak time

and the distance.
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Figure 3.11. Average peak time vs. distance for different emission times.

A function can be obtained for the data in Figure 3.11 by curve fitting with the

formula given by

tpeak = a2e
b2d, (3.21)

where tpeak is the average peak time, a2 and b2 are curve fitting parameters. An insertion

is made to the data for tpeak = 0 at d = 0 to obtain a more accurate curve. The same

procedure is used for curve fitting as applied for power based distance estimation. Ac-

cording to (3.21), the fitted curves are given in Figure 3.12 for different emission times.

By using these curve fitting models, their parameters and RMSE values are calculated as

given in Table 3.4. Via the substitution of the measured peak time (tpeak) with tpeak, the

relation between the average peak time and the distance are employed to derive a distance

estimation model as given by

d̂ =
1

b2

ln

(
tpeak
a2

)
. (3.22)

Table 3.4. Curve fitting parameters for peak time based distance estimation.

Te a2 b2 RMSE

0.25 s 1.1259 0.0178 6.6574
0.5 s 0.2401 0.0268 9.1950
0.75 s 0.5045 0.0221 7.7602
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Figure 3.12. Measured average peak time vs. the distance and their fitted curves for (a)
Te = 0.25 s, (b) Te = 0.5 s and (c) Te = 0.75 s.

3.7.3. Combined Distance Estimation

The power based and peak time based distance estimation methods given in Sec-

tion 3.7.1 and 3.7.2, respectively, can be combined to obtain a novel estimation method.

When the ratio PR/PT to tpeak is written by using the curve fitting models in (3.19) and

(3.21), the following equation is obtained.

PR
PT

tpeak
=
a1e

b1d

a2eb2d
. (3.23)

By the manipulation of (3.23), d can be derived as

d̂ =
1

b1 − b2

ln

(
PRa2

PT tpeaka1

)
, (3.24)

which combines the power based and peak time based distance estimation methods. Next,

the numerical results are given for all of the methods given up to now.

3.8. Results and Analysis

In this section, numerical results are presented for distance estimation to analyze

the performance of ML methods given in Section 3.6 and the proposed data analysis based

methods given in Section 3.7. First, the numerical results of the ML and data analysis

based methods are discussed. Then, these methods are compared and an analysis about

the experimental results are given.
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3.8.1. Numerical Results

The aforementioned nine features, which are tlow, Clow, R, ∆C, G, tpeak, Cpeak,

Te and ER, are given as the input for training the ML methods. Here, all of the features

except Te, are extracted as explained in Section 3.5. Since Te is assumed to be known

by the RX, it is also given as a feature. The Monte Carlo simulations are performed 105

times for the ML algorithms to average the estimated distance values and their errors. The

data are divided randomly as 70% for training and 30% for testing in MLR. In NNR, the

data are randomly divided as 70% for training, 15% for validation and 15% for testing.

Furthermore, the hidden layer of the neural network has one node in the simulation model.
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Figure 3.13. Mean estimated distance and their standard deviations with linear regres-
sion for each distance.

The performance comparison of the ML methods can be made for each distance.

The mean estimated distances and their standard deviations with respect to actual distance

are given in Figures 3.13, and 3.14 for MLR and NNR, respectively. The points at each

distance show the mean estimated values and the vertical bars show their standard devi-

ations. Moreover, a perfect estimation line is given to see how far the estimated values

approach to the actual values. The reason for giving these figures is to see especially

the standard deviations, i.e., to visualize how consistent the estimated values are. The

NNR has slightly better results than MLR for the mean estimated values and standard

deviations. However, since the difference between MLR and NNR results is small, it can
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be deduced that the relationship between the features used as input and the distance is

highly linear. The cost of the NNR method is its complexity and longer time requirement.

Hence, estimating the distance with MLR can be considered as an efficient ML method

due to its simplicity and performance for our practical scenario and extracted features.
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Figure 3.14. Mean estimated distance and their standard deviations with neural network
regression for each distance.
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Figure 3.15. Mean estimated distances and their standard deviations for power based
distance estimation.

The performance evaluation of the proposed data analysis based distance estima-

tion methods given in Section 3.7, are made by using the features of the measured signals.
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The mean estimated distance values and their standard deviations are shown in Figures

3.15, 3.16 and 3.17 for power based, peak time based and combined estimation methods,

respectively.
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Figure 3.16. Mean estimated distances and their standard deviations for peak time based
distance estimation.
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Figure 3.17. Mean estimated distances and their standard deviations for combined dis-
tance estimation.

The values for every actual distance on these figures show the mean (dots) and

standard deviation (vertical bars) values of the estimated distance over 30 measurements.

Due to the smaller number of features employed in data analysis based methods, the stan-

dard deviations are relatively higher, when it is compared with the ML methods. There
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can be some unused parameters in the data analysis based methods to estimate the dis-

tance more accurately with respect to the ML methods. Next, all of the results is given

in a comparable format to evaluate the performance of the distance estimation methods

given in this chapter.

3.8.2. Comparison

In Table 3.5, the Root Mean Square Error (ρ) values are given for each method,

which is defined by

ρ =

√√√√ 1

M

M∑
i=1

(d̂i − di)2, (3.25)

whereM is the number of the samples of the test data. In data analysis based methods, M

is taken as 330 by using whole data samples. In ML methods, M represents the number

of the samples of the test data as defined in the beginning of this section and ρ is averaged

over 105 Monte Carlo simulation trials. The results for ML methods are much better than

the data analysis based methods. However, the cost of the superiority of the ML meth-

ods emerge as time complexity which means that the ML methods require more time and

processing power for distance estimation calculations due to the longer equations used in

these methods. NNR has the highest complexity among the proposed methods. Further-

more, the training phase of the ML methods can restrict real-time applications due to this

complexity. Therefore, there is a trade-off between the complexity and performance for

the ML and data analysis based methods, which needs to be optimized for the implemen-

tation of an application. On the other hand, the fact that the data analysis based methods

have less time complexity, makes the implementation of these methods easier than the

ML methods.

Table 3.5. Distance estimation performance for the ML and data analysis based methods.

Method RMSE
Linear Regression 21.4470
Neural Network Regression 20.1157
Power Based Estimation 62.3077
Peak Time Based Estimation 33.2434
Combined Estimation 44.3157
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While the distance values increase, the same absolute error deviation has different

meanings according to the actual distance and the error values need to be normalized to

determine which method is better. Hence, mean absolute percentage error (MAPE) is

preferred as the performance metric rather than the absolute error deviation. For each

actual distance, the MAPE (ε) values shown in Figure 3.18 are calculated according to the

formula as given by

ε =
100

M

M∑
i=1

|d̂i − d|
d

. (3.26)
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Figure 3.18. Mean absolute percentage errors vs. actual distance for the ML and data
analysis based methods.

In our practical scenario, our observations show that some of the droplets fall to the

ground, before they arrive to the RX. The droplets are sprayed from the TX as sufficiently

large droplets to be affected by the gravity (De Cock et al., 2017). Moreover, there are

other effects such as boundary conditions in the diffusion process and the initial velocity

of the molecules. Since ML has more parameters to model these effects analytically,

they perform better than the data analysis based methods except the peak time based

estimation method at long distances. In general, the peak time based estimation provides

the best performance among the data analysis based methods. However, the peak time

based estimation method has the worst performance between 140 and 160 cm due to the

non-linearity of the sensor as detailed in Section 3.8.3.

Unlike the other methods, peak time based estimation has a nearly linear estima-

tion performance and its MAPE decreases, as the distance increases. At 190 and 200 cm,
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it has very close values with ML methods and even performs better than the ML methods

at 200 cm. This result shows us that peak time based estimation can be applied to longer

distances. Furthermore, it reveals that the peak time provides more accurate distance es-

timation, as the RX gets farther from the TX. Hence, the distance can be estimated with

more sensitive sensors for farther distances.

In order to determine the optimal distance estimation method for a practical sce-

nario, the processing capacity of the RX is essential. If the RX does not have the capacity

to implement ML algorithms, then the peak time based estimation method can be used

with a cost of slightly higher error than ML methods. Otherwise, MLR can be used

as a more efficient method between ML methods due to its lower complexity and high

accuracy. NNR has the best performance among all the proposed methods in terms of ac-

curacy, although it imposes the highest complexity. Next, our observations and numerical

results are analyzed to explain the phenomena behind the propagation of the molecules

and its reception by the RX.

3.8.3. Analysis of the Results

The lowest MAPE values are between 140 and 180 cm for ML methods and be-

tween 140 and 160 cm for data analysis based methods, except the peak time based esti-

mation. The reason why the estimated values are better within the interval 140 and 160

cm, lies in the measured signals. This can be more clearly understood with the average

velocity profile of the transmitted molecules in the medium as shown in Figure 3.19. In

order to calculate the average velocity of the molecules, it is assumed that the majority of

the molecules arrive at the RX, when the received molecule concentration is at its peak

point. Although some of the molecules reach the RX before or after this peak point, it is

reasonable to choose tpeak as the average arrival time of the molecules. Hence, the aver-

age velocity of the molecules is defined as the ratio of the distance to the time duration at

which the peak concentration is read from the sensor. In Figure 3.19, average velocities

are obtained according to this definition for each Te and also the mean velocity is given

as the average of the velocity values given for three different values of Te.
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Figure 3.19. Average velocity profile of the transmitted molecules with respect to the
actual distance.

3.8.3.1. The Effect of the Sensor’s Non-linearity

The larger velocities of the molecules for the measurements between 140 and 160

cm can be related to the non-linearity of the sensor characteristics as given in Figure 3.20.

In this figure,Rs is the sensor resistance which changes according to the molecule concen-

tration and Ro is the sensor resistance measured at the concentration level 0.4 mg/L. The

sensitivity of the sensor is shown for different gases in logarithmic scale in Figure 3.20 (a)

(Hanwei-Electronics, 2018). The values in this figure for alcohol is plotted in linear scale

in Figure 3.20 (b) to see the non-linearity of the sensor more clearly for our case. The

MQ-3 sensor makes more sensitive measurements in lower concentrations with respect to

higher concentrations. Due to this fact, the sensor can have errors for the measurements

at lower distances. Another possible explanation to understand the phenomena behind the

motion of the molecules in our scenario, can be made by employing the dynamics of the

fluid which is considered as follows.

3.8.3.2. The Effect of Factors Related to Fluid Dynamics

In ideal conditions where the molecules only make an isotropic random walk with-

out being exposed to any force, the diffusion process can be used to model the movement

of the molecules. However, the molecules come out of the TX as liquid droplets with
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Figure 3.20. Sensitivity characteristics of the MQ-3 sensor (Rs/Ro vs. Concentra-
tion) (Hanwei-Electronics, 2018) (a) for different gases in logarithmic
scale (b) for alcohol in linear scale (plotted using original values from the
datasheet).

an initial velocity in our case. Thus, several processes concerning the dynamics of the

fluid can occur and the diffusion process is not sufficient to understand the motion of the

molecules. Therefore, the analysis is needed to be made in terms of fluid dynamics.

When a liquid is sprayed into the air, the droplets initially come out of the sprayer

with a certain angle which is the beamwidth (spray angle) of the sprayer as shown in

Figure 3.21 with α. The interaction between the transmitted droplets and the air molecules

leads to a contraction in the effective beamwidth, which is defined as the angle of the

propagating droplets as given in Figure 3.21 with β. This interaction is detailed as follows.

TX
Effective
beamwidth (β)

Beamwidth of
the sprayer (α)

Text

Text

Text

Text

Sprayer

Nozzle Entrainment of the induced air flow

Droplet

Figure 3.21. Beamwidth of the sprayer (TX) and the effective beamwidth.
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As the droplets move in the air due to the force applied by the sprayer, they gain

a momentum, which can be defined as the product of the liquid’s mass and velocity.

According to the law of momentum conservation, when two objects are collided, their

total momentum does not change before and after the collision (Kleppner and Kolenkow,

2013). The collisions of the droplets with the air molecules cause aerodynamic drag

which can be defined as the air force resisting the movement of the object (Anderson Jr,

2016). The ethyl alcohol droplets slow down due to the aerodynamic drag. Besides,

the momentum lost by the droplets is gained by the air molecules due to the momentum

conservation. The momentum exchange among the droplets and air molecules generates

an air flow towards the center of the beamwidth along the horizontal axis (Rothe and

Block, 1977). This flow drags the droplets into the inner regions from the outer regions.

Namely, the angle at which the droplets propagate is reduced relative to the initial α

angle, and this leads to a contraction. This contraction of the droplets’ propagation angle

facilitates turbulent flows which is detailed as follows (Ghosh and Hunt, 1994).

The flows can be classified into two types as laminar flow, which has parallel and

regular streamlines, and turbulent flow, which has random and irregular streamlines (An-

derson Jr, 2016). Even if the effect of the turbulent flow can be observed, its mathematical

modeling is still a big problem due to its complicated nature. The flow type of the fluid

depends on the Reynolds number (Re). In our case, Re is given as (Ghosh and Hunt,

1994),

Re =
2|Vl − Va|a

νa
, (3.27)

where a is the radius of the spherical droplet, νa is the kinematic viscosity of the air, Vl

and Va are the velocities of the liquid and airflow. Re influences the type of viscous flows.

As Re increases, it is more likely to have a turbulent flow in the medium. There is a

critical value of Re to determine the flow type (Avila et al., 2011). Above this critical

value, which depends on the parameters of the transmitted molecules and the medium,

the flow becomes turbulent. In order to determine where there is a turbulent flow ac-

cording to (6.26), the radii of the liquid droplets, the velocities of the liquid droplets

and air molecules are needed to be measured, which is beyond the scope of this chapter.

High-speed photography techniques or Phase Doppler Anemometry (PDA) can be used

to measure the liquid droplet size and velocities. In (Begg et al., 2009), the movement of

the liquid gasoline fuel droplets after they come out of a sprayer (injector) is analyzed.

60



After the spraying operation, vortex ring-like structures, which include turbulent flows,

are observed experimentally for the liquid droplets. As they move away from the sprayer,

the average liquid droplet size gets smaller due to the break-up of droplets into smaller

sized droplets and evaporation (De Cock et al., 2017; Al Heidary et al., 2014). Diffusion

does not have an important effect, if the droplet is large enough. Hence, diffusion is more

effective, after the velocity of the droplets decreases to a more steady value. The findings

and results in (Begg et al., 2009) can be used to analyze the movement of the droplets for

our scenario, since the densities of the gasoline fuel and ethyl alcohol have close values

(Mařík et al., 2014).

In the vicinity of the nozzle of the TX, the flow of the droplets can be defined

as unsteady flow, since the velocity of the droplets are not constant with respect to time

due to the interaction with the air molecules (Munson et al., 2009a). Moreover, if a

constant flow is stopped suddenly, the flow shows unsteady characteristic (Munson et al.,

2009a). Similarly in our case, since the TX suddenly stops its transmission at the end of

Te, it can be deduced that the flow in our case becomes an unsteady flow. As soon as

molecules are emitted, they are affected by the diffusion which can be neglected in the

region where molecules are entrained by the higher velocities of unsteady flows such as

turbulent flows. As the droplets move away from the TX, the aerodynamic drag decreases

their velocities until a point where they start to move with only diffusion. As the result

of these movements and findings in (Begg et al., 2009), the transmitted droplets can be

expected to have a trajectory as illustrated in Figure 3.22. Here, the motion of the droplets

is divided into two zones as the unsteady flow zone and diffusion zone. In the first zone,

the droplets where they travel a distance df , are affected by the unsteady flows such as

turbulent flows. The droplets are exposed to random fluctuating aerodynamic drag forces

due to the turbulent flows (Maxey, 1987). When the effect of the flows ends, the droplets

start to move with diffusion where they travel a distance dB until the RX. Although gravity

affects the motion of the droplets in both zones, its effect is greater in the unsteady flow

zone, since the size of the droplets is larger. By using the trajectory in Figure 3.22,

the velocity profile in Figure 3.19 can be explained as follows. For the measurements

between 100 and 130 cm, the non-linearity of the sensor can cause more measurement

errors due to the lower sensitivity in higher concentrations. In addition to this, the average

distance traveled in the unsteady flow zone can be larger for the measurements between
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140 and 160 cm than the average distance traveled in the unsteady flow zone for the

measurements at other distances due to effects of the unsteady flows. Thus, the droplets

move with larger velocities which cause shorter arrival time to the RX and a longer df

than the measurements at other distances. Consequently, these factors such as non-linear

characteristic of the sensor and unsteady flows jointly affect the performance for distance

estimation.
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Figure 3.22. The trajectory of the transmitted molecules between the TX and the RX.

As given by the analysis about the unexpected average velocities of the molecules,

their motion for macroscale practical scenarios can be modeled by exploiting fluid dynam-

ics. The channel modeling and parameter estimation with the fluid dynamics point of view

are open research issues for practical MC scenarios. Next, the role of emission time, i.e.,

Te, is examined for distance estimation by using the trajectory given in Figure 3.22.

3.8.3.3. The Effect of the Emission Time

Figure 3.19 for short distances up to 130 cm, the average velocity of the molecules

for Te = 0.5 s are greater than the average velocity of the molecules for Te = 0.25 s.

However, for Te = 0.75 s, the average velocity is less than the molecules transmitted

with Te = 0.5 s (except the nearly equal value at 120 cm). This result shows that there
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is an optimum Te for the fastest propagation of the molecules according to the distance.

Furthermore, it shows that sending more molecules than this optimum Te can decrease

the average velocity of the molecules. When Te is larger than the optimum Te, a higher

molecule concentration occurs in the unsteady flow zone. This increases the collision rate

of the molecules and thus, reduces their velocity. For distances between 140 and 160 cm,

the average velocity is directly proportional with Te due to the above-mentioned longer

average distance traveled in the unsteady flow zone. For long distances greater than 170

cm, Te does not significantly affect the average velocity of the molecules. Hence, it can be

deduced from the results that an appropriate Te should be chosen for a faster propagation

according to the distance. More experimental research is needed for the derivation of the

optimum Te, which is left as a future work.
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CHAPTER 4

FLUID DYNAMICS-BASED DISTANCE ESTIMATION

ALGORITHM FOR MACROSCALE MOLECULAR

COMMUNICATION

4.1. Introduction

In molecular communication (MC), the distance between the TX and RX is a

significant channel parameter, since higher data rates can be achieved via an accurate

distance estimation by arranging the MC system parameters properly (Atakan and Akan,

2007; Nakano et al., 2013). Furthermore, the location of a molecular TX in a molecular

network can be found by an accurate distance estimation in a practical application as ex-

perimentally shown in Chapter 8 (Gulec and Atakan, 2020b). In addition, the location of

an infected human which spreads a disease by emitting airborne pathogen-laden droplets

through sneezing or coughing in a crowded place can be predicted by employing biologi-

cal sensors as the RX and the infected human as the TX (Khalid et al., 2019, 2020). The

distance estimation methods in the literature can be discussed as two-way and one-way

methods. In two-way methods, the TX sends a molecular pulse signal to the RX and the

RX sends a feedback signal to the TX, when it is received. Subsequently, the distance is

calculated by the TX based on this feedback signal (Moore et al., 2010, 2012; Moore and

Nakano, 2012). In one-way distance estimation methods which need less time with re-

spect to two-way methods, the distance is estimated by the RX. In (Huang et al., 2013), the

received peak concentration or the peak time between the consecutive transmissions are

measured by the RX for distance estimation in a 1-D channel. In (Wang et al., 2015b), two

distance estimation schemes are proposed for a 3-D diffusion channel where the received

peak time and the received energy are used for the first and second scheme, respectively.

In addition, an algorithmic distance estimation method is proposed in (Wang et al., 2015a)

by the same authors. The study in (Lin et al., 2019) proposes a method which uses maxi-
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mum likelihood estimation for a 3-D diffusion channel. (Noel et al., 2015) proposes joint

estimation methods for channel parameters in a diffusive channel with a steady flow and

degradable molecules. Furthermore, the Cramer-Rao lower bound is derived for distance

estimation in (Noel et al., 2014a). In all of these estimation methods, an ideal microscale

channel where molecules propagate via diffusion is considered. Our study given in Chap-

ter 3 proposes five methods including three data analysis based and two machine learning

methods for distance estimation in a practical macroscale MC system for the first time.

However, the physical meanings of the estimation parameters on which these methods

depend are not known.

In fact, the liquid is sprayed as droplets rather than molecules in practical sprayer-

based macroscale scenarios (Ghosh and Hunt, 1994; Al Heidary et al., 2014) similar

to the saliva emitted as droplets through sneezing/coughing in airborne transmission of

pathogen-laden droplets. This similarity gives us the motivation to employ the droplet-

based MC systems to reveal the infection mechanism of contagious diseases which spread

through airborne transmission of droplets. The airborne pathogen transmission plays a vi-

tal role in infections of the pathogens such as severe acute respiratory syndrome (SARS)

virus (Peiris et al., 2003), influenza virus (Killingley and Nguyen-Van-Tam, 2013) and

SARS coronavirus 2 (SARS-CoV-2) which causes coronavirus disease 19 (COVID-19).

Due to the importance of the global COVID-19 pandemic, it is essential to highlight that

the distance estimation methods proposed for droplet-based macroscale MC systems can

also be employed to find the location of a pathogen source in public places via biological

sensors.

