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ABSTRACT

REIDEMEISTER TORSION OF CLOSED π-MANIFOLDS

Let M be a closed orientable 2n-dimensional π-manifold such that n , 2 and M is

either (n−2)-connected or (n−1)-connected. Such a manifold M can be decomposed as a

connected sum of certain simpler manifolds. In this thesis, by using such connected sum

decompositions, we develop multiplicative gluing formulas that express the Reidemeister

torsion of M with untwisted R-coefficients in terms of Reidemeister torsions of its build-

ing blocks in the decomposition. Then we apply these results to handlebodies, compact

orientable smooth (2n + 1)-dimensional manifolds whose boundary is a (n− 2)-connected

2n-dimensional closed π-manifold, and product manifolds.
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ÖZET

KAPALI π-MANİFOLDLARIN REIDEMEISTER TORSİYONU

Kabul edelim ki M yönlendirilebilir kapalı 2n-boyutlu bir π-manifold olsun öyle

ki n , 2 ve M ya (n − 2)-bağlantılıdır yada (n − 1)-bağlantılıdır. Böyle manifoldlar,

daha basit manifoldların bağlantılı toplamı olarak ifade edilebilir. Bu tezde, bağlantılı

toplamlar parçalanışı kullanılarak M manifoldunun R-değerli Reidemeister torsiyonunu

bağlantılı toplamı oluşturan manifoldların Reidemeister torsiyonları cinsinden ifade eden

çarpımsal yapıştırma formülleri geliştirilmiştir. Daha sonra bu sonuçlar tutamaçlara, sınırı

(n − 2)-bağlantılı 2n-boyutlu kapalı π-manifold olan kompakt yönlendirilebilir (2n + 1)-

boyutlu manifoldlara ve son olarak çarpım manifoldlarına uygulanmıştır.
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CHAPTER 1

INTRODUCTION

Reidemeister torsion is a topological invariant and an invariant of the basis of the

homology of a manifold. It was first introduced by Reidemeister (1935) to give a home-

omorphism classification of 3-dimensional lens spaces (up to PL equivalence). Franz

(1935) classified higher dimensional lens spaces by extending the notion of Reidmeister

torsion. The results of Reidemeister and Franz were extended to the spaces of constant

curvature +1 by de Rham (1964). Kirby and Siebenmann (1969) showed that Reidemeis-

ter torsion is a topological invariant for manifolds. Then Chapman (1974) proved the

invariance for arbitrary simplicial complexes and thus the classification of lens spaces of

Reidemeister and Franz was shown to be topological.

Using Reidemeister torsion, the Hauptvermutung was disproved by Milnor in

1961. He constructed two homeomorphic but combinatorially distinct finite simplicial

complexes. Then he described Reidemeister torsion with the Alexander polynomial which

plays an important role in knot theory and links (Milnor, 1962, 1966, 1968).

Interesting applications of this invariant occur in several branches of mathematics

and theoretical physics, such as topology (Franz, 1935; Milnor, 1961, 1962; Reidemeis-

ter, 1935), differential geometry (Müller, 1978; Cheeger, 1979; Ray and Singer, 1971),

representation spaces (Sözen, 2008, 2012a; Witten, 1989), Chern-Simon theory (Witten,

1991), algebraic K-theory (Milnor, 1966), dynamical systems (Hutchings and Lee, 1999),

theoretical physics and quantum field theory (Witten, 1989, 1991).

We briefly explain some of these applications. Ray and Singer (1971) defined an

analytical torsion, called Ray-Singer analytic torsion, corresponding to the de Rham com-

plex of the straight beam coefficient forms on a compact Riemann manifold. They also

conjectured that Ray-Singer analytic torsion is equal to the Reidemeister torsion obtained

by using the action of the fundamental group on the universal cover of a Riemannian man-

ifold and the representation corresponding to the flat beam. This conjecture was proved

independently by Müller (1978) and Cheeger (1979). The Ray-Singer analytic torsion

can be considered as a "de Rham counterpart" of the Reidemeister torsion (cf. de Rham
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cohomology vs. cellular cohomology).Witten (1989) investigated the non-abelian Chern-

Simons gauge field theory with the help of the Ray-Singer analytical torsion.

The Reidemeister torsion has proven its utility in a number of topics in three-

dimen- sional topology. For instance, the Casson-Walker-Lescop invariants are defined

by using Reidemeister torsion (see, (Lescop, 1996)). Meng and Taubes (1996) proved

that the Turaev’s maximal abelian torsion coincided with the Seiberg-Witten invariant on

3-dimensional manifolds if the first Betti number is not zero.

The Reidemeister torsion resembles to the Euler characteristic in many respects.

Thanks to the classical Poincaré-Hopf theorem, Euler counts the stationary points of

the characteristic smooth vector fields. Similarly, Fried (1983) proved that Reidemeis-

ter torsion counts closed orbits of Morse-Smale vector fields that are not zero anywhere

on the smooth manifolds. Thus, the Euler characteristic counts points while the torsion

counts circles. Hutchings and Lee (1999) generalized Fried’s conclusion. Schwarz (1977)

showed that the quantum field theory can be established on a manifold such that the par-

tition function will be a power of analytical torsion.

Symplectic chain complex is an algebraic topological tool and it was introduced

by Witten (1991). By using Reidemeister torsion and symplectic chain complex, he com-

puted the volume of several moduli spaces of representations from a Riemann surface to

a compact gauge group.

The Arf invariant of a non-singular quadratic form over a field of characteristic

2 was defined by Arf (1941) when he started the systematic study of quadratic forms

over arbitrary fields of characteristic 2. The Arf invariant has an application in geometric

topology. In particular, Kervaire (1960) used the Arf invariant and defined a Z2-valued

invariant, called Arf-Kervaire invariant, for (4k + 2)-dimensional compact manifolds. Af-

ter that, Browder (1969) extended this definition to framed closed (4k − 2)-dimensional

manifolds.

A manifold is called a π-manifold if the direct sum of its stable tangent bundle is

trivial. Such manifolds are defined by Whitehead (1940) as combinatorial manifolds that

have product regular neighbourhoods when imbedded in a Euclidean space of sufficiently

high dimension. In his work, he showed that a triangulated smooth combinatorial π-

manifold has a trivial normal bundle.

This thesis is organized as follows. In Chapter 2 we give the some basic concepts
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and results from algebraic topology which are required for notational convenience in the

rest of the thesis.

In Chapter 3 we recall some essential results on smooth manifolds. We first give

the connected sum operation on these manifolds. Then we give a summary on vector

bundles. Lastly, we give the definition of a π-manifold and discuss some important results

on π-manifolds.

In Chapter 4 we give preliminaries on Reidemeister torsion. We first recall the

definition of the Reidemeister torsion of a general chain complex. After giving some

properties of Reidemeister torsion that are essential for this thesis, we mention the notion

of a symplectic chain complex. Then we give the definition of Reidemeister torsion for

manifolds.

In Chapter 5 we state and prove the main results of this thesis, which are compu-

tations of the Reidemeister torsions of certain π-manifolds with untwisted R-coefficients.

We start with closed orientable surfaces. Note that every such surface is a π-manifold that

admits a connected sum decomposition. For this purpose, we first obtain a formula for

the Reidemeister torsion of one-holed-torus Σ1,1 by using the notion of a symplectic chain

complex and homological algebra techniques. Applying this result and considering the

connected sum decomposition
g
#

j=1
(Σ1,0) of Σg,0, we compute the Reidemeister torsion of

Σg,0 in terms of the Reidemeister torsion of Σ1,1. Then, for n ≥ 3, we compute the Reide-

meister torsion of (n−2)-connected 2n-dimensional closed π-manifold M2n in terms of the

Reidemeister torsions of its building blocks in the decomposition M2n =
p
#

j=1
(Sn×Sn)#M2n

1

due to (Ishimoto, 1969). Lastly, we consider (n − 1)-connected 2n-dimensional closed

π-manifold M2n for (n ≥ 3) with the decomposition M2n =
p
#

j=1
(Sn × Sn)#S̃2n as given by

(Ishimoto, 1969) and we compute the Reidemeister torsion of such manifolds in terms of

the Reidemeister torsions of its building blocks.

In Chapter 6 we apply our main results to the manifolds such as handlebodies;

compact, orientable, smooth (2n + 1)-dimensional manifolds whose boundary is (n − 2)-

connected 2n-dimensional closed π-manifold, and product manifolds.

3



CHAPTER 2

BASIC NOTIONS IN ALGEBRAIC TOPOLOGY

In this chapter, we recall the essential background in algebraic topology used in

this thesis. We refer the reader to (Hatcher, 2002) for details of the definitions, theorems

and their proofs given in this chapter.

2.1. Chain Complexes and Homology Groups

In this section, we give definitions and properties of chain complexes and homol-

ogy groups. For more details, see (Hatcher, 2002, Chapter 2).

A chain complex of abelian groups of length m is a sequence

C∗ = (C∗, ∂∗) = (0→ Cm
∂m
−→ Cm−1

∂m−1
−→ · · ·

∂2
−→ C1

∂1
−→ C0

∂0
→ 0)

of abelian groups and homomorphisms such that Im(∂p) ⊂ Ker(∂p) or equivalently ∂p ◦

∂p+1 = 0 for all p ∈ {1, . . . ,m}. The map ∂p is called a boundary homomorphism. For

each p ∈ {1, . . . ,m}, define

Bp(C∗) = Im{∂p+1 : Cp+1 → Cp},

Zp(C∗) = Ker{∂p : Cp → Cp−1}.

The p−th homology of the chain complex C∗ is defined by the quotient

Hp(C∗) = Zp(C∗)/Bp(C∗).

An element in Ker{∂p} is called a cycle and an element in Im{∂p+1} is called a boundary.

Elements in Hp(C∗) are called homology classes.

4



Definition 2.1 Let (C∗, ∂∗) be a chain complex of length m. If for all p ∈ {1, . . . ,m},

Zp(C∗) = Bp(C∗), or equivalently the homology Hp(C∗) = 0, then (C∗, ∂∗) is called exact

(or acyclic). If m = 2, then (C∗, ∂∗) is called a short exact sequence and if m ≥ 3, then it

is called a long exact sequence.

Now, we recall the following well-known result.

Lemma 2.1 (Splitting Lemma) For a short exact sequence of abelian groups

0→ X
q
−→ Y

r
−→ Z → 0,

the following statements are equivalent:

(i) There is a homomorphism t : Y → X such that t ◦ q = idX : X → X.

(ii) There is a homomorphism u : Z → Y such that r ◦ u = idZ : Z → Z.

(iii) There is an isomorphism Y � X⊕Z making a commutative diagram as at the below,

where the maps in the lower row are the obvious ones, x 7→ (x, 0) and (x, z) 7→ z.

Y

0 X Z 0

X ⊕ Z

r

�

q

If the above conditions are satisfied, the exact sequence is said to be split. Therefore, we

can conclude that Y = X ⊕ u(Z).

Definition 2.2 Let (C∗, ∂∗) and (C′∗, ∂
′
∗) be chain complexes. A chain map φ from (C∗, ∂∗)

to (C′∗, ∂
′
∗) is a family of homomorphisms φ = {φp : Cp → C′p}p≥0 such that the following

diagram commutes for each p

. . .→ Cp
∂p
−→ Cp−1

∂p−1
−→ Cp−2 → . . .

↓φp ↓φp−1 ↓φp−2

. . .→ C′p
∂′p
−→ C′p−1

∂′p−1
−→ C′p−2 → . . .

5



Remark 2.1 If φ : C∗ → C′∗ is a chain map between chain complexes (C∗, ∂∗) and (C′∗, ∂
′
∗),

then for each p there is an induced homomorphism φ∗ : Hp(C∗)→ Hp(C′∗).

Definition 2.3 A homotopy between given continuous functions f , g : X → Y is a contin-

uous function H : X × [0, 1]→ Y such that

 H(x, 0) = f (x), ∀x ∈ X

H(x, 1) = g(x), ∀x ∈ X.

If there is a homotopy between f and g, then we say f and g are homotopic and we write

f ' g.

Let X and Y be two topological spaces and let f : X → Y be continuous function.

If there is a continuous function g : Y → X such that g ◦ f ' idX and f ◦ g ' idY , then f

is called a homotopy equivalence and the spaces X and Y are called homotopy equivalent

which is denoted by X ' Y. Here, idX is the identity map of X and idY is the identity map

of Y.

The following theorem shows that the singular homology is a homotopy invariant.

Theorem 2.1 (Homotopy Invariance Theorem) Let f , g : X → Y be homotopic maps.

Then they induce the same homomorphism on homology; that is,

f∗ = g∗ : Hp(X)→ Hp(Y).

The following corollary is obtained from the Homotopy Invariance Theorem.

Corollary 2.1 If f : X → Y is a homotopy equivalence, then the induced homomorphisms

f∗ : Hp(X)→ Hp(Y) are isomorphisms for all p.

Definition 2.4 A sequence of the chain maps 0 → A∗
α
−→ D∗

β
−→ C∗ → 0 is called a

short exact sequence of chain complexes if for every p ∈ N, 0 → Ap
αp
−→ Dp

βp
−→ Cp → 0

is a short exact sequence.

In homological algebra, the Zig-Zag Lemma is a key lemma showing that a short exact

sequence of chain complexes induces a natural long exact sequence in homology.
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Lemma 2.2 (Zig-Zag Lemma) For a short exact sequence of chain complexes

0→ A∗
α
−→ D∗

β
−→ C∗ → 0,

there are connecting homomorphisms

∂p : Hp(C∗)→ Hp−1(A∗)

such that the following sequence is long exact

· · ·
∂
−→ Hp(A∗)

α∗
−→ Hp(D∗)

β∗
−→ Hp(C∗)

∂
−→ Hp−1(A∗)→ · · ·

2.2. Mayer-Vietoris Sequence

The Mayer-Vietoris sequence provides an easy computation tool for homology of

a topological space in terms of homologies of its subspaces. Let X be a topological space

and V,W ⊆ X such that

X =
◦

V ∪
◦

W.

Assume that Cp(V + W) is the subgroup of Cp(X) whose elements are sums of chains in

either V or W. Restricting the usual boundary map ∂ : Cp(X) → Cp−1(X) on Cp(V + W),

C∗(V + W) becomes a chain complex. The inclusions

Cp(V + W) ↪→ Cp(X)

induce isomorphisms on homology groups

Hp(V + W) � Hp(X).

7



There is a natural short exact sequence of chain complexes

0→ C∗(V ∩W)
ϕ
−→ C∗(V) ⊕C∗(W)

φ
−→ C∗(V + W)→ 0, (2.1)

where ϕ(x) = (x, x) and φ(x, y) = x + y. The Mayer-Vietoris sequence is the long exact

sequence of homology groups obtained by using the Zig-Zag Lemma for the short exact

sequence (2.1)

H∗ : · · · −→ Hp(V ∩W)
αp
−→ Hp(V) ⊕ Hp(W)

βp
−→ Hp(X)

∂p

Hp−1(V ∩W)
αp−1
−→ Hp−1(V) ⊕ Hp−1(W)

βp−1
−→ Hp−1(X)

∂p−1

Hp−2(V ∩W)
αp−2
−→ · · ·

Here, ∂p : Hp(X)→ Hp−1(V ∩W) is the boundary map.

2.3. Homotopy Groups

In this section, we recall the definition of homotopy groups and the results. For

more details, we refer to (Hatcher, 2002, Chapter 4).

Let (Sn, s0) denote the n-sphere with base point s0 ∈ S
n. The n-th homotopy group

πn(X, x0) of a topological space X with base point x0 is the set of homotopy classes of

maps from (Sn, s0) into (X, x0); that is,

πn(X, x0) = {[ f ], f : (Sn, s0)→ (X, x0)},

where homotopies are required to satisfy H(s0, t) = x0 for all t. The sum f + g is the

8



composition

Sn c
−→ Sn ∨ Sn f∨g

−→ X

where c collapses the equator Sn−1 in Sn to a point and we choose the base point s0 to lie

in Sn−1 and ∨ denotes the wedge sum.

Definition 2.5 A topological space X with a base point x0 is called n-connected if πi(X, x0) =

0 whenever i ≤ n, where 0 denotes the trivial group.

It is evident from Definition 2.5 that

• −1-connectedness coincides with non-emptiness,

• 0-connectedness coincides with non-emptiness and path-connectedness,

• 1-connectedness coincides with simply connectedness,

• The n-sphere Sn is (n − 1)-connected.

Theorem 2.2 A topological space X is n-connected if and only if one of the following

holds for i ≤ n.

(i) Every map Si → X is homotopic to a constant map.

(ii) Every map Si → X extends to a map Di+1 → X.

(iii) πi(X, x0) = 0 for every x0 ∈ X.

Let X be a path-connected topological space. The Hurewicz map is a group homo-

morphism h : πn(X)→ Hn(X) defined by h([ f ]) = f∗(α), where α is the fixed generator

of Hn(S n) and f∗ : Hn(Sn) → Hn(X) is induced by f : Sn → X for n > 0. The Hurewicz

theorem establishes the connection between homotopy groups and homology groups of a

topological space.

Theorem 2.3 (Hurewicz Theorem) Let X be an (n − 1)-connected topological space

n ≥ 2. Then the Hurewicz map h : πn(X)→ Hn(X) becomes an isomorphism. Moreover,

Hi(X) = 0, 1 ≤ i < n.
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CHAPTER 3

SOME ESSENTIAL BACKGROUND ON SMOOTH

MANIFOLDS

Throughout this chapter, we follow the definitions and notations of (Lee, 2013).

We start with the definition of a manifold.

An n-dimensional topological manifold M is a topological space with the follow-

ing properties:

• M is a Hausdorff space: for every pair of distinct points p, q ∈ M, there are disjoint

open subsets U,V ⊂ M such that p ∈ U and q ∈ V.

• M is second-countable: there exists a countable basis for the topology of M.

• M is locally Euclidean of dimension n: for each point p of M there is an open subset

p ∈ U ⊂ M which is homeomorphic to an open subset of Rn.

An n-dimensional topological manifold with boundary is a second-countable Haus-

dorff space in which every point has a neighbourhood homeomorphic either to an open

subset of Rn or to a (relatively) open subset of closed n-dimensional upper half-space

Hn = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}. A manifold is called compact if the underlying the

topological space is compact. A closed manifold is a compact manifold without bound-

ary.

Let M be an n-dimensional topological manifold. A coordinate chart (shortly a

chart) on M is a pair (U, ψ), where U is an open subset of M and ψ : U → Ũ is a

homeomorphism from U to an open subset Ũ = ψ(U) of Rn. If (U, ψ) and (V, φ) are two

charts such that U ∩ V , ∅, the composite map φ ◦ ψ−1 : ψ(U ∩ V)→ φ(U ∩ V) is called

the transition map from ψ to φ.

Two charts (U, ψ) and (V, φ) are said to be smoothly compatible if either U∩V = ∅

or the transition map

φ ◦ ψ−1 : ψ(U ∩ V)→ φ(U ∩ V)

is a diffeomorphism. An atlas for M to be a collection of charts whose domains cover

M. If any two charts in A are smoothly compatible with each other, then A is called a
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smooth atlas. A smooth atlas A on M is maximal if it is not properly contained in any

larger smooth atlas.

Definition 3.1 A smooth structure on a topological manifold M is a maximal smooth

atlas on M. A smooth manifold is a pair (M,A) where M is a topological manifold and

A is a smooth structure on M.

A real-valued function f : M → R is called smooth if for every p ∈ M; there is

a smooth chart (U, ψ) for M with p ∈ U such that f ◦ ψ−1 is smooth on ψ(U). The set of

all smooth functions from M to R is denoted by C∞(M). The set C∞(M) is a vector space

over R with point-wise addition and scalar multiplication.

In generally, a finite product of smooth manifolds with boundary is not a smooth

manifold with boundary. But a product of smooth manifolds together with one smooth

manifold with boundary is a smooth manifold with boundary. More precisely,

Proposition 3.1 Let M1, . . . ,Mk be smooth manifolds without boundary and N a smooth

manifold with boundary. Then M1 × · · · × Mk × N is a smooth manifold with boundary

∂(M1 × · · · × Mk × N) = M1 × · · · × Mk × ∂(N).

For a finite CW-complex X, the Euler characteristic is defined to be the alternating

sum

χ(X) =
∑

n

(−1)ntn,

where tn is the number of n-cells of X. Equivalently, χ(X) can be defined purely in terms

of homology as follows

χ(X) =
∑

n

(−1)n rank(Hn(X)).

Hence, χ(X) depends only on the homotopy type of X, that is, it is independent of the

choice of CW-structure on X. Here, the rank of a finitely generated abelian group is the

number of Z summands when the group is expressed as a direct sum of cyclic groups.

3.1. Connected Sum of Manifolds

In this section, we recall the definition and some important properties of the con-

nected sum operation on smooth manifolds. For more details, we refer the reader to (Lee,

2013) and (Kervaire and Milnor, 1963).
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For connected n-dimensional manifolds M1 and M2, choose smooth imbeddings

i1 : Dn → M1, i2 : Dn → M2

such that i1 preserves orientation and i2 reverses orientation, where Dn denotes the open

unit ball in Rn.

Definition 3.2 The connected sum M1#M2 is the space of the disjoint union

M1 − i1(0) t M2 − i2(0)

by identifying i1(tυ) with i2((1 − t)υ) for each unit vector υ ∈ Sn−1 and each 0 < t < 1.

Since the correspondence i1(tυ) → i2((1 − t)υ) preserves orientation, the orientation on

M1#M2 can be chosen to be compatible with the orientation of M1 and M2.

By the Invariance of Domain, the projections Mk − ik(0) → M1#M2, k = 1, 2

are open maps, so M1#M2 is second countable and Hausdorff. Moreover, the orientation

preserving diffeomorphism i2 ◦ i−1
1 together with these open maps imply that the smooth

structures on M1 − i1(0) and M2 − i2(0) are compatible. Hence, there is a smooth structure

on M1#M2. The following theorem is due to (Kervaire and Milnor, 1963).

Theorem 3.1 The connceted sum M1#M2 is a closed, oriented, smooth n-dimensional

manifold and it is independent of the choice of the imbeddings ik : Dn → Mk, k = 1, 2.

It is well-known that many classical invariants are well-behaved under the con-

nected sum operation, in particular, homology groups. Let M1 and M2 be connected,

closed, oriented n-dimensional manifolds and Ni the image in M1#M2 of Mk − ik(0), k =

1, 2. Note that N1 ∩ N2 has the homotopy type of Sn−1. The Mayer-Vietoris sequence for

the pair (N1,N2) gives the following isomorphism for 0 < i < n

Hi(M1#M2) � Hi(M1) ⊕ Hi(M2).

Two orientation preserving embeddings ψ1, ψ2 : Dn → M are called isotopic
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if there exist some diffeomorphism ϕ of M such that ψ2 = ϕ ◦ ψ1. Palais (1959) and

Cerf (1961) showed that any two orientation preserving smooth embeddings of Dn into a

connected, compact, oriented, smooth n-dimensional manifold are isotopic. By using this

result, Kervaire and Milnor (1963) proved the following theorem.

Theorem 3.2 Let M be the set of connected, compact, oriented, smooth n-dimensional

manifolds. Then (M, #) is an associative and commutative monoid (up to the orientation

preserving diffeomorphism), where the identity element is the n-sphere Sn.

The above theorem can be restated as follows: For any M1,M2,M3 ∈ M the following

axioms hold

(i) M1#M2 ∈ M,

(ii) M1#Sn � M1,

(iii) (M1#M2)#M3 � M1#(M2#M3),

(iv) M1#M2 � M2#M1.

Here, � indicates that two manifolds are diffeomorphic.

Theorem 3.3 Let M and N be oriented, smooth n-dimensional manifolds with non-empty

boundaries and f : ∂M → ∂N a diffeomorphism between the boundaries. Then the

adjunction space

M ∪ f N,

formed by identifying each x ∈ ∂M with f (x) ∈ ∂N, is a closed, smooth n-dimensional

manifold. If M and N are both compact, then M ∪ f N is compact, and if they are both

connected, then M ∪ f N is connected.

In the above theorem, if N = M and f = id∂M, then the corresponding adjunction

space M ∪id∂M M is called the double of M and denoted by d(M).

3.2. Vector Bundles

In this section, we recall the definition of a vector bundle and state some results

on tangent bundles. We refer to (Hatcher, 2003) and (Lee, 2013) and references therein
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for details. Throughout this section, F denotes the field of real numbers R or complex

numbers C.

Definition 3.3 An n-dimensional vector bundle over F is a triple ξ = (E, p, B), where E

and B are topological spaces and p : E → B is a continuous surjection satisfying the

following conditions:

(i) For each b ∈ B, the fiber Eb = p−1(b) over b is an n-dimensional vector space.