In the literature, practical droplet-based MC systems having impulsive input sig-

nals are assumed to have a channel impulse response which is based on molecular dif-

fusion with drift (Farsad et al., 2014; Kim et al., 2015). The channel parameters are

derived by fitting experimental data and the physical meanings of these fitted parame-

ters are unknown and not measurable. However, the fact that the sprayer-based systems

emit droplets instead of molecules implies that droplets are subject to Newton’s laws of

motion and molecular diffusion is negligible. Furthermore, droplets interact with air par-

ticles during their propagation due to their initial velocity. Therefore, considering only

the diffusion of molecules is not sufficient and a fluid dynamics perspective is needed

for a more accurate distance estimation in macroscale scenarios as initially discussed in
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Chapter 3. In this chapter, the Fluid Dynamics-based Distance Estimation (FDDE) algo-

rithm is proposed for a practical macroscale MC system. In the FDDE algorithm, droplets

are considered as information carriers in the channel and a two-phase flow model is used.

Here, liquid phase of droplets and gas phase of air particles represent these two phases.

In this model, liquid droplets and gaseous air particles move together as a mixture. More-

over, it is considered that droplets evaporate as the time elapses. The TX is modeled as

a directed emitter with a predefined beamwidth. Droplets are assumed to move in a cone

shaped volume determined by this beamwidth. Then, the laws of mass and momentum

conservation are utilized to estimate the average propagation distance of the droplets from

the TX by analytical derivations. The FDDE algorithm employs these derivations by also

considering reducing droplet diameter due to evaporation as the droplets propagate in the

MC channel. Subsequently, the proposed FDDE algorithm is validated by experimental

data. It is shown that the distance between the TX and RX in the MC channel depend

on novel parameters such as the beamwidth of the TX, volume fraction of the droplets

in the mixture volume and densities of the air particles and liquid droplets. Moreover,

the results show that the effect of the evaporation for shorter distances is small. With the

validation of the FDDE algorithm, it is revealed that modeling the motion of the droplets

is realizable with physically measurable parameters instead of fitted parameters which are

based on experimental data.

The rest of the chapter is organized as follows. The proposed FDDE algorithm

is presented in Section 4.2. The experimental work explaining the measurement of the

required parameters is given in Section 4.3.1. The numerical results including validation

of the proposed FDDE algorithm and its comparison with the methods given in Chapter

3 are presented in Section 4.3.2. The study given in this chapter was first presented in

(Gulec and Atakan, 2021b).

4.2. Fluid Dynamics-Based Distance Estimation Algorithm

In this section, the FDDE algorithm is proposed to estimate the distance between

the TX and RX with a fluid dynamics approach. The experimental setup detailed in

Chapter 3 is employed for the validation of the proposed FDDE algorithm. When the

droplets are transmitted into the air, air particles are entrained by the droplets and this
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induces an air flow. During this interaction generating this air flow in the vicinity of the

nozzle of the TX, the velocity difference among the droplets and air particles is large

and this difference fluctuates over time. Here, it is useful to introduce Reynolds number

(Re) which determines the flow type of the fluid, i.e., laminar or turbulent. The changing

relative velocity of the droplets with respect to air particles cause Re to grow which is

given by

Re =
d|vd − va|

νa
(4.1)

where d is the diameter of the droplet, νa is the kinematic viscosity of the air, vd and va

are the velocities of the droplets and air particles, respectively. As Re increases, deriving

analytical solutions for the motion of particles becomes difficult, since the turbulent dif-

fusivity increases (Ghosh and Hunt, 1994). However, as the distance between the TX and

RX increases, the droplets can be assumed to have nearly the same velocity with the en-

trained air particles. This situation makes Re zero and turbulent flows are not considered

(Sazhin et al., 2001). Hence, a tractable analytical solution for the average velocity and

traveling distance of the droplets is feasible. For a macroscale scenario without a constant

flow, the distance between the TX and RX is sufficiently large that the effect of the initial

interaction among the droplets and air particles can be negligible for the total traveling

distance of the droplets. The motions of the droplets and air particles with the same ve-

locities can be modeled by using the two-phase flow model. In this model, the two phases

represent the liquid and gas phases of the fluid particles, i.e., liquid droplets and gaseous

air particles. The evaporated droplets, i.e., gaseous ethanol molecules in our case, are not

considered for the gas phase, since their effect is small with respect to the surrounding air

in the medium. As illustrated in Figure 4.1, droplets and air particles move together as a

mixture between the TX and RX. This mixture is assumed to propagate in a cone shaped

volume which has a beamwidth of 2θ (see Figure 4.1). In fluid dynamics literature, two-

phase flow models are applied to estimate the average distance of the fuel droplets sprayed

by a fuel injector in a car engine (Sazhin et al., 2001) or the coverage of the sprayed pes-

ticide droplets in agriculture (Al Heidary et al., 2014). In this study, the two-phase flow

model given in (Sazhin et al., 2001) is adopted and modified to estimate the propagation

distance of the droplets transmitted from the TX. This modification is accomplished by

considering that the liquid droplets change their sizes via evaporation. Furthermore, the

distance estimation procedure is given in an algorithmic way by updating the diameter
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Figure 4.1. Two-Phase Flow Model.

at each time step. Next, the evaporation of the droplets, which is detailed as follows, is

considered for the FDDE algorithm.

4.2.1. Evaporation of Droplets

The transmitted droplets can evaporate as they move away from the sprayer (Al Hei-

dary et al., 2014). The evaporation can be described in terms of the reduction in the droplet

diameter. The diameter change with respect to time is modeled as (Mokeba et al., 1997)

∂d

∂t
= −2

MvDvρa∆P

MadρdPa
(2 + 0.6Sc1/3Re1/3), (4.2)

where Mv is the molecular weight of the evaporating vapor, Ma is the molecular weight

of the air, Dv is the diffusion coefficient of the droplet’s vapor in the air, d is the droplet

diameter, Pa is the partial air pressure, ∆P is the pressure difference between the droplet

surface and the diffusing vapor in the air and Sc is the Schmidt number which is given

by Sc = νa/Dv. The parameters and subscripts used for the proposed algorithm are

summarized in Table 4.1. For an algorithm which evaluates the motion of droplets by

using (4.2), the diameter change (∆d) in every time step can be given as below

di = di−1 + ∆d (4.3)

∆d = −2
MvDvρa∆P

MadiρdPa
(2 + 0.6S1/3

c Re1/3)∆t, (4.4)
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Table 4.1. Definitions of the parameters and subscripts

Parameter Definition Parameter Definition
Re Reynolds number M Molecular weight
θ Half-beamwidth of the TX d Average diameter of the

droplet
D Diffusion coefficient ρ Density
∆t Time step P Partial pressure
Sc Schmidt number m Mass
∆P Vapor pressure difference V Conical mixture volume
αd Volume fraction of droplets

in mixture
Te Emission time of the TX

D0 Diameter of the nozzle ori-
fice

A Circular cross-sectional
area

v Average velocity ṁ Mass flow rate
s Average distance R Diameter of Ax
p Momentum ts Total simulation time
ṗ Time rate of change of the

linear momentum
r Distance between the noz-

zle and starting point of the
flow

Q Volumetric flow rate
Subscript Subscript
d droplet (liquid ethanol) i value at the ith time step
v vapor ethanol x mixture
a air 0 initial value

where di is the diameter at the time ti which increases with steps of ∆t for each iteration

and represents the elapsed time at the ith time step. In order to estimate the distance values

in a practical MC system, it is essential to relate these values with the measured sensor

voltage values. For this purpose, ti is assumed as the peak time of the signal measured by

the sensor, since the majority of droplets are assumed to reach the RX at this peak time.

Here, a new parameter (αd) which shows the volume fraction of the droplets in

the mixture of droplets and air particles (see Figure 4.1) is introduced. The evaporation of

droplets causes αd to be time-dependent. As the diameters of droplets change with time,

αd is needed to be updated. To derive a model for this, let N be the number of droplets,

di the average diameter of a spherical droplet, V the mixture volume and αdi the volume

fraction of droplets in the mixture volume during the ith time step. Here, V is considered

as a constant cone-shaped volume with the beamwidth of the TX for the distance between

the TX and RX as shown in Figure 4.1. Then, the volume fractions for consecutive time
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steps can be given as

αdi−1
=
N 4

3
π
(
di−1

2

)3

V
(4.5)

αdi =
N 4

3
π
(
di
2

)3

V
. (4.6)

Hence, the relation between consecutive volume fractions of droplets is given by

αdi = αdi−1

(
di
di−1

)3

. (4.7)

For this derivation, it is essential to consider that the number of droplets in the mixture

volume increases during the emission of droplets. Therefore, it is assumed that the volume

fraction of droplets at t = Te is a pre-known constant, i.e., αd0 , and αdi increases linearly

between t = 0 and t = Te. After t = Te, the volume fraction is given by (4.7). Hence, the

volume fraction of droplets can be defined as a time-dependent function:

αd(t = ti) = αdi =


αd0
Te
ti , 0 ≤ ti ≤ Te (4.8)

αdi−1

(
di
di−1

)3

, ti > Te. (4.9)

4.2.2. Propagation of Evaporating Droplets in Two-Phase Flow

In order to clearly explain the propagation of evaporating droplets in two-phase

flow, some definitions related with fluid dynamics are first given as follows. As illustrated

in Figure 4.1, the liquid phase and the gas phase form two phases of the two-phase flow

model in which liquid droplets and gaseous air particles move together as a mixture. This

model can be generated by employing the laws of mass and momentum conservation. In

fluid dynamics, the conservation of mass is applied by using the mass flow rate (ṁ) which

is defined as the amount of mass flowing through a surface per unit time (kg/s) (Munson

et al., 2009b). From the conservation of mass, which states that the net mass flow rate

(ṁ) is zero in a closed system (a system with no external forces acted on and no external

matter exchange), the equation below can be written (Munson et al., 2009b)

ṁ0 = ṁi, (4.10)
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where ṁ0 and ṁi is the mass flow rate of droplets for the initial state and ith time step,

respectively. The mass flow rate is expressed by (Munson et al., 2009b)

ṁi = ρiQi = ρiAivi, (4.11)

where Qi is the volumetric flow rate (m3/s) giving the fluid volume per unit time, ρi is the

density of the fluid (kg/m3) and vi is the fluid velocity (m/s) which is perpendicular to the

cross-sectional area of the fluid Ai (m2) for the ith time step. In 4.11, if ρi is constant, ṁi

depends on the volumetric flow rate. Therefore, αd can be incorporated into 4.11 in order

to quantify the volume fraction of droplets in the mixture. Hence, the mass flow rate of

air particles (ṁai) is given by taking out the volume of droplets from the mixture volume

as given by

ṁai = ρaAxivxi − αdiρaAxivxi (4.12)

= (1− αdi)ρaAxivxi , (4.13)

where ρxi is the density of the mixture, vxi is the velocity of the mixture and Axi is the

circular cross-sectional area of the mixture volume at the ith time step as illustrated in

Figure 4.1. Then, the mass flow rate of droplets at the ith time step can be expressed by

subtracting the mass flow rate of air particles from the mixture (ṁxi) as given by

ṁi = ṁxi − ṁai (4.14)

= ρxiAxivxi − (1− αdi)ρaAxivxi (4.15)

Thus, (4.10) can be written by using (4.15) as given by

ρdA0v0 = ρxiAxivxi − (1− αdi)ρaAxivxi , (4.16)

where v0 is the initial velocity of droplets, A0 is the circular cross-sectional area of the

nozzle and the term in the left-hand side shows the initial mass flow rate of droplets.

As observed in Figure 4.1, the geometrical relation between Axi and A0 can be

represented as given by

tan(θ) =
D0

2r
=

Ri

2(si + r)
, (4.17)

where D0 is the diameter of the nozzle orifice, r is the distance between the nozzle and

the assumed theoretical starting point of the flow, θ is the half-beamwidth of the TX, si

is the distance traveled by the mixture or droplets and Ri is the diameter of Axi at the ith
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time step. By using (4.17), Axi can be represented in terms of A0, si, D0 and θ as given

by

Axi = A0 + πD0 si tan(θ) + πs2
i tan2(θ). (4.18)

Next, the conservation of the momentum is exploited to derive the estimated dis-

tance. The momentum (p) can be defined for the ith time step as given by (Munson et al.,

2009b)

pi = mivi. (4.19)

The law of momentum conservation states that the total momentum does not change for

a closed system. In our model, it is assumed that the fluid motion is linear (not rotational)

and only on the horizontal axis. As in the case of conservation of mass, the time rate

of change of the linear momentum, which is defined as the change of the momentum in

time, is employed to apply the momentum conservation in fluid dynamics (Munson et al.,

2009b). To that end, the linear momentum equation, which implies that the system’s time

rate of change of the linear momentum (ṗ) is constant for a closed system, is used as given

by (Munson et al., 2009b)

ṗ0 = ṗi, (4.20)

where the left-hand side and right-hand side statements are the time rate of changes of

the linear momentum at the initial state of droplets and the mixture state, respectively.

By substituting (4.19) into (4.20), the linear momentum equation is expressed in terms of

mass flow rate as given by (Munson et al., 2009b)

ṁ0v0 = ṁivi (4.21)

ρdA0v
2
0 = ρxiAxiv

2
xi
, (4.22)

where the mass flow rate derived in (4.11) is substituted into (4.21). The equations (4.16),

(4.18) and (4.22) are manipulated to derive the traveling distance of the mixture. Firstly,

(4.16) is multiplied by 1/(Axivxi) and ρxi is derived as shown below.

ρxi =
ρdA0v0

Axivxi
+ (1− αdi)ρa. (4.23)

Secondly, (4.22) can be written as

ρxi =
ρdA0v

2
0

Axiv
2
xi

. (4.24)
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Then, (4.24) is substituted into (4.23) and all the terms are taken to the left-hand side as

given by
ρdA0v

2
0

Axiv
2
xi

− ρdA0v0

Axivxi
− (1− αdi)ρa = 0. (4.25)

Afterwards, we let ṽi = v0/vxi and write (4.25) in terms of ṽi as

ṽ2
i − ṽi −

(1− αdi)ρaAxi
ρdA0

= 0. (4.26)

For physically meaningful parameter values, one of the roots of (4.26) is negative and the

positive root is given by

ṽi =
v0

vxi
=

1

2

(
1 +

√
4(1− αdi)ρaAxi

ρdA0

)
. (4.27)

By using (4.27), vxi is found as

vxi =
2v0

1 +
√

4(1−αdi )ρaAxi
ρdA0

. (4.28)

By substituting A0 =
πD2

0

4
and (4.18) into (4.28), vxi is derived as

vxi =
2v0

1 +
√
k1 + k2si + k3s2

i

. (4.29)

where

k1 = 1 + 4(1− αdi)
ρa
ρd
, k2 =

16(1− αdi)ρa tan(θ)

D0ρd
,

k3 =
16(1− αdi)ρa tan2(θ)

D2
0ρd

. (4.30)

The average velocity of droplets can be expressed as the derivative of the distance

with respect to time. Hence, vxi is given in terms of the difference of the consecutive

distance and time values as given by

vxi =
∆si
∆t

=
si − si−1

∆t
, (4.31)

where ∆si represents the average distance traveled by the droplets for the time duration

∆t = ti − ti−1. By incorporating (4.30) into (4.29), the following equation is derived:√
k1 + k2si + k3s2

i =
2v0∆t

∆si
− 1. (4.32)

Then, both sides of (4.32) are squared as given by

k1 + k2si + k3s
2
i =

4v2
0(∆t)2 − 4v0∆t∆si + (∆si)

2

(si − si−1)2
. (4.33)
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Next, when ∆si = si − si−1 is substituted into (4.33), a quartic equation can be obtained

as shown by

k3s
4
i + (k2 − 2k3si−1)s3

i + (k1 − 2k2si−1 + k3s
2
i−1 − 1)s2

i

+ (k2s
2
i−1 − 2k1si−1 + 4v0∆t+ 2si−1)si + k1s

2
i−1 − 4v2

0(∆t)2

− 4v0∆tsi−1 − s2
i−1 = 0. (4.34)

si is found by solving the quartic equation in (4.34) in terms of its previous value si−1

and ∆t. For physically meaningful parameter values, one of the roots is negative and the

two of the roots are complex numbers in (4.34). Only one real positive root is left as the

solution of si which is too long to write in this chapter. The results for this solution are

shown numerically in the next section.

4.2.3. Operation of the Algorithm

Finally, an estimation algorithm given in Algorithm 1 is proposed by using the

derived parameters to evaluate the average traveling distance of droplets. In this algo-

rithm, the initial parameters are given at the beginning such as Te, αd0 , D0, v0, ∆t, θ

and total simulation time (ts). D0 is assigned as the initial droplet diameter. Then, the

diameter of droplets are calculated for each time step. During the emission of droplets,

droplet diameters are assumed to be constant. Otherwise, the reduction in the droplet di-

ameter is calculated by using ∆d to obtain αdi as given in (4.8) or (4.9). Subsequently,

the average distance is calculated by using the real positive root of (4.34). These steps are

repeated until the end of the simulation. The FDDE algorithm can be utilized to model

the movement of droplets emitted from the TX as given with the numerical results in the

next section.

4.3. Numerical Results

In this section, numerical results using the FDDE algorithm given in Section 4.2

are presented. This algorithm is validated by experimental results. Firstly, measurements

of some practical parameters to be used as input in this algorithm are given.
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Algorithm 1 FDDE Algorithm
1: input: Te, αd0 , D0 v0, ∆t, θ, ts
2: t0 = 0; i = 1; d0 = D0

3: Calculate ∆d by (4.4)
4: while ti−1 ≤ ts do
5: if ti−1 ≤ Te then
6: di = di−1

7: Calculate αdi by (4.8)
8: else
9: di = di−1 + ∆d

10: Calculate αdi by (4.9)
11: end if
12: Calculate si by using the real positive root of (4.34)
13: i = i+ 1
14: ti = ti−1 + ∆t
15: end while

4.3.1. Measurements

The parameters of the sprayer such as θ, D0 and v0 are required to be measured

to compare the practical experiment results with the proposed algorithm. D0 is measured

by a precise digital caliper, which is a measurement tool with a resolution of 0.01 mm for

the length of an object. θ is measured by using image analysis with the software ImageJ.

The image used for this analysis is given in Figure 4.2.

Figure 4.2. Measurement for the beamwidth of the TX.
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Then, the volumetric flow rate (Q), which gives the fluid volume flowing through

the sprayer per unit time, is measured in order to calculate the initial average velocity

of droplets (v0). For the measurement of Q, a precision balance, which is an equipment

measuring the mass with a precision of 0.001 g, is used. The mass of the sprayer filled

with the liquid ethanol is measured before and after a short spraying. Meanwhile, the

elapsed time for spraying is recorded. In order to find the volume of the sprayed liquid

ethanol, the mass is divided by the density of the liquid ethanol (ρd) whose value is ob-

tained from (PubChem Database, 2019). Hence, Q can be calculated by dividing the mass

difference to the elapsed time for consecutive measurements (Munson et al., 2009b). Q

can be presented by the formula

Q =
∆V

∆tv
, (4.35)

where ∆V and ∆tv show the volume and time difference between the initial and final

measurement values. In order to eliminate the random effects, ten measurements are

made to calculate Q. Afterwards, the initial average velocity of the droplets can be found

by (Munson et al., 2009b)

v0 =
Q

A0

, (4.36)

where A0 is the cross-sectional area of the nozzle calculated by A0 = π(D0/2)2. The

results of ten measurements for Q and v0 are shown in Fig. 4.3. The average of these ten

v0 values is employed for the comparison of the theoretical and experimental results. The

measured and calculated values of θ, D0 and v0 are given in Table 4.2.
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Figure 4.3. Measurement results for flow rate and initial velocity.
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For the validation of the FDDE algorithm, the experimental data are collected

by using the experimental setup given in Chapter 3. The measurements are made for

nine different distances ranging from 1 to 1.8 m in steps of 0.1 m. At each distance,

five different emissions are made with Te = 0.25 s from the TX (a single puff) at 20◦C.

A sufficient amount of duration (at least five minutes) is left between two consecutive

measurements in order to eliminate the effects of the previous transmissions. The room

that the measurements are made is ventilated along this duration. In the next part, the

experimental parameters given in Table 4.2 are used for the numerical evaluation of the

proposed methods.

4.3.2. Results and Analysis

In Table 4.2, Re is given as 0, since the droplet and entrained air velocities are

assumed to be equal for the two-phase flow. Furthermore, αd0 is chosen as a small number

(0.001) in accordance with the observations about the mixture volume of droplets and air

particles. Furthermore, the chemical properties of ethanol and air in Table 4.2 are obtained

from (PubChem Database, 2019; Lugg, 1968) and (Mokeba et al., 1997), respectively.

∆P is used as the same value in (Mokeba et al., 1997), since the densities of liquid in

(Mokeba et al., 1997) and our study have close values.

Table 4.2. Experimental parameters

Parameter Value
Half-beamwidth of the TX (θ) 38◦

Diameter of the nozzle orifice (D0) 510 µm
Average initial velocity of the droplets (v0) 10.8 m/s
Time step (∆t) 0.01 s
Reynolds number (Re) 0
Emission time of the TX (Te) 0.25 s
Volume fraction of droplets at t = Te (αd0) 0.001
Density of liquid ethanol (ρd) 789 kg/m3 (PubChem Database, 2019)
Density of air (ρa) 1.2 kg/m3 (Mokeba et al., 1997)
Molecular weight of ethanol (Mv) 46.069× 10−3 kg/mol (Mokeba et al., 1997)
Molecular weight of air (Ma) 28.9647 × 10−3 kg/mol (PubChem Database,

2019)
Diffusion coefficient of vapor ethanol (Dv) 11.81× 10−6 m2/s (Lugg, 1968)
Partial pressure of air (Pa) 105 Pa (Mokeba et al., 1997)
Vapor pressure difference (∆P ) 790 Pa (Mokeba et al., 1997)
Kinematic viscosity of air (νa) 1.516× 10−5 m2/s (Mokeba et al., 1997)
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When the peak time of the sensor voltage, which is assumed as ti, is measured

by the RX, the distance can be estimated by the FDDE algorithm as shown in Figure

4.4. Here, ∆t is chosen sufficiently small so that peak time values measured by the

sensor correspond to ti values exactly. Each value in Figure 4.4 denotes the mean value

of five estimations for the corresponding distance. In order to evaluate the accuracy of

the estimations for each distance, Mean Absolute Percentage Error (ε) is chosen as the

performance metric as given by

ε =
100

N

N∑
k=1

|ŝk − s|
s

(4.37)

whereN is the number of estimations, ŝ and s are the estimated and actual distance values.
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Figure 4.4. Experimental and estimated distance values with the FDDE algorithm.

Figure 4.5 shows the performance of the FDDE algorithm in terms of ε. Figs. 4.4

and 4.5 show the effect of θ by using its measured value (38◦) and two different values

(33◦, 28◦). This effect is related with the physical phenomena about the spraying pattern

and interaction of droplets with air particles. The sprayer affects the spraying pattern

depending on the parameters such as θ, the spatial dispersion and size of the droplets

(Al Heidary et al., 2014). Our observations during the experiments show that the majority

of droplets propagate in a narrower beamwidth with respect to the measured value of θ.

Furthermore, the interactions among droplets and air particles induce an air flow in the

vicinity of the nozzle towards the center of the beamwidth along the horizontal axis. This
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Figure 4.5. Mean Absolute Percentage Error between experimental and estimated dis-
tance values.

flow entrains droplets from the outer region into the inner region within the beamwidth

(Ghosh and Hunt, 1994). This fact also supports the narrowing beamwidth after spray-

ing droplets. Hence, as θ decreases, the FDDE algorithm gives more accurate results

for shorter distances. The narrowing beamwidth can be estimated via high-speed pho-

tography techniques by visual analysis of the spray pattern or Phase Doppler Anemom-

etry (Begg et al., 2009). However, the estimation and measurement of this narrowing

beamwidth is beyond the scope of this chapter.

In Figs. 4.4 and Figure 4.5, the performance of the FDDE algorithm for each

θ value changes dramatically for larger distances. This change can be explained with

the effect of diffusion for the droplets at longer distances as also discussed in (Gulec

and Atakan, 2020a). The effect of diffusion is negligible for large droplets at smaller

distances. However, as the distance increases, the average velocity of droplets is affected

by diffusion due to decreasing droplet sizes. Therefore, the FDDE algorithm gives better

results for shorter distances.

In Fig. 4.6, the performance of FDDE algorithm is compared with the statistical

distance estimation methods in Chapter 3. These statistical methods are linear regression

(LR) and neural network regression (NNR) as the machine learning, and power based

(PBE), peak time based (PTBE) and combined estimation (CE) as the data analysis based

methods. For shorter distances (up to 1.5 m), the FDDE algorithm has a better perfor-
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Figure 4.6. The performance comparison of FDDE algorithm with the distance esti-
mation methods given in Chapter 3.

mance than PBE and CE and nearly the same performance with machine learning meth-

ods. However, for longer distances (after 1.6 m), the error for FDDE algorithm increases

sharply due to the decrement in average velocity of droplets and effect of diffusion.
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Figure 4.7. The effect of evaporation in FDDE algorithm.

The cost of better performance of statistical methods (especially for longer dis-

tances) is the long process of data collection and feature extraction to generate the estima-

tion parameters, and learning process by using these data. However, FDDE algorithm can

give good results with simpler calculations and without collecting data. Therefore, the

complexity of the FDDE algorithm is less than statistical methods in terms of time and
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computation. Moreover, FDDE algorithm can be implemented by using physically mean-

ingful and measurable parameters instead of deriving parameters according to collected

data for distance estimation.

Figure 4.7 shows the effect of the droplet evaporation for distance estimation with

the FDDE algorithm. The results in this figure for the non-evaporation case is obtained by

ignoring the evaporation of droplets after Te. For our experimental scenario, the effect of

evaporation is small as it can be seen in magnified view of the results for 1.2 m in Figure

4.7. The effect of evaporation for other distances in this figure are similar to the results

obtained for 1.2 m. Although this effect is very small for short distances, it can be more

influential for longer distances and higher air temperatures due to the increment of the

evaporation.
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CHAPTER 5

A DROPLET-BASED SIGNAL RECONSTRUCTION

APPROACH TO CHANNEL MODELING IN MOLECULAR

COMMUNICATION

5.1. Introduction

In a macroscale MC application, employing an accurate channel model enables a

more efficient information transfer between the TX and RX. In addition, the location of a

molecular TX can be estimated via accurate channel models (Qiu et al., 2015; Gulec and

Atakan, 2020b,a). As an exemplary application, an infected human emitting pathogen-

laden droplets into the air through sneezing or coughing can be considered as a molecular

TX in public places. By deploying biological sensors as molecular RXs, this scenario

can be evaluated as a macroscale MC system (Khalid et al., 2019). Actually, the commu-

nication between a sneezing/coughing human and a biological sensor is very similar to

the system given in (Farsad et al., 2013) and used in our study, since sneezing/coughing

can be considered as spraying droplets into the air with an initial velocity. Therefore, an

accurate channel model in such a practical setup can be employed to model the spreading

mechanism of infectious diseases through airborne transmission and detecting diseases

in public places. In (Farsad et al., 2014) and (Kim et al., 2015), channel models for the

platform in (Farsad et al., 2013) are derived by modifying the solution of the diffusion

equation and model coefficients are estimated by fitting experimental data. Since the

models in (Farsad et al., 2014) and (Kim et al., 2015) are based on the molecule diffu-

sion assumption, correction factors are needed to modify the diffusion equation. In these

studies, it is not clearly known what fitted parameters of the modified diffusion equation

are physically related to. Since the TX sprays liquid droplets rather than molecules and

droplets are larger with respect to molecules, only diffusion is not sufficient for chan-

nel modeling in practical scenarios. Thus, initial velocities and interactions of droplets
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with air molecules and the surface of the sensor (RX) need to be considered. Hence, a

fluid dynamics perspective considering droplets as information carriers is required for a

more accurate channel model as discussed in Chapter 3. In (Abbaszadeh et al., 2018)

and (Li et al., 2020), turbulent flows and vortex rings without considering droplets are

used with this perspective. However, the accuracy of the received signals by the sensor is

not considered. Therefore, the droplet-sensor interaction and the accuracy of the sensed

concentration by the sensor need to be taken into account.

In contrast to the models in (Farsad et al., 2014) and (Kim et al., 2015) based on

the diffusion of molecules, this chapter proposes a more realistic system model which re-

veals the physical meanings of the channel parameters. In this approach, droplets sprayed

by the TX are considered as information carriers in the channel rather than diffusing

molecules. The interaction of these droplets with air generates a two-phase flow where

the first phase is liquid and the second phase is gas. In two-phase flow, droplets and air

molecules move together in liquid and gas phases, respectively. The TX is modeled as a

directed emitter with a predefined beamwidth. Droplets are assumed to move in a cone

shaped volume determined by this beamwidth. The model also quantifies how accurate

the transmitted signal is reconstructed by the RX by examining movements of droplets,

interactions among droplets and surface of the sensor. Therefore, this part of the model

is called as signal reconstruction (SR). The SR involves two consecutive processes which

are the adhesion/detachment process of droplets and the sensitivity response of the sen-

sor. The resulting end-to-end system response is derived and validated by experimental

data. It is revealed that the end-to-end system response of a practical MC system depends

on the distance, parameters of the sensor measurement circuit, sensitivity characteristic

of the sensor, beamwidth of the TX, spray coefficient and reaction rate constants in the

adhesion/detachment process. The study presented in this chapter was first introduced in

(Gulec and Atakan, 2021a).

5.2. A Practical Channel Model Based on Fluid Dynamics and Signal

Reconstruction

In this section, we introduce the end-to-end system model which was validated by

using the experimental setup given in Figure 5.1. The details of this experimental setup
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was given in Chapter 3.
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Figure 5.1. The experimental setup and parameters.

For the system model shown in Figure 5.2, the transmitted mass of droplets is

taken as the input and the measured sensor voltage is the output of the system. The

end-to-end system impulse response (Eout(t)) is defined as the system’s output to a short

spray emission along Te (without a fan) which can be considered as an impulsive input

signal. For the derivation of Eout(t), the propagation time of droplets (t0) is needed to be

estimated. However, we only focus on the signal after t0. Solely, the effect of two-phase

flow on the signal in the reception volume (RV) of the RX is investigated. In addition,

the initial offset voltage of the sensor is eliminated by subtracting the sensor voltage at t0

from the whole signal.

Channel Signal Reconstruction
of the RX

End-to-End System Response

Transmitted Mass
of the Droplets

Output
Voltage 

 

Figure 5.2. Block diagram of the end-to-end system model.
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5.2.1. The Effect of Two-Phase Flow on the Initial Concentration in

the Reception Volume

As shown in Figure 5.1, droplets are assumed to move in a cone-shaped volume

(Ghosh and Hunt, 1994) and the beamwidth (2θ) is defined as the initial spraying angle

of the sprayer’s nozzle. The interaction among droplets and air molecules creates a two-

phase flow where droplets and air molecules move together as a mixture (Ishii and Hibiki,

2010). Here, the first phase is the liquid phase of droplets and the second phase is the

gas phase of air molecules. Due to this interaction, the majority of droplets move in a

narrower beamwidth, as they propagate in the channel (Ghosh and Hunt, 1994). This

narrower beamwidth, denoted by 2θrv, is assumed to encompass the RV as illustrated in

Figure 5.1. Hence, the beam of droplets forms two concentric cones. The volume and

base diameter of the inner cone are denoted by Vrc and Rrv, respectively. The volume of

the outer cone is Vc and the distance between the TX and RX is s as depicted in Figure

5.1. Our approach based on fluid dynamics allows us to accurately model the initial

concentration around the sensor by taking into account the droplet-air interaction and the

narrowing beamwidth.

If the spatial distribution of droplets is assumed to be homogeneous, the mass of

droplets in the inner cone can be found via multiplying the total transmitted mass, i.e.,

mTX , by the ratio of the cone volumes, i.e., Vrc/Vc. However, due to the interactions

among droplets and air molecules, the propagation of droplets is far from homogeneity

(Ghosh and Hunt, 1994). Therefore, in order to quantify the inhomogeneous propagation

of droplets, we define the spray coefficient (γ). By employing the ratio of the volumes,

i.e., Vrc/Vc, and γ, a scaling factor (η) can be introduced to obtain the mass of droplets in

Vrc as given by

η =
Vrc
Vc
γ =

π
3
s (s tan θrv)

2

π
3
s(s tan θ)2

γ =

(
tan θrv
tan θ

)2

γ, (5.1)

where 1≤ γ ≤ Vc/Vrc. Here, γ = 1 means that the spatial distribution of droplets are

homogeneous within the beamwidth of the outer cone (2θ), and γ=Vc/Vrc means that all

droplets propagate in the beamwidth of the inner cone (2θrv). Then, the initial droplet

concentration in the beamwidth of the RV (C0) is derived by employing (5.1) as follows:

C0 =
mTXη

Vc
=
mTX

(
tan θrv
tan θ

)2
γ

π
3
s(Rrv

2
)2

=
3mTXγ

πs3 (tan θ)2 . (5.2)
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Here, C0 is assumed as the initial value of the time-dependent concentration in the RV

(C(t)) which is derived in the next part of the chapter. In (5.2), mTX can be presented by

using the volumetric flow rate (Q) of the TX which gives the fluid volume flowing through

the sprayer per unit time (Munson et al., 2009b). Here, Q = VTX/Te where VTX shows

the emitted liquid volume. Since the transmitted mass can be written as mTX = VTXρd

where ρd is the density of the liquid forming droplets before spraying, (5.2) is given by

C0 =
3QTeρdγ

πs3 (tan θ)2 =
3VTXρdγ

π (s tan θ)2 s
. (5.3)

In fluid dynamics, the effects of some parameters such as the length or volume

can be reduced by using dimensionless parameters. These dimensionless parameters are

also utilized for a more concise expression (Munson et al., 2009b). To this end, the

characteristic length (Lc) is defined as

Lc =
VTX
Ac

=
VTX

π (s tan θ)2 (5.4)

where Ac is the cross-sectional area of the outer cone. By using Lc, a dimensionless pa-

rameter (s∗) as the normalized distance is defined as s∗ = s/Lc. Hence, (5.3) is simplified

as given by

C0 =
3ρdγ

s∗
. (5.5)

5.2.2. Signal Reconstruction of the Receiver

For our scenario, the reconstruction of the molecular signal around the RX is

subject to an error due to the random adhesions/detachments of droplets to/from the sensor

and the sensitivity of the sensor. Hence, the SR is modeled as the combination of the

adhesion/detachment process and the sensitivity response of the sensor as shown in Figure

5.3.

Let X and Y represent the droplets in the RV and the adhered droplet-sensor

complex, respectively. Moreover, Z is defined as the detached state of the droplet which

is assumed not to be sensed by the sensor. In order to provide a better understanding, an

analogy between the adhesion/detachment process of droplets and the reception process of
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Figure 5.3. Block Diagram of the Signal Reconstruction.

a biological cell which captures/releases molecules with its receptors can be established.

Here, droplets are assumed to arrive the RV instantaneously after the emission in order

to relate the chemical kinetics of droplets in the RV and the sensor measurement as a

function of time. The adhesion and detachment can be modeled as first order reactions

which are given by

X
k1−−→ Y

k2−−→ Z, (5.6)

where k1 and k2 are the rate constants of the corresponding reaction. Let C(t) and B(t)

denote the concentrations of X and Y in kg/m3, respectively. Based on the reaction

system in (5.6) and the rate law (Atkins and De Paula, 2010), the concentrations C(t) and

B(t) can be characterized as

dC(t)

dt
= −k1C(t) (5.7)

dB(t)

dt
= k1C(t)− k2B(t), (5.8)

where the initial conditions are defined as C(0) = C0 and B(0) = 0. The solution of

(5.7)-(5.8) for B(t) can be given as

B(t) =
k1C0

k2 − k1

[e−k1t − e−k2t]. (5.9)

Subsequent to adhesion/detachment process, B(t) is converted to an electrical

signal by the metal-oxide MQ-3 sensor. Sensors of this type measure the concentration

around them by changing their resistance so that each concentration value corresponds to

a sensor resistance (Rs) value as shown in Figure 5.4. In order to normalize the measured

Rs, Ro is defined as the sensor resistance measured at 0.0004 kg/m3 (Hanwei-Electronics,

2018). For each concentration value,Rs/Ro determines how sensitive the sensor can mea-

sure. This sensitivity characteristic, whose values are taken from its datasheet (Hanwei-

Electronics, 2018), can be employed to obtain a sensitivity function (f(t)) which maps
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concentration values to Rs/Ro values via curve fitting technique. The datasheet values

are fitted by using nonlinear least squares method which minimizes the sum of square

errors. f(t) can be fitted as given by

f (B (t)) = 0.0116 (B(t))−0.5855 − 0.0743 =
Rs

Ro

, (5.10)

where B(t) is the input to the sensitivity response of the sensor as shown in Figure

5.3 and derived in (5.9). The scalar curve fitting parameters are estimated by employ-

ing Levenberg-Marquardt algorithm which has an estimation performance with the Root

Mean Square Error (RMSE) value of 0.0371 (Hagan and Menhaj, 1994).

���

��

Sensor +

-

(�)����+
-

��

Figure 5.4. Sensor Measurement Circuit.

In our experimental setup, the sensor measurement is made with a circuit as given

in Figure 5.4 where RL is the load resistance, Ein is the input voltage and Eout(t) is the

output voltage which also gives the end-to-end system impulse response for an impulsive

input signal. Using this circuit, Rs can be derived via Kirchhoff’s voltage law (Nilsson

and Riedel, 2010) as given by

Rs =

(
Ein

Eout(t)
− 1

)
RL, (5.11)

whereEin is given as 5 V in (Hanwei-Electronics, 2018). By combining (5.10) and (5.11),

the relation between f(B(t)) and the parameters of the sensor measurement circuit can

be written as

f(B(t)) =

(
Ein

Eout(t)
− 1

)
RL

Ro

. (5.12)

By using (8.16), Eout(t) is given as

Eout(t) =
EinRL

Ro

(
f(B(t)) + RL

Ro

) . (5.13)
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Finally, the end-to-end impulse response can be expressed by substituting (5.9) into (5.13)

as given by

Eout(t) =
EinRL

Ro

[
f
(
k1C0

k2−k1 (e−k1t − e−k2t)
)

+ RL
Ro

] , (5.14)

where it is important to note that C0 is a function of the spray coefficient γ as given in

(5.3). Therefore, the impulse response in (5.14) involves three novel channel parameters,

i.e., k1, k2 and γ. These parameters are affected by the change of other parameters in

the channel such as the distance between the TX and RX. Especially, γ depends on the

type of the sprayer’s nozzle which affects the spraying pattern (Al Heidary et al., 2014)

and interactions among droplets and air molecules. For numerical results, k1, k2, and

γ are manually configured by making the Mean Square Error (ε) between the samples

of Eout(t) and experimental signal (F (t)) as small as possible according to the formula

which is given as

ε =
1

N

N∑
n=1

(Eout[n]− F [n])2 (5.15)

whereN shows the number of samples,Eout[n] and F [n] are discrete-time representations

of Eout(t) and F (t), respectively. Next, it is shown by numerical results that the proposed

model given in (5.14) can be used for practical scenarios.

5.3. Numerical Results

In this section, the proposed channel model is validated by experimental data.

First, the measurement of some practical parameters are explained.

5.3.1. Measurements

In order to measure Q, the sprayer is placed on a precision balance. For each

measurement, the liquid is sprayed from the sprayer for a short interval (∆tv). The mass

of the sprayer is measured before and after spraying. Hence, the mass difference is found

by measuring the mass values before and after spraying. By dividing the mass difference

to ρd, the volume difference (∆V ) is calculated for each measurement. Thus, Q can be
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presented by (Munson et al., 2009b)

Q =
∆V

∆tv
. (5.16)

Here, the average of ten measurements is considered for Q. In addition, Ro is calculated

by using Eout(t) value when the concentration value is 0.0004 kg/m3. The detection

scope of the sensor which is between 5 × 10−5 and 10−2 kg/m3, is scaled for Eout(t)

values between 0 and 5 V (Hanwei-Electronics, 2018). Hence, Eout(t) = 0.2 V for the

concentration value of 0.0004 kg/m3. Then, Ro is calculated by (5.11). Furthermore, θ is

measured with ImageJ software using the image given in Figure 5.1. Next, the values of

the experimental parameters given in Table 5.1 are used for the validation of the proposed

model.
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Figure 5.5. The comparisons of the proposed model with experimental data for the
parameters given in the title of each signal.
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Table 5.1. Experimental parameters

Parameter Value
Distance between the TX and RX (s) {0.9, 1, 1.1, 1.2} m
Volumetric flow rate (Q) 2.204× 10−6 m3/s
Density of liquid ethanol (ρd) 789 kg/m3

Emission time of the TX (Te) 0.5 s
Load resistance (RL) 1 kΩ
Sensor resistance at 0.0004 kg/m3 (Ro) 24 kΩ
Half-beamwidth of the sprayer (θ) 38◦

5.3.2. Results for Channel Modeling

In Figure 5.5, the comparisons of experimental data and the proposed model are

shown. For performance evaluation, ε is calculated for a duration of 10 s. Figure 5.5 vali-

dates that the proposed channel model can be employed to estimate the received signal.

As proposed in (Atakan and Gulec, 2019) for diffusion-based MC in microscale,

the SR of the RX may result in error due to the random movements of the molecules in

the reception volume. Accordingly for our macroscale scenario, k1 and k2 represent the

average characteristic of the random movements of the droplets in the RV. In addition, γ

describes the effect of the two-phase flow on the initial concentration in the RV.

As shown in Figure 5.5, γ increases as s increases, since the shape of droplets’

spatial dispersion gets narrower with s. The increment of γ with s validates the narrowing

beamwidth at longer distances due to the droplet-air interaction (Ghosh and Hunt, 1994).

Moreover, the slope of the rising edge of the signals in Figure 5.5 between 0 and peak

time is proportional to k1. This slope decreases as s increases, since k1 is proportional to

the energy of droplets entering the RV. At longer distances, the droplet-sensor interaction

in the RV decreases due to the decreasing droplet energy. In addition, as k2 increases, the

adhered droplets on the sensor detach faster and the sensor voltage drops faster from its

peak value to its initial level.