(ii) For each b ∈ B, there is a neighbourhood Ub of b and a homeomorphism

ϕb : p−1(Ub)→ Ub × F
n,

called a local trivialization of the vector bundle ξ over Ub, such that the restriction

of ϕb to Eb is a vector space isomorphism from Eb = p−1(b) to {b} × Fn � Fn and

the below diagram is commutative

p−1(Ub) Ub × F
n

Ub

ϕb

p
π

Here, π : Ub × F
n → Ub is the natural projection. The space B is called the base space, E

is the total space of the bundle.

An F−vector bundle is called a real vector bundle if F = R, a complex vector

bundle if F = C.

Definition 3.4 An isomorphism between vector bundles ξ = (E, p1, B) and ξ′ = (E′, p2, B)

over the same base space B is a homeomorphism

h : E → E′

taking each fiber p−1
1 (b) to the corresponding fiber p−1

2 (b′) by a linear isomorphism. Thus,
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an isomorphism preserves all the structure of a vector bundle. If ξ and ξ′ are isomorphic,

then we write ξ � ξ′.

Example 3.1 Some examples of vector bundles are given as follows.

(i) The n-dimensional product or trivial vector bundle εn(M) over a topological space

M is the bundle

(M × Fn, p,M)

with the vector space structure of Fn defining the vector space structure on b ×

Fn = p−1(b) for b ∈ B. The local triviality condition holds by letting Ub = B and

ϕb = idp−1(Ub). Here, p : B × Fn → B is the projection onto the first factor.

(ii) The line bundle is the one-dimensional vector bundle. Thus, the trivial line bundle

over a manifold M is isomorphic to the product bundle ε1(M) = (M × R, p,M).

Definition 3.5 Let M be a smooth manifold with or without boundary, and let x be a point

of M. A derivation at x is a linear map

D : C∞(M)→ R

that satisfies the Leibniz rule

D( f g) = f (x)D(g) + g(x)D(g)

for all f , g ∈ C∞(M). The tangent space TxM to M at x is the set of all derivations of

C∞(M). Moreover, TxM is a vector space and its elements are called tangent vectors at x.

Definition 3.6 The tangent bundle of a smooth manifold M, with or without boundary, is

the triple

τ(M) = (T M, p,M),

where T M is the disjoint union of the tangent spaces at all points of M

T M =
∐
x∈M

TxM = {(x, v) | x ∈ M, v ∈ TxM},
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and p : T M → M is the projection map which sends each vector v in TxM to the point x

at which it is tangent: p(x, v) = x.

Example 3.2 The tangent bundle of the unit sphere Sn in Rn+1 is a vector bundle

τ(Sn) = (E, p,Sn),

where E = {(x, v) ∈ Sn × Rn+1 | x ⊥ v} and v is the tangent vector to Sn by translating it

so that its tail is at the head of x, on Sn. The map

p : E → Sn

sends (x, v) to x. Choose any point x ∈ Sn and let Ux ⊂ S
n be the open hemisphere

containing x and bounded by the hyperplane through the origin orthogonal to x. The

local trivialization

ϕx : p−1(Ux)→ Ux × p−1(x) � Ux × R
n

given by

ϕx(y, v) = (y, πx(v)),

where πx is orthogonal projection onto the hyperplane p−1(x) and it restricts to an iso-

morphism of p−1(y) onto p−1(x) for each y ∈ Ux.

Definition 3.7 A compact smooth manifold M is called parallelizable if its tangent bundle

τ(M) is trivial. If the tangent bundle of M − {x} is trivial for some x ∈ M, then M is called

almost parallelizable.

Example 3.3 Here we list some important examples of parallelizable manifolds.

(i) The n-torus for all n.

(ii) Lie groups such as Euclidean spaces Rn, orthogonal groups O(n), and unitary

groups U(n), etc.
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(iii) The tangent bundle τ(S1) of S1 is trivial since there is an isomorphism

h : TS1 → S1 × R

(eiθ, iteiθ) 7→ (eiθ, t)

for eiθ ∈ S1 and t ∈ R. Moreover, Bott and Milnor (1958) and independently Ker-

vaire (1958) showed that the only parallelizable spheres are S1,S3,S7.

(iv) All compact, connected, orientable 3-dimensional manifold is parallelizable. The

details of the proof can be found in (Milnor and Stasheff, 2016).

(v) The Stiefel manifold Vk(Rn) is a subspace of the product of n copies of the unit

sphere Sk−1, namely, the subspace of orthogonal n tuples. Since the product of

spheres is compact, Vk(Rn) is also a compact manifold. The complex Stiefel mani-

fold Vk(Cn) and quaternionic Stiefel manifold Vk(Hn) are defined analogously using

the standard Hermitian product on Cn and the standard quaternionic product Hn

defined as

p · p′ =
∑

1≤i≤n

p̄i p′i

for p, p′ ∈ Hn. The Stiefel manifolds Vk(Rn), Vk(Cn) and Vk(Hn) are parallelizable

if k > 2 by (Sutherland, 1964; Handel, 1965; Lam, 1975).

Proposition 3.2 Every parallelizable smooth manifold is orientable.

Definition 3.8 Let ξ = (E, p1, B) and ξ′ = (E′, p2, B′) be two vector bundles. The Carte-

sian product of ξ and ξ′ is the bundle

ξ × ξ′ = (E × E′, p1 × p2, B × B′)

with fibers the products p−1
1 (b) × p−1

2 (b′) = Eb × E′b′ . If we have local trivializations

ϕb : p−1
1 (Ub)→ Ub × R

n, ϕb′ : p−1
2 (Ub′)→ Ub′ × R

m
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for E and E′, then ϕb × ϕb′ is a local trivialization for E × E′.

Given two vector bundles ξ1 = (E, p1, B) and ξ2 = (E′, p2, B) over the same base

space B, a third vector bundle over B can be created such that its fiber over each point of

B is the direct sum of the fibers of E and E′ over this point which is called the Whitney

Sum of the bundles ξ1 and ξ2. Its formal definition is given as follows:

Definition 3.9 The Whitney Sum of two vector bundles ξ1 and ξ2 over B is the bundle

ξ1 ⊕ ξ2 = (E ⊕ E′, p, B),

where the total space E ⊕ E′ is defined as

{(e1, e2) ∈ E × E′ | p1(e1) = p2(e2)}

and the projection p : E ⊕ E′ → B sending (e1, e2) to the point p1(e1) = p2(e2). The fiber

at each b ∈ B is the direct sum Eb ⊕ E′b.

Definition 3.10 Given a vector bundle ξ = (E, p, B) and a subspace A ⊂ B, the triple

ξ
|A

= (p−1(A), p, A)

is a vector bundle, called the restriction of E over A.

For ξ1 = (E, p1, B) and ξ2 = (E′, p2, B), the restriction of the product E × E′ over the

diagonal B = {(b, b) ∈ B × B} is exactly ξ1 ⊕ ξ2.

Proposition 3.3 Given a map f : A → B and a vector bundle (E, p, B), there exists a

vector bundle (E′, p′, A) with a map f ′ : E′ → E taking the fiber of E′ over each point

a ∈ A isomorphically onto the fiber of E over f (a), and such a vector bundle E′ is unique

up to isomorphism

E′ E

A B

f ′

p′ p

f
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From the uniqueness statement it follows that the isomorphism type of E′ depends

only on the isomorphism type of E since we can compose the map f ′ with an isomorphism

of E with another vector bundle over B. Thus, there is a function

f ∗ : Vect(B)→ Vect(A)

taking the isomorphism class of E to the isomorphism class of E′. Often the vector bundle

E′ is written as f ∗(E) and called the pull back of E by f .

Note that the Whitney sum ξ1 ⊕ ξ2 can be considered as the pull-back bundle of

the diagonal map from B to B × B, where the bundle over B × B is E × E′.

3.3. π-Manifolds

The purpose of this section is to give the basic definitions and theorems for the

class of manifolds that can be imbedded in a Euclidean space of a sufficiently high di-

mension with a trivial normal bundle. This class of manifolds can be characterized by

a condition on the tangent bundle. The discussions and results of this section appear in

(Kervaire and Milnor, 1963) and (Whitehead, 1940). For the sake of the completeness,

we also provide some of the proofs.

Let M be a compact, oriented, smooth manifold with tangent bundle τ(M), and let

ε1(M) denote a trivial line bundle. The Whitney sum τ(M) ⊕ ε1(M) is called the stable

tangent bundle of M.

Definition 3.11 A manifold is said to be a π-manifold or stably parallelizable if its stable

tangent bundle is trivial.

For brevity, we call such manifolds π-manifolds.

Theorem 3.4 (Whitehead, 1940) Every parallelizable manifold is a π-manifold. Every

π-manifold is almost parallelizable.

The following lemmas give the necessary and sufficient conditions for being a

π-manifold.
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Lemma 3.1 (Kervaire and Milnor, 1963) Let ξ be a k-dimensional vector bundle over an

n-dimensional complex, k > n. If the Whitney sum of ξ with a trivial bundle εr is trivial,

then ξ itself is trivial.

Proof Suppose that r = 1, and ξ is oriented. From the following isomorphism

ξ ⊕ ε1 � εk+1

it follows that there is a bundle map f from ξ to ϕk of oriented k-planes in (k + 1)-space.

The dimension of the base space of ξ is n, and also the base space of ϕk is the k-sphere

Sk, k > n. Thus, f is null-homotopic; and hence ξ is trivial. �

Lemma 3.2 (Whitehead, 1940) Let M be an n-dimensional submanifold of Sn+k, n < k.

Then M is a π-manifold if and only if its normal bundle is trivial.

Proof Since the Whitney sum τ(M) ⊕ ν(M) is trivial, (τ(M) ⊕ ε1(M)) ⊕ ν(M) is trivial.

By Lemma 3.1, the conclusion follows. �

Lemma 3.3 (Kervaire and Milnor, 1963) A connected manifold with non-empty bound-

ary is a π-manifold if and only if it is parallelizable.

Proof This follows by a similar argument. By the hypothesis on the manifold, every

map into a sphere of the same dimension is null-homotopic. �

The class of π-manifolds behaves nicely under the product operation. So, the

following two propositions are straightforward from Lemma 3.2 and Lemma 3.3.

Proposition 3.4 Let M1, M2 be closed smooth manifolds.

(i) The product manifold M1 × M2 is a π-manifold if and only if M1 and M2 are both

π-manifolds.

(ii) The product manifold M1 × M2 is parallelizable provided that M1 is a π-manifold

and M2 is parallelizable.

Proposition 3.5 (Kervaire and Milnor, 1963) The connected sum of two π-manifolds is a

π-manifold.

Example 3.4 Here we give some important examples of π-manifolds.
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(i) The n-sphere Sn is a π-manifold. For any n ∈ N, the Whitney sum τ(Sn) ⊕ ε1(Sn)

is isomorphic to the trivial bundle Sn × Rn+1 since elements of the direct sum are

triples (x, v, t) ∈ Sn × Rn+1 × R with x ⊥ v and the map

(x, v, t) 7→ (x, (v, t))

gives an isomorphism of the direct sum bundle τ(Sn) ⊕ ε1(Sn) with Sn × Rn+1.

(ii) Let Σg,0 be a closed, orientable, connected surface of genus g. The Euler character-

istic of Σg,0 is χ(Σg,0) = 2 − 2g.

• If g = 0, then Σg,0 is 2-sphere S2 and it is a π-manifold,

• If g = 1, then Σg,0 equals the torus S1 × S1 which is parallelizable,

• If g > 1, then Σg,0 is the connected sum of g-copies of torus which is a π-

manifold by Proposition 3.5.

(iii) Let W be a parallelizable manifold with boundary M = ∂(W). Then W is necessarily

orientable and the normal bundle ν to the inclusion M ↪→ W is a trivial line bundle.

Thus, τ(W)|M � τ(M) ⊕ ε1(M). The triviality of the bundle τ(W)|M implies that

τ(M) ⊕ ε1(M) is trivial; that is, M is a π-manifold. Moreover, the boundary of a

π-manifold is also a π-manifold.

One of the main themes in geometric topology is the study of smooth manifolds

and their piecewise linear (PL) triangulations. Shortly after Milnor (1956)’s discovery of

exotic smooth spheres in seven dimensions, Kervaire (1960) constructed the first example

(in dimension 10) of a PL-manifold with no differentiable structure, and a new exotic

smooth 9-sphere.

The Kervaire manifold M4k+2
K is a closed, almost parallelizable, PL-manifold with

the same homology as the product S2k+1 × S2k+1 of spheres. It is simply-connected when

k > 0. The Kervaire manifold can be constructed as follows: for 2k + 1 , 1, 3, 7, let

p : T → S2k+1
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be the tangent disc bundle of S2k+1 and D2k+1 the closed (2k + 1)-ball,

h : D2k+1 → S2k+1

an embedding,

k : D2k+1 × D2k+1 → T

a bundle map covering h. Assume that T̃ is a copy of T and

M4k+2 = T ∪ T̃

with h(x, y) identified to h(y, x) for each (x, y) ∈ D2k+1 × D2k+1. Thus, M4k+2 is a manifold

with boundary and the boundary ∂(M4k+2) = Σ4k+1 is a smooth homotopy sphere, called

the Kervaire sphere. By Smale (1961), Σ4k+1 is always PL-homeomorphic to the standard

sphere S4k+1. Let f : ∂(M4k+2)→ S4k+1 be a homeomorphism. Then the Kervaire manifold

M4k+2
K is the adjunction space

M4k+2 ∪ f D4k+2

formed by identifying each x ∈ ∂(M4k+2) with f (x) ∈ S4k+1.

Theorem 3.5 (Brown Jr and Peterson, 1965) If M is a smooth manifold with the same

homotopy type as Kervaire manifold M2n
K , then M is a π-manifold.

The Kervaire semi-characteristic is an invariant of closed (4n + 1)-dimensional

manifolds and it is introduced by Kervaire (1956).

Definition 3.12 Let M be a closed, oriented, smooth (4n + 1)-dimensional manifold. The

Kervaire semi-characteristic k(M) of M is a mod 2 invariant defined by

2n∑
i=0

rank(H2i(M;R)) mod 2.

In the following theorem, Sutherland (1964) answered the questions: How many

parallelizable manifolds are and what style they have.

22



Theorem 3.6 (Sutherland, 1964) Let Mn be a closed n-dimensional π-manifold. Then

Mn is parallelizable if and only if

(i) n is even and the Euler characteristic χ(Mn) of Mn is zero, or

(ii) n is odd, n , 1, 3, 7, and the Kervaire semi-characteristic k(Mn) of Mn is zero

mod 2, or

(iii) n = 1, 3, 7.

By Theorem 3.6, it is concluded that S2 is not parallelizable since its Euler characteristic

χ(S2) is 2. But it is a closed π-manifold.

A homotopy n-sphere S̃n is a closed n-dimensional manifold with the homotopy

type of n-sphere Sn. That is, it has the same homotopy groups and the same homology

groups as the n-sphere. Namely,

Hi(S̃n;Z) =

 Z , i = 0, n

0 , i , 0, n.

Using the results of Adams and Walker (1965), Kervaire and Milnor (1963) proved

the following theorem.

Theorem 3.7 Kervaire and Milnor (1963) Homotopy spheres are π-manifolds.

The proof of Theorem 3.7 based on the obstruction to the triviality of τ(S̃n) ⊕ ε1(S̃n) is a

well-defined cohomology class

on(S̃n) ∈ Hn(S̃n, πn−1(S On+1)) = πn−1(S On+1).

The coefficient group can be identified with the stable group πn−1(S On+1). Bott (1959)

computed these stable groups for n > 2, as follows

πn−1(S On+1) =


Z , n ≡ 0, 4 (mod 8)

Z2 , n ≡ 1, 2 (mod 8)

0 , n ≡ 3, 5, 6, 7 (mod 8).
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Here Z, Z2, and 0 denote the cyclic groups of order∞, 2, and 1, respectively.

If n ≡ 3, 5, 6, or 7 (mod 8), then πn−1(S On+1) = 0. Hence, on(Σ) is trivially zero.

For the case n ≡ 0 or 4 (mod 8), let n = 4k. By (Kervaire, 1959; Milnor and Kervaire,

1960), every homotopy 4k-sphere is a π-manifold. When n ≡ 1 or 2 (mod 8), the Hopf-

Whitehead homomorphism Jn−1 : πn−1(S On+1) → πn+k−1(Sk), in the stable range k > n,

is injective by Adams and Walker (1965). Moreover, an argument of Rohlin implies that

Jn−1(on(S̃n)) = 0, so on(S̃n) = 0.

24



CHAPTER 4

REIDEMEISTER TORSION

In this chapter, we first give the basic definitions and facts about Reidemeister

torsion. We then present the notion of a symplectic chain complex. This chapter are

mainly based on the results in (Özel and Sözen, 2012; Porti, 1997; Sözen, 2008, 2012a,b;

Turaev, 2002; Witten, 1991).

4.1. Reidemeister Torsion of Chain Complexes

First, we give the notations. Let F be a field and let V be a finite dimensional

vector space over F. Suppose that dim(V) = k and all bases of V are ordered. For any

bases b = (b1, . . . , bk) and c = (c1, . . . , ck) of the space V, the following equality holds

bi =

k∑
j=1

ai jc j, i = 1, . . . , k,

where the transition matrix (ai j) is a non-singular (k×k)-matrix over F. For the determinant

of a matrix, the following notation will be used

[b, c] = det(ai j) ∈ F∗(= F − {0}).

Clearly, the determinant of the transition matrix satisfies the following properties :

• [b,b] = 1,

• if d is a third basis of V, then [b,d] = [b, c] · [c,d],

• For the trivial vector space V = {0}, [h,h] = 1 by using the convention 1 · 0 = 0.

Let F denote the field of real numbers R or complex numbers C, and let C∗ be a
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chain complex of finite dimensional vector spaces over F

C∗ = (0→ Cn
∂n
→ Cn−1 → · · · → C1

∂1
→ C0 → 0).

For p = 0, . . . , n, let

Hp(C∗) = Zp(C∗)/Bp(C∗)

be the p-th homology space of the chain complex C∗, where

Bp(C∗) = Im{∂p+1 : Cp+1 → Cp},

Zp(C∗) = Ker{∂p : Cp → Cp−1}.

Considering the First Isomorphism Theorem for the sequence (4.1) and the definition of

Hp(C∗) for the sequence (4.2), it is easily shown that the following sequences are short-

exact

0 −→ Zp(C∗)
ı
↪→ Cp

∂p
→ Bp−1(C∗) −→ 0, (4.1)

0 −→ Bp(C∗)
ı
↪→ Zp(C∗)

ϕp
� Hp(C∗) −→ 0. (4.2)

Here, ı and ϕp are the inclusion and the natural projection, respectively.

Suppose that sp : Bp−1(C∗) → Cp and `p : Hp(C∗) → Zp(C∗) are sections of

∂p : Cp → Bp−1(C∗) and ϕp : Zp(C∗) → Hp(C∗), respectively. Then the short exact

sequences (4.1) and (4.2) yield

Cp = Bp(C∗) ⊕ `p(Hp(C∗)) ⊕ sp(Bp−1(C∗)). (4.3)

Let cp = {c1
p, . . . , c

mp
p }, bp = {b1

p, . . . , b
lp
p }, and hp = {h1

p, . . . , h
np
p } be bases of Cp, Bp(C∗),

and Hp(C∗), respectively. By equation (4.3), bpt `p(hp)t sp(bp−1) becomes the new basis

of Cp for p ∈ {0, . . . , n}.

By using the above arguments, Milnor (1966) defined the Reidemeister torsion of

a general chain complex as follows.
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Definition 4.1 Reidemeister torsion of a general chain complex C∗ with respect to bases

{cp}
n
p=0, {hp}

n
p=0 is defined as the alternating product

T
(
C∗, {cp}

n
p=0, {hp}

n
p=0

)
=

n∏
p=0

[
bp t `p(hp) t sp(bp−1), cp

](−1)(p+1)

∈ F∗,

where [bpt`p(hp)tsp(bp−1), cp] is the determinant of the transition matrix from the initial

basis cp to the obtained basis bp t `p(hp) t sp(bp−1) of Cp.

Milnor (1966) proved that Reidemeister torsion is independent of the bases bp, and

sections sp, `p. More precisely, for a different choice of bases b̃p for Bp(C∗), the following

equality holds
n∏

p=0

([̃
bp,bp

]
·
[
sp(̃bp−1), sp(bp−1)

])(−1)(p+1)

= 1.

Then Reidemeister torsion becomes

n∏
p=0

([̃
bp t `p(hp) t sp(̃bp−1), cp

])(−1)(p+1)

=

n∏
p=0

([
bp t `p(hp) t sp(bp−1), cp

]
·
[̃
bp,bp

]
·
[
sp(̃bp−1), sp(bp−1)

])(p+1)

=

n∏
p=0

([
bp t `p(hp) t sp(bp−1), cp

])(−1)(p+1)

.

On the other hand, it depends on the bases cp and hp. If one makes a change cp 7→ c̃p and

hp 7→ h̃p, then Reidemeister torsion changes as follows

T
(
C∗, {̃cp}

n
p=0, {̃hp}

n
p=0

)
=

n∏
p=0

([̃
cp, cp

] [̃
hp,hp

]−1
)(−1)p

T
(
C∗, {cp}

n
p=0, {hp}

n
p=0

)
.

Applying the Zig-zag Lemma to the short exact sequence of chain complexes

0→ A∗
ı
↪→ B∗

π
→ D∗ � 0,
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one can obtain the long exact sequenceH∗ of vector spaces as follows

· · · −→ Hp(A∗)
ıp
−→ Hp(B∗)

πp
−→ Hp(D)

δp

Hp−1(A∗)
ıp−1
−→ Hp−1(B∗)

πp−1
−→ Hp−1(D)

δp−1

Hp−2(A∗)
ıp−2
−→ · · ·

Namely,H∗ is an exact (or acyclic) complex C∗ of length 3n + 2 with C3p(H∗) = Hp(D∗),

C3p+1(H∗) = Hp(A∗), and C3p+2(H∗) = Hp(B∗). Clearly, the bases hD
p , hA

p , and hB
p are

considered as bases for C3p(H∗), C3p+1(H∗), and C3p+2(H∗), respectively.

By using the above set-up, Milnor (1966) showed that Reidemeister torsion has a

multiplicativity property. More precisely,

Theorem 4.1 (Milnor, 1966) Suppose that cA
p , cB

p , cD
p , hA

p , hB
p , and hD

p are bases of Ap,

Bp, Dp, Hp(A∗), Hp(B∗), and Hp(D∗), respectively. Suppose also that cA
p , cB

p , and cD
p are

compatible in the sense that [
cB

p , c
A
p t c̃D

p

]
= ±1,

where πp

(
c̃D

p

)
= cD

p . Then the following formula holds

T
(
B∗, {cB

p}
n
p=0, {h

B
p}

n
p=0

)
= T

(
A∗, {cA

p}
n
p=0, {h

A
p}

n
p=0

)
T

(
D∗, {cD

p }
n
p=0, {h

D
p }

n
p=0

)
× T

(
H∗, {c3p}

3n+2
p=0 , {0}

3n+2
p=0

)
.

Definition 4.2 (Borghini, 2015) The Reidemeister torsion ofH∗, T(H∗, {c3p}
3n+2
p=0 , {0}

3n+2
p=0 ),

stated in Theorem 4.1 is called the corrective term.

It is clear from Theorem 4.1 that

Lemma 4.1 (Milnor, 1966) If A∗, D∗ are two chain complexes, and if cA
p , cD

p , hA
p , and hD

p
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are respectively bases of Ap, Dp, Hp(A∗), and Hp(D∗), then

T
(
A∗ ⊕ D∗, {cA

p t cD
p }

n
p=0, {h

A
p t hD

p }
n
p=0

)
= T

(
A∗, {cA

p}
n
p=0, {h

A
p}

n
p=0

)
T

(
D∗, {cD

p }
n
p=0, {h

D
p }

n
p=0

)
.

4.2. Symplectic Chain Complex

A symplectic chain complex of vector spaces over the field F = R or C is a chain

complex of length q

(C∗, ∂∗, {ω∗,q−∗}) : 0→ Cq
∂q
→ Cq−1 → · · · → Cq/2 → · · · → C1

∂1
→ C0 → 0

with the following properties:

(i) q ≡ 2 (mod 4),

(ii) There is a non-degenerate bilinear form

ωp,q−p : Cp ×Cq−p → R

for p = 0, . . . , q/2 such that

• ∂−compatible: ωp,q−p(∂p+1a, b) = (−1)p+1ωp+1,q−(p+1)(a, ∂q−pb),

• anti-symmetric: ωp,q−p(a, b) = (−1)p(q−p)ωq−p,p(b, a).

From the fact that q ≡ 2 (mod 4) it follows ωp,q−p(a, b) = (−1)pωq−p,p(b, a). Using

the ∂−compatibility of ωp,q−p, they can be extended to homologies

[ωp,q−p] : Hp(C∗) × Hq−p(C∗)→ R,

where [ωp,q−p]([x], [y]) = ωp,q−p(x, y) is an anti-symmetric, non-degenerate, bilinear form.

For details, see (Sözen, 2008).
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Definition 4.3 Let (C∗, ∂∗, {ω∗,q−∗}) be a symplectic chain complex. The bases cp and cq−p

of Cp and Cq−p are ω-compatible if the matrix of ωp,q−p in bases cp, cq−p is equal to


Ik×k , p , n/2, 0l×l Il×l

Il×l 0l×l

 , p = n/2.

Here, k = dim(Cp) = dim(Cq−p), and 2l = dim(Cq/2).

Note that every symplectic chain complex has ω−compatible bases. Using the exis-

tence of ω−compatible bases, the following result gives the Reidemeister torsion of an

F−symplectic chain complex.

Theorem 4.2 Let C∗ be an F−symplectic chain complex of length 2n. Suppose that cp is

an ω−compatible basis of Cp and hp is a basis of Hp(C∗) for p = 0, . . . , 2n.

(i) If C∗ is an R−symplectic chain complex, then

T
(
C∗, {cp}

2n
p=0, {hp}

2n
p=0

)
=

n−1∏
p=0

∆p,2n−p(hp,h2n−p)(−1)p
·
√

∆n,n(hn,hn) (−1)n
.

(ii) If C∗ is a C−symplectic chain complex, then

∣∣∣∣T (
C∗, {cp}

2n
p=0, {hp}

2n
p=0

)∣∣∣∣ =

n−1∏
p=0

∣∣∣∆p,2n−p(hp,h2n−p)
∣∣∣(−1)p

·

√∣∣∣∆n,n(hn,hn)
∣∣∣ (−1)n

.

Here, ∆p,2n−p(hp,h2n−p) is the determinant of the matrix of the non-degenerate pairing

[ωp,2n−p] : Hp(C∗) × H2n−p(C∗)→ F in the bases hp, h2n−p.

The details of the proof of Theorem 4.2 can be found in (Sözen, 2008; Sözen, 2014).
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4.3. Reidemeister Torsion of Manifolds

Let M be an n-dimensional manifold and let K be a cell decomposition of M.

Denote the set of p-cells by Cp(K). The cell decomposition K of M canonically defines a

chain complex C∗(K) of free abelian groups as follows

C∗(K) = (0→ Cn(K)
∂n
→ Cn−1(K)→ · · · → C1(K)

∂1
→ C0(K)→ 0),

where ∂p is the boundary operator for p ∈ {1, . . . , n}. By orienting the p-cells and ordering

Cp(K), this chain complex has a geometric basis cp = {c1
p, · · · , c

mp
p } for Cp(K).

Definition 4.4 (Milnor, 1966) Let M be an n-dimensional manifold with a cell decompo-

sition K. Let cp and hp be bases of Cp(K) and Hp(M), respectively. Reidemeister torsion

of M is defined as follows

T
(
C∗(K), {cp}

n
p=0, {hp}

n
p=0

)
.

Following the arguments introduced in (Sözen, 2008, Lemma 2.0.5), one can ob-

tain the following lemma.

Lemma 4.2 Reidemeister torsion of M does not depend on the cell decomposition.

From the lemma above, we can conclude that the Reidemeister torsion of M is a well-

defined invariant. Thus, we denote by T(M, {hp}
n
p=0) the Reidemeister torsion of M in the

basis hp of Hp(M), p = 0, . . . ,m.

Let M be a compact, orientable, 2n-dimensional manifold and let K′ be the dual

cell decomposition of M corresponding to the cell decomposition K. Without loss of gen-

erality, assume that cells σ ∈ K and σ′ ∈ K′ do not meet more than once. We can do this

since Reidemeister torsion is invariant under subdivision. Recall that the dual cell decom-

position K′ is obtained as follows: Let K = {σ
p
α}α,p. Denote by {τp

α}α,p the first barycentric

subdivision of K. For each vertex σ0
α ∈ K, associate the following 2n-cell

(σ0
α)′ =

⋃
σ0
α∈τ

2n
β

τ2n
β
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which is the union of all 2n-simplices τ2n
β in the subdivision with σ0

α as a vertex. For every

p-simplex in the cell decomposition K, let

(σp
α)′ =

⋂
σ0
β
∈σ

p
α

(σ0
β)
′

be the intersection of all 2n-cells (σ0
β)
′ that are associated to the p+1 vertices of σp

α. Thus,

the dual cell decomposition of M corresponding to K is given by

K′ =
{
42n−p
α = (σp

α)′
}
α,p
.

Note that 42n−p
α = (σp

α)′ and σp
α meet transversely. For a given orientation on σp

α, we can

take the dual orientation on 42n−p
α as the one at S ∈ σp

α ∩ (σp
α)′,

ıS (σp
α, (σ

p
α)′) = 1,

where ıS is the intersection number (index) at S .

Definition 4.5 The intersection pairing

(·, ·)p,2n−p : Cp(K;R) ×C2n−p(K′;R)→ R

is defined by

(α, β)p,2n−p =
∑

S∈α∩β

ıS (α, β).

The intersection pairings (·, ·)p,2n−p : Cp(K;R) × C2n−p(K′;R) → R satisfy the following

properties for all α ∈ Cp(K;R), β ∈ C2n−p(K′;R)

(i) (α, β)p,2n−p = (−1)p(2n−p)(β, α)2n−p,p,

(ii) (α, ∂2n−p β)(p+1),2n−(p+1) = (−1)2n−p+1(∂p+1α, β)p,2n−p.

Here, ∂ denotes the boundary operator. Since the intersection number (index) is anti-
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symmetric, (i) is obtained. Moreover, (ii) follows from the fact that

∂2n−p(42n−p
α ) = (−1)2n−p+1(∂p(αp

α))′.

For further information, we refer to (Griffiths and Harris, 1994). As a result, (·, ·)p,2n−p are

∂−compatible and anti-symmetric.

Naturally, the intersection pairing for 2n-dimensional manifold M can be extended

to homologies for each p ∈ {0, . . . , 2n} as follows

(·, ·)p,2n−p : Hp(M) × H2n−p(M)→ R.

In addition, Poincaré duality gives the following commutative diagram

H2n−p(M) × Hp(M)
∧p,2n−p
−→ H2n(M)xPD

xPD 	
x

Hp(M) × H2n−p(M)
(,)p,2n−p
−→ R.

Here, ∧k,2n−k denotes the wedge product.

Let Dp(K) = Cp(K;R) ⊕Cp(K′;R) and define (·, ·)p,2n−p as zero on

Cp(K;R) ×C2n−p(K;R),

Cp(K′;R) ×C2n−p(K′;R).

Then the following chain complex

0→ Dn(K)
∂n
→ Dn−1(K)→ · · · → D1(K)

∂1
→ D0(K)→ 0 (4.4)

becomes a symplectic chain complex, see (Sözen, 2012a).

Throughout this thesis, 4M
p,2n−p(hp,h2n−p) denotes the determinant of the matrix
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of the intersection pairing (·, ·)p,2n−p : Hp(M) × H2n−p(M) → R in he homology bases

hp,h2n−p.

Using symplectic chain complex (4.4) and Poincaré duality, Sözen (2012b) proved

the following results.

Theorem 4.3 Let Σg,0 be a closed, orientable, genus g ≥ 1 surface. Let hΣg,0
p be basis of

Hp(Σg,0) for p = 0, 1, 2. Assume that Γ = {Γi}
2g
i=1 is a canonical basis of H1(Σg,0), i.e. Γi

intersects Γi+g once positively and does not intersect others. Then

∣∣∣∣T (
Σg,0, {h

Σg,0
p }

2
p=0

)∣∣∣∣ =

∣∣∣∣∣∣∣∣
4

Σg,0

0,2

(
hΣg,0

0 ,hΣg,0

2

)
det℘

(
h1

Σg,0
,Γ

)
∣∣∣∣∣∣∣∣ .

Here, h1
Σg,0

= {ωi}
2g
1 is the Poincaré dual basis of H1(Σg,0) corresponding to the basis hΣg,0

1

of H1(Σg,0), where ℘(h1,Γ) =
[∫

Γi
ω j

]
is the period matrix of h1

Σg,0
with respect to Γ.

Theorem 4.4 (Sözen, 2012b) Let M be a closed, connected, orientable m-dimensional

manifold and hp a basis of Hp(M) for p = 0, ..., n.

(i) If m = 2n (n ≥ 1), then

∣∣∣∣T (
M, {hp}

2n
p=0

)∣∣∣∣ =

n−1∏
p=0

∣∣∣∣4M
p,2n−p

(
hp,h2n−p

)∣∣∣∣(−1)p √∣∣∣4M
n,n (hn,hn)

∣∣∣(−1)n
.

(ii) If m = 2n + 1 (n ≥ 0), then

∣∣∣∣T (
M, {hp}

2n+1
p=0

)∣∣∣∣ = 1.

Theorem 4.4 yields the following result.

Remark 4.1 For the unit spheres Sn with homology bases {hSn

p }
n
p=0,

(i) if n is odd, then |T (Sn, {hSn

p }
n
p=0)| = 1,

(ii) if n is even, then |T (Sn, {hSn

p }
n
p=0)| = |(4S

n

0,n(hSn

0 ,h
Sn

n ))|.
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Özel and Sözen (2012) established a formula to compute the Reidemeister tor-

sion of the product manifolds in terms of the Reidemeister torsion of each factor and the

corresponding Euler characteristic.

Theorem 4.5 Assume that Mi is a closed, connected, orientable 2mi-dimensional mani-

fold (mi ≥ 1) for each i = 1, 2, . . . , n. Let M =
n
×
i=0

Mi be the product manifold and {hMi
p,i}

2mi
p=0

be the homology basis of Hp(Mi) for each i. Then the Reidemeister torsion of M satisfies

the following formula

∣∣∣∣∣∣T
(
M, { ⊕

|α|=p
hα1,1 ⊗ · · · ⊗ hαn,n}

2m
p=0

)∣∣∣∣∣∣ =

n∏
i=1

∣∣∣∣T (
Mi , {h

Mi
p,i }

2mi
p=0

)∣∣∣∣χ(M)/χ(Mi )
.

Here, m =
n∑

i=1
mi and |α| =

n∑
i=1
αi is the length of the multi-index α = (α1, . . . , αn).
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CHAPTER 5

REIDEMEISTER TORSION OF π-MANIFOLDS VIA

CONNECTED SUM DECOMPOSITIONS

In this chapter, we give the main results of this thesis and their proofs. We con-

sider the closed π-manifolds that admit a connected sum decomposition. More precisely,

0-connected 2-dimensional closed π-manifold Σg,0 with the connected sum decomposi-

tion
g
#

j=1
(Σ1,0), and (n − 2)-connected 2n-dimensional closed π-manifolds (n ≥ 3) which

have the connected sum decomposition
p
#

j=1
(Sn × Sn)#M2n

1 stated in (Ishimoto, 1969), and

(n − 1)-connected 2n-dimensional closed π-manifolds (n ≥ 3) with the connected sum

decomposition
p
#

j=1
(Sn × Sn)#S̃2n given in (Ishimoto, 1969).

Throughout this thesis, we consider Reidemeister torsion with untwisted R-coeffi-

cients. For a manifold M, we mean by Hi(M) the homology space Hi(M; R) with R-

coefficient.

5.1. Reidemeister Torsion of 0-Connected 2-Dimensional Closed

π-Manifold

Let Σg,n be a compact, connected, smooth, orientable surface of genus g with n > 0

disjoint open disks removed. We will refer to such a surface as n-holed genus g surface.

Let Σg,0 be a closed, connected, smooth, orientable surface of genus g. This surface is

0-connected because it is path-connected, and it has also the following homology spaces

Hi(Σg,0) =


R2g , i = 1,

R , i = 0, 2,

0 , i , 0, 1, 2.

The genus one closed surface Σ1,0, namely torus, is a closed π-manifold. It is well-known

that Σ1,0 is the building block of the surface Σg,0. That is, Σg,0 is expressed as a connected

sum of g-copies of Σ1,0. By Proposition 3.5, Σg,0 is a closed π-manifold.
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The aim of this section is to describe the behaviour of Reidemeister torsion on the

0-connected 2-dimensional closed π-manifold Σg,0 (g ≥ 2) with respect to gluings along a

circle. Considering the surface Σg,0 as the following connected sum

Σg,0 =
g
#

j=1
(Σ1,0)

and using the fact that Reidemeister torsion acts multiplicatively with respect to gluings

in the sense of Milnor (1966), we establish a formula to compute the Reidemeister tor-

sion of Σg,0 in terms of the Reidemeister torsion of Σ1,1. To obtain this formula, we first

prove a formula for computing the Reidemeister torsion of Σ1,1 (Theorem 5.1) through

the determinant of the period matrix of the Poincaré dual basis of H1(Σ2,0). Then we es-

tablish a formula (Proposition 5.2) for the Reidemeister torsion of Σ1,2 with regard to the

Reidemeister torsion of Σ1,1. By using these results, we obtain the formulas (Theorem 5.4-

Theorem 5.5) that compute the Reidemeister torsion of Σg,0 in terms of the Reidemeister

torsion of Σ1,1. The results of this section appear in (Dirican and Sözen, 2016).

Let Σ1,1 be a one-holed genus one surface, namely one-holed torus with boundary

circle γ. Obviously, the double of Σ1,1 is a closed, orientable surface Σ2,0 of genus 2 (see,

Figure 5.1).

γ

Figure 5.1. The double of Σ1,1.

Then there is the following short exact sequence of the chain complexes

0→ C∗(γ) −→ C∗(Σ1,1) ⊕C∗(Σ1,1) −→ C∗(Σ2,0)→ 0. (5.1)
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Associated to the sequence (5.1), there exists the following Mayer-Vietoris sequence

H∗ : 0 −→ H2(Σ2,0)
f
−→ H1(γ)

g
−→ H1(Σ1,1) ⊕ H1(Σ1,1)

h
−→ H1(Σ2,0)

i

H0(γ)
j
−→ H0(Σ1,1) ⊕ H0(Σ1,1)

k
−→ H0(Σ2,0)

`
−→ 0.

By the exactness ofH∗ and the First Isomorphism Theorem, it is concluded that

Im(g) = Im(i) = {0}

Im(k) = H0(Σ2,0)

Im( f ) � H2(Σ2,0)

Im(h) � H1(Σ1,1) ⊕ H1(Σ1,1)

Im( j) � H0(γ).

Theorem 5.1 Let Σ1,1 be a one-holed torus with boundary circle γ and let Σ2,0 be the

double of Σ1,1. For the given bases hΣ1,1
p and hγp of Hp(Σ1,1) and Hp(γ), p = 0, 1, there

exists a basis hΣ2,0
i of Hi(Σ2,0), i = 0, 1, 2 such that the corrective term is 1 and the following

formula holds

∣∣∣∣T (
Σ1,1, {h

Σ1,1
p }

1
p=0

)∣∣∣∣ =
∣∣∣∣4Σ2,0

0,2

(
hΣ2,0

0 ,hΣ2,0
2

)∣∣∣∣1/2 ∣∣∣∣4Σ2,0
1,1

(
hΣ2,0

1 ,hΣ2,0
1

)∣∣∣∣−1/4
.

Moreover, if Γ = {Γ1,Γ2,Γ3,Γ4} is a canonical basis of H1(Σ2,0), i.e. i = 1, 2, Γi intersects

Γi+2 once positively and does not intersect others, then

∣∣∣∣T (
Σ1,1, {h

Σ1,1
p }

1
p=0

)∣∣∣∣ =

∣∣∣∣∣∣∣∣
4

Σ2,0
0,2

(
hΣ2,0

0 ,hΣ2,0
2

)
det℘

(
h1

Σ2,0
,Γ

)
∣∣∣∣∣∣∣∣
1/2

.

Here, h1
Σ2,0

= {ωi}
4
1 is the Poincaré dual basis of H1(Σ2,0) corresponding to the basis hΣ2,0

1

of H1(Σ2,0), where ℘(h1,Γ) =
[∫

Γi
ω j

]
is the period matrix of h1

Σ2,0
with respect to Γ.
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Proof Let us first explain the method we use to show that there exists a basis hΣ2,0
i of

Hi(Σ2,0), i = 0, 1, 2 such that the Reidemeister torsion of the long exact sequence H∗ in

the corresponding bases, namely corrective term, becomes 1. For p ∈ {0, 1, . . . , 6}, let us

denote by Cp(H∗) the vector spaces in the long exact sequenceH∗. Consider the following

short exact sequences

0→ Zp(H∗) ↪→ Cp(H∗)
∂p
→ Bp−1(H∗)→ 0, (5.2)

0→ Bp(H∗) ↪→ Zp(H∗)
ϕp
� Hp(H∗)→ 0. (5.3)

Here, "↪→" and "�" are the inclusion and the natural projection, respectively. Assume

that sp : Bp−1(H∗) → Cp(H∗) and `p : Hp(H∗) → Zp(H∗) are sections of ∂p : Cp(H∗) →

Bp−1(H∗) and ϕp : Zp(H∗) → Hp(H∗), respectively. The exactness of H∗ implies that

Zp(H∗) = Bp(H∗) for all p. Hence, the sequence (5.2) becomes

0→ Bp(H∗) ↪→ Cp(H∗)→ Bp−1(H∗)→ 0. (5.4)

Let hp, bp, and h∗p be respectively bases of Cp(H∗), Bp(H∗), and Hp(H∗) for all p. Since

Hp(H∗) is a trivial space, its homology basis h∗p is {0} and `p is the zero map for each p.

Then the Reidemeister torsion ofH∗ with respect to bases {hp}
6
0, {h∗p}60 is given as follows

T
(
H∗, {hp}

6
p=0, {h

∗
p}

6
p=0

)
=

6∏
p=0

[
bp t `p(h∗p) t sp(bp−1),hp

](−1)(p+1)

=

6∏
p=0

[
bp t sp(bp−1),hp

](−1)(p+1)

=

6∏
p=0

[
h′p,hp

](−1)(p+1)

.

Here, h′p denotes the obtained basis bp t sp(bp−1) for each p. Note that Reidemeister

torsion is independent of the bases bp and sections sp, `p. Therefore, in the following

method we will choose suitable bases bp and sections sp such that the Reidemeister torsion

ofH∗ in the corresponding bases becomes 1.
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Consider the space C0(H∗) = H0(Σ2,0) in the sequence (5.4). Then we get

0→ Im(k) ↪→ C0(H∗)
`
→ Im(`)→ 0. (5.5)

The zero map s0 : Im(`) → C0(H∗) can be considered as a section of ` because the space

Im(`) is trivial. From the Splitting Lemma it follows

C0(H∗) = Im(k) ⊕ s0(Im(`)) = Im(k). (5.6)

Let us take the basis of Im(k) as

hIm(k) =
{
a21k(hΣ1,1

0 , 0) + a22k(0,hΣ1,1
0 )

}
,

where (a21, a22) is a non-zero vector. By equation (5.6), hIm(k) becomes the obtained basis

h′0 of C0(H∗). Taking the initial basis h0 (namely, hΣ2,0
0 ) of C0(H∗) as h′0, we obtain

[h′0,h0] = 1. (5.7)

For the space C1(H∗) = H0(Σ1,1)⊕H0(Σ1,1), the sequence (5.4) becomes as follows

0→ Im( j) ↪→ C1(H∗)
k
→ Im(k)→ 0 (5.8)

By the First Isomorphism Theorem, Im(k) and (H0(Σ1,1) ⊕H0(Σ1,1))/Ker(k) are isomor-

phic. Therefore, we can consider the inverse of this isomorphism

s1 : Im(k)→ (H0(Σ1,1) ⊕ H0(Σ1,1))/Ker(k)

as a section of k. By the Splitting Lemma, the space C1(H∗) can be expressed as the
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following direct sum

C1(H∗) = Im( j) ⊕ s1(Im(k)). (5.9)

Note that the initial basis h1 of C1(H∗) is

{
(hΣ1,1

0 , 0), (0,hΣ1,1
0 )

}
.

Using the fact that Im( j) is isomorphic to H0(γ), j(hγ0) becomes a basis of Im( j). Since

Im( j) and s1(Im(k)) are one-dimensional subspaces of the 2-dimensional space C1(H∗),

there exists a non-zero vector (a11 , a12) such that

j(hγ0) = a11(h
Σ1,1
0 , 0) + a12(0,h

Σ1,1
0 ),

s1(h
Im(k)) = a21(h

Σ1,1
0 , 0) + a22(0,h

Σ1,1
0 ). (5.10)

Let us choose the basis hIm( j) of Im( j) as j((det A)−1hγ0), where A = (ai j) is the (2 × 2)-

matrix over R. By equation (5.9) and equation (5.10),

{
(det A)−1[a11(h

Σ1,1
0 , 0) + a12(0,h

Σ1,1
0 )], a21(h

Σ1,1
0 , 0) + a22(0,h

Σ1,1
0 )

}

becomes the obtained basis h′1 for C1(H∗). Hence, we conclude that the determinant of

the transition matrix is 1. That is,

[h′1,h1] = 1. (5.11)

We now consider the short exact sequence (5.4) for C2(H∗) = H0(γ). By the equal-

ities B2(H∗) = Im(i) and B1(H∗) = Im( j), the sequence (5.4) becomes

0→ Im(i) ↪→ C2(H∗)
j
→ Im( j)→ 0. (5.12)

Since j : H0(γ) → Im( j) is an isomorphism, we can take the inverse of j as a section
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s2 : Im( j)→ H0(γ) of j. From the Splitting Lemma it follows

C2(H∗) = Im(i) ⊕ s2(Im( j)). (5.13)

Recall that in the previous step, we chose j((det A)−1hγ0) as a basis of Im( j). By equa-

tion (5.13) and the fact that Im(i) is trivial, we get that the obtained basis h′2 of C2(H∗) as

follows

s2( j((det A)−1hγ0)) = (det A)−1hγ0.

Since the initial basis h2 of C2(H∗) is also hγ0, the determinant of the transition matrix

satisfies the following equality

[h′2,h2] = (det A)−1. (5.14)

Considering the space C3(H∗) = H1(Σ2,0) in the sequence (5.4) and using the fact

that B3(H∗) = Im(h), B2(H∗) = Im(i), we obtain

0→ Im(h) ↪→ C3(H∗)
i
→ Im(i)→ 0. (5.15)

Since Im(i) = {0}, we can take the zero map s3 : Im(i)→ H1(Σ2,0) as a section of i. By the

Splitting Lemma, we have

C3(H∗) = Im(h) ⊕ s3(Im(i)) = Im(h). (5.16)

The given basis hΣ1,1⊕Σ1,1 of H1(Σ1,1) ⊕ H1(Σ1,1) is

{
(hΣ1,1

1,1 , 0), (0,hΣ1,1
1,1 ), (hΣ1,1

1,2 , 0), (0,hΣ1,1
1,2 )

}
.

Because of the isomorphism between Im(h) and H1(Σ1,1) ⊕ H1(Σ1,1), we can choose the
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basis hIm(h) of Im(h) as

{
h(hΣ1,1

1,1 , 0), h(0,hΣ1,1
1,1 ), h(hΣ1,1

1,2 , 0), h(0,hΣ1,1
1,2 )

}
.

By equation (5.16), hIm(h) becomes the obtained basis h′3 of C3(H∗). If we let the initial

basis h3 (namely, hΣ2,0
1 ) of C3(H∗) as (det A)−1h′3, then we get

[h′3,h3] = ((det A)−1)−1 = det A. (5.17)

If we consider the sequence (5.4) for the space C4(H∗) = H1(Σ1,1)⊕H1(Σ1,1), then,

by the equalities B4(H∗) = Im(g) and B3(H∗) = Im(h), we get

0→ Im(g) ↪→ C4(H∗)
h
→ Im(h)→ 0. (5.18)

Since h is an isomorphism, we can consider the inverse of h as a section

s4 : Im(h)→ H1(Σ1,1) ⊕ H1(Σ1,1)

of h. As Im(g) is trivial, the Splitting Lemma gives

C4(H∗) = Im(g) ⊕ s4(Im(h)) = s4(Im(h)). (5.19)

Recall that hΣ1,1⊕Σ1,1 is the initial basis h4 of C4(H∗). Moreover, in the previous step, we

chose the basis hIm(h) of Im(h) as

{
h(hΣ1,1

1,1 , 0), h(0,hΣ1,1
1,1 ), h(hΣ1,1

1,2 , 0), h(0,hΣ1,1
1,2 )

}
.