In Figure 5.6, twenty different manually fitted signals (with a ε of less than 0.021)

are used to observe the relation of k1 and k2 with the normalized distance (s∗). Droplets

are more unlikely to stay adhered to the sensor due to the decreasing energy of droplets

for longer distances, as shown with the change of average k1 values in Figure 5.6. In

contrast to k1, k2 is almost constant, since the energy of droplets is not so effective on
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their detachment from the sensor in the RV. Although physically measurable parameters

(k1, k2, γ) are proposed for the channel model, there is a need for further research effort

to investigate the relation of these parameters with the environmental conditions.
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Figure 5.6. The relation of k1 and k2 with the normalized distance.
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CHAPTER 6

A MOLECULAR COMMUNICATION PERSPECTIVE ON

AIRBORNE PATHOGEN TRANSMISSION AND

RECEPTION VIA DROPLETS GENERATED BY

COUGHING AND SNEEZING

6.1. Introduction

Molecular communication (MC) can be helpful for practical macroscale applica-

tions which include several experimental platforms using molecules or droplets for the

information transfer (Unterweger et al., 2018; McGuiness et al., 2018; Abbaszadeh et.al.,

2019; Khaloopour et.al., 2019; Hamidović et al., 2019). Furthermore, MC is utilized to

solve practical problems such as finding the distance to a molecular source (Gulec and

Atakan, 2020a) as covered in Chapter 3 and 4.

Hence, MC can be employed as a tool to model the biological phenomena which

consider droplets such as the transmission and reception of pathogens (viruses, bacte-

ria, etc.) which cause contagious diseases via droplets. This concept is first proposed

in (Khalid et al., 2019) which consider the infectious human as a blind transmitter (TX)

emitting pathogen-laden droplets and sensors as the receiver (RX) for outdoor environ-

ments. This study is improved in (Khalid et al., 2020) by taking silicon nanowire field

effect transistor-based biosensors into account to model pathogen detection for airborne

pathogen transmission.

Airborne transmission and self-inoculation (direct contact) are two modes of in-

fectious disease transmission via pathogens (Bourouiba et al., 2014). Droplets can be

classified as large droplets and droplet nuclei (aerosols) which have sizes of larger and

smaller than 10 µm, respectively (Ai and Melikov, 2018). All expiratory activities such

as coughing, sneezing, breathing and speaking can generate large droplets and aerosols.

While large droplets can be effective in short-range, aerosols can spread pathogens to
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longer distances due to their interactions with air. Airborne transmission via droplets is

a significant infection mechanism for pathogens such as influenza virus (Killingley and

Nguyen-Van-Tam, 2013), severe acute respiratory syndrome (SARS) virus (Peiris et al.,

2003) and new SARS coronavirus-2 (SARS-CoV-2) which causes coronavirus disease

2019 (COVID-19) (Prather et al., 2020). By the time this chapter is written, the global

pandemic of COVID-19 still continues and there is no cure for COVID-19. It is essential

to emphasize that this study is related with the COVID-19 outbreak, since one of the main

mechanisms of this disease is airborne transmission.

In fluid dynamics literature for airborne pathogen transmission, the movement of

droplets are modeled by considering the gravity, interaction of droplets with air, evapo-

ration, airflows and droplet size (Mittal et al., 2020). For coughing, (Wei and Li, 2017)

proposes a two-stage jet flow model, which is based on experimental data. In (Bourouiba

et al., 2014), the propagation of human sneeze and cough is modeled as a cloud consisting

of droplets and air and justified by experimental data for a sneezing/coughing human. An-

alytical approaches are proposed in (Wei and Li, 2015; Liu et al., 2017; Xie et al., 2007)

to estimate the trajectories of large droplets and aerosols by considering evaporation and

turbulent flows for coughing. In (Wang et al., 2020), a Lagrangian particle model and a

discrete random walk model are proposed for the movement of expiratory droplets and

turbulent airflows, respectively.

The data collected for airborne pathogen transmission are based on physical exper-

imental setups. These setups consist of humans, thermal manikins or respiratory machines

for the emission of droplets, and air samplers or imaging devices to measure the droplet

concentration after the emission (Ai and Melikov, 2018). Despite the reliability of the

collected data from physical setups, computational fluid dynamics (CFD) simulators are

preferred more due to their low cost and high resolution in time and space. In CFD simu-

lations, 3-D Navier-Stokes equations are employed with boundary conditions and solved

by numerical methods. In (Pendar and Páscoa, 2020), the breakup process of droplets,

droplet-air interaction and resulting turbulent flows are considered for the movement of

droplets which are emitted by coughing and sneezing with and without a mask. The study

in (Dbouk and Drikakis, 2020) takes into account the effect of evaporation and wind for

the dispersion of droplets. (Busco et al., 2020) proposes a CFD method to model the

dispersion of droplets for sneezing and validates it with experimental data.
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The aforementioned studies for airborne pathogen transmission focus on the dis-

persion of droplets for coughing/sneezing. Very few studies such as (Vuorinen et.al, 2020)

model the reception of droplets via considering the inhalation rate of a human. In this

chapter, we investigate airborne pathogen transmission and reception mechanisms be-

tween humans with a MC perspective for indoor environments. The infectious human

which emit a cloud consisting of pathogen-laden droplets and air by coughing/sneezing

is considered as the TX and the uninfected human is defined as the RX unlike the stud-

ies in (Khalid et al., 2019, 2020) where the RX is a biosensor. Furthermore, the effects

of gravity, buoyancy, and air-droplet interactions are taken into account for the indoor

propagation of the cloud, which are not considered in (Khalid et al., 2020). The propa-

gation of the cloud in the MC channel is modeled by modifying the deterministic model

in (Bourouiba et al., 2014) in a probabilistic way. The cloud travels under the influence

of initial velocity, buoyancy and gravity. The number of droplets in this cloud is modeled

as a random process. A receiver model which takes the central part of human face as the

interface with pathogens into account is proposed. The propagation and reception models

are employed for the proposed end-to-end system model in order to give the infection

state of the RX as the system output. The MC perspective gives the opportunity to handle

the airborne pathogen transmission modeling as a system comprised of TX, channel and

RX. Moreover, this perspective enables to approach the estimation of a human’s infec-

tion state as a binary detection problem according to a threshold defined as the sufficient

number of pathogen-laden droplets for infection. The contributions of this chapter can be

summarized as follows:

• In order to model the spread of the infectious diseases between humans, MC per-

spective leading us to use and adapt the well-known communication engineering

techniques is proposed.

• An end-to-end system model which combines a channel model involving the prop-

agation of pathogen-laden droplets as a cloud and a RX model including the inter-

action of these droplets with the uninfected human is proposed.

• A probabilistic approach which enables the derivation of the probability of infection

for an uninfected human is employed.

Furthermore, the proposed model is evaluated by numerical results. Our key findings for
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a coughing TX is given as follows:

• Increased exposure time to pathogens increases the probability of infection.

• For a horizontal cough, the social distance should be at least 1.7 m.

• It is safer to cough with an initial angle less than -25◦ to infect less people.

The rest of the chapter is organized as follows. In Section 6.2, the proposed end-

to-end system model is presented. Section 6.3 provides the derivation of the probability

of infection and the numerical results are given in Section 6.4. The study given in this

chapter was first introduced in (Gulec and Atakan, 2021c).

6.2. End-to-End System Model

This section provides a detailed explanation of the proposed end-to-end system

model for droplet-based MC between two humans via sneezing/coughing in four steps.

As given in Figure 6.1, this model incorporates the airborne pathogen-laden droplet trans-

mission with the reception of these droplets by the human that is considered as the RX.

Figure 6.1 also shows that the end-to-end system impulse response is defined as the in-

fection state which is the output of the end-to-end system, since a sneeze/cough can be

considered as an impulsive input signal. Transmitted droplets via sneezing/coughing are

modeled as a cloud which is a mixture of air and droplets. The propagation of the cloud is

defined as a two-phase flow where the first and second phase represent the liquid phase of

droplets and the gas phase of the air, respectively (Munson et al., 2009b). As the first step

of the end-to-end system model, the trajectory of the cloud is derived. In this study, the

model given in (Bourouiba et al., 2014) for the propagation of the cloud is adopted and

modified. In the second step, we derive an end-to-end system model with a probabilistic

approach instead of the deterministic approach in (Bourouiba et al., 2014). The third step

details the RX model which includes signal reconstruction, integration, quantization and

detection parts. In the last step, the algorithm for the implementation of the system model

is given.
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Figure 6.1. Block diagram of the end-to-end system model.
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Figure 6.2. Trajectory of the cloud between the TX and RX.

6.2.1. Trajectory of the Transmitted Cloud

In our scenario, the TX emits the cloud with an initial velocity on the x-axis by

sneezing or coughing. It is assumed that the emitted cloud propagates in still air, i.e., with

no ventilation or wind. Due to the warmer air in the mouth (with density ρf at 34◦C)

with respect to ambient air (with density ρa at 23◦C), where ρf < ρa (Duguid, 1946), the

emitted cloud is subject to buoyancy on y-axis. As illustrated in Figure 6.2, buoyancy,

gravity and initial velocity of the cloud affect the trajectory of the cloud. Therefore, the

trajectory is defined with the curvilinear s-axis and θ which shows the angle between the

s and x axes. In order to find the position of the cloud in 3-D space, it is essential to

derive the time-dependent density of the cloud (ρc(t)). At the initial state (t = 0), the

initial cloud mass (mc(0)) can be represented by the addition of the initial droplet mass
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(md(0)) and initial air mass in the cloud (ma(0)) as given by (Munson et al., 2009b)

mc(0) = md(0) +ma(0) (6.1)

ρc(0)V (0) = ρdVd(0) + ρf (V (0)− Vd(0)). (6.2)

where V (t) is the cloud volume, ρd is the droplet density, ρf is the air density in the

mouth. The volume of droplets in the cloud (Vd(t)) consists of different sized droplets

with diameter dk and can be defined in terms of the volume fraction of droplets (φk(t)) in

the cloud as Vd(0) =
K∑
k=1

φk(0)V (0). Here, K is the number of the different droplet sizes,

φk(0) = Nk(0)Vk/V (0), Nk(t) and Vk is the number and volume of the spherical droplets

of diameter dk, respectively. Nk(t) changes during the propagation of the cloud due to the

settling of droplets to the ground as explained in Section 6.2.2. By substituting Vd(0) into

(6.2) and solving for ρc(0), the initial density of the cloud is derived as

ρc(0) =
K∑
k=1

(ρd − ρf )φk(0) + ρf . (6.3)

As the cloud moves, it entrains the ambient air with density ρa and its volume becomes

V (t) = V (0) + Va(t) where Va(t) is the acquired air volume. Since the initial volume

fraction of the air in the mouth with density ρf is relatively small in the moving cloud

(10−5) (Duguid, 1946), it is assumed as V (t) ≈ Va(t). After the emission of droplets,

ρc(t) can be derived via the conservation of mass (Munson et al., 2009b). Hence, the

mass of droplets at the time instance t (md(t)) is equal to the initial mass of droplets

(md(0)) and droplet mass can be expressed by the difference of cloud mass and air mass

according to (6.1) as given by

md(t) = md(0) (6.4)Cloud mass

at time t

−
Air mass

at time t

 =

 Initial

cloud mass

−
 Initial

air mass

 (6.5)

ρc(t)V (t)− ρaV (t) = ρc(0)V (0)− ρfV (0). (6.6)

Via the substitution of (6.3) into (6.6) and some algebraic manipulation, the cloud density

is derived as

ρc(t) =
K∑
k=1

(ρd − ρf )φk(t) + ρa. (6.7)

As illustrated in Figure 6.2, there are two acting forces on the cloud which stem

from the gravity and buoyancy on y-axis. Since ρf < ρa, the buoyant force (B(t)) affects
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the movement of the cloud upwards. The net buoyant force acting on the cloud (FB(t))

on y-axis is given by the difference of B(t) and the gravitational force (G(t)) as given by

(Munson et al., 2009b)

FB(t) = B(t)−G(t) = V (t)ρag − V (t)ρc(t)g (6.8)

= V (t)(ρa − ρc(t))g (6.9)

where g is the gravitational acceleration.

On x-axis, the movement of the cloud is driven by the momentum (I) which is de-

fined as the multiplication of the mass and velocity (Munson et al., 2009b). The momen-

tum is not effective on y-axis and also there is not any acting force on the cloud for z−axis.

I is defined on s-axis and is decomposed into two components on x (Ix = |I| cos(θ)) and

y axes (Iy = |I| sin(θ)). Since the force can be represented as the derivative of the mo-

mentum (Munson et al., 2009b) and there is not any acting force on the x-axis during the

propagation, the net force (Fx) on x-axis is given by

Fx =
dIx
dt

=
d|I| cos(θ)

dt
= 0. (6.10)

Furthermore, the net force on y-axis, i.e., FB(t) is given by

FB(t) =
dIy
dt

=
d|I| sin(θ)

dt
. (6.11)

Since the initial buoyancy is conserved (Bourouiba et al., 2014), we have FB(t) = F0

where F0 is the net initial buoyant force. With the initial conditions which are |I(0)| = I0,

θ(0) = θ0, Ix(0) = I0 cos(θ0) and Iy(0) = I0 sin(θ0), Ix and Iy can be given as the

solutions of (6.10) and (6.11) as

Ix = I0 cos(θ0), (6.12)

Iy = F0t+ I0 sin(θ0). (6.13)

Since there is not any acting force on z-axis, the momentum can be expressed as |I| =√
I2
x + I2

y . Due to its definition, the momentum can be written as (Munson et al., 2009b)

|I| = mcvc(t) = ρc(t)V (t)vc(t), (6.14)

where we can express the cloud velocity (vc(t)) as the displacement on s-axis (s(t)) in

an infinitesimal time interval, i.e., vc(t) = ds(t)/dt. The cloud volume is defined as
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V (t) = ηr(t)3 where η = 4π/3 for a spherical cloud. Furthermore, the radius of the

cloud (r(t)) is linearly related with the distance such that r(t) = αes(t) where αe is the

entrainment coefficient and is empirically determined (Morton et al., 1956). Hence, (6.14)

can be rewritten as

|I| = ρc(t)ηα
3
es(t)

3ds(t)

dt
. (6.15)

When |I| =
√
I2
x + I2

y is incorporated into (6.15), we have

ds(t)

dt
=

√
I2
x + I2

y

ρc(t)ηα3
es(t)

3
. (6.16)

Here, (6.7) and (6.12)-(6.13) are substituted into (6.16) as given by

ds(t)

dt
=

√
F 2

0 t
2 + 2F0I0sin(θ0)t+ I2

0(
K∑
k=1

(ρd − ρf )φk(t) + ρa

)
ηα3

es(t)
3

. (6.17)

Remembering that V (t) = ηα3
es(t)

3 and φk(t) = Nk(t)Vk
V (t)

, the denominator part of (6.17)

is simplified as
ds

dt
=

√
F 2

0 t
2 + 2F0I0sin(θ0)t+ I2

0

Z + ρaηα3
es

3
, (6.18)

where Z =
K∑
k=1

(ρd − ρf )VkNk(t).

For convenience, θ0 is chosen as 0 in (Bourouiba et al., 2014). However, θ0 6= 0

is also considered in order to observe the effect of the initial cough/sneeze angle in our

study. In addition to this, the initial conditions which are s(0) = 0 and t(0) = 0 are taken

into account in the integration of (6.18) to obtain the quartic equation as given by

ηα3ρa
4

s(t)4 + Zs(t)−
(
F0t+ I0sin(θ0)

2F0

)√
F 2

0 t
2 + 2F0I0sin(θ0)t+ I2

0

−
(
I2

0 (sin(θ0)2 − 1)

2F0

)
ln

(
2F0

√
F 2

0 t
2 + 2F0I0sin(θ0)t+ I2

0 + 2F 2
0 t+ 2F0I0sin(θ0)

)
= 0.

(6.19)

Since the discriminant of the quartic equation (6.19) is less than zero for physically

meaningful parameter values, two of the roots are complex and one of the roots is a real

and negative number. Therefore, there is only one possible positive real root which is used

as the solution. However, this solution is a very long expression to write in this chapter

and (6.19) is solved numerically as detailed later in this section.

In order to determine the trajectory of the cloud, θ needs to be derived. Via the

substitution of Ix = |I| cos(θ) and Iy = |I| sin(θ) into (6.12) and (6.13), two expressions
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are obtained. Then, by solving these two expressions for |I| and equating them gives the

equation below

|I| = I0 cos(θ0)

cos(θ)
=
F0t+ I0 sin(θ0)

sin(θ)
. (6.20)

which can be solved for θ as given by

θ = tan−1

(
F0t

I0 cos(θ0)
+ tan(θ0)

)
. (6.21)

6.2.2. Number of Propagating Droplets in the Cloud

After the emission of droplets, some of the droplets settle to the ground due to

gravity and their interaction with the air (Gulec and Atakan, 2020a; De Cock et al., 2017).

Therefore, the number of droplets decreases during the propagation due to the settling of

droplets. Moreover, it is assumed that the droplets are homogeneously distributed within

the cloud and the settling droplets move out of the cloud instantaneously. In addition,

since the movement of each droplet in the cloud is assumed to be independent of each

other at each time instance, the number of droplets in the cloud can be modeled as a

Poisson process with an intensity function λ(t) (Shaw, 2003). Here, λ(t) which is the

mean number of droplets in the cloud can be derived by using the flow rate of the droplets

(Bourouiba et al., 2014). Moreover, it is assumed that the droplets are homogeneously

distributed within the cloud. The flow rate of the droplets (J), which is the derivative of

the number of droplets and gives the number of droplets flowing through a surface in unit

time (number of droplets/s), is defined as (Munson et al., 2009b)

J =
dλ(t)

dt
= vcAρ̄c(t) (6.22)

where ρ̄c(t) = λ(t)/V (t) and A is the cross-sectional area that droplets are flowing

through. Since droplets settle through the lower half of the cloud due to the observa-

tions in (Bourouiba et al., 2014), A in (6.22) is substituted with A(t)/2 where A(t) is the

surface area of the cloud. Hence, (6.22) becomes

dλ(t)

dt
= −vs

A(t)

2

λ(t)

V (t)
, (6.23)

where vs is the settling velocity of droplets and (−) sign represents the decrease in the

number of droplets due to the settling. For a spherical cloud, when the substitutions
101



A(t) = 4πr(t)2, V (t) = 4πr(t)3/3 and r(t) = αes(t) are made into (6.23), the rate of

change of the mean number of droplets in the cloud is given by

dλ(t)

dt
=
−3vsλ(t)

2r(t)
=
−3vsλ(t)

2αes(t)
. (6.24)

Since the solution of (6.19) is very long and makes the solution of (6.24) very

complicated, the trajectory and number of droplets can be found numerically for each

time instance. Furthermore, the number of droplets can be different for each droplet size.

Thus, (6.24) is manipulated to derive the change of the mean number of droplets at each

time instance (∆λ) as given by

∆λ =
−3vsk,iλk,i∆t

2αsk,i
, (6.25)

where ∆t is the time step, the subscripts i and k show the corresponding variables at

t = ti for the droplets of diameter dk. At each time step, ti is increased by ∆t and the

mean number of droplets of diameter dk in the cloud is increased via λk,i+1 = λk,i + ∆λ.

For each time step and droplet size, the number of droplets in the cloud (Nk,i) follows a

Poisson distribution with the rate λk,i (Shaw, 2003). Due to the large number of emitted

droplets, this Poisson distribution can be approximated as a Gaussian distribution with a

mean and variance λk,i (Papoulis and Pillai, 2002). Hence, Nk,i is represented as Nk,i ∼

N (λk,i, λk,i).

Settling velocities of droplets during the propagation are defined according to the

flow regimes which are Newton’s (turbulent) flow, intermediate flow and Stokes (laminar)

flow regimes (Reuter et al., 2005). These regimes are determined according to Reynolds

number (Re) which is a dimensionless coefficient showing the flow type of the fluid as

defined by (Munson et al., 2009b)

Rek,i =
dk,iρavck,i

µa
. (6.26)

(6.26) shows that Rek,i depends on the changing cloud velocity and droplet diameter at

each time step. The settling velocities according to the aforementioned flow regimes are

derived as follows.