It follows from equation (5.19) that s4(hIm(h)) = hΣ1,1⊕Σ1,1 is the obtained basis h′4 of C4(H∗).
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Hence, the determinant of the transition matrix satisfies the following equation

[h′4,h4] = 1. (5.20)

Now we consider the space C5(H∗) = H1(γ) in the short exact sequence (5.4).

Using the fact that B5(H∗) = Im( f ) and B4(H∗) = Im(g), we get

0→ Im( f ) ↪→ C5(H∗)
g
→ Im(g)→ 0. (5.21)

Since Im(g) is trivial, the zero map s5 : Im(g) → C5(H∗) can be considered as a section

of g. From the Splitting Lemma it follows that

C5(H∗) = Im( f ) ⊕ s5(Im(g)) = Im( f ). (5.22)

The initial basis h5 of C5(H∗) is hγ1. By equation (5.22), we choose the basis hIm( f ) of

Im( f ) as hγ1, which is also the obtained basis h′5 of C5(H∗). Thus, we obtain

[h′5,h5] = 1. (5.23)

Finally, considering the space C6(H∗) = H2(Σ2,0) in the sequence (5.4) and using

the fact that B6(H∗) = {0} and B5(H∗) = Im( f ), we get

0→ B6(H∗) ↪→ C6(H∗)
f
→ Im( f )→ 0. (5.24)

Since Im( f ) is isomorphic to H2(Σ2,0), the inverse of f

s6 : Im( f )→ H2(Σ2,0)

can be considered as a section of f . By the Splitting Lemma, the space C6(H∗) satisfies
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the following equation

C6(H∗) = B6(H∗) ⊕ s6(Im( f )) = s6(Im( f )). (5.25)

From equation (5.25) it follows that s6(hIm( f )) is the obtained basis h′6 of C6(H∗). If we take

the basis h6 (namely, hΣ2,0
2 ) of C6(H∗) as s6(hIm( f )), then the determinant of the transition

matrix satisfies the following equality

[h′6,h6] = 1. (5.26)

Combining equations (5.7), (5.11), (5.14), (5.17), (5.20), (5.23), and (5.26) gives

that the corrective term is 1. More precisely,

T
(
H∗, {hp}

6
p=0, {0}

6
p=0

)
=

6∏
p=0

[h′p,hp](−1)(p+1)
= 1. (5.27)

Clearly, the natural bases are compatible in the sequence (5.1). Then Theorem 4.1 and

equation (5.27) yield

T
(
Σ1,1 ⊕ Σ1,1, {h

Σ1,1⊕Σ1,1
p }1p=0

)
= T

(
γ1, {hγp}

1
p=0

)
T

(
Σ2,0, {h

Σ2,0
i }

2
i=0

)
. (5.28)

By Lemma 4.1 and equation (5.28), the following formula holds

T
(
Σ1,1, {h

Σ1,1
p }

1
p=0

)2
= T

(
γ1, {hγp}

1
p=0

)
T

(
Σ2,0, {h

Σ2,0
i }

2
i=0

)
. (5.29)

From Remark 4.1 and equation(5.29), it follows that

∣∣∣∣T (
Σ1,1, {h

Σ1,1
p }

1
p=0

)∣∣∣∣ =
∣∣∣∣T (

Σ2,0, {h
Σ2,0
i }

2
i=0

)∣∣∣∣1/2 . (5.30)
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Theorem 4.4 (i) and equation (5.30) give the following formula

∣∣∣∣T (
Σ1,1, {h

Σ1,1
p }

1
p=0

)∣∣∣∣ =
∣∣∣∣4Σ2,0

0,2

(
hΣ2,0

0 ,hΣ2,0
2

)∣∣∣∣1/2 ∣∣∣∣4Σ2,0
1,1

(
hΣ2,0

1 ,hΣ2,0
1

)∣∣∣∣−1/4
.

Then, by Theorem 4.3, we have

∣∣∣∣T (
Σ1,1, {h

Σ1,1
p }

1
p=0

)∣∣∣∣ =

∣∣∣∣∣∣∣∣
4

Σ2,0
0,2

(
hΣ2,0

0 ,hΣ2,0
2

)
det℘

(
h1

Σ2,0
,Γ

)
∣∣∣∣∣∣∣∣
1/2

.

�

The following proposition gives a formula that computes the Reidemeister torsion

of closed ball Dn for arbitrary n ∈ {2, 3, . . .} by considering the double of Dn.

Proposition 5.1 Let d(Dn) be the double of Dn. Then there is the natural short exact

sequence of the chain complexes

0→ C∗(Sn−1)→ C∗(Dn) ⊕C∗(Dn)→ C∗(d(Dn))→ 0. (5.31)

Associated to the sequence (5.31), there exists the following Mayer-Vietoris sequence

H∗ : 0 −→ Hn(d(Dn))
f
−→ Hn−1(Sn−1)

g
−→ 0

∂

H0(Sn−1)
h
−→ H0(Dn) ⊕ H0(Dn)

α
−→ H0(d(Dn)) −→ 0.

Let hDn

0 be a basis of H0(Dn) and f : Hn(d(Dn)) → Hn−1(Sn−1) the isomorphism obtained

by the sequenceH∗.

(i) For odd n, let hd(Dn)
p be a basis of Hp(d(Dn)), p = 0, . . . , n and let hSn−1

n−1 = f (hd(Dn)
n−1 )

be a basis of Hn−1(Sn−1). Then there exists a basis hSn−1

0 of H0(Sn−1) such that the
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following formula holds

∣∣∣∣T (
Dn, {hDn

0 }
)∣∣∣∣ =

√∣∣∣∣4Sn−1

0,n−1

(
hSn−1

0 ,hSn−1

n−1

)∣∣∣∣,

(ii) For even n, let hSn−1

n be a basis of Hn(Sn−1) and hd(Dn)
n = f −1(hSn−1

n ) a basis of

Hn(d(Dn)). Then there are bases hSn−1

0 and hd(Dn)
0 of H0(Sn−1) and H0(d(Dn)), re-

spectively so that the following formula is valid

∣∣∣∣T (
Dn, {hDn

0 }
)∣∣∣∣ =

√∣∣∣∣4Sn

0,n

(
hSn

0 ,hS
n

n

)∣∣∣∣.
Here, [ϕp] : Hp(d(Dn)) → Hp(Sn) is an isomorphism defined by [ϕp](hd(Dn)

p ) = hSn

p

for p ∈ {0, . . . , n} which is induced by the homeomorphism ϕ : d(Dn)→ Sn.

Proof The exactness ofH∗ gives the following isomorphisms:

Hn(d(Dn))
f
� Hn−1(Sn−1) (5.32)

H0(Dn) ⊕ H0(Dn) � H0(Sn−1) ⊕ H0(d(Dn)). (5.33)

If n is odd, then |T(d(Dn), {hd(Dn)
p }np=0)| = 1 by Theorem 4.4 (ii). Since f is an

isomorphism given in equation (5.32), hSn−1

n−1 = f (hd(Dn)
n−1 ) becomes a basis of Hn−1(Sn−1)

for the given basis hd(Dn)
n−1 of Hn−1(d(Dn)). Then there exists a basis hSn−1

0 of H0(Sn−1) by

the isomorphism in equation (5.33) such that the corrective term is 1 and the following

formula is valid

T
(
Dn, {hDn

0 }
)2

= T
(
d(Dn), {hd(Dn)

p }np=0

)
T

(
Sn−1, {hS

n−1

p }
n−1
p=0

)
. (5.34)

By taking the absolute value of both sides of equation (5.34), we get

∣∣∣∣T (
Dn, {hDn

0 }
)∣∣∣∣ =

√∣∣∣∣T (
Sn−1, {hSn−1

p }
n−1
p=0

)∣∣∣∣. (5.35)

47



By Theorem 4.4 (i) and equation (5.35), we get

∣∣∣∣T (
Dn, {hDn

0 }
)∣∣∣∣ =

√∣∣∣∣4Sn−1

0,n−1

(
hSn−1 ,hSn−1

n−1

)∣∣∣∣.
If n is even, then |T(Sn−1, {hSn−1

p }
n−1
p=0)| = 1 by Theorem 4.4 (ii). It follows from

the isomorphism given in equation (5.32) that hd(Dn)
n = f −1(hSn−1

n ) is a basis of Hn(d(Dn))

for the given basis hSn−1

n of Hn(Sn−1). By the isomorphism in equation (5.33), there are

bases hSn−1

0 and hd(Dn)
0 of H0(Sn−1) and H0(d(Dn)), respectively so that the corrective term

disappears and the following formula holds

T
(
Dn, {hDn

0 }
)2

= T
(
d(Dn), {hd(Dn)

p }np=0

)
T

(
Sn−1, {hS

n−1

p }
n−1
p=0

)
. (5.36)

If we take the absolute value of both sides of equation (5.36), we obtain

∣∣∣∣T (
Dn, {hDn

0 }
)∣∣∣∣ =

√∣∣∣∣∣T (
d(Dn), {hd(Dn)

p }np=0

)∣∣∣∣∣. (5.37)

Since d(Dn) is homeomorphic to Sn, there exists a homeomorphism ϕ : d(Dn) → Sn.

Then, for p ∈ {0, . . . , n} there is an isomorphism [ϕp] : Hp(d(Dn)) → Hp(Sn) defined by

[ϕp](hd(Dn)
p ) = hSn

p which is induced by ϕ. From this result and equation (5.37) it follows

∣∣∣∣T (
Dn, {hDn

0 }
)∣∣∣∣ =

√∣∣∣∣T (
Sn, {hSn

p }
n
p=0

)∣∣∣∣. (5.38)

Combining Theorem 4.4 (i) and equation (5.38), we obtain the following formula

∣∣∣∣T (
Dn, {hDn

0 }
)∣∣∣∣ =

√∣∣∣∣4Sn

0,n

(
hSn

0 ,hS
n

n

)∣∣∣∣.
�

For the rest of this thesis, D2n denotes the open unit ball in R2n and D2n also

denotes the closed unit ball in R2n. For proofs of the results given in Chapter 4, we use the
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arguments presented in the proof of Theorem 5.1.

Proposition 5.2 Let Σ1,2 be a 2-holed genus one surface with boundary circles S1
1,S

1
2.

For i = 1, 2, let D2
i denote the closed disk with boundary S1

i . Consider the surface Σ1,1

obtained by gluing the surfaces Σ1,2 and D2
1 along the common boundary circle S1

1 (see,

Figure 5.2).

Σ1,2
Σ1,1

glue
y

=

D2
1

Figure 5.2. One-holed genus one surface Σ1,1 is obtained by gluing Σ1,2 and D2
1 along

the common boundary circle.

Consider also the associated short exact sequence of chain complexes

0→ C∗(S1
1) −→ C∗(Σ1,2) ⊕C∗(D2

1) −→ C∗(Σ1,1)→ 0 (5.39)

and corresponding Mayer-Vietoris sequence

H∗ : 0 −→ H1(S1
1)

f
−→ H1(Σ1,2)

g
−→ H1(Σ1,1)

h

H0(S1
1)

i
−→ H0(Σ1,2) ⊕ H0(D2

1)
j
−→ H0(Σ1,1)

k
−→ 0.

Let hΣ1,2
p and hD

2
1

0 be bases of Hp(Σ1,2) and H0(D2
1) for p = 0, 1. Then there exist bases hΣ1,1

p

and hS
1
1

p of Hp(Σ1,1) and Hp(S1
1), respectively such that the corrective term disappears and

the following multiplicative gluing formula holds

T
(
Σ1,2, {h

Σ1,2
p }

1
p=0

)
= T

(
Σ1,1, {h

Σ1,1
p }

1
p=0

)
T

(
S1

1, {h
S1

1
p }

1
p=0

)
T

(
D2

1, {h
D1
0 }

)−1
.

Proof By the exactness of the sequence H∗ and the First Isomorphism Theorem, we

49



have the followings

Im( j) = H0(Σ1,1)

Im( f ) � H1(S1
1)

Im(i) � H0(S1
1).

For p ∈ {0, . . . , 5}, we denote the vector spaces in the long exact sequenceH∗ by Cp(H∗)

and consider the short exact sequence

0→ Bp(H∗) ↪→ Cp(H∗)→ Bp−1(H∗)→ 0. (5.40)

For each p, let us consider the isomorphism sp : Bp−1(H∗) → sp(Bp−1(H∗)) obtained by

the First Isomorphism Theorem as a section of Cp(H∗)→ Bp−1(H∗). Then we obtain

Cp(H∗) = Bp(H∗) ⊕ sp(Bp−1(H∗)). (5.41)

We first consider the vector space C0(H∗) = H0(Σ1,1) in equation (5.41). From the

fact that Im(k) is a trivial space it follows

C0(H∗) = Im( j) ⊕ s0(Im(k)) = Im( j). (5.42)

As Im( j) is a one-dimensional space, there is a non-zero vector (a11 , a12) such that

hIm( j) =

{
a11 j(hΣ1,2

0 ) + a12 j(hD
2
1

0 )
}

is the basis of Im( j). From equation (5.42) it follows that hIm( j) is the obtained basis h′0 of

C0(H∗). If we choose the initial basis h0 (namely, hΣ1,1
0 ) of C0(H∗) as hIm( j), then we get

[h′0,h0] = 1. (5.43)
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Considering equation (5.41) for C1(H∗) = H0(Σ1,2) ⊕ H0(D2
1), the space C1(H∗)

can be expressed as follows

C1(H∗) = Im(i) ⊕ s1(Im( j)). (5.44)

Recall that in the previous step we chose the basis of Im( j) as hIm( j). Since s1 is a section

of j, the following equality holds

s1(hIm( j)) = a11hΣ1,2
0 + a12hD

2
1

0 .

As Im(i) is a one-dimensional subspace of C1(H∗), there is a non-zero vector (a21 , a22)

such that {
a21h

Σ1,2
0 + a22h

D2
1

0

}
is a basis of Im(i) and clearly A = (ai j) is (2 × 2)-real matrix with non-zero determinant.

If we take the basis of Im(i) as follows

hIm(i) =

{
−(det A)−1

[
a21h

Σ1,2
0 + a22h

D2
1

0

]}
,

then by equation (5.44),

h′1 =
{
hIm(i), s1(hIm( j))

}
becomes the obtained basis of C1(H∗). Since the initial basis of C1(H∗) is

h1 =

{
hΣ1,2

0 ,hD
2
1

0

}
,

the determinant of the transition matrix becomes 1; that is,

[
h′1,h1

]
= 1. (5.45)

Next, let us consider the space C2(H∗) = H0(S1
1) in equation (5.41). Using the fact
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that Im(h) is a trivial, we get

C2(H∗) = Im(h) ⊕ s2(Im(i)) = s2(Im(i)). (5.46)

Recall that the basis hIm(i) of Im(i) was chosen as

{
−(det A)−1

[
a21h

Σ1,2
0 + a22h

D2
1

0

]}

in the previous step. It follows from equation (5.46) that s2(hIm(i)) is the obtained basis

h′2 of C2(H∗). If we take the initial basis h2 (namely, hS 1
1

0 ) of C2(H∗) as s2(hIm(i)), then we

obtain

[h′2,h2] = 1. (5.47)

We now consider the case of C3(H∗) = H1(Σ1,1) in equation (5.41). Because Im(h)

is trivial, we have the following equality

C3(H∗) = Im(g) ⊕ s3(Im(h)) = Im(g). (5.48)

By the fact that Im(g) is a 2-dimensional space and hΣ1,2
1 = {hΣ1,2

1, j }
3
j=1 is the given basis of

H1(Σ1,2), for i = 1, 2, 3, there exist non-zero vectors (bi1 , bi2 , bi3) such that

hIm(g) =

 3∑
j=1

bi jg(hΣ1,2
1, j

)


2

i=1

is a basis of Im(g). By equation (5.48), hIm(g) becomes the obtained basis h′3 of C3(H∗).

Since C3(H∗) is equal to Im(g), we can take initial basis h3 (namely, hΣ1,1
1 ) of C3(H∗) as

hIm(g). Therefore, the determinant of the transition matrix is satisfies the following equality

[h′3,h3] = 1. (5.49)
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Now we consider equation (5.41) for C4(H∗) = H1(Σ1,2). Then we get

C4(H∗) = Im( f ) ⊕ s4(Im(g)). (5.50)

By the previous step, we obtain the basis hIm(g) of Im(g) as {
∑3

j=1 bi jg(hΣ1,2
1, j )}2i=1. By the fact

that s4 is a section of g, we get the basis of s4 (Im(g)) as

s4(hIm(g)) =

 3∑
j=1

bi jh
Σ1,2
1, j


2

i=1

.

Note that Im( f ) is a one-dimensional subspace of C4(H∗), so there is a non-zero vec-

tor (b3 1 , b3 2 , b3 3) such that {b3 1h
Σ1,2
1,1 + b3 2h

Σ1,2
1,1 + b3 3h

Σ1,2
1,3 } is a basis of Im( f ). Clearly, the

determinant of the matrix B = (bi j) is non-zero. Take the basis of Im( f ) as follows

hIm( f ) =
{
(det B)−1

[
b3 1h

Σ1,2
1,1

+ b3 2h
Σ1,2
1,1

+ b3 3h
Σ1,2
1,3

]}
.

By equation (5.50), {
hIm( f ), s4(hIm(g))

}
becomes the obtained basis h′4 of C4(H∗). Since hΣ1,2

1 is the initial basis h4 of C4(H∗), we

get the following equality

[h′4,h4] = 1. (5.51)

Finally, let us consider the case of C5(H∗) = H1(S1
1) in equation (5.41). Since

B5(H∗) is trivial, the following equality holds

C5(H∗) = B5(H∗) ⊕ s5(Im( f )) = s5(Im( f )). (5.52)

Recall that the basis hIm( f ) of Im( f ) was chosen in the previous step. By equation (5.52),

s5(hIm( f )) becomes the obtained basis h′5 of C5(H∗). If we take the initial basis h5 (namely,
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hS
1
1

0 ) of C5(H∗) as s5(hIm( f )), then the transition matrix satisfies the following equation

[h′5,h5] = 1. (5.53)

By equations (5.43), (5.45), (5.47), (5.49), (5.51), and (5.53), it is concluded that the

corrective term equals to 1; that is,

T
(
H∗, {hp}

5
p=0, {0}

5
p=0

)
=

5∏
p=0

[h′p,hp](−1)(p+1)
= 1. (5.54)

By the compatibility of the natural bases in the short exact sequence (5.39), Theorem 4.1,

and equation (5.54), it is concluded that

T

(
Σ1,2 ⊕ D

2
1, {h

Σ1,2
p }

1
p=0 t {h

D2
1

0 }

)
= T

(
Σ1,1, {h

Σ1,1
p }

1
p=0

)
T

(
S1

1, {h
S1

1
p }

1
p=0

)
. (5.55)

Then Lemma 4.1 and equation (5.55) finish the proof of Proposition 5.2. �

Combining Remark 4.1 and Proposition 5.2, we obtain

Proposition 5.3 Let Σ1,2,Σ1,1,S
1
1,D

2
1, hΣ1,2

p , hΣ1,1
p , hD

2
1

0 , hS
1
i

p be as in Proposition 5.2. Then

the following formula holds

∣∣∣∣T (
Σ1,2, {h

Σ1,1
p }

1
p=0

)∣∣∣∣ =
∣∣∣∣T (

Σ1,1, {h
Σ1,1
p }

1
p=0

)∣∣∣∣ ∣∣∣∣∣∣T
(
D2

1, {h
D2

1
0 }

)∣∣∣∣∣∣−1

.

The following result provides a formula that computes the Reidemeister torsion

of Σg,1 in terms of the Reidemeister torsion of the surfaces Σg−1,1 and Σ1,2 and boundary

circle γ1. More precisely,

Proposition 5.4 Consider the surface Σg,1 (g ≥ 2) obtained by gluing the surfaces Σg−1,1

and Σ1,2 along the common boundary circle γ1 (see, Figure 5.3).
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Σ1,1
Σ1,2

Σ2,1 =

γ1 γ1

glue
y

Figure 5.3. Orientable surface Σ2,1 is obtained by gluing Σ1,1 and Σ1,2 along common

boundary circle γ1.

Consider also the associated short exact sequence of chain complexes

0→ C∗(γ1) −→ C∗(Σg−1,1) ⊕C∗(Σ1,2) −→ C∗(Σg,1)→ 0, (5.56)

and corresponding Mayer-Vietoris sequence

H∗ : 0 −→ H1(γ1)
f
−→ H1(Σg−1,1) ⊕ H1(Σ1,2)

g
−→ H1(Σg,1)

h

H0(γ1)
i
−→ H0(Σg−1,1) ⊕ H0(Σ1,2)

j
−→ H0(Σg,1)

k
−→ 0.

For the given bases hΣg,1
p and hγ1

p of Hp(Σg,1) and Hp(γ1), p = 0, 1, there exist bases hΣg−1,1
p

and hΣ1,2
p of Hp(Σg−1,1) and Hp(Σ1,2), respectively such that the corrective term disappears

and the following multiplicative gluing formula holds

T
(
Σg,1, {h

Σg,1
p }

1
p=0

)
= T

(
Σg−1,1, {h

Σg−1,1
p }1p=0

)
T

(
Σ1,2, {h

Σ1,2
p }

1
p=0

)
T

(
γ1, {hγ1

p }
1
p=0

)−1
.

Proof Let us denote the vector spaces in the sequenceH∗ by Cp(H∗), p ∈ {0, 1, . . . , 5}.

For each p, the exactness ofH∗ yields the following short exact sequence

0→ Bp(H∗) ↪→ Cp(H∗)→ Bp−1(H∗)→ 0.

For all p, considering the isomorphism sp : Bp−1(H∗) → sp(Bp−1(H∗)) obtained by the
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First Isomorphism Theorem as a section of Cp(H∗)→ Bp−1(H∗), we obtain

Cp(H∗) = Bp(H∗) ⊕ sp(Bp−1(H∗)). (5.57)

Let us consider the space C0(H∗) = H0(Σg,1) in equation (5.57). From the fact that

Im(k) is trivial it follows

C0(H∗) = Im( j) ⊕ s0(Im(k)) = Im( j). (5.58)

Let us choose the basis of Im( j) as hΣg,1

0 . By equation (5.58), it is concluded that hΣg,1

0

becomes the obtained basis h′0 of C0(H∗). Since the initial basis h0 of C0(H∗) is also hΣg,1

0 ,

we have

[h′0,h0] = 1. (5.59)

Next consider C1(H∗) = H0(Σg−1,1) ⊕ H0(Σ1,2) in equation (5.57), we get

C1(H∗) = Im(i) ⊕ s1(Im( j)). (5.60)

As i is injective, i(hγ1
0 ) becomes the basis of Im(i). In the previous step, we chose hΣg,1

0 as

the basis of Im( j). Thus, by equation (5.60),

{
i(hγ1

0 ), s1(hΣg,1

0 )
}

becomes the obtained basis h′1 of C1(H∗). Since H0(Σg−1,1) and H0(Σ1,2) are both one-

dimensional subspaces of the 2-dimensional space C1(H∗), there exist non-zero vectors

(ai1 , ai2), i = 1, 2 such that {
a11i(h

γ1
0 ) + a12 s1(hΣg,1

0 )
}

is a basis of H0(Σg−1,1) and {
a21i(h

γ1
0 ) + a22 s1(hΣg,1

0 )
}
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is a basis of H0(Σ1,2). Clearly, the (2 × 2)-matrix A = (ai j) is invertible. Let

hΣg−1,1

0 =
{
(det A)−1[a

11
i(hγ1

0 ) + a
12

s1(hΣg,1

0 )]
}

hΣ1,2
0 =

{
a21i(hγ1

0 ) + a22s1(hΣg,1

0 )
}

be respectively basis of H0(Σg−1,1) and H0(Σ1,2). Considering

{
hΣg−1,1

0 ,hΣ1,2
0

}

as the initial basis h1 of C1(H∗), we have

[h′1,h1] = 1. (5.61)

Now, consider equation (5.57) for the space C2(H∗) = H0(γ1). Since h is a zero

map, we get

C2(H∗) = Im(h) ⊕ s2(Im(i)) = s2(Im(i)). (5.62)

Recall that the basis of Im(i) was chosen previously as i(hγ1
0 ). From this and equation (5.62)

it follows that hγ1
0 is the obtained basis h′2 of C2(H∗). In addition, hγ1

0 is also the initial basis

h2 of C2(H∗). Thus, we get

[h′2,h2] = 1. (5.63)

Let us consider C3(H∗) = H1(Σg,1) in equation (5.57). Obviously, we have

C3(H∗) = Im(g) ⊕ s3(Im(h)) = Im(g). (5.64)

Let us choose the basis of Im(g) as

hΣg,1

1 =
{
hΣg,1

1, j

}2g

j=1
.

By equation (5.64), we get that hΣg,1

1 is the obtained basis h′3 of C3(H∗). Note that hΣg,1

1 is
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also the initial basis h3 of C3(H∗). So the determinant of the transition matrix is 1; that is,

[h′3,h3] = 1. (5.65)

Considering the space C4(H∗) = H1(Σg−1,1)⊕H1(Σ1,2) in equation (5.57), we have

C4(H∗) = Im( f ) ⊕ s4(Im(g)). (5.66)

As f is injective, we can take the basis of Im( f ) as f (hγ1
1 ). In the previous step, we chose

the basis of Im(g) as hΣg,1

1 . From equation (5.66) it follows that

{
f (hγ1

1 ), s4(hΣg,1

1 )
}

becomes the obtained basis h′4 of C4(H∗). Since H1(Σg−1,1) and H1(Σ1,2) are respectively

(2g − 2) and (3)-dimensional subspaces of the (2g + 1)-dimensional space C4(H∗), for

i ∈ {1, . . . , 2g + 1} there exist the non-zero vectors (bi1, . . . , bi(2g+1)) such that

 2g∑
j=1

bi js4(hΣg,1

1, j ) + bi(2g+1) f (hγ1
1 )


3

i=1

is a basis of H1(Σ1,2) and

 2g∑
j=1

bi js4(hΣg,1

1, j ) + bi(2g+1) f (hγ1
1 )


2g+1

i=4

is a basis of H1(Σg−1,1). Moreover, B = (bi j) is a (2g + 1) × (2g + 1)-matrix with non-zero

determinant. Let us choose the basis of H1(Σ1
1,2) as

hΣ1,2
1 =

(det B)−1
2g∑
j=1

[
b1 js4(hΣg,1

1, j ) + b1(2g+1) f (hγ1
1 )

]
,

 2g∑
j=1

bi js4(hΣg,1

1, j ) + bi(2g+1) f (hγ1
1 )


3

i=2

 ,
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and take the basis of H1(Σg−1,1) as

hΣg−1,1

1 =

 2g∑
j=1

bi js4(hΣg,1

i, j ) + bi(2g+1) f (hγ1
1 )


2g+1

i=4

.

If we consider {hΣg−1,1

1 ,hΣ1,2
1 } as the initial basis h4 of C4(H∗), then we obtain

[h′4,h4] = 1. (5.67)

Finally, we consider equation (5.57) for the space C5(H∗) = H1(γ1). By the fact

that B5(H∗) is trivial, the following equality holds

C5(H∗) = B5(H∗) ⊕ s5(Im( f )) = s5(Im( f )). (5.68)

In the previous step, f (hγ1
1 ) was chosen as the basis of Im( f ). By equation (5.68), hγ1

1

becomes the obtained basis h′5 of C5(H∗). Note that hγ1
1 is also the initial basis h5 of

C5(H∗). Hence, we get

[h′5,h5] = 1. (5.69)

By equations (5.59), (5.61), (5.63), (5.65), (5.67), (5.69) it is concluded that the

corrective term satisfies the following equality

T
(
H∗, {hp}

5
p=0, {0}

5
p=0

)
=

5∏
p=0

[h′p,hp](−1)(p+1)
= 1. (5.70)

Compatibility of the natural bases in the short exact sequence (5.56), Theorem 4.1,

and equation (5.70) end the proof of Proposition 5.4. �

Let Σg,1 be a one-holed genus g (≥ 2) surface with boundary circles S1
1. Consider

Σg,1 as the connected sum
g−1
#

j=1
(Σ1,0)#Σ1,1 (see, Figure 5.4).
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. . .

Σ
γ1
1,1 Σ

γ1,γ2
1,2

γ1 γ2 γg−2 γg−1
Σ
γg−2,γg−1

1,2
Σ
γg−1,γg

1,2

γg

Figure 5.4. Connected sum decomposition of one-holed genus g surface Σg,1.

From left to right let γ1, . . . , γg−1 be the boundary circles of the surfaces in the connected

sum decomposition of Σg,1. This connected sum consists of

• D2
γi
, the closed disk with boundary circle γi, i = 1, . . . , g,

• Σ
γ1
1,1, the one-holed genus one surface with boundary circle γ1,

• Σ
γi,γi+1
1,2 , the 2-holed genus one surface with boundary circles γi, γi+1, i = 1, . . . , g−1.

If Σ
γi+1
1,1 denotes the one-holed torus with boundary circle γi+1 which is obtained

by gluing Σ
γi,γi+1
1,2 and the closed disk D2

γi
along the common boundary circle γi for i =

1, . . . , g − 1, then, by Proposition 5.2, there exists the homology basis (hγi
p )′ of Hp(γi). By

using Proposition 5.4 inductively, we obtain the following theorem.

Theorem 5.2 Let hΣg,1
p , hγi

p , and hD
2
γi

0 be respectively bases of Hp(Σg,1), Hp(γi), and H0(D2
γi

)

for p = 0, 1, i = 1, . . . , g − 1. Then there exist bases h
Σ
γi
1,1

p and (hγi
p )′ so that the following

formula is valid

T
(
Σg,1, {h

Σg,1
p }

1
p=0

)
=

g∏
i=1

T
(
Σ
γi
1,1, {h

Σ
γi
1,1

p }
1
p=0

)
×

g−1∏
i=1

T
(
γi, {hγi

p }
1
p=0

)−1

×

g−1∏
i=1

T (
γi, {(hγi

p )′}1p=0

)
T

(
D2
γi
, {hD

2
γi

0 }

)−1 .
Remark 5.1 Reidemeister torsion of n-holed genus one surface Σ1,n is also obtained by

following the arguments stated in the Proposition 5.2. Using this result and Theorem 5.2,

we obtain Reidmeister torsion of n-holed genus g surface Σg,n for n > 1. These results can

be found in (Dirican and Sözen, 2016).
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Theorem 5.3 Let Σg,0 be a genus g (≥ 2) closed orientable surface. From left to right

let γ1, . . . , γg−1 be the circles obtained by the connected sum decomposition of Σg,0. Let

Σ
γg

1,1 be one-holed genus one surface with boundary circle γg−1. Then the surface Σg,0 is

obtained by gluing the surfaces Σg−1,1 and Σ1,1 along the common boundary circle γg−1.

Consider the natural short exact sequence of chain complexes

0→ C∗(γg−1)→ C∗(Σg−1,1) ⊕C∗(Σ
γg

1,1)→ C∗(Σg,0)→ 0 (5.71)

and its corresponding Mayer-Vietoris sequence

H∗ : 0 −→ H2(Σg,0)
δ
−→ H1(γg−1)

f
−→ H1(Σg−1,1) ⊕ H1(Σγg

1,1)
g
−→ H1(Σg,0)

h

H0(γg−1)
i
−→ H0(Σg−1,1) ⊕ H0(Σγg

1,1)
j
−→ H0(Σg,0)

k
−→ 0,

where the connecting map δ is an isomorphism. Let hΣg,0
p be a basis of Hp(Σg,0), p = 0, 1, 2.

Let hγg−1

1 = δ(hΣg,0

2 ) be the basis of H1(γg−1) and hγg−1

0 be an arbitrary basis of H0(γg−1).

Then there are respectively bases hΣg−1,1
η and h

Σ
γg
1,1
η of Hη(Σg−1,1) and Hη(Σ

γg

1,1), η = 0, 1 such

that the corrective term becomes 1 and the following formula holds

T
(
Σg,0, {h

Σg,0
p }

2
p=0

)
= T

(
Σg−1,1, {h

Σg−1,1
η }1η=0

)
T

(
Σ
γg

1,1, {h
Σ
γg
1,1
η }

1
η=0

)
T

(
γg−1, {h

γg−1
η }

1
η=0

)−1
.

Proof The exactness of H∗ implies that f and h are zero-maps and thus the following

isomorphisms hold

H1(Σg,0) � H1(γg−1)

H1(Σg,0) � H1(Σg−1,1) ⊕ H1(Σγg

1,1)

H0(Σg−1,1) ⊕ H0(Σγg

1,1) � H0(γg−1) ⊕ H0(Σg,0).

Using the above isomorphisms together with the arguments presented in the proof

of Theorem 5.1, we obtain that the corrective term is 1. The compatibility of the natural
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bases in the short exact sequence (5.71) and Theorem 4.1 give the following formula

T
(
Σg−1,1 ⊕ Σ

γg

1,1, {h
Σg−1,1
η }1η=0 t {h

Σ
γg
1,1
η }

1
η=0

)
= T

(
Σg,0, {h

Σg,0
p }

2
p=0

)
T

(
γg−1, {h

γg−1
η }

1
η=0

)
. (5.72)

Then Lemma 4.1 and equation (5.72) finish the proof of Proposition 5.3. �

Now we consider the connected sum decomposition of closed genus g surface Σg,0

given in Figure 5.5. More precisely, this decomposition consists of

• D2
γi
, the closed disk with boundary circle γi, i = 1, . . . , g − 1,

• Σ
γ1
1,1, the one-holed genus one surface with boundary circle γi,

• Σ
γg

1,1, the one-holed genus one surface with boundary circle γg−1,

• Σ
γi,γi+1
1,2 , the 2-holed genus one surface with boundary circles γi, γi+1, i = 1, . . . , g−2.

. . .

Σ
γ1
1,1 Σ

γ1,γ2
1,2

γ1 γ2 γg−2 γg−1
Σ
γg−2,γg−1

1,2
Σ
γg

1,1

Figure 5.5. Connected sum decomposition of closed genus g surface Σg,0.

Combining Theorem 5.2 and Theorem 5.3, we have the main result of this section.

Theorem 5.4 Consider the connected sum decomposition Σg,0 =
g
#

j=1
(Σ1,0) given in Fig-

ure 5.5. Let Σ
γ j+1

1,1 be the one-holed torus with boundary circle γi+1 which is obtained by

gluing Σ
γ j,γ j+1

1,1 and D2
γ j

along the common boundary circle γi for j = 1, . . . , g − 2. Assume

that hΣg,0
p and h

D2
γ j

0 are respectively bases of Hp(Σg,0) and H0(D2
γ j

) for p = 0, 1, 2. Assume

also that hγi
η is an arbitrary basis of Hη(γi) such that hγg−1

1 = δ(hΣg,0

2 ) for η = 0, 1. Then

there are bases h
Σ
γi
1,1
η , (hγ j

η )′ so that the following multiplicative gluing formula is valid
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T
(
Σg,0, {h

Σg,0
p }

2
p=0

)
=

g∏
i=1

T
(
Σ
γi
1,1, {h

Σ
γi
1,1
η }

1
η=0

)
×

g−1∏
i=1

T
(
γi, {hγi

η }
1
η=0

)−1

×

g−2∏
j=1

T (
γ j, {(h

γ j
η )′}1η=0

)
T

(
D2
γ j
, {h
D2
γ j

0 }

)−1 .
Here, δ is obtained in Theorem 5.3.

By Remark 4.1 and Theorem 5.4, we obtain the following result

Theorem 5.5 Let Σg,0, Σ
γi
1,1, D

2
γi
, hΣg,0

p , h
Σ
γi
1,1
η , hD

2
γi

0 be as in Theorem 5.4. Then the following

formula is valid

∣∣∣∣T (
Σg,0, {h

Σg,0
p }

2
p=0

)∣∣∣∣ =

g∏
i=1

∣∣∣∣∣T (
Σ
γi
1,1, {h

Σ
γi
1,1
η }

1
η=0

)∣∣∣∣∣ g−2∏
j=1

∣∣∣∣∣∣∣T
(
D2
γ j
, {h
D2
γ j

0 }

)−1
∣∣∣∣∣∣∣

=

g∏
i=1

∣∣∣∣∣∣∣∣∣
4

Σ
γi
2,0

0,2 (h
Σ
γi
2,0

0 ,h
Σ
γi
2,0

2 )

det℘(h1
Σ
γi
2,0
,Γ)

∣∣∣∣∣∣∣∣∣
1/2

g−2∏
j=1

∣∣∣∣∣∣∣T
(
D2
γ j
, {h
D2
γ j

0 }

)−1
∣∣∣∣∣∣∣ .

5.2. Reidemeister Torsion of (n − 2)-Connected 2n-Dimensional

Closed π-Manifold

The purpose of this section is to establish multiplicative gluing formulas for the

Reidemeister torsion of (n − 2)-connected 2n-dimensional closed π-manifolds by using

their connected sum decompositions.

Let F2 denote the field with two elements and V be a 2n-dimensional vector space

over F2 for some n ∈ Z+. A quadratic form on V is a function q : V → F2 such that

• q(0) = 0 and

• q(x + y) − q(x) − q(y) = (x, y) is symmetric and F2-bilinear.
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Assume q is non-singular; that is, there exists a basis {x1, . . . , xn, y1, . . . , yn} of V such that

(xi, y j) = δi, j, and (xi, x j) = (yi, y j) = 0. This basis is also called symplectic basis. Here,

δi, j denotes the Kronecker delta. The Arf invariant of q is given by

c(q) =

n∑
i=1

q(xi)q(yi) ∈ F2.

Let M be a simply-connected, almost parallelizable, closed, smooth (4k + 2)-

dimensional manifold such that Hi(M;Z) = 0 unless i ∈ {0, 2k + 1, 4k + 2}. Then, by

Universal Coefficient Theorem, H2k+1(M;Z) is free abelian. Consider the skew-symmetric

intersection form

Φ : H2k+1(M;Z) × H2k+1(M;Z)→ Z.

Define a function

Φ0 : H2k+1(M;Z)→ Z2

as follows: For k > 1 and x ∈ H2k+1(M;Z), there is a smooth imbedding ιx : S2k+1 ↪→ M

realizing x. There exists a tubular neighbourhood of ιx(S2k+1) in M that is parallelizable

which is either trivial or isomorphic to a tubular neighbourhood of the diagonal in S2k+1 ×

S2k+1. Then Φ0(0) = 0 and for any x, y ∈ H2k+1(M;Z)

Φ0(x + y) ≡ Φ0(x) + Φ0(y) + Φ(x, y) mod 2.

Hence, Φ0 is a quadratic form. It is also well-known that Φ0 is non-singular for 2k + 1 ,

1, 3, 7.

Definition 5.1 The Arf-Kervaire invariant of a compact smooth (4k + 2)-dimensional π-

manifold M, denoted by κ(M), is defined as the Arf invariant of Φ0 : H2k+1(M;Z) → Z2

for a symplectic basis {x1, . . . , xn, y1, . . . , yn} of H2k+1(M); that is,

κ(M) =

n∑
i=1

Φ0(xi)Φ0(yi) (mod 2).

Note that κ(M) is independent of the choice of the symplectic basis.
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As an example, for the Kervaire manifold M2n
K , we have κ(M2n

K ) = 1. Note that for

the closed manifold S2n+1 × S2n+1, the Arf-Kervaire invariant is equal to zero.

For given (4k+2)-dimensional π-manifolds M1 and M2, the middle cohomology of

M1#M2 is H2k+1(M1)⊕H2k+1(M2) with the two summands orthogonal for the cup product

pairing. Hence, the symplectic bases for H2k+1(M1;Z2) and H2k+1(M2;Z2) yield together

a symplectic basis for H2k+1(M1#M2;Z2). By applying the Kervaire form to the following

maps

M1#M2 → M1 ∨ M2 → M1,

M1#M2 → M1 ∨ M2 → M2,

it is concluded that

κ(M1#M2) = κ(M1) + κ(M2).

Let M be an (n − 1)-connected 2n-dimensional closed π-manifold (n ≥ 3). If the

Arf-Kervaire invariant of M is zero, then Ishimoto (1969) showed that there exists such

a symplectic basis {x1, . . . , xp, y1, . . . , yp} for Hn(M;Z) with Φ0(xi) = Φ0(yi) = 0 that the

imbedded n-spheres Sn, S′n representing xi, yi respectively have trivial normal bundles.

By using this result with the surgery on π-manifolds, Ishimoto (1969) proved that there

is a decomposition for an (n − 2)-connected 2n-dimensional closed π-manifold M2n as

follows:

Theorem 5.6 Let M2n be an (n−2)-connected 2n-dimensional closed π-manifold (n ≥ 3)

such that Hn−1(M2n;Z) has no torsion. Under the assumption κ(M2n) = 0 when n = 4k+3,

there exists the decomposition

M2n = M#M2n
1 ,

where M =
p
#

j=1
(Sn × Sn) is the connected sum of p (≥ 2) copies of the product of the

original n-spheres and M2n
1 is an (n − 2)-connected 2n-dimensional closed π-manifold

such that

Hi(M2n
1 ;Z) '

 Hi(M2n;Z) , i = n − 1, n + 1

0 , i = n.
(5.73)

Here, 2p is the rank of Hn(M2n;Z).
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From the Van Kampen Theorem it follows that M2n
1 is simply connected. By using

the Mayer-Vietoris sequence, it has such homology groups as

Hi(M2n
1 ) �


Rr , i = n − 1, n + 1

R , i = 0, 2n

0 , otherwise.

(5.74)

From equation (5.73) and equation (5.74) it follows

Hi(M2n) �



Rr , i = n − 1, n + 1

R2p , i = n

R , i = 0, 2n

0 , otherwise.

Note that M2n
1 is a π-manifold since the index (Hirzebruch signature) of M2n

1 is zero. It is

also decomposed as follows

M2n
1 = S̃2n#∂(H2n+1),

where S̃2n is the homotopy 2n-sphere andH2n+1 is a handlebody

D2n+1 ∪
{ϕi}
{

r
∪
i=1
Dn+1

i × Dn
i },

r = rank(Hn−1(M2n
1 )), and {ϕi : Sn × Dn → S2n}ri=1 is the disjoint set of imbeddings.

Throughout this section, we assume that the Arf-Kervaire invariant is zero when

n = 4k + 3 for manifold M2n and use the notation M =
p
#

j=1
M j instead of M =

p
#

j=1
(Sn × Sn),

where M j = Sn × Sn for each j ∈ {1, . . . , p}.

In this section, our aim is to prove Theorem 5.7 which gives a formula that com-

putes the Reidemeister torsion of M2n in terms of the Reidemeister torsion of its building

blocks in the decomposition given in Theorem 5.6.

Theorem 5.7 Suppose that M2n = M#M2n
1 is an (n−2)-connected 2n-dimensional closed

π-manifold (n ≥ 3) such that Hn−1(M2n;Z) has no torsion, where M =
p
#

j=1
M j is a con-

nected sum of p (≥ 2) copies of Sn × Sn and M2n
1 is an (n − 2)-connected 2n-dimensional
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closed π-manifold. Let hM2n

ν and h
S2n−1

j
η be bases of Hν(M2n) and Hη(S2n−1

j ), ν = 0, · · · , 2n,

η = 0, · · · , 2n − 1 and let h
D2n

j

0 be an arbitrary basis of H0(D2n
j ). Then there exist respec-

tively bases hM j
ν and hM2n

1
ν of Hν(M j) and Hν(M2n

1 ) such that the corrective term becomes

1 and the Reidemeister torsion of M2n satisfies the following formula

T(M2n, {hM2n

ν }
2n
ν=0) = T

(
M2n

1 , {h
M2n

1
ν }

2n
ν=0

) p∏
j=1

T
(
M j, {h

M j
ν }

2n
ν=0

)
×

p∏
j=1

T (
S2n−1

j , {h
S2n−1

j
η }2n−1

η=0

)
T

(
D2n

j , {h
D2n

j

0 }

)−2 .
Now we establish auxiliary results to prove Theorem 5.7.

Proposition 5.5 Let M = ML#MR be a connected sum of p (≥ 2) copies of Sn×Sn, where

ML =
p−1
#

j=1
(Sn × Sn) and MR = Sn × Sn. Then there exists the natural short exact sequence

of the chain complexes

0→ C∗(S2n−1) −→ C∗(ML − D
2n) ⊕C∗(MR − D

2n) −→ C∗(M)→ 0 (5.75)

and its corresponding Mayer-Vietoris sequence

H∗ : 0
α
→ H2n(M)

γ
−→ H2n−1(S2n−1)

σ
−→ 0

f

Hn(ML − D
2n) ⊕ Hn(MR − D

2n)
g
−→ Hn(M)

h
−→ 0

β

H0(S2n−1)
`
−→ H0(ML − D

2n) ⊕ H0(MR − D
2n)

m
−→ H0(M)

ρ
→ 0.(5.76)

If hM
ν , hS2n−1

0 , hS2n−1

2n−1 = γ(hM
2n) are respectively bases of Hν(M), H0(S2n−1), H2n−1(S2n−1)

for ν = 0, · · · , 2n, then there exist respectively bases hML−D
2n

ν , hMR−D
2n

ν of Hν(ML − D
2n),
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Hν(MR − D
2n) such that the corrective term disappears and the following formula holds

T
(
M, {hM

ν }
2n
ν=0

)
= T

(
ML − D

2n, {hML−D
2n

ν }2n
ν=0

)
T

(
MR − D

2n, {hMR−D
2n

ν }2n
ν=0

)
× T

(
S2n−1, {hS

2n−1

η }2n−1
η=0

)−1
.

Proof For p ∈ {0, . . . , 8}, let Cp(H∗) denote the vector spaces in the long exact sequence

H∗. Then we consider the short exact sequences

0→ Zp(H∗) ↪→ Cp(H∗)
∂p
→ Bp−1(H∗)→ 0, (5.77)

0→ Bp(H∗) ↪→ Zp(H∗)
ϕp
� Hp(H∗)→ 0. (5.78)

For each p, let us consider the isomorphism sp : Bp−1(H∗) → sp(Bp−1(H∗)) obtained by

the First Isomorphism Theorem as a section of Cp(H∗) → Bp−1(H∗). From the exactness

ofH∗ it follows

Bp(H∗) = Zp(H∗).

Hence, the sequence (5.77) becomes

0→ Bp(H∗) ↪→ Cp(H∗)→ Bp−1(H∗)→ 0. (5.79)

Applying the Splitting Lemma for the sequence (5.79), we have

Cp(H∗) = Bp(H∗) ⊕ sp(Bp−1(H∗)). (5.80)

Now we consider the vector space C0(H∗) = H0(M) in equation (5.80). By the

fact that Im(ρ) = {0}, we obtain

C0(H∗) = Im(m) ⊕ s0(Im(ρ)) = Im(m). (5.81)

Let us choose the basis hIm(m) of Im(m) as hM
0 . It follows from equation (5.81) that hM

0

is the obtained basis h′0 of C0(H∗). Since hM
0 is also the initial basis h0 of C0(H∗), the

68



following equality holds

[h′0,h0] = 1. (5.82)

By equation (5.80), the space C1(H∗) = H0(ML − D
2n) ⊕ H0(MR − D

2n) can be

expressed as the following direct sum

C1(H∗) = Im(`) ⊕ s1(Im(m)). (5.83)

In the previous step, the basis hIm(m) of Im(m) was chosen as hM
0 . Note that Im(`) is iso-

morphic to H0(S2n−1), so we can choose the basis hIm(`) of Im(`) as `(hS2n−1

0 ). If we use

equation (5.83), then we get the obtained basis h′1 of C1(H∗) as

{
`(hS

2n−1

0 ), s1(hM
0 )

}
.

Since H0(ML−D
2n) and H0(MR−D

2n) are one-dimensional subspaces of the 2-dimensional

space C1(H∗), there are non-zero vectors (a11 , a12) and (a21 , a22) such that

{
a11`(h

S2n−1

0 ) + a12 s1(hM
0 )

}
and

{
a21`(h

S2n−1

0 ) + a22 s1(hM
0 )

}

are bases of H0(ML−D
2n) and H0(MR−D

2n), respectively. Then we obtain a non-singular

(2 × 2)-matrix A = (ai j) with entries in R. Let us take the basis of H0(ML − D
2n) and

H0(MR − D
2n) as

hML−D
2n

0 =
{
(det A)−1

[
a11`(h

S2n−1

0 ) + a12 s1(hM
0 )

]}
,

hMR−D
2n

0 =
{
a21`(h

S2n−1

0 ) + a22 s1(hM
0 )

}
.