For a settling droplet, the downwards net force for a spherical droplet at the ith

time step with the diameter dk is given as

Fdowni = Gi −Bi = Vdρdg − Vdρag =
πd3

k,i

6
(ρd − ρa)g (6.27)
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Furthermore, an upward drag force acts in the opposite direction of gravity due to the

interaction of the droplet with the air. This upward drag force is given as (Munson et al.,

2009b)

Fupi =
1

2
ρdv

2
sπ
d2
k,i

4
CD (6.28)

where CD is the drag coefficient. For the settling condition, these upward and downward

forces are in equilibrium. Hence, we can obtain the settling velocity by equating these

two forces and pulling out vs as given by

vsk,i =

√
4dk,ig(ρd − ρa)

3ρdCD
. (6.29)

Here, CD changes according to Re as given by (Reuter et al., 2005)

CD =


24

Re
,Re < 2 (Stokes flow) (6.30)

18.5

Re3/5
, 2 ≤ Re ≤ 500 (Intermediate flow) (6.31)

0.44 , 500 < Re ≤ 2× 105 (Newton’s flow) (6.32)

When the drag coefficients in (6.30)-(6.32) and Re in (6.26) are substituted into (6.29),

the settling velocities can be obtained as given by (Reuter et al., 2005)

vsk,i =



gd2
k,i(ρd − ρa)

18µa
, Re < 2 (Stokes flow) (6.33)

gd
8/5
k,i (ρd − ρa)

13.875ρ
2/5
d µ

3/5
a

, 2 ≤ Re ≤ 500 (Intermediate flow) (6.34)

3.03gdk,i(ρd − ρa)
ρd

, 500 < Re ≤ 2× 105 (Newton’s flow). (6.35)

(6.36)

The effective factors for the cloud are gravity, buoyancy, and different flow regimes gener-

ated due to the initial velocity and different droplet sizes as given above. In Newton’s and

intermediate flow regime, the trajectory of the cloud is dominated by their high horizontal

velocity with respect to gravity and buoyancy. However, in Stokes flow, the buoyancy

and gravity is much more effective, since droplets lose most of their initial momentum in

the horizontal axis. The effect of the turbulent flows is only considered to calculate the

settling velocities of the droplets, not for the velocity distribution of them.
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6.2.3. Receiver Model

Airborne pathogen transmission via droplets is infectious, since emitted pathogen-

laden droplets can be sensed by nose, mouth and eyes (Ai and Melikov, 2018; Peiris

et al., 2003). Hence, the human face is where the sensing of the infectious pathogens

mostly occurs. Even if the pathogens are not directly received via the facial sensory

organs, it is possible to become infected by directly touching the face and sensory organs

consecutively. With this motivation, the cross-sectional area of the central part of the

human face is considered as the RX cross-section as shown in Figure 6.3. Moreover, a

receiver model is proposed for the reception of droplets as shown in Figure 6.4.

Receiver 
cross-section

Biocular breadth

Sellion-Stomion
 length

Figure 6.3. Receiver cross-section in the human face.

As the first step of the reception, the droplets in the vicinity of the RX is sensed

by the human, which is defined as the signal reconstruction. Different signal reconstruc-

tion models for a sensor in macroscale and a nanomachine in microscale are proposed

in (Gulec and Atakan, 2021a) and (Atakan and Gulec, 2019), respectively. As given in

Figure 6.3, the RX is assumed to be the cross-section of the human face. In order to de-

termine a circular cross-section area (AR) for the RX by encompassing the eyes, mouth

Cumulative Sum
(Integration)  Quantization Detection

Cloud with the
pathogen-laden
droplets in the

vicinity of the RX

Infection state
(Received symbol)

Receiver

Signal Reconstruction
(Sensing)

Figure 6.4. Block diagram of the receiver model.
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and nose, a right-angled triangle whose sides are biocular (biectocanthus) breadth (βbb),

Sellion-Stomion length (βss) and the diameter of the receiver cross-section (2rR) as the

hypotenuse side is formed as depicted in Figure 6.3. Here, βbb is the length of the line

connecting the outer end points of the left and right eyes (eyelid junctions) and βss is

the vertical distance between the eye and mouth (Young, 1993). Hence, the radius of the

cross-sectional area of the RX (rR) is given as rR = (
√
β2
bb + β2

ss)/2.

When the cloud is transmitted via sneezing/coughing, there are three cases for the

interaction of the RX and the cloud of droplets with diameter dk whose centers are at

the positions for the ith time step (xR,yR,zR) and (xk,i,yk,i,zk,i), respectively. The rela-

tion between the 3-D Cartesian coordinates and curvilinear s-axis is detailed in the next

subsection. In the first case, the cloud and RX do not coincide and there is no reception.

The other two cases include the reception of droplets. As illustrated in Figure 6.5, when

the cloud and RX coincide, the reception of droplets is related with the cross-sectional

area of the cloud at xk,i = xR (ACSk,i), AR and their intersection area (ARCk,i). The

second case occurs when the intersection area is less than or equal to the cross-sectional

area of the RX, i.e., ARCk,i < AR. In the last case, the cloud encompasses the RX, i.e.,

ACSk,i ≥ AR = ARCk,i .

y

z

Cross-sectional area of the
cloud at 

Cross-sectional area 
of the RX

Intersection 
area

Figure 6.5. Intersection of the RX and the cloud cross-section.

For the case shown in Figure 6.5, ARCk,i can be derived by calculating the inter-
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section area of two circles as given by (6.37) (Weisstein, 2003)

ARCk,i = r2
Rcos

−1

(
d2
RCk,i

+ r2
R − r2

k,i

2dRCk,irR

)
+ r2

k,icos
−1

(
d2
RCk,i

+ r2
k,i − r2

R

2dRCk,irk,i

)
−1

2

√
(−dRCk,i + rR + rk,i)(dRCk,i + rR − rk,i)(dRCk,i − rR + rk,i)(dRCk,i + rR − rk,i).

(6.37)

where the distance between the centers of ARCk,i and AR (dRCk,i) is defined as given

below.

dRCk,i =
√

(yR − yk,i)2 + (zR − zk,i)2. (6.38)

The received number of droplets can be derived by multiplying the time step (∆t)

with the flow rate of the droplets (J in number of droplets/s) at each time step. Since

the RX senses the droplets proportional to ARCk,i , the received signal after the signal

reconstruction step for the aforementioned cases at each time step by recalling (6.22) is

expressed as

ÑRi =



K∑
k=1

vck,iARCk,i
Nk,i

ηr3
k,i

∆t , ARCk,i < AR (6.39)

K∑
k=1

vck,iAR
Nk,i

ηr3
k,i

∆t , ARCk,i = AR (6.40)

0 , otherwise, (6.41)

where ARCk,i = πr2
RCk,i

, AR = πr2
R, η = 4π/3 and the volume is ηr3

k,i for the spherical

cloud.

As the time elapses, the cumulative exposure to the pathogen-laden droplets at the

RX can be modeled by the cumulative sum (integration) of droplets with respect to time

subsequent to the signal reconstruction step as given in Figure 6.4. Afterwards, the signal

is quantized, since the rate of the change in the mean number of droplets may not be an

integer. The number of droplets after the cumulative sum is rounded to the nearest integer

in the quantization step. The received signal after the quantization step is given by

NRi=



K∑
k=1

N̄Rk,i , ARCk,i<AR (6.42)

K∑
k=1

N̄Rk,i , ARCk,i=AR (6.43)

0 , otherwise. (6.44)

106



Here, the mean received number of droplets after the quantization step for the kth droplet

diameter at the ith time step (N̄Rk,i) is defined as

N̄Rk,i =



⌊
vck,iARCk,i∆t

ηr3
k,i

i∑
m=0

Nk,i−m +
1

2

⌋
, ARCk,i < AR (6.45)⌊

vck,iAR∆t

ηr3
k,i

i∑
m=0

Nk,i−m +
1

2

⌋
, ARCk,i = AR (6.46)

where b.c shows the floor function which maps a variable to the integer less than or equal

to this variable. The addition with 1
2

within the floor function in (6.45)-(6.46) provides

the quantization by rounding the number of received droplets to the nearest integer.

Subsequent to quantization, the infection state of the human needs to be deter-

mined as the output of the system as shown by Figures 6.1 and 6.4. Therefore, the de-

tection is essential according to a threshold value (γ) as the last step of the reception.

Physically, γ corresponds to the quantity of pathogen-laden droplets that suffice to make

a human infected. Furthermore, γ depends on the immune system of a human. Thus,

detection via the threshold γ enables to quantify the strength of the human immune sys-

tem and to handle the determination of the infection state as a detection problem. Hence,

the infection state (or the received symbol) can be expressed by binary hypothesis testing

which is given as

NRi

H1

≷
H0

γ, (6.47)

where the hypotheses H0 and H1 are defined as the situations of no infection as the re-

ceived symbol 0 and infection as the received symbol 1, respectively. Here, the received

symbol sequence with M samples is represented as h = [h0, h1, ..., hM ] which also gives

the end-to-end system response.

6.2.4. Algorithm of the End-to-End System Model

In this part, the way to obtain the output of the end-to-end system model by em-

ploying the derivations made up to here is clarified in the proposed Algorithm 2. Before

the procedure starts, the initial parameters such as the number of droplet sizes (K), total

simulation time (ts), initial number of droplets for each droplet size (N(1,..K),0), initial

momentum (I0), initial net buoyant force (F0), initial velocity of the cloud (vc0), RX di-

mensions (βbb, βss) and initial positions of the TX and RX are taken as the input.
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In the algorithm, the propagation, changing number of droplets in the cloud and

their interaction with the RX are handled separately at each time step for each droplet size

dk. As the first step of the algorithm, the trajectory of the spherical cloud is calculated

for each time step, i.e., the distance on the s-axis and θ values for t = ti are calculated

by (6.19) and (6.21). Then, the updated position of the cloud on the s-axis is utilized to

find its step length (∆s). As shown in Figure 6.2, ∆s can be employed to express the step

lengths on x (∆x) and y axes (∆y) as given by

∆x = ∆s cos(θk,i), (6.48)

∆y = ∆s sin(θk,i), (6.49)

where ∆x and ∆y values are used to update the cloud position on the corresponding axis.

Since there is not any acting force on z-axis, the center of the cloud maintains its position

on this axis. However, the cloud expands on x, y and z axes linearly due to the relation

rk,i = αesk,i as given in Section 6.2.1.

In the second step of Algorithm 2, the mean number of droplets in the propagating

cloud is calculated. To this end, the cloud velocity (vck,i) at the corresponding time step is

calculated by the displacement on s-axis. Then, settling velocity (vsk,i) is determined by

(6.33)-(6.35) according to Rek,i which is calculated by using vck,i and droplet size. vsk,i is

exploited to calculate the change in the mean number of droplets (∆λ) and thus, the mean

number of droplets is updated according to this change. Here, the flow type of the cloud

found by employing the velocity of droplets affects the number of droplets in the cloud.

The third step of Algorithm 2 describes the reception via the interaction of the

cloud with the RX. When the cloud comes to a sufficient distance to interact with the RX,

the radius of the cloud’s circular cross-section (rCSk,i) is determined by the geometrical

relation with the the radius of the cloud and the positions of the TX and RX on the x-axis

as given by

rCSk,i =
√
r2
k,i − (xR − xk,i)2, (6.50)

which allows us to calculate the circular area of the cloud’s cross-section (ACSk,i). During

the reception, the case that ACSk,i ≤ AR can also be represented in terms of radii of the

circles and the distance between them such that (rCSk,i − rR) < dRCk,i < (rCSk,i + rR).

In addition, the case for the cloud encompassing the RX (ACSk,i > AR = ARCk,i) can be

expressed as dRCk,i < (rCSk,i− rR). Using these conditions, the mean number of droplets
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given in (6.42)-(6.44) is calculated. Then, the detection is made according to the threshold

γ in order to determine the infection state. Next, the probability of infection is derived by

using the end-to-end system model.

Algorithm 2 Algorithm of the End-to-End System Model
1: t = 0 : ∆t : ts
2: for k = 1 : 1 : K do
3: for i = 1 : 1 : length(t) do
. Step 1: Trajectory

4: Calculate sk,i by the real positive root of (6.19)
5: rk,i = αesk,i
6: Calculate θk,i by (6.21)
7: ∆s = sk,i − sk,i−1

8: ∆x = ∆s cos(θk,i); ∆y = ∆s sin(θk,i)
9: xk,i = xk,i−1 + ∆x; yk,i = yk,i−1 + ∆y
. Step 2: Number of Droplets in the Cloud

10: vck,i = ∆s/∆t
11: Rek,i = dk,ivck,iρa/µa
12: Calculate vsk,i according to Rek,i by (6.33)-(6.35)
13: Calculate ∆λ by (6.25)
14: λk,i = λk,i−1 + ∆λ
15: Generate Nk,i ∼ N (λk,i, λk,i)

. Step 3: Reception
16: if (xR − rk,i) < xk,i < (xR + rk,i)) then
17: rCSk,i =

√
r2
k,i − (xR − xk,i)2;

18: ACSk,i = πr2
CSk,i

19: Calculate dRCk,i by (6.38)
20: if (rCSk,i − rR) < dRCk,i < (rCSk,i + rR) then
21: Calculate N̄Rk,i by (6.45)
22: else if dRCk,i < (rCSk,i − rR) then
23: Calculate N̄Rk,i by (6.46)
24: else
25: N̄Rk,i = 0
26: end if
27: Nk,i = Nk,i − N̄Rk,i

28: end if
29: end for
30: end for
31: Calculate NRi by (6.42)-(6.44)
32: Determine the infection state (h) by applying (6.47)
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6.3. Probability of Infection

The probabilistic approach which is considered in the system model enables the

derivation of the probability of infection of a human exposed to a sneeze or cough. To this

end, it is essential to derive the probability density function (pdf) of the received number

of droplets before the detection. As given in Section 6.2.2, the number of droplets in the

cloud is a Gaussian random variable for the droplet diameter of dk and ith time step, i.e.,

Nk,i ∼ N (λk,i, λk,i). Hence, its pdf (fN(Nk,i)) is given by

fN(Nk,i) =
1√

2πλk,i
e
−

(Nk,i−λk,i)
2

2λk,i . (6.51)

Since the received number of droplets before the detection (NRi) is a function of

Nk,i as given in (6.42)-(6.46), its mean and variance for the reception cases can be given

as

E(NRi)=


µ1=

K∑
k=1

⌊
i∑

m=0

ak,iλk,i−m +
1

2

⌋
, ARCk,i<AR (6.52)

µ2=
K∑
k=1

⌊
i∑

m=0

bk,iλk,i−m +
1

2

⌋
, ARCk,i=AR (6.53)

V ar(NRi)=


σ2

1 =
K∑
k=1

⌊
i∑

m=0

a2
k,iλk,i−m +

1

2

⌋
, ARCk,i<AR (6.54)

σ2
2 =

K∑
k=1

⌊
i∑

m=0

b2
k,iλk,i−m +

1

2

⌋
, ARCk,i=AR, (6.55)

where ak,i =
vck,iARCk,i∆t

ηr3k,i
, bk,i =

vck,iAR∆t

ηr3k,i
, E(.) and V ar(.) are expectation and variance

operators, respectively. By using (6.52)-(6.55), the pdf of NRi (fNR(NRi)) can be written

as

fNR(NRi) =



exp
(
− (NRi−µ1)2

2σ2
1

)
√

2πσ2
1

, ARCk,i<AR (6.56)

exp
(
− (NRi−µ2)2

2σ2
2

)
√

2πσ2
2

, ARCk,i=AR (6.57)

0 , otherwise, (6.58)

where µ1, µ2, σ2
1 and σ2

2 are defined in (6.52)-(6.55). The probability of infection corre-

sponds to the situation where NRi > γ as given by

P (NRi > γ) =

∫ ∞
γ

fNR(u)du. (6.59)
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The solution for (6.59) can be derived for the pdf given in (6.56)-(6.58) in terms of Q-

function Q(x) = 1√
2π

∫∞
x

e
−u2
2 du as given by

P (NRi > γ) =


Q

(
γ − µ1

σ1

)
, ARCk,i<AR (6.60)

Q

(
γ − µ2

σ2

)
, ARCk,i=AR (6.61)

0 , otherwise. (6.62)

The derived probability of infection and the system model given in the previous

section can be employed to analyze the dynamics of the pathogen transmission as given

with the numerical results in the next section.

Table 6.1. Experimental parameters

Parameter Value Parameter Value
∆t 0.1 s ts 10 s
TX’s position (0,1.7,0) m (x,y,z) vc(1,..K),0

11.2 m/s (cough) (Zhu
et al., 2006)

RX’s position (1.7,0) m (y,z) g 9.81 m/s2

I0 0.0131 kg m/s (Bourouiba
et al., 2014)

αe 0.2116 (Tang et al., 2009)

F0 0.0023 kg m/s2

(Bourouiba et al., 2014)
βbb (female) 8.853 cm (Young, 1993)

ρd 993 kg/m3 (Nicas et al.,
2005)

βbb (male) 9.131 cm (Young, 1993)

ρf (at 34◦C) 0.98 kg/m3 (Picard et al.,
2008)

βss (female) 6.901 cm (Young, 1993)

ρa (at 23◦C) 1.172 kg/m3 (Bourouiba
et al., 2014)

βss (male) 7.57 cm (Young, 1993)

µa 19 × 10−6 kg/(m s)
(Bourouiba et al., 2014)

6.4. Numerical Results

In this section, numerical results using the algorithmic end-to-end system model

and derived probability of infection are given. The values of the experimental parameters

are given in Table 6.1. Except the simulation parameters such as ∆t, ts and the positions

of the TX and RX, this table includes measured values which are obtained by empirical

studies (Bourouiba et al., 2014; Young, 1993; Zhu et al., 2006; Nicas et al., 2005; Picard

et al., 2008; Tang et al., 2009). Furthermore, the initial number of droplets according to
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their diameters for a cough is given in Table 6.2. For sneezing, there are not sufficient

empirical data in the literature to obtain the parameter values given in Table 6.1 such as

αe and initial velocity (Ai and Melikov, 2018). Therefore, although our proposed model

is applicable to a sneezing scenario, we only consider a coughing scenario for two static

humans where one of them is the TX and the other is RX.

Table 6.2. Initial number of droplets (Duguid, 1946)

d
(µm)

Quantity
(cough)

d
(µm)

Quantity
(cough)

d
(µm)

Quantity
(cough)

2 50 40 240 200 35
4 290 50 110 250 29
8 970 75 140 500 34
16 1600 100 85 1000 12
24 870 125 48 2000 2
32 420 150 38 Total 4973

For the results in Figures 6.6-6.7, the dimensions of the RX are applied by using

the average values of male and female humans. Namely, βbb and βss are obtained by

calculating the average of the female and male values given in Table 6.1.
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Figure 6.6. The trajectory of the cloud and its interaction with the RX in (a) 3-D (b)
2-D. (c) The number of droplets.

For xR = 1.5 m and θ0 = 0◦, Figures 6.6 (a) and (b) depict the trajectories of

the cloud with respect to RX in 3-D and 2-D, respectively. Due to initial momentum

of coughing and net buoyant force, the cloud propagates in the horizontal and vertical

directions, respectively. As also observed in these trajectories, the 3-D cloud can encom-

pass (or intersect with) the RX and the RX is exposed to droplets during the passage of

the cloud. Figure 6.6 (c) shows the interaction of a human who can be infected with a
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disease-spreading human by quantifying the number of droplets received from the cloud.

The number of droplets are given by their mean and their variations (vertical bars) due to

the Gaussian distribution. These variations are calculated as three times the standard de-

viation (99.73% confidence interval) for each sample. As observed in Figure 6.6 (c), the

number of droplets in cloud decreases, since large-sized droplets settle due to the gravity.
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Figure 6.7. Probability of infection according to distance for different time values.

As mentioned in Section 6.2, the RX gets infected, when the received number of

droplets is above γ as plotted in Figure 6.6 (c). This figure shows the importance of the

exposure time which is the interval of the changing zone in the received signal. If the RX

is exposed to the cloud less, it is possible not to be infected, since the received number

of droplets can be below the threshold. This interaction is also clarified in Figure 6.7 by

showing the relation of the infection probability with the distance of the RX to the TX for

different propagation time instances. Actually, this figure reveals that if the RX is exposed

to the cloud for a longer period, the RX is more likely to be infected.

Different scenarios can be analyzed by employing the infection state, which is

the output of the end-to-end system model, for various xR, γ, θ0 values and male/female

receivers. In Figure 6.8 (a), the threshold is set to zero to determine the safe zone where

there is no possibility of infection. This safe zone starts at xR = 1.7 m which also shows

the minimum social distance. Figure 6.8 (c) shows that initial coughing angle affects the

infection state severely. For θ0 values between 0 and −25 degrees, it is more likely to

infect someone due to the buoyant forces affecting the propagation of the cough cloud.
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Therefore, it is safer to cough with an initial angle θ0 ≤ −25◦ which is depicted as safe

coughing angle in Figure 6.8 (c).
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Figure 6.8. Infection state of the RX with respect to (a) xR (b) γ (c) θ0.

Coughing with θ0 ≥ 0◦ may not be safe, since small droplets (aerosols) can sus-

pend in the air and settle eventually due to gravity or drift due to the indoor air currents in

the long term. In Figures 6.8 (a) and (c), the results are indistinguishable for male and fe-

male receivers. However, Figure 6.8 (b) shows that the infection states of female and male

humans can be affected differently for the same γ values. Actually, this figure reveals that

female humans are less likely to get infected, even if their immune system’s strength are

the same with male humans due to the slight difference in the face dimensions.

In this chapter, numerical results are based on our model which focuses on the

propagation and reception of droplets in the outer layer of the human face. For a more

rigorous model, the effect of turbulent flows and the survival rate of pathogens can be

taken into account. The reception part can be improved by considering the interaction of

pathogens with the human cells. In addition, γ can be estimated by considering several

effects such as age, chronic diseases and genetic factors. These improvements are left as

open research issues.
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CHAPTER 7

MOBILE HUMAN AD HOC NETWORKS: A

COMMUNICATION ENGINEERING VIEWPOINT ON

INTERHUMAN AIRBORNE PATHOGEN TRANSMISSION

7.1. Introduction

Throughout the history, epidemics caused by infectious diseases have been a major

threat to human life. Epidemic diseases such as black plague, smallpox, Spanish flu and

recent coronavirus disease 2019 (COVID-19) gave rise to millions of human deaths. In

addition, epidemics can induce mental disorders in humans and recessions in the world

economy due to prevention and control measures such as lockdown. Owing to these facts,

it is essential to understand and accurately model the spread of infectious diseases among

humans.