Taking {hML−D
2n

0 ,hMR−D
2n

0 } as the initial basis h1 of C1(H∗), we get that the determinant of

the transition matrix is 1 as follows

[h′1,h1] = 1. (5.84)
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If we use equation (5.80) for C2(H∗) = H0(S2n−1) and consider the fact that

Im(β) = {0}, then we have

C2(H∗) = Im(β) ⊕ s2(Im(`)) = s2(Im(`)). (5.85)

Note that hS2n−1

0 is the initial basis h2 of C2(H∗). By equation (5.85), we get that

s2(`(hS
2n−1

0 )) = hS
2n−1

0

is the obtained basis h′2 of C2(H∗). Hence, the following equality holds

[h′2,h2] = 1. (5.86)

Considering the trivial space C3(H∗) in the sequenceH∗ and using the convention

1 · 0 = 1, we have

[h′3,h3] = 1. (5.87)

We next consider equation (5.80) for C4(H∗) = Hn(M). Since Im(h) is trivial, we

get the following equality

C4(H∗) = Im(g) ⊕ s4(Im(h)) = Im(g). (5.88)

Let us choose the basis hIm(g) of Im(g) as hM
n = {hM

n,1, · · · ,h
M
n,2p}. Then, by equation (5.88),

hM
n becomes the obtained basis h′4 of C4(H∗). Moreover, the initial basis h4 of C4(H∗) is

also hM
n , we get

[h′4,h4] = 1. (5.89)

If we consider C5(H∗) = Hn(ML −D
2n)⊕Hn(MR −D

2n) in equation (5.80) and use

the fact that Im( f ) = {0}, then the following equality holds

C5(H∗) = Im( f ) ⊕ s5(Im(g)) = s5(Im(g)). (5.90)
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In the previous step, the basis hIm(g) of Im(g) was chosen as hM
n . From equation (5.90) it

follows that s5(hM
n ) becomes the obtained basis h′5 of C5(H∗). Recall that {hM

n,1, · · · ,h
M
n,2p}

is the given basis hM
n of Hn(M). Since Hn(ML − D

2n) and Hn(MR − D
2n) are respectively

(2p−2) and 2-dimensional subspaces of 2p-dimensional space C5(H∗), there are non-zero

vectors (b j1, · · · , b j2p) for j ∈ {1, . . . , 2p} such that

 2p∑
i=1

b jis5(hM
n,i)


2p−2

j=1

and

 2p∑
i=1

b jis5(hM
n,i)


2p

j=2p−1

are bases of Hn(ML − D
2n) and Hn(MR − D

2n), respectively. Clearly, the transition matrix

B = (b ji) is an invertible-(2p × 2p) real matrix. If we let

hML−D
2n

n =

det(B)−1
2p∑
i=1

b1is5(hM
n,i),

 2p∑
i=1

b jis5(hM
n,i)


2p−2

j=2

 ,
hMR−D

2n

n =

 2p∑
i=1

b jis5(hM
n,i)


2p

j=2p−1

be the basis of Hn(ML − D
2n) and Hn(MR − D

2n), respectively and if we take the initial

basis h5 of C5(H∗) as {hML−D
2n

n ,hMR−D
2n

n }, then we get

[h′5,h5] = 1. (5.91)

Considering the trivial space C6(H∗) in the sequenceH∗ and using the convention

1 · 0 = 0, the transition matrix satisfies the following equation

[h′6,h6] = 1. (5.92)

Let us consider the space C7(H∗) = H2n−1(S2n−1) in equation (5.80). Since Im(σ)

is trivial, we get

C7(H∗) = Im(γ) ⊕ s7(Im(σ)) = Im(γ). (5.93)
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Taking the basis hIm(γ) of Im(γ) as hS2n−1

2n−1 = γ(hM
2n) and considering equation (5.93), we

get that hS2n−1

2n−1 is the obtained basis h′7 of C7(H∗). As the initial basis h7 of C7(H∗) is also

hS2n−1

2n−1 , the following equality holds

[h′7,h7] = 1. (5.94)

Finally, let us consider equation (5.80) for C8(H∗) = H2n(M). Since Im(α) is

trivial, the space C8(H∗) can be expressed as follows

C8(H∗) = Im(α) ⊕ s8(Im(γ)) = s8(Im(γ)). (5.95)

Recall that hM
2n is the initial basis h8 of C8(H∗) and hS2n−1

2n−1 = γ(hM
2n) was chosen

as the basis hIm(γ) of Im(γ) in the previous step. By equation (5.95), s8(γ(hM
2n)) = hM

2n

becomes the obtained basis h′8 of C8(H∗) and satisfies the following equation

[h′8,h8] = 1. (5.96)

If we combine equations (5.82), (5.84), (5.86), (5.87), (5.89), (5.91), (5.92), (5.94),

and (5.96), then the corrective term satisfies the following equation

T
(
H∗, {hp}

8
p=0, {0}

8
p=0

)
=

8∏
p=0

[h′p,hp](−1)(p+1)
= 1. (5.97)

Since the natural bases in the short exact sequence (5.75) are compatible, the following

formula holds by Theorem 4.1

T
(
ML − D

2n ⊕ MR − D
2n, {hML−D

2n

ν }2n
ν=0 t {h

MR−D
2n

ν }2n
ν=0

)
= T

(
M, {hM

ν }
2n
ν=0

)
T

(
S2n−1, {hS

2n−1

η }2n−1
η=0

)
T

(
H∗, {hp}

8
p=0, {0}

8
p=0

)
. (5.98)
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By equations (5.97) and (5.98), the following formula is valid

T
(
ML − D

2n ⊕ MR − D
2n, {hML−D

2n

ν }2n
ν=0 t {h

MR−D
2n

ν }2n
ν=0

)
= T

(
M, {hM

ν }
2n
ν=0

)
T

(
S2n−1, {hS

2n−1

η }2n−1
η=0

)
. (5.99)

Considering Lemma 4.1 and equation (5.99), we finish the proof of Proposition 5.5. �

Proposition 5.6 Let M =
p
#

j=1
(Sn × Sn) be a connected sum of p (≥ 1) copies of product of

the original n-spheres Sn × Sn and

0→ C∗(S2n−1) −→ C∗(M − D2n) ⊕C∗(D2n) −→ C∗(M)→ 0 (5.100)

be the natural short exact sequence of the chain complexes with the corresponding Mayer-

Vietoris sequence

H∗ : 0
φ
−→ H2n(M)

α
−→ H2n−1(S2n−1)

ϕ
−→ 0

ψ

Hn(M − D2n)
β
−→ Hn(M)

η
−→ 0

ς

H0(S2n−1)
θ
−→ H0(M − D2n) ⊕ H0(D2n)

δ
−→ H0(M)

ρ
−→ 0. (5.101)

Assume that hM−D2n

ν and hS2n−1

η are respectively bases of Hν(M − D2n) and Hη(S2n−1) for

ν = 0, · · · , 2n, η = 0, · · · , 2n − 1. Assume also that hD2n

0 is an arbitrary basis of H0(D2n).

Then there exists a basis hM
ν of Hν(M) such that the corrective term becomes 1 and the

following multiplicative gluing formula is valid

T
(
M − D2n, {hM−D2n

ν }nν=0

)
= T

(
M, {hM

ν }
2n
ν=0

)
T

(
S2n−1, {hS

2n−1

η }2n−1
η=0

)
T

(
D2n, {hD2n

0 }

)−1
.

Proof Let us denote the vector spaces in the sequenceH∗ by Cp(H∗) for p ∈ {0, . . . , 8}.
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Following the arguments presented in the proof of Theorem 5.1, we obtain the equation

Cp(H∗) = Bp(H∗) ⊕ sp(Bp−1(H∗)). (5.102)

Here, sp : Bp−1(H∗) → sp(Bp−1(H∗)) is the isomorphism obtained by the First Isomor-

phism Theorem as a section of Cp(H∗)→ Bp−1(H∗) for each p.

First, we use equation (5.102) for the vector space C0(H∗) = H0(M). Since Im(ρ)

is trivial, we get

C0(H∗) = Im(δ) ⊕ s0(Im(ρ)) = Im(δ). (5.103)

Let us take the basis of Im(δ) as

hIm(δ) =

{
a21δ(h

M−D2n
) + a22δ(h

D2n
)
}

for non-zero vector (a21 , a22). It follows from equation (5.103) that hIm(δ) is the obtained

basis h′0 of C0(H∗). If we take the initial basis h0 of C0(H∗) as hIm(δ), then the following

equality holds

[h′0,h0] = 1. (5.104)

By using equation (5.102), C1(H∗) = H0(M −D2n) ⊕ H0(D2n) can be expressed as

the following direct sum

C1(H∗) = Im(θ) ⊕ s1(Im(δ)). (5.105)

In the previous step, the basis of Im(δ) was chosen as hIm(δ). Note also that Im(θ) is iso-

morphic to H0(S2n−1), so we can choose the basis hIm(θ) of Im(θ) as θ(hS2n−1

0 ). As Im(θ) is

one-dimensional subspace of C1(H∗), there is a non-zero vector (a11 , a12) such that

θ(hS
2n−1

0 ) = a11h
M−D2n

0 + a12h
D2n

0 .

Clearly, A = (ai j) is the non-singular (2 × 2)-real matrix. By equation (5.105),

{
θ(hS

2n−1

0 ), s1(hIm(δ))
}
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becomes the obtained basis h′1 of C1(H∗). Since the initial basis h1 of C1(H∗) is

{
hM−D2n

0 ,hD2n

0

}
,

we get the following equality

[h′1,h1] = det A. (5.106)

If we use equation (5.102) for the space C2(H∗) = H0(S2n−1) and consider the fact

that Im(ς) = {0}, then we have

C2(H∗) = Im(ς) ⊕ s2(Im(θ)) = s2(Im(θ)). (5.107)

By equation (5.107), we obtain that s2(θ(hS2n−1

0 )) = hS2n−1

0 is the obtained basis h′2 of

C2(H∗). Note that hS2n−1

0 is the initial basis h2 of C2(H∗). Hence, we have

[h′2,h2] = 1. (5.108)

By using the convention 1 · 0 = 1 for the trivial space C3(H∗), we obtain that the

determinant of the transition matrix is 1; that is,

[h′3,h3] = 1. (5.109)

Let us consider equation (5.102) for the space C4(H∗) = Hn(M). Since the space

Im(η) is trivial, we have

C4(H∗) = Im(β) ⊕ s4(Im(η)) = Im(β). (5.110)

Since Im(β) is isomorphic to Hn(M − D2n), we can take the basis hIm(β) of Im(β) as

β(hM−D2n

n ). By equation (5.110), hIm(β) becomes the obtained basis h′4 of C4(H∗). If we
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take the initial basis h4 (namely, hM
n ) of C4(H∗) as h′4, then the following equality holds

[h′4,h4] = 1. (5.111)

From equation (5.102) and the trivial space Im(ψ) = {0} it follows that the space

C5(H∗) = Hn(M − D2n) can be written as follows

C5(H∗) = Im(ψ) ⊕ s5(Im(β)) = s5(Im(β)). (5.112)

The basis hIm(β) of Im(β) was chosen as β(hM−D2n

n ) in the previous step. By equation (5.112),

s5(β(hM−D2n

n )) = hM−D2n

n

becomes the obtained basis h′5 of C5(H∗). As the initial basis h5 of C5(H∗) is also hM−D2n

n ,

we have the following equality

[h′5,h5] = 1. (5.113)

If we use C6(H∗) = {0} in the sequenceH∗ and take the convention 1 · 0 = 0, then

the determinant of the transition matrix satisfies the following equality

[h′6,h6] = 1. (5.114)

Let us consider the space C7(H∗) = H2n−1(S2n−1) in equation (5.102). The trivial

space Im(ϕ) yields

C7(H∗) = Im(α) ⊕ s7(Im(ϕ)) = Im(α). (5.115)

Recall that hS2n−1

2n−1 is the initial basis h7 of C7(H∗). Taking the basis hIm(α) of Im(α) as hS2n−1

2n−1

and considering equation (5.115), we get that hS2n−1

2n−1 is the obtained basis h′7 of C7(H∗).

Therefore, we have

[h′7,h7] = 1. (5.116)

Finally, we use equation (5.102) for the space C8(H∗) = H2n(M). If we consider
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the trivial space Im(φ), then we get

C8(H∗) = Im(φ) ⊕ s8(Im(α)) = s8(Im(α)). (5.117)

Since hS2n−1

2n−1 was chosen as the basis hIm(α) of Im(α) in the previous step, s8(hS2n−1

2n−1) becomes

the obtained basis h′8 of C8(H∗) by equation (5.117). Let us take the initial basis h8

(namely, hM
2n) of C8(H∗) as {

(det A)−1s8(hS
2n−1

2n−1)
}
.

Then the following equality holds

[h′8,h8] = (det A)−1. (5.118)

From equations (5.104), (5.106), (5.108), (5.109), (5.111), (5.113), (5.114), (5.116),

and (5.118) it follows that

T
(
H∗, {hp}

8
p=0, {0}

8
p=0

)
=

8∏
p=0

[h′p,hp](−1)(p+1)
= 1. (5.119)

Let us consider the compatibility of the natural bases in the short exact sequence

(5.100). If we use equation (5.119) with Theorem 4.1 and apply Lemma 4.1 for the

direct sum of the chain comlexes C∗(M − D2n) ⊕ C∗(D2n), then we finish the proof of

Proposition 5.6. �

Proposition 5.7 Let M =
p
#

j=1
M j be a connected sum of p (≥ 2) copies of Sn × Sn and

Ni =
i
#

j=1
M j for i = 1, · · · , p. Consider the following short exact sequences of the chain

complexes

0→ C∗(S2n−1
i ) −→ C∗(Ni−1 − D

2n
i ) ⊕C∗(Mi − D

2n
i ) −→ C∗(Ni)→ 0,

0→ C∗(S2n−1
i ) −→ C∗(Ni−1 − D

2n
i ) ⊕C∗(D2n

i ) −→ C∗(Ni−1)→ 0,

0→ C∗(S2n−1
i ) −→ C∗(Mi − D

2n
i ) ⊕C∗(D2n

i ) −→ C∗(Mi)→ 0,
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and their associated Mayer-Vietoris sequences as in Proposition 5.5 and Proposition 5.6.

If hNi
ν , hS

2n−1
i
η , and hD

2n
i

0 are respectively bases of Hν(Ni), Hη(S2n−1
i ), and H0(D2n

i ), ν =

0, . . . , 2n, η = 0, . . . , 2n − 1, then there are respectively bases hNi−1
ν and hMi

ν of Hν(Ni−1)

and Hν(Mi) such that the corrective term equals to 1 and the Reidemeister torsion of Ni

satisfies the following formula

T
(
Ni, {hNi

ν }
2n
ν=0

)
= T

(
Ni−1, {hNi−1

ν }
2n
ν=0

)
T

(
Mi, {hMi

ν }
2n
ν=0

)
× T

(
S2n−1

i , {hS
2n−1
i
η }2n−1

η=0

)
T

(
D2n

i , {h
D2n

i
0 }

)−2

.

If we follow the arguments in the Proposition 5.7 inductively, then we have

Theorem 5.8 Suppose M =
p
#

j=1
M j is a connected sum of p-copies of Sn × Sn and hM

ν ,

hS
2n−1
i
η , and hD

2n
i

0 are respectively bases of Hν(M), Hη(S2n−1
i ), and H0(D2n

i ), ν = 0, . . . , 2n,

η = 0, · · · , 2n − 1. Then there is a basis hM j
ν of Hν(M j) for each j such that the following

formula holds

T
(
M, {hM

ν }
2n
ν=0

)
=

p∏
j=1

T
(
M j, {h

M j
ν }

2n
ν=0

) p−1∏
i=1

T (
S2n−1

i , {hS
2n−1
i
η }2n−1

η=0

)
T

(
D2n

i , {h
D2n

i
0 }

)−2 .
Proposition 5.8 Let M2n = M#M2n

1 be an (n–2)-connected 2n-dimensional closed π-

manifold (n ≥ 3) such that Hn−1(M2n;Z) has no torsion, where M =
p
#

j=1
(Sn × Sn) and

M2n
1 is an (n–2)-connected 2n-dimensional closed π-manifold. Consider the natural short

exact sequence of the chain complexes

0→ C∗(S2n−1) −→ C∗(M − D2n) ⊕C∗(M2n
1 − D

2n) −→ C∗(M2n)→ 0. (5.120)

Associated to the sequence (5.120), there exists the corresponding Mayer-Vietoris se-

quence

H∗ : 0→ H3
∗ → H

2
∗ → H

1
∗ → 0,
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where, for j = 1, · · · , n − 1, n + 1, · · · , 2n − 2

H3
∗ : 0

β
−→ H2n(M2n)

γ
−→ H2n−1(S2n−1)

∂′2n−1
−→ H2n−1(M2n

1 − D
2n)

∂2n−1
−→ H2n−1(M2n)

∂′′2n−1
−→ 0,

H2
∗ : 0

∂′j
−→ H j(M2n

1 − D
2n)

∂ j
−→ H j(M2n)

∂′′j
−→ 0,

0
∂′n
−→ Hn(M − D2n)

∂n
−→ Hn(M2n)

∂′′n
−→ 0,

H1
∗ : 0

α
−→ H0(S2n−1)

θ
−→ H0(M − D2n) ⊕ H0(M2n

1 − D
2n)

ψ
→ H0(M2n)

φ
−→ 0.

Let hM2n

ν , hS2n−1

0 , and hS2n−1

2n−1 = γ(hM2n

2n ) be respectively bases of Hν(M2n), H0(S2n−1), and

H2n−1(S2n−1) for ν = 0, · · · , 2n. Then there exist bases hM−D2n

ν and hM2n
1 −D

2n

ν of Hν(M −D2n)

and Hν(M2n
1 −D

2n) such that the corrective term disappears from the following multiplica-

tive gluing formula

T
(
M2n, {hM2n

ν }
2n
ν=0

)
= T

(
M − D2n, {hM−D2n

ν }2n
ν=0

)
T

(
M2n

1 − D
2n, {hM2n

1 −D
2n

ν }2n
ν=0

)
× T

(
S2n−1, {hS

2n−1

η }2n−1
η=0

)−1
.

Proof Let Cp(H∗) denote the vector spaces in the sequenceH∗ for p ∈ {0, 1, . . . , 6n−2}.

Then we have the following equation for each p

Cp(H∗) = Bp(H∗) ⊕ sp(Bp−1(H∗)). (5.121)

Now we consider the first part of the long exact sequenceH∗ given as follows

H1
∗ : 0

α
−→ H0(S2n−1)

θ
−→ H0(M − D2n) ⊕ H0(M2n

1 − D
2n)

ψ
→ H0(M2n)

φ
−→ 0.

First, we use equation (5.121) for the vector space C0(H∗) = H0(M2n). Since Im(φ)

is trivial, we get

C0(H∗) = Im(ψ) ⊕ s0(Im(φ)) = Im(ψ). (5.122)

If we choose the basis hIm(ψ) of Im(ψ) as hM2n

0 , then hM2n

0 becomes the obtained basis h′0 of
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C0(H∗) by equation (5.122). Since hM2n

0 is also the initial basis h0 of C0(H∗), we get that

the transition matrix is the identity matrix, and thus the following equality holds

[h′0,h0] = 1. (5.123)

Let us consider equation (5.121) for C1(H∗) = H0(M−D2n)⊕H0(M2n
1 −D

2n). Then

the space C1(H∗) can be written as the following direct sum

C1(H∗) = Im(θ) ⊕ s1(Im(ψ)). (5.124)

Recall that the basis hIm(ψ) of Im(ψ) was chosen as hM2n

0 in the previous step. Note also

that Im(θ) is isomorphic to H0(S2n−1), so we can take the basis hIm(θ) of Im(θ) as θ(hS2n−1

0 ).

By equation (5.124), we get the obtained basis of C1(H∗) as follows

h′1 =
{
θ(hS

2n−1

0 ), s1(h
M2n

0 )
}
.

As H0(M −D2n) and H0(M2n
1 −D

2n) are one-dimensional subspaces of the 2-dimensional

space C1(H∗), there are non-zero vectors (a11 , a12) and (a21 , a22) such that

{
a11θ(h

S2n−1

0 ) + a12 s1(h
M2n

0 )
}
,{

a21θ(h
S2n−1

0 ) + a22 s1(h
M2n

0 )
}

are bases of H0(M − D2n) and H0(M2n
1 − D

2n), respectively. Moreover, A = (ai j) is the

(2 × 2)-invertible matrix over R. Let us take the bases of H0(M −D2n) and H0(M2n
1 −D

2n)

as follows

hM−D2n

0 =
{
(det A)−1[a11θ(h

S2n−1

0 ) + a12 s1(h
M2n

0 )]
}
,

hM2n
1 −D

2n

0 =
{
a21θ(h

S2n−1

0 ) + a22 s1(h
M2n

0 )
}
.
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Then h1 = {hM−D2n

0 ,hM2n
1 −D

2n

0 } becomes the initial basis of C1(H∗) and we have

[h′1,h1] = 1. (5.125)

Considering the space C2(H∗) = H0(S2n−1) in equation (5.121) and using the fact

that Im(α) is trivial, we can express the space C2(H∗) as follows

C2(H∗) = Im(α) ⊕ s2(Im(θ)) = s2(Im(θ)). (5.126)

By equation (5.126), s2(θ(hS
2n−1

0 )) = hS2n−1

0 becomes the obtained basis h′2 of C2(H∗). Since

the initial basis h2 of C2(H∗) is hS2n−1

0 , we get the following equality

[h′2,h2] = 1. (5.127)

If we use the convention 1 · 0 = 1 for the space C3(H∗) = {0} in the sequenceH∗,

then the determinant of the transition matrix becomes 1; that is

[h′3,h3] = 1. (5.128)

Now we consider the following partsH2
∗ of the sequenceH∗

• for j = 1, 2, . . . , n − 1, n + 1, . . . , 2n − 2

0
∂′j
−→ H j(M2n

1 − D
2n)

∂ j
−→ H j(M2n)

∂′′j
−→ 0,

• for j = n

0
∂′j
−→ H j(M − D2n)

∂ j
−→ H j(M2n)

∂′′j
−→ 0.

Let us denote the vector spaces in the above short exact sequences as C3 j(H∗), C3 j+1(H∗)

and C3 j+2(H∗) for each j ∈ {1, 2, . . . , 2n − 2}. Note that the space C3 j(H∗) is trivial. If we
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use the convention 1 · 0 = 1 for each j ∈ {2, · · · , 2n − 2}, then we get

[h′3 j,h3 j] = 1. (5.129)

By the exactness ofH∗, we obtain the following isomorphisms

H j(M2n
1 − D

2n)
∂ j
� H j(M2n),

Hn(M − D2n)
∂n
� Hn(M2n).

We then use equation (5.121) for the space C3 j+1(H∗) = H j(M2n). Since Im(∂′′j ) is

a trivial space, the following equality holds

C3 j+1(H∗) = Im(∂ j) ⊕ s3 j+1(Im(∂′′j )) = Im(∂ j). (5.130)

Since Im(∂ j) equals to H j(M2n), we can take the basis hIm(∂ j) of Im(∂ j) as hM2n

j . By equa-

tion (5.130), hM2n

j becomes the obtained basis h′3 j+1 of C3 j+1(H∗). Since the initial basis

h3 j+1 of C3 j+1(H∗) is also hM2n

j , we obtain

[h′3 j+1,h3 j+1] = 1. (5.131)

Considering equation (5.121) for C3 j+2(H∗) = H j(M2n
1 − D

2n) and using the fact

that Im(∂′j) = {0}, we obtain

C3 j+2(H∗) = Im(∂′j) ⊕ s3 j+2(Im(∂ j)) = s3 j+2(Im(∂ j)). (5.132)

Since H j(M2n
1 −D

2n) and H j(M2n) are isomorphic, the section s3 j+2 can be considered as the

inverse of the isomorphism ∂ j. In the previous step, the basis hIm(∂ j) of Im(∂ j) was chosen

as hM2n

j . By equation (5.132), s3 j+2(hM2n

j ) becomes the obtained basis h′3 j+2 of C3 j+2(H∗). If
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we take the initial basis h3 j+2 of C3 j+2(H∗) as s3 j+2(hM2n

j ), then we get

[h′3 j+2,h3 j+2] = 1. (5.133)

For j = n, if we apply the above two steps to the following part of the Mayer-

Vietoris sequenceH∗

0
∂′j
−→ H j(M − D2n)

∂ j
−→ H j(M2n)

∂′′j
−→ 0,

then we get the following equalities

[h′3n+1,h3n+1] = 1,

[h′3n+2,h3n+2] = 1. (5.134)

Now we consider the last part of the sequenceH∗

H3
∗ : 0

β
−→ H2n(M2n)

γ
−→ H2n−1(S2n−1)

∂′2n−1
−→ H2n−1(M2n

1 − D
2n)

∂2n−1
−→ H2n−1(M2n)

∂′′2n−1
−→ 0.