The interhuman spread of infectious diseases occur via direct contact and airborne

transmission1 where pathogens are transferred from an infectious human to a susceptible

one. In airborne transmission, these pathogens (viruses, bacteria, fungi, and so on) are

carried by large droplets and aerosols (droplet nuclei) which are emitted via breathing,

speaking, coughing and sneezing (Ai and Melikov, 2018). Throughout this chapter, we

use the term droplet to refer to both large droplets and aerosols together.

As for the airborne pathogen transmission, it is not fully unraveled how its mech-

anisms operate between two humans, for example, it is still a matter of debate whether

large droplets or aerosols are more infectious. In addition, the mobility and interplay of

people during their daily life makes the problem of modeling infectious disease spread

in an epidemic more chaotic. As people displace, there exist dynamic human groups

exchanging pathogens among each other. Due to their mobility, humans form different

1Here, transmission is employed synonymously with contagion rather than its usage in communication
engineering.
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Figure 7.1. The spread of an infectious disease through airborne pathogen transmis-
sion with communication engineering perspective and effective issues for
an indoor sneezing/coughing scenario.

groups in an ad hoc fashion as their smart phones do in a mobile telecommunication net-

work. Actually, a human emitting expiratory droplets is an information source (Khalid

et al., 2019). When these emitted information carrying droplets are received by another

human through sensory organs, we can consider there exists a communication path be-

tween them. Hence, an analogy between human groups and mobile telecommunication

networks can be established, since they both possess an intermittent connectivity which

is detailed later. By utilizing this analogy, we propose an approach to modeling interhu-

man airborne pathogen transmission with communication engineering perspective where

mobile humans forming a group are considered as a mobile human ad hoc network (Mo-

HANET). In a MoHANET, the infectious human is the transmitter (TX), the susceptible

human is the receiver (RX) and pathogen-laden droplets are information carriers propa-

gating in the communication channel, that is, air. Here, molecular communication (MC)

employing chemical signals instead of electrical signals emerges as an enabler paradigm

for the communication among humans due to its biocompatibility with the human body

and multiscale applicability.

On the other hand, researchers from many disciplines work separately in different

scales to reveal the mechanisms of airborne pathogen transmission and model the be-

havior of epidemics. In fluid dynamics literature, researchers focus on the propagation
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of pathogen-laden droplets and their interactions with air (Ai and Melikov, 2018). Biol-

ogists deal with the survival of airborne pathogens in macroscale (Schaffer et al., 1976)

and their interactions with the human cells in microscale (Cohen, 2016). Furthermore, the

medical literature conducts researches in cellular level to discover new drugs which cure

the infectious diseases. In a larger scale, epidemiology literature focuses on the epidemic

data to develop mathematical models for the spread of epidemics in time and space (Rock

et al., 2014). However, the epidemiological models for the spread of infectious diseases

do not consider the information from fluid dynamics, biology and medicine. These mod-

els generally make estimations by fitting statistical data and use unrealistic assumptions

such that the population is homogeneous and becomes infectious at a constant rate. The

fluid dynamics of droplets, the geometries and air distribution of indoor environments,

the pathogen-human interaction, the medical efficacy of the drugs and locations of mo-

bile humans are essential to be taken into account for accurate models. Thus, there is

a need to merge all of these research efforts in a unified framework. Communication

engineering approach can provide this framework by combining micro- and macroscale

modeling issues. With this approach, a MoHANET is partitioned into layers where each

layer is associated with a research area in different scales such as fluid dynamics, biology,

medicine or epidemiology. As in the conventional networks, each layer sends its outputs

to an upper layer. In this way, the spread of infectious diseases can be modeled more ac-

curately by considering all parameters from various disciplines. In addition, researchers

will be able to utilize theoretical tools of communication theory in order to model the

complicated nature of airborne pathogen transmission. As a proof-of-concept study, we

show that the number of infected people during an epidemic can be estimated by taking

into account the propagation and reception of pathogen-laden droplets and the mobility

of humans.

In the remainder of this chapter, we first review the airborne pathogen transmission

mechanisms and the motivation to use MC as the enabler communication paradigm. Then,

the communication engineering approach which merges different disciplines. In this ap-

proach, the layered architecture of MoHANET is presented in detail and open research

issues are discussed. Finally, we give the existing and possible experimental techniques.

The study given in this chapter was first introduced in (Gulec and Atakan, 2020c).

117



7.2. Airborne Pathogen Transmission Mechanisms and Molecular

Communication

This section provides a brief overview for the main issues of the airborne pathogen

transmission mechanisms. Then, the roles of molecular signals in the transfer of pathogens

among humans are discussed.

7.2.1. Overview of Main Issues on Airborne Pathogen Transmission

In this part, main issues related to fluid dynamics and biology on airborne pathogen

transmission are given.

7.2.1.1. Respiratory Activity, Droplet Size and Evaporation

Pathogen-laden droplets are emitted to the air from an infected human via res-

piratory activities such as coughing, sneezing, speaking and breathing. These activities

have different initial droplet velocities allowing different propagation distances. For in-

stance, the initial velocities for coughing and breathing are about 10 m/s and 2.67 m/s,

respectively (Ai and Melikov, 2018). Therefore, a cough can infect people at a greater

distance than breathing in still air in a short time interval. Furthermore, the expiratory

droplets are defined according to their diameters where aerosols and large droplets are as-

sumed to have smaller and larger diameters than 10 µm, respectively (Mittal et al., 2020).

While speaking, sneezing, and coughing release more large droplets into the air, breathing

mostly contains aerosols. In addition, larger droplets settle to the ground due to gravity

before evaporation and smaller droplets can become aerosols via evaporation depending

on the temperature and relative humidity (RH) (Seminara et al., 2020). For long durations,

aerosols can be more infectious than large droplets, since they can remain suspended in

the air and be drifted by airflows.
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7.2.1.2. Air Distribution

In addition to the initial velocity, emitted droplets are influenced by the airflows,

similar to a MC channel with drift. In outdoor environments, winds carry the droplets

and dilute the concentration of pathogens via dispersion. Therefore, it is less probable to

get infected in outdoor environments. However, in indoor environments such as hospitals,

offices or residential buildings, airflows generated by ventilation systems are critical for

the spread of pathogens due to the circulation of air in bounded conditions. Furthermore,

personalized ventilation and exhaust systems are proposed as advanced ventilation sys-

tems to diminish the infection risk (Ai and Melikov, 2018). These air distributions are

required to be considered for realistic indoor airborne transmission models.

7.2.1.3. Posture, Relative Orientation, Distance and Movement of the

Human

For short distances, the posture, that is, standing, sitting or lying position, and the

relative orientation of the infected and susceptible persons are important for the infection

risk as shown in Figure 7.1. For instance, a doctor can reduce the exposure from an

infected lying patient in a hospital ward via a standing posture and sideways orientation

instead of face-to-face orientation (Ai and Melikov, 2018). Furthermore, a walking person

can increase the infection risk in a closed and ventilated room by increasing the dispersion

of the droplets (Halvoňová and Melikov, 2010). Another important factor that influences

the infection risk is the relative distance of the humans which is also referred as the social

distance. Surely, the infection risk decreases, as the relative distance between two people

increases.

7.2.1.4. Thermofluid Boundary Conditions

The temperature difference between the human body surface and the surrounding

air generates a thermal plume which is a buoyancy-driven upward flow of the surrounding

air. As illustrated in Figure 7.1, this thermal plume leads to a convective boundary layer
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(CBL) around the human body, which should be taken into account for the movement

of the droplets in the breathing zone (Licina et al., 2015). This upward flow can change

the channel impulse response via generating an upward drift for the pathogens during the

reception into the human body.

7.2.1.5. Survival of Pathogens

Subsequent to a respiratory activity, all of the emitted pathogens may not survive.

In (Schaffer et al., 1976), it is shown that more than 80 percent of the influenza viruses

cannot survive within one minute. However, these survival rates are severely influenced

by environmental factors such as temperature and relative humidity (RH). While increas-

ing temperature decreases survival rates of the pathogens due to its effect at molecular

levels, increasing RH results in decreasing evaporation of droplets (Marr et al., 2019).

The decreasing number of pathogens results in a time-varying channel due to the depen-

dence on the previous number of pathogens.

7.2.2. Do Humans Communicate via Molecular Signals?

Via the aforementioned respiratory activities, a human can transfer pathogen-laden

droplets to another human. This type of transfer (or communication) among humans is

investigated in the medical literature where pheromone-based molecular signals are stud-

ied for the interaction of humans. In (Stern and McClintock, 1998), it is proposed that

pheromones secreted from the axillary apocrine glands of women living in close prox-

imity provides a synchronization in their menstrual cycle. Hence, molecular signals may

give rise to some biological responses in human organism. As given in the next section,

the transfer of the pathogen-laden droplets which cause infection can be considered in the

context of MC.
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Figure 7.2. Communication engineering framework to model the spread of infectious
diseases through airborne pathogen transmission and the layered Mo-
HANET architecture.

7.3. Communication Engineering Approach to Interhuman

Airborne Pathogen Transmission

In this section, we present a framework with communication engineering perspec-

tive to model the spread of infectious diseases through airborne pathogen transmission.

Furthermore, open research issues are given.

As shown in Figure 7.2, the proposed framework merges all of the multiscale

research efforts in various disciplines such as fluid dynamics, biology, medicine, and

epidemiology under the umbrella of communication engineering. MC emerges as the key

paradigm that connects the studies among different disciplines in macro- and microscales.

First, the MoHANET is introduced through a layered architecture as depicted in Figure

7.2. Layers are associated with different disciplines from µm to km scale in this architec-

ture where each layer sends its output to a upper layer. The first layer is defined as the

physical layer where the infectious human (TX) emits pathogen-laden droplets through

the communication channel (air) as illustrated in Figure 7.1. The next layer is the recep-

tion layer which takes place at the susceptible human (RX) and includes two sub-layers,
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that is, outer and inner reception sub-layers. The outer reception sub-layer comprises the

interactions of the facial sensory organs with the droplets and inner reception sub-layer

provides the details about the interactions of pathogens with the biological cells in the

human body. The networking layer where infectious diseases spread among different

people is given at the top of the MoHANET architecture. Here, methods from mobile

telecommunication networks literature are exploited and the outputs of the lower layers

are employed rather. The details of this layered architecture are introduced as follows.

7.3.1. Physical Layer

In this part, the details of the transmitter and channel for still and windy air con-

ditions are given.

7.3.1.1. Transmitter

In a MoHANET, an infected person is considered as a TX and her/his respiratory

activities determine the TX parameters such as initial droplet velocities and droplet size

distribution (Khalid et al., 2019). The respiratory activities which are mentioned earlier

can be classified as impulsive (sneezing and coughing) and continuous (breathing and

speaking) emission signals. For continuous emissions, the respiration rate is an influential

factor for the transmission models. However, it is crucial to characterize speaking, since

it is not always periodic and has more complex patterns than breathing. In addition, the

respiratory organs such as nose or mouth affect the direction of the emitted signals. For

example, the infection risk increases, when the TX uses the mouth instead of nose (Ai and

Melikov, 2018). Furthermore, the convective boundary layer (CBL) of the human body,

posture and relative orientation should be taken into account for accurate TX models. As

mentioned earlier, the upward flow stemming from the CBL can affect the direction of the

emitted pathogens in a TX model.
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7.3.1.2. Channel

From the viewpoint of communication engineering, the channel is the physical

medium between the TX and RX including the boundary conditions. As shown in Figure

7.2, channel modeling in the physical layer requires knowledge from fluid dynamics and

biology due to the air-droplet interaction and survival of pathogens, respectively. The

propagation dynamics of droplets can be examined under two subheadings depending on

whether there is an external airflow or not.

Still Air: In indoor environments such as residential buildings, it is generally assumed

that there is no airflow, if there is not any ventilation system. After the emission of

pathogen-laden droplets with an initial velocity, they are subject to Newtonian mechanics

during their interaction with the air. Emitted droplets can be modeled as a cloud con-

sisting of droplets and air particles. The movement of this cloud can be defined as a

two-phase flow where these phases represent the gaseous state of air and liquid state of

droplets (Gulec and Atakan, 2021c). Due to gravity, large droplets may fall earlier to the

ground with respect to aerosols and evaporation can shrink the size of the droplets. As

mentioned earlier, the temperature of the air and evaporation influence the survival rates of

the pathogens. For continuous emissions, this fact can affect the channel memory, which

is crucial for channel modeling. Furthermore, initial velocities of droplets determined by

respiratory activities can give rise to short-term laminar and turbulent flows. These flows

fade out as the distance between the TX and RX increases.

Windy Air: For windy outdoor environments and indoor environments with airflows

such as ventilation or wind arising from the open doors and windows, airflows domi-

nate the propagation of droplets rather than other factors given for still air environments.

The airflow which carries the pathogen-laden droplets can be examined by advection and

dispersion (turbulent diffusion) mechanisms. Briefly, advection results from the airflow

velocity and dispersion depends on the turbulent eddies during the mass transfer (De Viss-

cher, 2013). It should be noted that molecular diffusion related with the thermal energy of

molecules is negligible in macroscale. In order to calculate the concentration of droplets

in time and space, deterministic and stochastic approaches which are based on differen-

tial Navier-Stokes and continuity equations are employed. For certain initial and boundary
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conditions, the solutions of these equations for deterministic concentration are known as

Gaussian Plume for steady-state and Gaussian Puff Model for transient analysis (De Viss-

cher, 2013). Actually, the concentration and velocity of droplets are random processes

whose mean values are represented by these deterministic solutions. Thus, stochastic dif-

ferential equations are obtained which are non-trivial to solve as a closed form expression.

Therefore, these equations are mostly solved by numerical methods using Eulerian and

Langrangian approaches (De Visscher, 2013). In addition, indoor ventilation types such

as under floor air distribution, mixing, displacement, and downward ventilation should be

incorporated into these airflow models. For example, downward ventilation can reduce

the infection risk by diluting the dispersion of droplets (Ai and Melikov, 2018). By using

the models at physical and reception layers, the infection rate can be derived to be used in

the networking layer as given in the next part.

7.3.2. Reception Layer

A human gets infected, when the transmitted pathogens are received into the

body. As shown in Figure 7.2, the reception layer covers the issues related to biology

and medicine in microscale where MC is utilized for the interactions of pathogens with

the human body. The reception of these pathogens by the exposed human (RX) have not

been well investigated, although there are myriads of theoretical, experimental and clini-

cal studies for the propagation of pathogens. To this end, we propose a two-layered RX

as shown in Figure 7.3 and detailed below.

7.3.2.1. Outer Reception Layer

The reception of pathogen-laden droplets occur in the eyes (Peiris et al., 2003),

mouth and nose for many pathogens such as influenza virus (Ai and Melikov, 2018).

Hence, we define the first step of reception as the outer layer sensing for the reception

via facial sensory organs as illustrated in Figure 7.3. The whole surface of the human

face is also important for the reception, since an infection may occur by touching the face

contaminated with pathogens and these organs consecutively.
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Pathogen-laden droplets emitted via a respiratory activity propagate as a mixture

of droplets and air particles, which can be represented as a cloud (Gulec and Atakan,

2021c). This cloud is affected by the momentum due to the initial velocity of droplets,

gravity and buoyancy stemming from the temperature difference of the mouth and ambi-

ent air. According to this model, as also detailed in Chapter 6, Fig. 7.4 gives the change

of the number of droplets in the cloud by taking settling and reception of droplets into

account for a coughing TX in still air as illustrated in Fig. 7.1. The cross-section of the

RX is assumed to cover a circular area including eyes, mouth and nose at the outer layer

as illustrated in Figure 7.3. At this point, an analogy with the communication systems

can be established by considering the infected state of the RX as symbol 1 and no infec-

tion as symbol 0. This reception is accomplished by a detection according to a threshold

value (γ = 80) indicating the number of droplets required to become infected, as given in

Figure 7.4. γ is a critical parameter in the airborne tranmission model, since it depends

on the strength of human’s immune system. To this end, biomedical data of humans such

as body mass index, glucose level and whether or not having chronic diseases can be em-

ployed to estimate γ. Moreover, γ can be effective to determine the number of infected

people in an epidemic as given in Section 7.3.3.

In addition to these issues in the outer layer, the posture, relative orientation and

CBL of the RX should be taken into account for an accurate receiver model as considered

for the TX. Furthermore, the reception of pathogen-laden droplets at the outer layer with

different types of masks is an open issue to be investigated.
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Figure 7.3. Two-layered Receiver.
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Figure 7.4. The mean number of droplets in the cloud and their reception by the RX.

7.3.2.2. Inner Reception Layer

As shown in Figure 7.3, pathogens actually enter human body at the cellular level

and increase their population. For example, viruses replicate themselves by inserting their

genetic material (DNA or RNA) into human cells in two ways: They can bind their fusion

(or spike) protein on specific receptor sites on the human cell or they can enter by using

endosomes like a Trojan horse (Cohen, 2016). Their binding sites can have different con-

centrations in different parts of the body. For instance, severe acute respiratory syndrome

coronavirus-2, which causes COVID-19, binds to angiotensin converting enzyme-2 re-

ceptors which are mostly found at upper respiratory tract (Zhou et al., 2020). While large

droplets are effective in upper respiratory tract, aerosols can reach down to alveoli in

lower respiratory tract. Hence, the droplet size can be effective to determine the infection

risk according to the type of the disease. Moreover, the viruses diffuse among human

cells, bind to receptors and copy their genetic material in a random way. All of these

issues at the inter- and intracellular level need to be modeled for an accurate transmission

model for the spread of infectious diseases in MoHANETs. These modeling efforts can

also contribute to drug and vaccine developments.
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7.3.3. Networking Layer

What we examine up to here in lower layers of the MoHANET architecture is

about the transmission of infectious diseases between two humans. However, these trans-

missions occur many times in an epidemic, which requires a perspective to handle the

population as a connected group, that is, a network. In the networking layer, the details

of the MoHANET architecture are presented in order to model the spread of infectious

diseases in a large scale (km) within the communication engineering framework as shown

in Figure 7.2.

7.3.3.1. Mobile Human Ad Hoc Networks

In epidemiology literature, each human, that is, a node, can be represented as sus-

ceptible (S), exposed (E), infectious (I) or recovered (R) according to the SEIR-based

models in the infectious disease modeling approaches (Rock et al., 2014). According to

the disease type, different combinations of these node types can be employed for the mod-

els such as SIR or SIRS. For example, COVID-19 is suitable to use all the node types due

to a non-infectious incubation period. In the literature, the number of these node types are

modeled by ordinary differential equations where the number of the nodes can be deter-

ministic or a stochastic process. The transition among different types of nodes (S,E,I,R)

are defined with certain rates which are obtained by fitting statistical epidemic data. In

experimental studies, these data are obtained by oral surveys or exploiting wireless sensor

network technology (Rock et al., 2014). It is noteworthy that very few studies model the

spatial change of the epidemic rather than its temporal change.

By utilizing the widespread SIR model, a MoHANET is given in Figure 7.5 which

gives both the spatial and temporal changes. As the time elapses, the number of nodes may

alter and the nodes can make transitions between states such as S, I or R. For example, a

susceptible node can become infected, if it is in the transmission range of an infectious

node or an infectious node can recover after a certain period.
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Figure 7.5. The spread of an infectious disease in a MoHANET through 2-D space for
three different time instances. As time progresses, the number of nodes
changes with mobility and the nodes change their state according to their
exposure to pathogen-laden droplets.

7.3.3.2. Transmission Types in MoHANETs

As illustrated in Figure 7.5, three transmission types are defined for the propa-

gation of pathogen-laden droplets from the infectious nodes to the susceptible nodes as

follows:

• Point-to-Point Transmission includes the communication between two nodes where

the infectious and susceptible nodes are the TX and RX, respectively.

• Multicast Transmission is the scheme that one infectious node spreads the disease

to more than one node within its communication range.

• Multiple-Access Transmission comprises the scenario where a susceptible node is

exposed to pathogen-laden droplets from multiple infectious nodes.

7.3.3.3. Routing and Mobility in MoHANETs

Humans are susceptible to infectious diseases in indoor places such as public

transportation vehicles, shopping malls or offices. However, this is not the case that is en-

countered continuously. Instead, the risk to get infected is intermittent due to the mobility
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of humans. As people displace, their smart phones can communicate opportunistically

with each other as they are in the communication range. The same type of network-

ing is also used in many applications such as wireless sensor, vehicular, and flying ad

hoc networks. These dynamically changing structures defined as mobile ad hoc networks

(MANETs) enable communication using the infrastructure at their location without a ded-

icated router. Therefore, a MoHANET can be resembled as a specific type of MANET,

that is, a delay tolerant network (DTN) in which an end-to-end link among the nodes may

not always exist. The nodes in a DTN store their data and wait until they find a suitable

connection. By considering this waiting delay, the routing algorithms in DTNs provide the

path to the desired user. Similarly, an infected human can store its pathogens until finding

a susceptible human to infect via airborne transmission. Hence, we propose that oppor-

tunistic routing protocols such as epidemic or spray and wait can be adopted to model

the spread of the infectious diseases. Interestingly, epidemic routing protocol which is

a reference method for routing in MANETs was already inspired by the mechanism of

infectious disease spread during an epidemic (Vahdat and Becker, 2000).

In the SIR model, the effective contact rate (β) is employed to find the rate of

transitions from state S to state I which is generally estimated by epidemic data (Vyn-

nycky and White, 2010). By using mobility models as applied in MANETs, the av-

erage contact rate of humans (N̄c) can be determined. In addition, the average prob-

ability of infection P̄inf can be derived by considering the propagation and reception

of pathogen-laden droplets in physical and reception layers of the MoHANET. Here,

P̄inf = P (N̄R > γ) = Q((γ − µR)/σR) where N̄R is the received number of droplets

withN (µR, σ
2
R) and γ is the detection threshold as derived in (Gulec and Atakan, 2021c).

Hence, we propose that β can be derived by β = N̄cP̄inf to be employed in the SIR

model. The results given in Fig. 7.6 show that the rate of an epidemic reduces as the av-

erage strength of the humans’ immune system increases. N̄R depends on the parameters

such as the velocity and size distribution of droplets, exposure time and receiver geome-

try. Thus, this modeling approach gives the opportunity to include the parameters in the

physical and reception layers in the networking layer of the MoHANET. For convenience,

random waypoint model is used to determine N̄c and the average recovery rate (α) to be

used for the transitions from state I to state R is taken as a constant value. However,

α can be estimated at the reception layer by using human’s immune system response or
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drug-human interaction at the cellular level.
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Figure 7.6. Number of infected humans (nodes) in a MoHANET according to the ran-
dom waypoint model for mobility and SIR model with parameters from
physical and reception layers. Number of nodes = 1000, initial number of
infected nodes I(0) = 1, initial number of susceptible nodes S(0) = 999,
maximum node velocity = 3 m/s, simulation area = 2000 m × 2000 m,
infection (transmission) range = 1 m, α = 0.025, N̄R ∼ N (120, 100).

7.4. Experimental Techniques and Simulations

In order to observe and model the airborne transmission mechanisms among hu-

mans, experimental setups and computer simulations can be employed. In this section,

we present and discuss how the performance of the proposed methods in different layers

of the MoHANET architecture can be evaluated.

In physical and reception layers, the emulation of breathing, coughing and sneez-

ing in experimental setups are realized by respiratory machines or thermal manikins

which can be heated to change their temperature. These devices emit tracer gases includ-

ing droplets. The concentration of droplets is measured by air samplers or via imaging

techniques such as particle image velocimetry which gives the velocity and directions of

droplets (Ai and Melikov, 2018). Moreover, sprayer-based MC systems can also be used

instead of respiratory machines, manikins and air samplers.

Albeit reliable results can be obtained by the physical experiments regarding the
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consideration of droplet-air interaction and airflows, the collected data have a low-resolution

in space and time and experimental devices are expensive. Therefore, computational fluid

dynamics (CFD) simulations are employed to evaluate the airborne transmission mecha-

nisms with a high spatiotemporal resolution and less cost (Ai and Melikov, 2018). How-

ever, the simulation software programs are based on Navier-Stokes equations which lack

the capability to model all of the effects during the transmission realistically.

These experimental techniques and CFD simulations can be employed to model

the airborne pathogen transmission with communication engineering perspective for var-

ious scenarios between two humans. In a larger scale, for example, in a crowded city,

it is essential to model the spread of infectious diseases with an approach that takes into

account the interaction of people and their mobility in both time and space. The move-

ment patterns of humans can be simulated by synthetic models such as random waypoint

model or trace-based models which rely on real mobility data of mobile nodes as applied

in MANETs. The adapted routing protocols for MoHANETs can also be evaluated in

time and space by employing these mobility models according to the scenario via net-

work simulation software. With a holistic perspective, new software is needed to model

all of the issues at different layers of the MoHANET in a single platform.
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CHAPTER 8

LOCALIZATION OF A PASSIVE MOLECULAR

TRANSMITTER WITH A SENSOR NETWORK

8.1. Introduction

All of the macroscale platforms proposed in the molecular communication (MC)

literature and covered in Chapters 3-5 focus on active transmission of molecules such as

sprayers or pumps. However, there is not any platform to understand the dynamics of

macroscale MC with passive transmission such as evaporating toxic molecules from a

threatening source through the air. Moreover, it can be difficult to determine the exact

location of the transmitter (TX) with only the distance information. Therefore, localiza-

tion methods are needed for multi-dimensional practical scenarios. In the literature, a

localization algorithm is proposed by using a mobile search robot as the receiver (RX)

moving towards the source according to molecule concentration gradient for a long range

underwater scenario (Qiu et al., 2015). However, the performance of this algorithm is not

known for a practical scenario. Hence, there is not any experimentally validated localiza-

tion method for practical macroscale scenarios.

Within this context, we propose a novel experimental platform for macroscale

MC applications and a novel localization algorithm by using this platform, which was

first presented in (Gulec and Atakan, 2020b). Firstly, our experimental platform consists

of a passive source which include freely evaporating ethanol molecules. The experimental

platform is placed in a fume hood which is a closed box to provide controlled conditions.

Evaporating molecules are detected by a sensor network (SN) which includes 24 MQ-3

alcohol sensor nodes in a rectangular order. The novelty of our experimental platform lies

in the usage of the SN which can pave the way to novel methods by adapting techniques

from the SN literature. Moreover, the concept of employing a SN can be applied for

different practical scenarios such as the localization of an underwater molecular TX.
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Secondly, the Sensor Network-based Clustered Localization Algorithm (SNCLA)

is proposed for the localization of a passive molecular TX as a proof-of-concept applica-

tion employing our experimental platform. The SN is divided into four clusters. Primar-

ily, the Gaussian plume model which is employed widely in the meteorology literature

to model the movement of the pollutant particles in the air is given as the system model.

As for the SNCLA, the location estimator is derived for the sensor node pairs in each

cluster. In order to use the location estimator, some experimental parameters such as the

actual concentration, transmitted mass and the wind velocity are required to be estimated

or calculated. To this end, the measured sensor voltage is smoothed by using a moving

average filter and a detection is made according to a predetermined detection threshold

voltage. The measured sensor voltages at the chosen threshold voltage are converted to

actual concentration values via the sensitivity response of the sensors. The detection time

of the SN is employed to estimate the velocity of the wind in the medium for four direc-

tions on the x − y plane. The estimated wind velocity is taken as the input for the mass

calculation of the evaporated molecules. The location estimator employs all these esti-

mated/calculated values as the input. Finally, SNCLA determines two clusters according

to the magnitude of the wind velocities estimated for the four directions and makes the

location estimation for the sensor nodes in these clusters. The numerical results show

that SNCLA performs better, when the wind velocity is higher. Furthermore, the average

detection times for all of the sensor nodes are given to show the propagation pattern of

the evaporating molecules. Surprisingly, the evaporating molecules do not propagate in

an isotropic fashion. It is observed that there is always a wind in the medium that affects

the propagation of molecules. In addition, cluster error is defined as an error metric to

evaluate the performance of the clusters in the SN. It is shown that cluster errors decrease

and more stable results can be obtained for higher detection thresholds.

The remainder of the paper is organized as follows. In Section 8.2, the experi-

mental platform is given in detail. Section 8.3 introduces the system model on which the

SNCLA is based. The SNCLA is presented in Section 8.4. Finally, the numerical results

are shown and analyzed in Section 8.5.
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8.2. Experimental Platform

In this section, the experimental platform which is employed for the localization

of a molecular transmitter using a SN is introduced. As shown in Figure 8.1, this platform

consists of a TX and a SN placed inside a fume hood, which is a closed cabinet to conduct

chemical experiments at controlled conditions without being exposed to chemicals. The

TX includes a pipette pump, two pipettes, a rubber hose and a circular petri dish. The

pipette connected to the tip of the pipette pump is filled with liquid ethanol before the

transmission. When liquid ethanol is pumped through the rubber hose, it fills the petri

dish which has a radius of 2.25 cm. The petri dish is deployed at the midpoint of the

SN. The transmission is realized by the evaporation of ethanol molecules in the petri

dish at room temperature (25◦C). After the transmission, evaporated ethanol molecules

propagate in the air.

Figure 8.1. Experimental platform.

The SN consists of 24 MQ-3 alcohol sensor boards (or nodes), a power supply

and two Arduino Mega microcontroller boards which are connected to a computer. The

sensor nodes are placed on a rectangular surface of 60 × 60 cm. The distance between

two adjacent nodes on the horizontal and vertical axis is 15 cm. Each sensor board has
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a 1 kΩ load resistor on it in order to generate a voltage to be an analog input signal for

the microcontroller board. As shown in Figure 8.1, while fourteen of the sensor nodes are

wired to the first Arduino microcontroller board, ten of them are connected to the second

Arduino board. In order to synchronize the TX and SN, the nodes start to receive signals

as soon as the petri dish is filled with 5 ml of liquid ethanol. Next, the system model to

explain the propagation of evaporated molecules employed in the proposed experimental

platform is given.

8.3. System Model

This section details the system model on which the localization algorithm is based.

In macroscale MC, diffusion-based models are employed to explain the propagation of

molecules through the air (Farsad et al., 2014; McGuiness et al., 2018; Zhai et al., 2018).

Unlike macroscale experimental studies in the literature, molecules are released by evap-

oration at room temperature in our scenario. Since there is not any applied force for the

emission, we can classify it as a passive transmission. The absence of the force applied to

this emission makes molecules susceptible to the effects of wind or flows in the air, even

at low velocities. Actually, there is almost always a slight wind in the air (Hanna et al.,

1982). Considering the passive transmission of molecules and winds in the air, Gaus-

sian plume model, which is widely used in the meteorology literature for the dispersion

of air pollutants, can be applied for our scenario to model the propagation of evaporated

molecules. By using the conservation of mass, the equation below can be written as

(Stockie, 2011)
∂C

∂t
+∇ · ~J = S, (8.1)

where S is the source term, ~J and C represent the mass flux and concentration of evap-

orated molecules, respectively. Here, the mass flux can be given as the summation of

diffusive flux ~JD, which stems from the turbulent diffusivity in the atmosphere, and the

advective flux ~Ja stemming from the wind velocity (~u). Hence, the mass flux is given as

~J = ~JD + ~Ja = − ~K∇C + C~u, (8.2)

where ~K = diag(Kx, Ky, Kz) is a diagonal matrix showing the turbulent diffusivities

in three dimensions. Thus, (8.1) takes the form of the equation which is known as the
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atmospheric diffusion (or dispersion) equation as given by (Stockie, 2011)

∂C

∂t
+∇ · (C~u) = ∇ · ( ~K∇C) + S. (8.3)

In our scenario, we define the TX at the position (xT , yT , zT ) as an instantaneous source

to have a time-dependent solution in (8.3). In fact, our experimental platform is in a

sufficiently small scale so that the TX can be considered as a source releasing molecules

in an instantaneous puff. Furthermore, the wind velocity is defined with two components

in x and y axes, i.e., ux and uy. It is assumed that the plane at z = 0 is a reflective

plane and there is not any other boundaries. For the source term which is defined as

S = mT
~u
δ(x − xT )δ(y − yT )δ(z − zT )δ(t) where mT is the transmitted mass and δ(.) is

the Dirac delta function, the solution of (8.3) is given as (De Visscher, 2013)

C(x, y, z, t) =
(πt)−3/2mT

8(KxKyKz)1/2
exp

(
−(x− xT − uxt)2

4Kxt
− (y − yT − uyt)2

4Kyt

)
×
[

exp
(
−(z − zT )2

4Kzt

)
+ exp

(
−(z + zT )2

4Kzt

)]
, (8.4)

which is known as the Gaussian puff solution. Here, e−
(z+zT )2

4Kzt represents the reflection

of the plume from the ground. In the literature of atmospheric dispersion, the turbulent

diffusivities are defined in terms of dispersion parameters such that σ2
x = 2Kxt, σ2

y =

2Kyt, σ2
z = 2Kzt (Seinfeld and Pandis, 2016). Hence, (8.4) is rearranged as

C(x, y, z, t) =
mT

(2π)3/2σxσyσz
exp

(
−(x− xT − uxt)2

2σ2
x

− (y − yT − uyt)2

2σ2
y

)
×
[

exp
(
−(z − zT )2

2σ2
z

)
+ exp

(
−(z + zT )2

2σ2
z

)]
. (8.5)

The advantage of this conversion is to determine the dispersion parameters (σx, σy, σz) by

using empirically derived models which depend on the distance between the TX and RX.

According to the model given in (Briggs, 1973) which is widely used in the meteorology

literature, σy and σz for stable air conditions as in our case are calculated by

σy =
0.04r

(1 + 0.0001r)0.5
(8.6)

σz =
0.016r

(1 + 0.0003r)
, (8.7)

where r is the distance to the source in meters and σx can be approximated as σx ≈ σy

(De Visscher, 2013). Regarding these empirical models in (8.6) and (8.7), the effect of
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the dispersion parameters on the system model are negligible, since the scale of our SN is

small (60 × 60 cm). Therefore, the dispersion parameters are defined as constant values.

In our scenario, the SN and TX are all deployed at z = 0. Accordingly for each sensor,

the concentration is given as

Ci,j =
mT√

2π3σxσyσz
exp

(
−(xi,j − xT − uxti,j)2

2σ2
x

− (yi,j − yT − uyti,j)2

2σ2
y

)
, (8.8)

where (xi,j, yi,j) and ti,j show the location and detection time of the node Ni,j which is in

the ith row and jth column of the SN, respectively. Here, i = 1, ...,Mr and j = 1, ...,Mc.

In addition, the deployment of the sensor nodes are illustrated in Figure 8.2. It is

assumed that each sensor node knows its location in the Cartesian coordinate system. As

shown in this figure, the SN is divided into four clusters. These clusters are employed for

the localization algorithm of the TX in MC as given in the next section.
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Figure 8.2. The deployment of the sensor nodes and TX.
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8.4. Sensor Network-Based Clustered Localization Algorithm

In this section, Sensor Network-Based Clustered Localization Algorithm

(SNCLA) whose block diagram is given in Figure 8.3 is proposed. First, the location

estimator is derived using the system model given in Section 8.3. Then, the estimation

and calculation of the required parameters for the location estimator is detailed. At the

end of this section, SNCLA is detailed by employing all the estimated and calculated

parameters.
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Figure 8.3. Block diagram of the SNCLA.

8.4.1. Derivation of the Location Estimator

In order to derive the location estimator, (8.8) can be written as
√

2π3σxσyσzCi,j
mT

= exp
(
−(xi,j − xT − uxti,j)2

2σ2
x

− (yi,j − yT − uyti,j)2

2σ2
y

)
. (8.9)

When the natural logarithm, i.e., ln(.), of both sides is taken, then (8.9) is given by

ln

(√
2π3σxσyσzCi,j

mT

)
= −(xi,j − xT − uxti,j)2

2σ2
x

− (yi,j − yT − uyti,j)2

2σ2
y

. (8.10)

For convenience, let ni,j = ln
(√

2(π)3/2σxσyσzCi,j
mT

)
. Hence, the final equation for the

location estimator is given by

(xi,j − xT − uxti,j)2

2σ2
x

+
(yi,j − yT − uyti,j)2

2σ2
y

+ ni,j = 0. (8.11)
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For two sensor nodes, a system of nonlinear equations can be generated using

(8.11) where xT and yT are the variables and the other parameters are constant. Since the

solution of this system is not easily tractable, numerical methods can be used to obtain

the solution as detailed later in this section. In order to solve these equations, parameters

such as Ci,j , ti,j , mT and wind velocity values are required to be estimated or calculated.

8.4.2. Signal Preprocessing and Detection

In our experimental platform, the concentration is measured as a voltage value

from the sensor nodes. Due to the random movements of molecules, there are fluctua-

tions on the measured sensor voltage. In order to detect the signals more accurately, the

received signal by the sensor is needed to be smoothed via removing the fluctuations.

Therefore, a moving average filter is employed as defined by (Oppenheim, 1999)

y[n] =
1

L

L∑
k=0

C[n− k]. (8.12)

where C[n] is the measured sensor voltage, y[n] and L are the output and window size of

the filter, respectively.

When there is no transmission from the TX, the sensors still output a positive

voltage value which is defined as the offset level, i.e., Aoi,j . Since the offset levels of the

sensors can be different, the threshold voltage (γi,j) is defined for each sensor node by

employing a constant detection threshold amplitude (AT ) as given by

γi,j = Aoi,j + AT . (8.13)

In order to calculate Aoi,j , the first p samples of the received signal is averaged before the

moving average filter. After γi,j is determined for each sensor node, the time instances

that each sensor reaches the γi,j value in y[n] is recorded as ti,j . These ti,j and γi,j values

are employed as input for velocity estimation and the sensitivity response of the sensor,

respectively.
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8.4.3. Sensitivity Response of the Sensor

Sensor voltage is obtained via a sensor measurement circuit on the MQ-3 sensor

boards which is shown in Figure 5.4. As the concentration around the sensor changes, its

resistance (Rs) changes. Hence, the molecule concentration is converted to an electrical

signal via the circuit in Figure 8.4 where Vout gives the output voltage. Using this circuit,

Rs is derived as

Rs =

(
Vin
Vout
− 1

)
Rl, (8.14)

where Vin shows the DC input voltage and Rl is the load resistance.

���

��

Sensor
+

-

����+
-

��

Figure 8.4. Measurement circuit of the sensor board.

For each concentration value, the sensor has a differentRs value. The sensor resis-

tance can be normalized by dividing Rs to Ro where Ro is the sensor resistance measured

at the concentration value of 0.0004 kg/m3 which is the minimum concentration level

MQ-3 sensor can measure (Hanwei-Electronics, 2018). According to its datasheet, MQ-3

sensor has a sensitivity characteristic which maps each concentration value to the normal-

ized resistance value (Rs/Ro) (Hanwei-Electronics, 2018). This sensitivity characteristic

can be expressed as a sensitivity function

f (Ci,j) =
Rs

Ro

=

(
Vin
Vout
− 1

)
Rl

Ro

, (8.15)

where Ci,j is the actual molecule concentration around the sensor and Rs/Ro is given by

substituting (8.14) into (8.15). By employing the values in its datasheet, f(Ci,j) can be

obtained via curve fitting technique. Nonlinear least squares method that minimizes the
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sum of the square errors is employed to fit the datasheet values of the MQ-3 sensitvity

characteristic. As the result of the curve fitting, f(Ci,j) is given by

f (Ci,j) = a1 (Ci,j)
b1 + d1, (8.16)

where a1, b1 and d1 are the curve fitting parameters. By employing Levenberg-Marquardt

algorithm, these parameters are estimated as a1 = 0.0116, b = −0.5855 and d1 =

−0.0743 with a Root Mean Square Error (RMSE) value of 0.0371 (Hagan and Menhaj,

1994). The sensitivity response of the MQ-3 sensor is also employed in Chapter 5 which

is a part of the signal reconstruction approach of the RX in macroscale. The signal recon-

struction of the RX is first proposed in (Atakan and Gulec, 2019) in order to investigate

how the actual concentration around the RX is sensed in microscale.