By the exactness ofH3
∗ , ∂

′
2n−1 becomes a zero map. So, the following isomorphism exists

H2n−1(M2n
1 − D

2n)
∂2n−1
� H2n−1(M2n).

By using equation (5.121) for the space C6n−5(H∗) = H2n−1(M2n) and the fact that

Im(∂′′2n−1) is trivial, the following equality holds

C6n−5(H∗) = Im(∂2n−1) ⊕ s6n−5(Im(∂′′2n−1)) = Im(∂2n−1). (5.135)

As Im(∂2n−1) equals to H2n−1(M2n), we can take the basis hIm(∂2n−1) of Im(∂2n−1) as hM2n

2n−1.
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By equation (5.135), hM2n

2n−1 becomes the obtained basis h′6n−5 of C6n−5(H∗). Since the initial

basis h6n−5 of C6n−5(H∗) is also hM2n

2n−1, we conclude that the determinant of the transition

matrix is 1; that is,

[h′6n−5,h6n−5] = 1. (5.136)

If we consider equation (5.121) for C6n−4(H∗) = H2n−1(M2n
1 − D

2n) and use the

trivial space Im(∂′2n−1), then we have

C6n−4(H∗) = Im(∂′2n−1) ⊕ s6n−4(Im(∂2n−1)) = s6n−4(Im(∂2n−1)). (5.137)

Since H2n−1(M2n
1 − D

2n) and H2n−1(M2n) are isomorphic, the section s6n−4 can be consid-

ered as the inverse of the isomorphism ∂2n−1. In the previous step, the basis hIm(∂2n−1) of

Im(∂2n−1) was chosen as hM2n

2n−1. By equation (5.137 ), s6n−4(hM2n

2n−1) becomes the obtained

basis h′6n−4 of C6n−4(H∗). If we take the initial basis h6n−4 of C6n−4(H∗) as s6n−4(hM2n

2n−1), then

we get

[h′6n−4,h6n−4] = 1. (5.138)

Let us consider the space C6n−3(H∗) = H2n−1(S2n−1) in equation (5.121). The trivial

space Im(∂′2n−1) yields

C6n−3(H∗) = Im(γ) ⊕ s6n−3(Im(∂′2n−1)) = Im(γ). (5.139)

Recall that hS2n−1

2n−1 = γ(hM2n

2n ) is the initial basis h6n−3 of C6n−3(H∗). If we take the basis

hIm(γ) of Im(γ) as hS2n−1

2n−1 and consider equation (5.139), then hS2n−1

2n−1 becomes the obtained

basis h′6n−3 of C6n−3(H∗). Therefore, we get

[h′6n−3,h6n−3] = 1. (5.140)

Finally, let us consider equation (5.121) for C6n−2(H∗) = H2n(M2n). By the fact

that Im(β) is trivial, the following equality holds

C6n−2(H∗) = Im(β) ⊕ s6n−2(Im(γ)) = s6n−2(Im(γ)). (5.141)
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Note that hS2n−1

2n−1 = γ(hM2n

2n ) was chosen as the basis hIm(γ) of Im(γ) in the previous step. By

equation (5.141),

s6n−2(γ(hM2n

2n )) = hM2n

2n

becomes the obtained basis h′6n−2 of C6n−2(H∗). Since the initial basis h6n−2 of C6n−2(H∗)

is hM2n

2n , the determinant of the transition matrix satisfies the equality

[h′6n−2,h6n−2] = 1. (5.142)

Equations (5.123), (5.125), (5.127), (5.128), (5.131), (5.133), (5.129) (5.134),

(5.136), (5.138), (5.140), and (5.142) yield

T
(
H∗, {hp}

6n−2
p=0 , {0}

6n−2
p=0

)
=

6n−2∏
p=0

[h′p,hp](−1)(p+1)
= 1. (5.143)

Since the natural bases in the short exact sequence (5.120) are compatible, Theorem 4.1

yields the following formula

T
(
M − D2n ⊕ M2n

1 − D
2n, {hM−D2n

ν t hM2n
1 −D

2n

ν }2n
ν=0

)
= T

(
M2n, {hM2n

ν }
2n
ν=0

)
T

(
S2n−1, {hS

2n−1

η }2n−1
η=0

)
T

(
H∗, {hp}

6n−2
p=0 , {0}

6n−2
p=0

)
. (5.144)

By equation (5.143) and equation (5.144), we have

T
(
M − D2n ⊕ M2n

1 − D
2n, {hM−D2n

ν t hM2n
1 −D

2n

ν }2n
ν=0

)
= T

(
M2n, {hM2n

ν }
2n
ν=0

)
T

(
S2n−1, {hS

2n−1

η }2n−1
η=0

)
. (5.145)

Combining Lemma 4.1 and equation (5.145) finishes the proof of Proposition 5.8. �

By using similar arguments in the proof of Proposition 5.8, we obtain the follow-

ing result.

Proposition 5.9 Suppose that M2n
1 is an (n − 2)-connected 2n-dimensional closed π-

manifold stated in Proposition 5.6. Then there is the following short exact sequence of
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the chain complexes

0→ C∗(S2n−1) −→ C∗(M2n
1 − D

2n) ⊕C∗(D2n) −→ C∗(M2n
1 )→ 0

and its corresponding Mayer-Vietoris sequence

H∗ : 0
β
−→ H2n(M2n

1 )
γ
−→ H2n−1(S2n−1)

∂′2n−1

H2n−1(M2n
1 − D

2n)
∂2n−1
−→ H2n−1(M2n

1 )
∂′′2n−1
→ 0

H2(M2n
1 − D

2n)
∂2
−→ H2(M2n

1 )
∂′′2
→ 0

∂′2

H1(M2n
1 − D

2n)
∂1
−→ H1(M2n

1 )

∂′′1

H0(S2n−1)
θ
−→ H0(M2n

1 − D
2n) ⊕ H0(D2n)

ψ
−→ H0(M2n

1 )
φ
−→ 0.

Suppose also that hM2n
1 −D

2n

ν and hS2n−1

η are respectively bases of Hν(M2n
1 − D

2n), Hη(S2n−1)

for ν = 0, · · · , n, η = 0, · · · , 2n − 1, and hD2n

0 is an arbitrary basis of H0(D2n). Then there

exists a basis hM2n
1

ν of Hν(M2n
1 ) such that the corrective term is 1 and the formula holds

T
(
M2n

1 − D
2n, {hM2n

1 −D
2n

ν }nν=0

)
= T

(
M2n

1 , {h
M2n

1
ν }

2n
ν=0

)
T

(
S2n−1, {hS

2n−1

η }2n−1
η=0

)
T

(
D2n, {hD2n

0 }

)−1
.

Now we give the proof of the Main Theorem of this section.

Proof of Theorem 5.7 Let M2n be an (n − 2)-connected 2n-dimensional closed π-

manifold (n ≥ 3) such that Hn−1(M2n;Z) has no torsion. By Theorem 5.6, there exists

a decomposition

M2n = M#M2n
1 ,

where M =
p
#

j=1
M j is a connected sum of p copies of Sn×Sn and M2n

1 is an (n−2)-connected

2n-dimensional closed π-manifold.
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Let hM2n

ν and hS2n−1

0 be respectively bases of Hν(M2n) and H0(S2n−1), ν = 0, · · · , 2n.

Let also hS2n−1

2n−1 = γ(hM2n

2n ) be a basis of H2n−1(S2n−1) and let hD2n

0 be an arbitrary basis of

H0(D2n). By Proposition 5.6, Proposition 5.8, and Proposition 5.9, there exist respectively

bases hM
ν , hM2n

1
ν of Hν(M), Hν(M2n

1 ) such that the following formula is valid

T
(
M2n, {hM2n

ν }
2n
ν=0

)
= T

(
M, {hM

ν }
2n
ν=0

)
T

(
M2n

1 , {h
M2n

1
ν }

2n
ν=0

)
× T

(
S2n−1, {hS

2n−1

η }2n−1
η=0

)
T

(
D2n, {hD2n

0 }

)−2
. (5.146)

By applying Theorem 5.8 for M =
p
#

j=1
M j, there exists a basis hM j

ν of Hν(M j) such that

T
(
M, {hM

ν }
2n
ν=0

)
=

p∏
j=1

T
(
M j, {h

M j
ν }

2n
ν=0

)
×

p−1∏
j=1

T (
S2n−1

j , {h
S2n−1

j
η }2n−1

η=0

)
T

(
D2n

j , {h
D2n

j

0 }

)−2 . (5.147)

Combining equation (5.146) and equation (5.147), we obtain the main formula

T
(
M2n, {hM2n

ν }
2n
ν=0

)
= T

(
M2n

1 , {h
M2n

1
ν }

2n
ν=0

) p∏
j=1

T
(
M j, {h

M j
ν }

2n
ν=0

)
×

p∏
j=1

T (
S2n−1

j , {h
S2n−1

j
η }2n−1

η=0

)
T

(
D2n

j , {h
D2n

j

0 }

)−2 .
This formula finishes the proof of Theorem 5.7.

From Remark 4.1 and Theorem 5.7 it follows that

Corollary 5.1 Suppose that M2n = M#M2n
1 is an (n−2)-connected 2n-dimensional closed

π-manifold (n ≥ 3) such that Hn−1(M2n;Z) has no torsion. Let hM2n

ν be a basis of Hν(M2n)

for ν = 0, · · · , 2n and h
D2n

j

0 be an arbitrary basis of H0(D2n
j ). Then there exist bases hM j

ν ,

hM2n
1

ν for the homologies Hν(M j), Hν(M2n
1 ) such that the following formula holds

∣∣∣∣T (
M2n, {hM2n

ν }
2n
ν=0

)∣∣∣∣ =

∣∣∣∣∣T (
M2n

1 , {h
M2n

1
ν }

2n
ν=0

)∣∣∣∣∣ p∏
j=1

∣∣∣∣∣∣∣T (
M j, {h

M j
ν }

2n
ν=0

)
T

(
D2n

j , {h
D2n

j

0 }

)−2
∣∣∣∣∣∣∣ .
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By using Theorem 3.6, Ishimoto (1969) proved the following result:

Theorem 5.9 Let M2n be an (n−2)-connected 2n-dimensional closed parallelizable man-

ifold (n ≥ 4) such that Hn−1(M2n;Z) has no torsion. Assume that κ(M2n) = 0 if n = 4k + 3.

Let r = rank(Hn−1(M)) and 2p = rank(Hn(M)). Then p = r + (−1)n−1 and if n is even, then

M2n is a connected sum of (r − 1)-copies of Sn × Sn or if n is odd, then M2n is a connected

sum of (r + 1)-copies of Sn × Sn.

Combining Theorem 5.9 and Theorem 5.8, we obtain the following corollary.

Corollary 5.2 Let M2n be an (n − 2)-connected 2n-dimensional closed parallelizable

manifold (n ≥ 4) such that Hn−1(M2n;Z) has no torsion. Assume that κ(M2n) = 0 if

n = 4k + 3. Let hM2n

ν , hS
2n−1
i
η , and hD

2n
i

0 be respectively bases of Hν(M2n), Hη(S2n−1
i ), and

H0(D2n
i ) for ν = 0, . . . , 2n, η = 0, · · · , 2n− 1. Then there is a homology basis hM j

ν for each

j such that the following formulas hold.

• If n is even, then

T
(
M2n, {hM2n

ν }
2n
ν=0

)
=

r−1∏
j=1

T
(
M j, {h

M j
ν }

2n
ν=0

) r−2∏
i=1

T (
S2n−1

i , {hS
2n−1
i
η }2n−1

η=0

)
T

(
D2n

i , {h
D2n

i
0 }

)−2 .

• If n is odd, then

T
(
M2n, {hM2n

ν }
2n
ν=0

)
=

r+1∏
j=1

T
(
M j, {h

M j
ν }

2n
ν=0

) r∏
i=1

T (
S2n−1

i , {hS
2n−1
i
η }2n−1

η=0

)
T

(
D2n

i , {h
D2n

i
0 }

)−2 .

Here, M j denotes the product manifold S1 × S1 for each j ∈ {1, . . . , p}.

5.3. Reidemeister Torsion of (n − 1)-Connected 2n-Dimensional

Closed π-Manifold

In this section, we establish a formula to compute the Reidemeister torsion of an

(n − 1)-connected 2n-dimensional closed π-manifold (n ≥ 3) by using its decomposition
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presented by Ishimoto (1969) as follows M2n = M#S̃2n, where M =
p
#

j=1
(Sn × Sn) is the

connected sum of p-copies of Sn × Sn and S̃2n is a homotopy 2n-sphere. Note that this

decomposition exists under the assumption that the Arf-Kervaire invariant is zero when

n = 4k + 3. Using this decomposition, we get the following proposition.

Proposition 5.10 Let M2n = M#S̃2n be an (n − 1)-connected 2n-dimensional π-manifold.

Then there is the natural short exact sequence of chain complexes

0→ C∗(S2n−1) −→ C∗(M − D2n) ⊕C∗(S̃2n − D2n) −→ C∗(M2n)→ 0 (5.148)

with the corresponding Mayer-Vietoris sequence

H∗ : 0
α
−→ H2n(M2n)

β
−→ H2n−1(S2n−1)

γ
−→ 0

ϕ

Hn(M − D2n)
ψ
−→ Hn(M2n)

θ
→ 0

φ

H0(S2n−1)
η
−→ H0(M − D2n) ⊕ H0(S̃2n − D2n)

ρ

H0(M2n)
δ
→ 0. (5.149)

Let hM2n

ν and hS2n−1

0 be respectively bases of Hν(M2n) and H0(S2n−1) for ν = 0, . . . , 2n.

Let also hS2n−1

2n−1 = β(hM
2n) be a basis of H2n−1(S2n−1) and hS̃2n−D2n

0 be an arbitrary basis of

H0(S̃2n − D2n). Then there exists a basis hM−D2n

ν of Hν(M − D2n) so that the corrective

term disappears from the multiplicative gluing formula as follows

T
(
M2n, {hM2n

ν }
2n
ν=0

)
= T

(
M − D2n, {hM−D2n

ν }nν=0

)
T

(
S̃2n − D2n, {hS̃2n−D2n

0 }

)
× T

(
S2n−1, {hS

2n−1

η }2n−1
η=0

)−1
.

Proof First, we denote the vector spaces in the long exact sequence H∗ by Cp(H∗) for
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p ∈ {0, 1, . . . , 8}. Then we can write the space Cp(H∗) as a direct sum of the spaces Bp(H∗)

and sp(Bp−1(H∗)) for each p as follows

Cp(H∗) = Bp(H∗) ⊕ sp(Bp−1(H∗)). (5.150)

Let us consider the space C0(H∗) = H0(M2n) in equation (5.150). From the fact

that Im(δ) is a trivial space it follows

C0(H∗) = Im(ρ) ⊕ s0(Im(δ)) = Im(ρ). (5.151)

Let us choose the basis of Im(ρ) as hM2n

0 . From equation (5.151) it follows that hM2n

0 be-

comes the obtained basis h′0 of C0(H∗). Since the initial basis h0 of C0(H∗) is also hM2n

0 ,

we have

[h′0,h0] = 1. (5.152)

Next consider C1(H∗) = H0(M − D2n) ⊕ H0(S̃2n − D2n) in equation (5.150). Then

the space C1(H∗) can be expressed as the following direct sum

C1(H∗) = Im(η) ⊕ s1(Im(ρ)). (5.153)

As η is injective, η(hS2n−1

0 ) can be taken as the basis of Im(η). In the previous step, we

chose hM2n

0 as the basis of Im(ρ). By equation (5.153), we get that

{
η(hS

2n−1

0 ), s1(hM2n

0 )
}

is the obtained basis h′1 of C1(H∗). Note that H0(M−D2n) and H0(S̃2n−D2n) are both one-

dimensional subspaces of the 2-dimensional space C1(H∗). Thus, there exist non-zero

vectors (ai1 , ai2), i = 1, 2 such that

{
a11η(hS

2n−1

0 ) + a12 s1(hM2n

0 )
}
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is a basis of H0(M − D2n) and

{
a21η(hS 2n−1

0 ) + a22 s1(hM2n

0 )
}

is a basis of H0(S̃2n − D2n). Clearly, A = (ai j) is a non-singular (2 × 2)-matrix over R. Let

hM−D2n

0 =
{
(det A)−1

[
a11η(hS

2n−1

0 ) + a12 s1(hM2n

0 )
]}

hS̃2n−D2n

0 =
{
a21η(hS

2n−1

0 ) + a22 s1(hM2n

0 )
}

be basis of H0(M −D2n) and H0(S̃2n −D2n), respectively. Considering {hM−D2n

0 ,hS̃2n−D2n

0 } as

the initial basis h1 of C1(H∗), we conclude that the determinant of the transition matrix is

1; that is,

[h′1,h1] = 1. (5.154)

If we use equation (5.150) for C2(H∗) = H0(S2n−1) and consider the trivial space

Im(φ), then we obtain

C2(H∗) = Im(φ) ⊕ s2(Im(η)) = s2(Im(η)). (5.155)

Recall that the basis of Im(η) was chosen previously as η(hS2n−1

0 ). From equation (5.155) it

follows that hS2n−1

0 becomes the obtained basis h′2 of C2(H∗). By the fact that hS2n−1

0 is the

initial basis h2 of C2(H∗), the determinant of the transition matrix becomes 1 as follows

[h′2,h2] = 1. (5.156)

Considering the trivial space C3(H∗) in the sequenceH∗ and using the convention

1 · 0 = 1, we obtain

[h′3,h3] = 1. (5.157)

Let us consider C4(H∗) = Hn(M2n) in equation (5.150). From the fact that Im(θ)
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is trivial it follows

C4(H∗) = Im(ψ) ⊕ s4(Im(θ)) = Im(ψ). (5.158)

Let us choose the basis of Im(ψ) as hM2n

n = {hM2n

ni }
2p−2
i=1 . By equation (5.158), we get that

hM2n

n is the obtained basis h′4 of C4(H∗). Since the initial basis h4 of C4(H∗) is also hM2n

n ,

the transition matrix becomes the identity matrix. Hence, we get

[h′4,h4] = 1. (5.159)

If we use equation (5.150) for C5(H∗) = Hn(M − D2n), then Im(ϕ) = {0} yields

C5(H∗) = Im(ϕ) ⊕ s5(Im(ψ)) = s5(Im(ψ)). (5.160)

In the previous step, we chose the basis of Im(ψ) as hM2n

n . Then, by equation (5.160), it is

concluded that s5(hM2n

n ) becomes the obtained basis h′5 of C5(H∗). If we take s5(hM2n

n ) as

the initial basis h5 (namely, hM−D2n
) of C5(H∗), then we obtain

[h′5,h5] = 1. (5.161)

Let us use the convention 1 · 0 = 1 for the trivial space C6(H∗) in the long exact

sequence (5.149). Then we get

[h′6,h6] = 1. (5.162)

Next we consider equation (5.150) for the space C7(H∗) = H2n−1(S2n−1). By the

fact that the space Im(γ) is trivial, the following equalities hold

C7(H∗) = Im(β) ⊕ s7(Im(γ)) = Im(β). (5.163)

Since Im(β) is isomorphic to H2n(M2n), we can take the basis of Im(β) as β(hM2n

2n ). By

equation (5.163), β(hM2n

2n ) becomes the obtained basis h′7 of C7(H∗). As the initial basis h7
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of C7(H∗) is β(hM2n

2n ), we have

[h′7,h7] = 1. (5.164)

Finally, let us consider equation (5.150) for the space C8(H∗) = H2n(M2n). Since

Im(α) is trivial, we get

C8(H∗) = Im(α) ⊕ s8(Im(β)) = s8(Im(β)). (5.165)

In the previous step, β(hM2n

2n ) was chosen as the basis of Im(β). From equation (5.165) it

follows that

s8(β(hM2n

2n )) = hM2n

2n

becomes the obtained basis h′8 of C8(H∗). As the initial basis h8 of C8(H∗) is also hM2n

2n ,

we get that the determinant of the transition matrix is 1; that is,

[h′8,h8] = 1. (5.166)

By equations (5.152), (5.154), (5.156), (5.157), (5.159), (5.161), (5.162), (5.164),

and (5.166), the corrective term becomes 1 as follows

T
(
H∗, {hp}

8
p=0, {0}

8
p=0

)
=

8∏
p=0

[h′p,hp](−1)(p+1)
= 1. (5.167)

Compatibility of the natural bases in the short exact sequence (5.148), Theorem 4.1, and

equation (5.167) end the proof of Proposition 5.10. �

Proposition 5.11 Let S̃2n be a homotopy 2n-sphere. Then there exists the following short

exact sequence of the chain complexes

0→ C∗(S2n−1) −→ C∗(S̃2n − D2n) ⊕C∗(D2n) −→ C∗(S̃2n)→ 0 (5.168)
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with the corresponding Mayer-Vietoris sequence as follows

H∗ : 0
φ
−→ H2n(S̃2n)

α
−→ H2n−1(S2n−1)

γ
−→ 0

ς

H0(S2n−1)
θ
−→ H0(S̃2n − D2n) ⊕ H0(D2n)

δ
−→ H0(S̃2n)

ρ
−→ 0.

Assume that hS̃2n−D2n

0 and hS2n−1

η are respectively bases of H0(S̃2n − D2n), Hη(S2n−1), η =

0, · · · , 2n − 1. Assume also that hD2n

0 is an arbitrary basis of H0(D2n). Then there is a

basis hS̃2n

ν of Hν(S̃2n) for ν = 0, . . . , 2n such that the corrective term disappears and the

following multiplicative gluing formula is valid

T
(
S̃2n − D2n, {hS̃2n−D2n

0 }

)
= T

(
S̃2n, {hS̃2n

ν }
2n
ν=0

)
T

(
S2n−1, {hS

2n−1

η }2n−1
η=0

)
T

(
D2n, {hD2n

0 }

)−1
.

Proof For p ∈ {0, 1, . . . , 5}, let Cp(H∗) denote the vector spaces in the long exact se-

quenceH∗. Then the following equality holds for each p

Cp(H∗) = Bp(H∗) ⊕ sp(Bp−1(H∗)). (5.169)

First, we consider the vector space C0(H∗) = H0(S̃2n) in equation (5.169). Since

Im(ρ) is trivial, we get

C0(H∗) = Im(δ) ⊕ s0(Im(ρ)) = Im(δ). (5.170)

For (a11 , a12) , (0, 0), let us take the basis of Im(δ) as

hIm(δ) =

{
a11δ(h

S̃2n−D2n
) + a12δ(h

D2n
)
}
.

It follows from equation (5.170) that hIm(δ) is the obtained basis h′0 of C0(H∗). If we take

the initial basis h0 of H0(S̃2n) as hIm(δ), the transition matrix becomes the identity matrix
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and its determinant is given as follows

[h′0,h0] = 1. (5.171)

Let us consider equation (5.169) for C1(H∗) = H0(S̃2n − D2n) ⊕ H0(D2n). As the

spaces B1(H∗) and B0(H∗) are equal to Im(θ) and Im(δ), respectively, we get

C1(H∗) = Im(θ) ⊕ s1(Im(δ)). (5.172)

The initial basis h1 of C1(H∗) is {hS̃2n−D2n

0 ,hD2n

0 }. Recall that in the previous step, the basis

hIm(δ) of Im(δ) was chosen as

{
a11δ(h

S̃2n−D2n
) + a12δ(h

D2n
)
}
.

Note also that Im(θ) is isomorphic to H0(S2n−1), so we can choose the basis hIm(θ) of Im(θ)

as θ(hS2n−1

0 ). Since Im(θ) is one-dimensional subspace of C1(H∗), there is a non-zero vector

(a21 , a22) such that

θ(hS
2n−1

0 ) = a21h
S̃2n−D2n

0 + a22h
D2n

0 .

Hence, by equation (5.172), {
θ(hS

2n−1

0 ), s1(hIm(δ))
}

is the obtained basis h′1 of C1(H∗) such that A = (ai j) is the invertible (2 × 2)-real matrix.

Thus, the determinant of the transition matrix satisfies the following equality

[h′1,h1] = det A. (5.173)

Let us now consider equation (5.169) for the space C2(H∗) = H0(S2n−1). Using the

fact that Im(ς) = {0}, we have

C2(H∗) = Im(ς) ⊕ s2(Im(θ)) = s2(Im(θ)). (5.174)
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Note that hS2n−1

0 is the initial basis h2 of C2(H∗). By equation (5.174), we obtain that

s2(θ(hS
2n−1

0 )) = hS
2n−1

0

is the obtained basis h′2 of C2(H∗). So, the transition matrix becomes the identity matrix,

and thus we have

[h′2,h2] = 1. (5.175)

Considering C3(H∗) = {0} in the sequenceH∗, and using the convention 1 · 0 = 1,

we get

[h′3,h3] = 1. (5.176)

Let us consider the space C4(H∗) = H2n−1(S2n−1) in equation (5.169). The equali-

ties B4(H∗) = Im(α) and B3(H∗) = Im(γ) = {0} yield

C4(H∗) = Im(α) ⊕ s4(Im(γ)) = Im(α). (5.177)

Recall that hS2n−1

2n−1 is the initial basis h4 of C4(H∗). Taking the basis hIm(α) of Im(α) as

hS2n−1

2n−1 and considering equation (5.177), hS2n−1

2n−1 becomes the obtained basis h′4 of C4(H∗).

Therefore, we obtain

[h′4,h4] = 1. (5.178)

Finally, let us consider equation (5.169) for C5(H∗) = H2n(S̃2n) and use the equal-

ities B5(H∗) = Im(φ) = {0} and B4(H∗) = Im(α). Then the following equation holds

C5(H∗) = Im(φ) ⊕ s5(Im(α)) = s5(Im(α)). (5.179)

Recall that hS2n−1

2n−1 was chosen as the basis of Im(α) in the previous step. By equation (5.179),

we conclude that s5(hS2n−1

2n−1) is the obtained basis h′5 of C5(H∗). If we take the initial basis

h5 (namely, hS̃2n

2n ) of C5(H∗) as {(det A)−1s5(hS2n−1

2n−1)}, then the following equality holds

[h′5,h5] = (det A)−1. (5.180)
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By equations (5.171), (5.173), (5.175), (5.176), (5.178), and (5.180), we get

T
(
H∗, {hp}

5
p=0, {0}

5
p=0

)
=

5∏
p=0

[h′p,hp](−1)(p+1)
= 1. (5.181)

Using compatibility of the natural bases in the short exact sequence (5.168), Theorem 4.1

yields the following formula

T
(
S̃2n − D2n ⊕ D2n, {hS̃2n−D2n

0 t hD2n

0 }

)
= T

(
S̃2n, {hS̃2n

ν }
2n
ν=0

)
T

(
S2n−1, {hS

2n−1

η }2n−1
η=0

)
T

(
H∗, {hp}

5
p=0, {0}

5
p=0

)
. (5.182)

By equation (5.181) and equation (5.182), the following formula holds

T
(
S̃2n − D2n ⊕ D2n, {hS̃2n−D2n

0 t hD2n

0 }

)
= T

(
S̃2n, {hS̃2n

ν }
2n
ν=0

)
T

(
S2n−1, {hS

2n−1

η }2n−1
η=0

)
. (5.183)

The proof of Proposition 5.11 is finished by using Lemma 4.1 and equation (5.183). �

By Theorem 5.8, Proposition 5.10 and Proposition 5.11, we get the following

theorem.

Theorem 5.10 Let M2n be an (n − 1)-connected 2n-dimensional π-manifold. Let hM2n

ν

and h
S2n−1

j
η be respectively bases of Hν(M2n) and Hη(S2n−1

j ) for ν = 0, · · · , 2n and η =

0, · · · , 2n− 1 and h
D2n

j

0 an arbitrary basis of H0(D2n
j ). Then there exist the homology bases

hM j
ν and hS̃2n

ν such that the following formula holds

T
(
M2n, {hM2n

ν }
2n
ν=0

)
= T

(
S̃2n, {hS̃2n

ν }
2n
ν=0

) p∏
j=1

T
(
M j, {h

M j
ν }

2n
ν=0

)
×

p∏
j=1

T (
S2n−1

j , {h
S2n−1

j
η }2n−1

η=0

)
T

(
D2n

j , {h
D2n

j

0 }

)−2 .
Let M2n be an (n − 1)-connected 2n-dimensional closed parallelizable manifold

(n ≥ 3). By Theorem 3.6, n must be odd and Ishimoto (1969) showed that M2n has the
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form as

M2n = (Sn × Sn)#S̃2n,

under the assumption that κ(M2n) = 0 when n = 4k+3. Combining this result and Remark

5.10 gives the following corollary.

Corollary 5.3 Let M2n be an (n − 1)-connected 2n-dimensional closed parallelizable

manifold (n ≥ 3), where n is odd. Assume that hD2n

0 is an arbitrary basis of H0(D2n).

If hM2n

ν and hS2n−1

η are respectively bases of Hν(M2n) and Hη(S2n−1), ν = 0, . . . , 2n, η =

0, · · · , 2n− 1, then there are respectively bases hSn×Sn

ν and hS̃2n

ν of Hν(Sn × Sn) and Hν(S̃2n)

such that the following formula holds

T
(
M2n, {hM2n

ν }
2n
ν=0

)
= T

(
Sn × Sn, {hS

n×Sn

ν }2n
ν=0

)
T

(
S̃2n, {hS̃2n

ν }
2n
ν=0

)
× T

(
S2n−1, {hS

2n−1

η }2n−1
η=0

)
T

(
D2n, {hD2n

0 }

)−2
.

By De Sapio (1965), an (n − 1)-connected 2n-dimensional manifold M2n (n ≥ 3)

which bounds a π-manifold is diffeomorphic to a connected sum
p
#

j=1
(Sn × Sn), where p is

the rank of Hn(M2n). From De Sapios’s result and Theorem 5.8 it follows :

Corollary 5.4 Let M2n be an (n − 1)-connected 2n-dimensional manifold (n ≥ 3) which

bounds a π-manifold. Let hM2n

ν , hS
2n−1
i
η , and hD

2n
i

0 be respectively bases of Hν(M2n),Hη(S2n−1
i ),

and H0(D2n
i ) for ν = 0, . . . , 2n, η = 0, · · · , 2n − 1. Then there is a homology basis hM j

ν for

each j such that the Reidemeister torsion of M2n satisfies the following formula

T
(
M2n, {hM2n

ν }
2n
ν=0

)
=

p∏
j=1

T
(
M j, {h

M j
ν }

2n
ν=0

) p−1∏
i=1

T (
S2n−1

i , {hS
2n−1
i
η }2n−1

η=0

)
T

(
D2n

i , {h
D2n

i
0 }

)−2 .

Here, we use the notation
p
#

j=1
M j for

p
#

j=1
(Sn × Sn).
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CHAPTER 6

APPLICATIONS

This chapter applies Theorem 5.5 and Theorem 5.8 to establish Reidemeister

torsion formulas for handlebodies (Corollary 6.2, Remark 6.1). It then applies Corol-

lary 5.1 to obtain Reidemeister torsion formula for compact, orientable, smooth (2n + 1)-

dimensional manifolds whose boundary is (n − 2)-connected 2n-dimensional closed π-

manifold (Corollary 6.3). Moreover, it provides Reidemeister torsion formulas for prod-

uct manifolds (Corollary 6.4).

6.1. Heegaard Splitting and Handlebodies

In this section, we show that the Reidemeister torsion of a handlebody H can be

expressed in terms of the Reidemeister torsion of its boundary surface. Moreover, we

apply Theorem 5.5 to give an explicit formula that computes the Reidemeister torsion of

H .

Heegaard splittings are one of the main ingredients in the construction of Heegaard

Floer homology (Ozsváth and Szabó, 2006), and multiplicativity with respect to gluings

is one of the fundamental axioms of Topological Quantum Field Theories (Atiyah, 1988).

Seifert and Threlfall (1934) proved that a closed, connected, orientable 3-dimensional

manifold M is decomposed into two homeomorphic handlebodies. More precisely,

Proposition 6.1 (Seifert and Threlfall, 1934) For every closed, connected, orientable 3-

dimensional manifold M, there exist handlebodiesH1 andH2 in M such that

(i) H1 � H2, that is, genus(H1) = genus(H2) = g,

(ii) M = H1 ∪H2, and

(iii) H1 ∩H2 = ∂(H1) ∩ ∂(H2) = ∂(H1) = ∂(H2) = Σg,0, the Heegaard surface.

(M;H1,H2; Σg,0) is called a Heegaard splitting for M of genus g, and the minimum genus

of such splittings for M is called the Heegaard genus of M and denoted byHg(M).
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Note that the closed surface Σg,0 is expressed as a connected sum of g-copies of

S1 × S1. Namely,

Σg,0 =
g
#

j=1
(S1 × S1).

By Proposition 3.5, Σg,0 is a closed 2-dimensional π-manifold. Moreover, Theorem 5.8

yields the following result.

Corollary 6.1 Let Σg,0 =
g
#

j=1
M j be a connected sum of g-copies of S1 × S1 and hM

ν , hS
1
i
η ,

and hD
2
i

0 be respectively bases of Hν(M), Hη(S1
i ), and H0(D2

i ), ν = 0, 1, 2, η = 0, 1. Then

there is a basis hM j
ν of Hν(M j) for each j ∈ {1, . . . , g} such that the following formula

holds

T
(
Σg,0, {h

Σg,0
ν }

2
ν=0

)
=

g∏
j=1

T
(
M j, {h

M j
ν }

2
ν=0

) g−1∏
i=1

T (
S1

i , {h
S1

i
η }

1
η=0

)
T

(
D2

i , {h
D2

i
0 }

)−2 .
Moreover, Theorem 4.4 yields

∣∣∣∣T (
Σg,0, {h

Σg,0
ν }

2
ν=0

)∣∣∣∣ =

g∏
j=1

∣∣∣∣T (
M j, {h

M j
ν }

2
ν=0

)∣∣∣∣ g−1∏
i=1

∣∣∣∣∣∣T
(
D2

i , {h
D2

i
0 }

)∣∣∣∣∣∣−2

.

Here, M j = S1 × S1 for each j ∈ {1, . . . , g}.

Every compact, connected, orientable 3-dimensional manifold is a π-manifold.

By the consequence of this result, handlebodies are also π-manifolds with their boundary

surfaces Σg,0. The following result provides a formula that computes the Reidemeister

torsion of a handlebody with regard to the Reidemeister torsion of its boundary surface.

Corollary 6.2 For a closed, connected, orientable 3-dimensional manifold M with the

Heegaard splitting (M;H1,H2; Σg) such thatH1 = H2 = H andHg(M) > 2, there exists

the following short exact sequence of the chain complexes

0→ C∗(Σg,0)→ C∗(H) ⊕C∗(H)→ C∗(M)→ 0. (6.1)

For the given bases hM
p and hHp , p = 0, 1, 2, 3, there exists a basis hΣg,0

i i = 0, 1, 2 such that
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the corrective term becomes 1 and

(i) If T(M, {hM
p }

3
p=0) = 1, then

T
(
H , {hHp }

3
p=0

)
=

g∏
j=1

T
(
M j, {h

M j
ν }

2
ν=0

)1/2
g−1∏
i=1

T (
S1

i , {h
S1

i
η }

1
η=0

)1/2
T

(
D2

i , {h
D2

i
0 }

)−1 .

(ii) If T(M, {hM
p }

3
p=0) = −1, then

∣∣∣∣T (
H , {hHp }

3
p=0

)∣∣∣∣ =

g∏
j=1

∣∣∣∣T (
M j, {h

M j
ν }

2
ν=0

)∣∣∣∣1/2 g−1∏
i=1

∣∣∣∣∣∣T
(
D2

i , {h
D2

i
0 }

)∣∣∣∣∣∣−1

.

Proof Let us consider the Mayer-Vietoris sequence

H∗ : 0
α′′3
−→ H3(Σg,0)

α3
−→ H3(H) ⊕ H3(H)

α′3
−→ H3(M)

∂3

H2(Σg,0)
α2
−→ H2(H) ⊕ H2(H)

α′2
−→ H2(M)

∂2

H1(Σg,0)
α1
−→ H1(H) ⊕ H1(H)

α′1
−→ H1(M)

∂1

H0(Σg,0)
α0
−→ H0(H) ⊕ H0(H)

α′0
−→ H0(M)

α′′0
−→ 0.

Since M is closed, connected, orientable 3-dimensional manifold, H3(M) = R. Since

H2(Σg,0) = R, the exactness of H∗ implies that α2 is a zero-map, and hence H3(M) �

H2(Σg,0). Moreover, the exactness ofH∗ also gives the following isomorphism

H0(H) ⊕ H0(H) � H0(Σg,0) ⊕ H0(M).

By using the arguments presented in the proof of Theorem 5.1, we conclude that

the corrective term is 1. Since the bases hM
p and hΣg,0

i are compatible, Theorem 4.1 and
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Lemma 4.1 yield

T
(
H , {hHp }

3
p=0

)2
= T

(
Σg,0, {h

Σg,0

i }
2
i=0

)
T

(
M, {hM

p }
3
p=0

)
. (6.2)

From Theorem 4.4 it follows that |T(M, {hM
p }

3
p=0)| = 1. Then, by Corollary 6.1 and

equation (6.2), the followings hold

• If T(M, {hM
p }

3
p=0) = 1, then

T
(
H , {hHp }

3
p=0

)
=

√
T

(
Σg,0, {h

Σg,0

i }
2
i=0

)
=

g∏
j=1

T
(
M j, {h

M j
ν }

2
ν=0

)1/2
g−1∏
i=1

T (
S1

i , {h
S1

i
η }

1
η=0

)1/2
T

(
D2

i , {h
D2

i
0 }

)−1 .

• If T(M, {hM
p }

3
p=0) = −1, then

∣∣∣∣∣T (
H ,

{
hHp

}3

p=0

)∣∣∣∣∣ =

√∣∣∣∣T (
Σg,0, {h

Σg,0

i }
2
i=0

)∣∣∣∣
=

g∏
j=1

∣∣∣∣T (
M j, {h

M j
ν }

2
ν=0

)∣∣∣∣1/2 g−1∏
i=1

∣∣∣∣∣∣T
(
D2

i , {h
D2

i
0 }

)∣∣∣∣∣∣−1

.

�

Remark 6.1 Observe that the formula obtained in Corollary 6.1 is the same as the one

in Theorem 5.5, which reads as

∣∣∣∣T (
H , {hHp }

3
p=0

)∣∣∣∣ =

g∏
i=1

∣∣∣∣∣T (
Σ
γi
1,1, {h

Σ
γi
1,1
η }

1
η=0

)∣∣∣∣∣1/2 g−2∏
j=1

∣∣∣∣∣∣T
(
D2
γ j
, {h
D2
γ j

0 }

)∣∣∣∣∣∣−1/2

.

6.2. Compact Manifolds with Boundary

Corollary 6.3 Let M2n be an (n−2)-connected 2n-dimensional closed π-manifold (n ≥ 3)

such that Hn−1(M2n;Z) has no torsion. Suppose that κ(M2n) = 0 if n = 4k + 3. Let W be a
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compact, orientable, smooth (2n + 1)-dimensional manifold with boundary ∂(W) = M2n.

There exists the following short exact sequence of the chain complexes

0→ C∗(M2n)→ C∗(W) ⊕C∗(W)→ C∗(d(W))→ 0 (6.3)

with the corresponding Mayer-Vietoris sequence

H∗ : 0
α′′2n+1
−→ H2n+1(M2n)

α2n+1
−→ H2n+1(W) ⊕ H2n+1(W)

α′2n+1
−→ H2n+1(d(W))

∂2n+1

H2n(M2n)
α2n
−→ H2n(W) ⊕ H2n(W)

α′2n
−→ H2n(d(W))

H1(M2n)
α1
−→ H1(W) ⊕ H1(W)

α′1
−→ H1(d(W))

∂1

H0(M2n)
α0
−→ H0(W) ⊕ H0(W)

α′0
−→ H0(d(W))

α′′0
−→ 0.

For a given basis hW
ν , ν = 0, . . . , 2n + 1 there exist respectively the bases hd(W)

ν and hM2n

i

with hM2n

2n = ∂2n+1(hd(W)
2n+1) such that the following formula is valid

∣∣∣∣T (
W, {hW

ν }
2n+1
ν=0

)∣∣∣∣ =

p∏
j=1

∣∣∣∣∣∣∣T (
M j, {h

M j
ν }

2n
ν=0

)
T

(
D2n

j , {h
D2n

j

0 }

)−2
∣∣∣∣∣∣∣
1/2 ∣∣∣∣∣T (

M2n
1 , {h

M2n
1

ν }
2n
ν=0

)∣∣∣∣∣1/2 .

Here, M =
p
#

j=1
(Sn×Sn) and M2n

1 is an (n−2)-connected 2n-dimensional closed π-manifold.

Proof Let us denote the vector spaces in the sequence H∗ as C3 j(H∗), C3 j+1(H∗) and

C3 j+2(H∗) for each j ∈ {1, 2, . . . , 2n + 1}.

Note that we use the convention 1 · 0 = 1 for the trivial space {0}. Since the space

C3 j(H∗) = H j(M2n) is trivial for each j ∈ {1, 2, . . . , n − 2, n + 2, n + 3, . . . , 2n − 1, 2n + 1},

we get

[h′3 j,h3 j] = 1. (6.4)
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By the exactness ofH∗, we obtain the following results:

• For j ∈ {1, 2, . . . , n − 2, n + 3, n + 4, . . . , 2n − 1, 2n, 2n + 1}, we have the following

isomorphisms

H j(W) ⊕ H j(W)
α′j
� H j(d(W)),

H2n(M2n)
∂2n+1
� H2n+1(d(W)).

From the arguments presented in the proof of Proposition 5.8 and the condition on

the basis hM2n

2n = ∂2n+1(hd(W)
2n+1) it follows

[h′3 j+1,h3 j+1] = 1,

[h′3 j+2,h3 j+2] = 1. (6.5)

• For j = 0, there exists the isomorphism H0(W) ⊕ H0(W) � H0(M2n) ⊕ H0(d(W)).

Hence, the determinant of the transition matrices are all equal to 1; that is

[h′2,h2] = [h′1,h1] = [h′0,h0] = 1. (6.6)

• For j ∈ {n − 1, n, n + 1, n + 2}, we get the middle part ofH∗

0
α′′n+2
−→ Hn+2(M2n)

αn+2
−→ Hn+2(W) ⊕ Hn+2(W)

α′n+2
−→ Hn+2(d(W))

∂n+2

Hn+1(M2n)
αn+1
−→ Hn+1(W) ⊕ Hn+1(W)

α′n+1
−→ Hn+1(d(W))

∂n+1

Hn(M2n)
αn
−→ Hn(W) ⊕ Hn(W)

α′n
−→ Hn(d(W))

∂n

Hn−1(M2n)
αn−1
−→ Hn−1(W) ⊕ Hn−1(W)

α′n−1
−→ Hn−1(d(W))

α′′n−1
−→ 0.
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By using the arguments presented in the proof of Theorem 5.1, we conclude that

[h′3 j,h3 j] = 1,

[h′3 j+1,h3 j+1] = 1,

[h′3 j+2,h3 j+2] = 1. (6.7)

Combining equations (6.4),(6.5), (6.6), and (6.7), we get

T
(
H∗, {hp}

6n+5
p=0 , {0}

6n+5
p=0

)
=

6n+5∏
p=0

[h′p,hp](−1)(p+1)
= 1. (6.8)

Note that the bases in the sequence (6.3) are compatible. By Theorem 4.1 and Lemma 4.1,

the following formula holds

T
(
W, {hW

ν }
2n+1
ν=0

)2
= T

(
M2n, {hM2n

i }
2n
i=0

)
T

(
d(W), {hd(W)

ν }2n+1
ν=0

)
T

(
H∗, {hp}

6n+5
p=0

)
. (6.9)

From Theorem 4.4, and equation (6.8), and equation (6.9) it follows

∣∣∣∣T (
W, {hW

ν }
2n+1
ν=0

)∣∣∣∣ =
∣∣∣∣T (

M2n, {hM2n

i }
2n
i=0

)∣∣∣∣1/2 . (6.10)

Corollary 5.1 and equation (6.10) finish the proof of Corollary 6.3. �

6.3. Product of Closed π-Manifolds

Corollary 6.4 Let M2n
1 and M2n

2 be (n− 2)-connected 2n-dimensional closed π-manifolds

(n ≥ 3) such that Hn−1(M2n
1 ;Z) and Hn−1(M2n;Z) have no torsion. Assume that κ(M2n

1 ) =

κ(M2n
2 ) = 0 if n = 4k + 3. Let M be a compact, orientable, smooth (2n + 1)-dimensional

manifold with boundary ∂(M) = M2n
2 . Consider the product manifold W = M2n

1 × M and
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its double d(W). Then there exists the natural short exact sequence of the chain complexes

0→ C∗(M2n
1 × M2n

2 )→ C∗(W) ⊕C∗(W)→ C∗(d(W))→ 0 (6.11)

and corresponding the Mayer-Vietoris sequence H∗ corresponding to (6.11). Let hW
i ,

hd(W)
i , hM2n

1
k , and hM2n

2
k be given bases for i = 0, · · · , 4n + 1, k = 0, . . . , 2n. Let hM2n

1 ×M2n
2

ν

denote the basis ⊕
j
(hM2n

1
j ⊗ hM2n

2
ν− j ) of Hν(M2n

1 × M2n
2 ), ν = 0, . . . , 4n. For p = 0, . . . , 12n + 5,

let hp be the corresponding basis ofH∗. Then the following formula holds

∣∣∣∣T (
W, {hW

i }
4n+1
i=0

)∣∣∣∣ =

∣∣∣∣∣T (
M2n

1 , {h
M2n

1
k }

2n
k=0

)∣∣∣∣∣χ(M2n
2 )/2 ∣∣∣∣∣T (

M2n
2 , {h

M2n
2

k }
2n
k=0

)∣∣∣∣∣χ(M2n
1 )/2

×

∣∣∣∣T (
H∗, {hp}

12n+5
p=0

)∣∣∣∣1/2.
Proof Since the bases in the sequence (6.11) are compatible, Theorem 4.1 and Lemma 4.1

yield

T
(
W, {hW

i }
4n+1
i=0

)2
= T

(
M2n

1 × M2n
2 , {h

M2n
1 ×M2n

2
ν }4n

ν=0

)
T

(
d(W), {hd(W)

i }4n+1
i=0

)
× T

(
H∗, {hp}

12n+5
p=0

)
. (6.12)

From Theorem 4.4 and (6.12) it follows that

∣∣∣∣T (
W, {hW

i }
4n+1
i=0

)∣∣∣∣ =

∣∣∣∣∣T (
M2n

1 × M2n
2 , {h

M2n
1 ×M2n

2
ν }4n

ν=0

)∣∣∣∣∣1/2 ∣∣∣∣T (
H∗, {hp}

12n+5
p=0

)∣∣∣∣1/2 . (6.13)

By Theorem 4.5,
∣∣∣∣∣T (

M2n
1 × M2n

2 , {h
M2n

1 ×M2n
2

ν }4n
ν=0

)∣∣∣∣∣ is equal to the product

∣∣∣∣∣T (
M2n

1 , {h
M2n

1
k }

2n
k=0

)∣∣∣∣∣χ(M2n) ∣∣∣∣∣T (
M2n

2 , {h
M2n

2
k }

2n
k=0

)∣∣∣∣∣χ(M2n
1 )

. (6.14)

Here, χ is the Euler characteristic. Then equation (6.13) and equation (6.14) finish the

proof of Corollary 6.4. �
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CHAPTER 7

CONCLUSION

In this thesis, we develop multiplicative gluing formulas for the Reidemeister tor-

sion of closed π-manifolds that admit a connected sum decomposition. Milnor (1966)

showed that Reidemeister torsion acts multiplicatively with respect to gluings. Namely,

given a closed, oriented, smooth manifold M and an embedded submanifold N splitting

M into two submanifolds M1, M2: the Reidemeister torsion of M is the product of the

Reidemeister torsions of M1, M2, and N times a corrective term T (H∗) coming from the

homologies.

Let Σg,0 be a closed orientable genus g surface. So, it is a 0-connected closed

π-manifold. Moreover, it admits a connected sum decomposition as
g
#

j=1
(Σ1,0). By using

the notion of symplectic chain complex and homological algebra techniques, we obtain

a multiplicative gluing formula for the Reidemeister torsion of Σg,0 so that the corrective

term T (H∗) becomes 1. Then we focus on the higher dimensional (n − 2) and (n − 1)-

connected closed π-manifolds which have connected sum decompositions given in (Ishi-

moto, 1969). By using these decompositions, we establish multiplicative gluing formulas

for the Reidemeister torsion of such manifolds. As an application, we establish Reide-

meister torsion formulas for manifolds such as handlebodies, compact orientable smooth

(2n + 1)-dimensional manifolds whose boundary is a (n − 2)-connected 2n-dimensional

closed π-manifold, and product manifolds by using the main results in Chapter 5.
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