In order to find the molecule concentration for the given detection threshold volt-

age, Vout is set as γi,j in (8.15). (8.15) and (8.16) are combined to obtain the equation as

given by (
Vin
Vout
− 1

)
Rl

Ro

= a1 (Ci,j)
b1 + d1. (8.17)

As the result of the sensitivity response of the sensor, (8.17) is manipulated to obtain Ci,j

which is given by

Ci,j =

(
VinRl − γi,jRl − d1γi,jRo

γi,jRoa1

)(1/b1)

. (8.18)

8.4.4. Wind Velocity Estimation

After the threshold voltages (γi,j) and detection times (ti,j) are obtained for each

sensor, the wind velocity flowing over two sensor nodes can be estimated in x and y

directions as given by

ux =
|x2 − x1|
t2 − t1

, uy =
|y2 − y1|
t2 − t1

, (8.19)

where (x1, y1) and (x2, y2) are the coordinates for the first and second sensor node, re-

spectively and t1 and t2 are the detection times for the first and second sensor node,

respectively. For our scenario, (8.19) is generalized by averaging the wind velocities esti-

mated by the sensor node pairs in the corresponding cluster defined in Figure 8.3 for four
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directions according to the formulas given below

ūx− =
1

Mr

Mr∑
i=1

u(i)
x− =

1

Mr

Mr∑
i=1

|xi,1 − xi,2|
(ti,1 − ti,2)

, Cluster-1 (-x direction) (8.20)

ūx+ =
1

Mr

Mr∑
i=1

u(i)
x+

=
1

Mr

Mr∑
i=1

|xi,5 − xi,4|
(ti,5 − ti,4)

, Cluster-3 (+x direction) (8.21)

ūy+ =
1

Mc

Mc∑
j=1

u(j)
y+

=
1

Mc

Mc∑
j=1

|y5,j − y4,j|
(t5,j − t4,j)

, Cluster-2 (+y direction) (8.22)

ūy− =
1

Mc

Mc∑
j=1

u(j)
y− =

1

Mc

Mc∑
j=1

|y1,j − y2,j|
(t1,j − t2,j)

, Cluster-4 (-y direction) (8.23)

where u(i)
x± and u(j)

y± show the instantaneous wind velocity of the ith and jth sensor node

pair in the corresponding direction (or cluster), respectively, ūx± and ūy± show the av-

erage of these sensor node pair velocities in the corresponding direction (or cluster), re-

spectively, xi,j and yi,j indicate the horizontal and vertical position of the sensor node

Ni,j given in Figure 8.2, respectively and Mr and Mc are the total number of rows and

columns of the SN, respectively. Here, the instantaneous velocities whose values are neg-

ative are not considered for the velocity estimation. During the experiments it is observed

that the wind blows stronger in one direction which means that it can only have at most

two velocity components among the estimated velocities in four directions. Therefore, ux

and uy are defined as:

ux = max(ūx− , ūx+), (8.24)

uy = max(ūy− , ūy+). (8.25)

8.4.5. Transmitted Mass Calculation

The estimated values of ux and uy are used to calculate the evaporation rate of

ethanol in the air (Qe). For the wind blowing over a surface with a velocity u at room

temperature (25◦C), Qe (kg/m2s) is given by (Lyulin et al., 2015)

Qe = h1u
0.54, (8.26)

where h1 = 4 × 10−3 kg/m3 and u =
√
u2
x + u2

y. In order to find the mass flow rate

of evaporated molecules, i.e., Q (kg/s), which is defined as the mass flowing through a
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surface per unit time, Q = QeA where A is the surface area of evaporated molecules,

i.e., the surface area of the petri dish for our case. Here, the instantaneous puff of the

TX which is represented by δ(t) in the system model is approximated by a pulse with a

short emission time (Te). Hence, the transmitted mass can be calculated as (Munson et al.,

2009a)

mT = QTe = QeATe. (8.27)

Algorithm 3 SNCLA

1: input: ūx± , ūy± , u(i)
x± , u(j)

y± , mT , Ci,j , ti,j for all i = 1, ...,Mr, j = 1, ...,Mc

2: if (ux == ux−) and (uy == uy+) then
3: Calculate (x̂T , ŷT ) by (8.28) for Cluster 1
4: Calculate (x̂T , ŷT ) by (8.29) for Cluster 2
5: else if (ux == ux−) and (uy− == uy+) then
6: Calculate (x̂T , ŷT ) by (8.28) for Cluster 1
7: Calculate (x̂T , ŷT ) by (8.31) for Cluster 4
8: else if (ux == ux+) and (uy == uy+) then
9: Calculate (x̂T , ŷT ) by (8.29) for Cluster 2

10: Calculate (x̂T , ŷT ) by (8.30) for Cluster 3
11: else
12: Calculate (x̂T , ŷT ) by (8.30) for Cluster 3
13: Calculate (x̂T , ŷT ) by (8.31) for Cluster 4
14: end if

8.4.6. Operation of the SNCLA

Thus far, the required input parameters for the location estimator (see Figure 8.3)

are obtained. By using these parameters, Algorithm 3 is proposed for the localization of

the TX. In this algorithm, two clusters are chosen according to the direction of the wind

velocity on x and y axes. For instance, if the wind blows stronger in the +x direction on

the x-axis and +y direction on the y axis, then the node pairs in Cluster-3 and Cluster-2

are chosen for the location estimation. Similar to the wind velocity estimation, the node

pairs whose absolute instantaneous wind velocity value is negative are not considered for

the location estimation. Afterwards, the equation pairs given in (8.28)-(8.31) are solved

for xT and yT according to the chosen two clusters. The solution for each of two equations

gives the estimated coordinates of the TX, i.e., x̂T and ŷT . The solutions of (8.28)-(8.31)

are too long to write in this paper. Instead, these equations are solved numerically as given
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in the numerical results.

(xi,1 − xT − uxti,1)2

2σ2
x

+
(yi,1 − yT − uyti,1)2

2σ2
y

+ ni,1 = 0

(xi,2 − xT − uyti,2)2

2σ2
x

+
(yi,2 − yT − uyti,2)2

2σ2
y

+ ni,2 = 0


i = 1, ...,Mr.

(Cluster-1)
(8.28)

(x5,j − xT − uxt5,j)2

2σ2
x

+
(y5,j − yT − uyt5,j)2

2σ2
y

+ n5,j = 0

(x4,j − xT − uxt4,j)2

2σ2
x

+
(y4,j − yT − uyt4,j)2

2σ2
y

+ n4,j = 0


j = 1, ...,Mc.

(Cluster-2)
(8.29)

(xi,5 − xT − uxti,5)2

2σ2
x

+
(yi,5 − yT − uyti,5)2

2σ2
y

+ ni,5 = 0

(xi,4 − xT − uyti,4)2

2σ2
x

+
(yi,4 − yT − uyti,4)2

2σ2
y

+ ni,4 = 0


i = 1, ...,Mr.

(Cluster-3)
(8.30)

(x1,j − xT − uxt1,j)2

2σ2
x

+
(y1,j − yT − uyt1,j)2

2σ2
y

+ n1,j = 0

(x2,j − xT − uxt2,j)2

2σ2
x

+
(y2,j − yT − uyt2,j)2

2σ2
y

+ n2,j = 0


j = 1, ...,Mc.

(Cluster-4)
(8.31)

Table 8.1. Experimental parameters.

Parameter Value
Number of measurements (Mm) 25
Detection threshold amplitude (AT ) 0.055 V
Emission time (Te) 0.1 s
Actual TX location (xT , yT ) (0.3, 0.3) m
Area of the petri dish (A) 0.0024 m2

Input voltage of the sensor board (Vin) 5 V
Load resistance (Rl) 1 kΩ
Sensor resistance at 0.0004 kg/m3 (Ro) 24 kΩ
Standard deviation of the Gaussian concentration
distribution on the x, y and z axis (σx, σy, σz)

0.0115 m, 0.0115 m, 0.0046 m

Number of samples to be averaged for the offset
level Aoi,j of the sensors (p)

3

Window size of the moving average filter (L) 7

8.5. Numerical Results

In this section, numerical results of the SNCLA is given. 25 measurements each

lasting 180 s were performed with the experimental platform. There were at least 30 min-
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utes left among adjacent measurements in order to decrease the concentration level with

the ventilation of the fume hood. The ventilation was not used during the measurements.
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Figure 8.5. Estimated points using SNCLA for each cluster.

The experimental parameters are given in Table 8.1. Among these parameters,

Ro is calculated by employing output voltage (Vout) of the sensor measurement circuit.

According to the MQ-3 sensor datasheet, its detection scope is between 5×10−5 and 10−2

kg/m3 (Hanwei-Electronics, 2018). This detection scope is scaled for Vout values between

0 and 5 V. Thus, 0.0004 kg/m3 corresponds to Vout = 0.2 V which is used to calculate the

sensor resistance value via (8.14). As mentioned in Section 8.3, the dispersion parameters

(σx, σy, σz) are assumed as constant values. For our experimental scenario and according

to (8.6)-(8.7), the ranges of σy and σz are 0.006 − 0.017 m and 0.0024 − 0.0068 m.

Therefore, σy and σz are chosen as the average values of these ranges. σx is also taken

as equal to σy (De Visscher, 2013). The window size of the moving average filter (L)

and number of samples to be averaged to determine the offset level (Aoi,j ) of the sensor

nodeNi,j , i.e., p, is determined empirically for our experimental scenario. In addition, the
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detection threshold amplitude (AT ) is also chosen as an empirical value in order to have

accurate estimations. However, the error values for a range of AT values are also given.

The estimation results for each cluster are shown in Figure 8.5. For the experi-

mental values, x̂T and ŷT have two complex conjugate roots for each. Therefore, only

real parts of the solutions are considered for the numerical results. As shown in Figure

8.5, there are more results for Cluster-1 and Cluster-2, since the wind velocity is mostly

in −x and +y direction for our measurements. The results of these two clusters are also

more accurate than the other clusters, since the wind blows stronger in −x and +y direc-

tion than the other directions. The accuracy of these clusters are more clearly depicted in

Figure 8.6. This figure shows the results of the best ten measurements in the same scale

for a better visual perception of the figure. When the wind velocity is higher, SNCLA

gives better results, since the effect of the dispersion of evaporated molecules decreases.
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Figure 8.6. Estimated points using SNCLA for all clusters without outliers.

In Figure 8.7, the average of the detection times for each sensor node is given as

a heatmap. This figure verifies the direction of the wind by the detection times. Inter-

estingly, there is no detection for the given threshold for the sensor node N5,3. Actually,

there are also very few detections for the other sensor nodes in the third column of the

SN. According to these observations, some of the evaporated molecules move in the same

direction with the wind whereas the rest of the molecules move mostly in the opposite

horizontal direction of the wind due to the initial puff of the TX.
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Figure 8.7. Average of the detection times for each sensor node.
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Figure 8.8. Cluster errors for different detection threshold amplitudes.

For the last part of the numerical results, an error metric, which is called Cluster

Error (εc), is defined for each cluster by

εc =


1

Mr

Mr∑
i=1

1

Mm

Mm∑
k=1

√
(xT − x̂(i)

Tk
)2 + (yT − ŷ(i)

Tk
)2, Cluster 1,3 (8.32)

1

Mc

Mc∑
j=1

1

Mm

Mm∑
k=1

√
(xT − x̂(j)

Tk
)2 + (yT − ŷ(j)

Tk
)2, Cluster 2,4 (8.33)

where Mm is the number of the measurements and (x̂(i)
Tk
, ŷ

(i)
Tk

) show the estimated points

for the ith node pair in the corresponding cluster at the kth measurement. In our case,

there are Mr = Mc = 5 node pairs for each cluster. First, the Euclidean distance between

the actual and estimated points are calculated for each node pair in the cluster. Then,
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these distances for all the measurements are averaged. This process is repeated for each

node pair in the cluster. The results of εc for AT values between 0− 0.15 V with 0.001 V

steps are given in Figure 8.8. For higher threshold values, Cluster-1 and 2 outperform the

other clusters due to the higher wind velocities. For lower thresholds, Cluster-3 has better

results due to the lower number of detections. Figure 8.8 also shows that the choice of the

detection threshold for lower error is significant which is left as an open research issue.
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CHAPTER 9

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this chapter, the thesis is concluded and the future research topics are discussed.

First, the concluding remarks are reviewed in Section 9.1. Based on these conclusions,

the future research directions are identified in Section 9.2.

9.1. Conclusions

In the first part of the thesis, the studies in microscale molecular communication

(MC) are given. In Chapter 2, a new concept about how accurate the molecular signal

is sensed and reconstructed by the receiver nanomachines (RNs) is proposed. The RN is

assumed as a perfect absorbing molecule counting machine and the reconstructed signal

is modeled as a counting process. The molecule concentration is treated as a molecular

signal and a signal distortion is defined as the mean square error between the existing

molecular signal outside the RN and the reconstructed signal. Instead of the deterministic

approach, Gaussian random process is used for the molecular signal outside the RN in

a more realistic way and DSPP is obtained to model the reconstructed signal. The de-

rived signal distortion function is validated by means of the random walk simulations.

Numerical results are given to highlight the effect of the system parameters such as the

diffusion coefficient, sampling period and RN radius, on the signal distortion. By the min-

imization of the signal distortion, the optimum RN design parameters are derived. The

analysis about the effect of the signal distortion on the RN design parameters shows that

the RN can reconstruct signals with a small distortion, when the RN design parameters

are properly configured.

The signal reconstruction distortion, which is proposed as a novel performance

parameter, can be employed to design an efficient MC system from the signal reconstruc-

tion perspective. For example, a smaller diffusion coefficient can be chosen for a faster

signal reconstruction with minimum signal distortion. Furthermore, this perspective can

be utilized to show the trade-off among the RN design parameters such that the optimum
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sampling period decreases and the minimum signal distortion increases, as the radius of

the RN decreases.

In the second part of the thesis, the studies in macroscale MC with active sources

(transmitters) are presented. In Chapter 3, five distance estimation methods are proposed

for a practical macroscale MC system. The existing two machine learning (ML) methods,

which are multivariate linear regression (MLR) and neural network regression (NNR),

are applied in distance estimation for the first time. In order to use these methods, an

experimental setup was established and received signals were recorded. A novel feature

extraction algorithm is proposed to generate training and test data from the measured

signals for the ML methods. By analyzing these generated data, three novel methods

for distance estimation are proposed and compared with the applied ML methods. The

ML methods result better than data analysis based methods, with NNR being the best

method. However, MLR has a very close performance to NNR, which shows that the

input features such as peak time, gradient of the received signal during the transition from

the noise floor up to the peak time and the received energy of the signal, have a linear

relation with the distance. MLR can be an efficient way for distance estimation with high

accuracy and low complexity as a ML method. Furthermore, data analysis based methods

perform worse, but are not as complex as ML methods. Especially, the peak time based

estimation performs close to ML methods, as the distance increases.

As a result of the experiments, the phenomena that cannot be explained with only

the diffusion of the molecules are revealed. The liquid ethanol is emitted as droplets from

the transmitter (TX) and these droplets are affected by the initial drift of the TX, Brownian

motion and gravity. Moreover, a possible trajectory of the droplets in which there are two

propagation zones as the unsteady flow zone and the Brownian motion zone is given. It is

analyzed that the transmitted droplets are affected by unsteady flows due to the induced

air as soon as they are emitted from the TX. Furthermore, our analysis shows that the non-

linear characteristic of the sensor can cause measurement errors. The joint effect of the

non-linearity of the sensor and unsteady flows complicates the estimation of the distance

at the receiver (RX) side as revealed by the experimental data. Hence, it can be concluded

that a fluid dynamics perspective is needed for a precise distance and any other channel

parameter estimation. It is also necessary to consider the imperfection of the TX and RX

to improve parameter estimation in macroscale practical MC system models.
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Based on the results and analysis in Chapter 3, the the Fluid Dynamics-based

Distance Estimation (FDDE) algorithm which uses a fluid dynamics perspective is pro-

posed for distance estimation in practical macroscale MC scenarios. For this algorithm,

the propagation of transmitted droplets is modeled by using fluid dynamics where it is

assumed that droplets and air particles move together as a mixture, i.e., two-phase flow.

Here, emitted droplets are modeled as evaporating spherical particles in the MC channel.

The traveling distance of this mixture derived using this model is employed in the pro-

posed algorithm to estimate the distance between the TX and RX. Afterwards, the FDDE

algorithm is validated by experimental data. It is revealed that the distance depends on

the initial velocity of droplets, air-droplet interaction in the two-phase flow, nozzle orifice,

beamwidth of the TX and densities of droplet and air. In addition, the effect of droplet

evaporation is shown with the numerical results. Hence, it is concluded that fluid dy-

namics approach can be employed to model the movements of droplets and estimate the

parameters of a macroscale MC channel. In particular, the proposed method can be ap-

plied to detect the distance to a pathogen emitting source using biosensors in a scenario

where pathogen-laden droplets spread through the air as a result of sneezing/coughing.

In Chapter 5, an end-to-end system model is proposed for macroscale sprayer-

based MC systems. Our model takes the liquid droplets as information carriers into ac-

count with a signal reconstruction approach. The signal reconstruction of the RX consid-

ers the adhesion/detachment of droplets and the sensor’s sensitivity. This study reveals

the physical meanings of the channel parameters for sprayer-based MC systems.

In Chapter 6, an algorithmic end-to-end system model is proposed for droplet-

based communication via coughing/sneezing between two static humans for an indoor

scenario. The TX emits a cloud which is a mixture of droplets and air and it propagates

under the influence of the initial momentum, gravity and buoyancy. A receiver model

which defines the central part of the human face as the RX cross-section is proposed for

the reception of droplets to give an output of infection state of the RX. The transmitted

and received number of droplets are modeled as random processes which lead us to derive

the probability of infection. Numerical results show that the safe zone for the RX starts at

1.7 m for a horizontally coughing TX. It is also revealed that the initial coughing angle of

the TX, the distance between the TX and RX and the detection threshold which actually

corresponds to the strength of the human immune system are significant parameters to
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model the airborne pathogen transmission. Furthermore, the reception of pathogens can

be affected by the sex of the human.

Chapter 7 presents a framework to model airborne pathogen transmission with a

communication engineering perspective. First, airborne pathogen transmission mecha-

nisms are reviewed and MC is utilized to model the propagation and reception of this

transmission. The concept of MoHANET is proposed to handle the infectious disease

spread modeling problem by using a layered structure in macro- and microscales. Fur-

thermore, simulation techniques and experimental methods to model airborne pathogen

transmission are reviewed and discussed. Throughout the article, open research issues

possessing the potential for development opportunities are given. The efforts to model the

infectious disease spread via airborne pathogen transmission with a novel approach given

in this article has the potential for a holistic viewpoint. This communication engineer-

ing viewpoint can bring different disciplines such as fluid dynamics, medicine, biology

and epidemiology together for accurate predictions about the spread of infectious dis-

eases. Hence, the most proper intervention method (lockdown, social distancing, wearing

masks, and so on) can be chosen and how it will be applied can be determined to stop the

epidemics in an effective way.

Chapter 8 presents a novel experimental platform for macroscale MC and a novel

algorithm for the localization of a molecular TX with a sensor network of four clusters,

i.e., Sensor Network-based Clustered Localization Algorithm (SNCLA). In our experi-

mental platform, the molecular TX emits molecules by evaporation at room temperature

and the signals are received with the sensor network. First, Gaussian plume model is

given as the system model for our scenario. Based on this system model, a location es-

timator is derived. Then, estimation/calculation methods for the unknown parameters in

the location estimator such as detection time, transmitted mass, wind velocity and the

actual concentration are proposed. Finally, SNCLA is explained by combining all these

estimated/calculated parameters. In SNCLA, the estimated location of the TX is based on

the estimated wind velocity direction and the derived location estimator. SNCLA gives

more accurate results for the clusters in the same direction with the wind for higher detec-

tion threshold values. Since the Gaussian plume model on which the SNCLA is based is

employed for longer distances in the meteorology domain, it is anticipated to have more

accurate results on larger scales with the proposed SNCLA.
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9.2. Future Research Directions

MC is studied in communication engineering literature since 2005 and there is still

a long way to accomplish breakthroughs in this area. In this section, the future research

directions are highlighted by giving open research issues as the extension of this thesis.

• Microscale MC: The studies in microscale MC literature does not take into account

the signal reconstruction (or sensing) of the molecular signals by the RNs for the

design of the communication systems. For example, in concentration shift keying,

it is essential to consider the concentration levels for different information symbols

according to the signal reconstruction of the RN. As the future work, MC methods

to transmit and receive information efficiently according to the signal reconstruc-

tion of the RNs can be developed. Moreover, the future works should include the

modeling and analysis of the signal reconstruction by the RNs with receptors.

• Macroscale MC with Active Transmitters: The experimental platforms proposed

in the macroscale MC literature get sophisticated by incorporating the usage of

magnetic nanoparticles as the information carriers and optical measurement tech-

niques for the reception. However, simple sprayer-based experimental MC systems

start to attract more researchers due to their role in modeling airborne pathogen

transmission.

The studies given in Chapter 3 and 4 can be extended to be applied in direction

estimation by using multiple sensors or sensor networks. Moreover, estimation

methods for MC channel parameters except the distance can be developed by us-

ing our fluid dynamics approach. As for the channel model proposed in Chapter 5,

there is a need to investigate what the proposed novel channel parameters depend

on. Furthermore, it is essential to highlight that these practical MC systems can be

implemented for the research in airborne pathogen transmission with a MC perspec-

tive. In a communication system where the TX is a person emitting pathogen-laden

droplets via sneezing/coughing and the RX is a biological sensor, the channel model

and distance estimation methods proposed in Chapters 3-5 can be applied.

In Chapter 6, the airborne pathogen transmission between two humans is modeled

by considering the propagation of droplets and their reception by their face via
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droplets. However, there are more factors affecting the transmission mechanism

as given in detail in Chapter 7. The convective boundary layer stemming from

the temperature difference of the human body and air, airflows of the ventilation

systems, and survival rate of the pathogens during their propagation in the air should

be included in the system models. In addition, the spread of infectious diseases

can be modeled by using the mobile human ad hoc network (MoHANET) concept

given in Chapter 7. The similarity of the human groups exchanging pathogens and

mobile telecommunication networks can be exploited for modeling the spread of

infectious diseases in a large scale. There is a need for further research to adopt and

implement techniques from telecommunication networks for modeling the spread

of the infectious disease through airborne pathogen transmission.

• Macroscale MC with Passive Transmitters: In the last part of the thesis, we focus

on the passive sources such as evaporating alcohol molecules. Passive sources are

not studied in macroscale MC literature, although they have the potential for prac-

tical applications. For example, the propagation of toxic gases causing air pollution

can be analyzed with MC perspective. In our study given in Chapter 8, sensor net-

works are employed to find the location of a passive source for a similar scenario

in small scale. As the future work, this study can be improved in larger scales via

different localization algorithms from the sensor network literature with MC per-

spective. With the usage of the sensor networks, novel methods can be developed

for the problems in macroscale MC by utilizing the wide literature of sensor net-

works.
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Halvoňová, B. and A. K. Melikov (2010). Performance of ductless personalized

ventilation in conjunction with displacement ventilation: Impact of disturbances due

to walking person(s). Building and Environment 45(2), 427–436.
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