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ABSTRACT 

ON THE CHARACTERIZATION OF MOTOR IMAGERY FUNCTIONS 

BASED ON SYSTEMATIC TIMING ORGANIZATION OF THE 

HUMAN BRAIN 

The main objective of this thesis is to analyze the timing organization of the brain. 

The human brain is known to adjust its localized and also the reciprocal operations for 

each different cognitive task adaptively. This flexibility of the brain has attracted 

considerable interest in neuroscience. Elucidation of timing adaptation property of brain, 

however, remains as unresolved due to dynamically changing and nonlinear nature of the 

brain. In this thesis, we characterize the timing organization of the brain during motor 

imagery activity using electroencephalography signals. First, we propose a novel motor 

imagery activity recognition method that relies on the activity-specific time-lag between 

electroencephalography signals obtained from different brain regions. Next, we 

generalize this approach into three-parameter formulation to determine the timing profiles 

of activity-specific short-lived synchronization. The identification of activity-specific 

timing parameters was carried out using a heuristic approach that maximizes the average 

pairwise channel synchronizations during associated activity periods. Thereafter, we 

propose a novel BCI framework that find and use the timings of electroencephalography 

signals of localized brain regions that elicit localized activity-specific complexity 

features. We identify the timings for each different brain regions by adopting a heuristic-

probabilistic method. Finally, we propose a novel autoregressive modeling framework 

that finds a representative model for each different cognitive activity. We demonstrated 

the efficacy of the proposed methods on publicly available brain-computer interfacing 

datasets on motor imagery. The performance results indicate that considering the timing 

organization of the brain is crucial for accurate characterization of cognitive activity. In 

addition, it may also account for the inconsistency of brain computer interfacing 

performance obtained from different subjects.  
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ÖZET 

İNSAN BEYNİNİN SİSTEMATİK ZAMANLAMA 

ORGANİZASYONUNA DAYALI HAYALİ MOTOR 

FONKSİYONLARININ KARAKTERİZASYONU ÜZERİNE 

Bu tezin temel amacı beynin zamanlama organizasyonunu analiz etmektir. İnsan 

beyninin, her farklı bilişsel aktivite için bölgesel ve farklı beyin bölgeleri arasında 

meydana gelen işlemlerin uyarlanabilir bir şekilde düzenlendiği bilinmektedir. Beynin bu 

esnekliği, sinirbilim alanında büyük ilgi görmüştür. Bununla birlikte, beynin zamanlama 

organizasyonu özelliğinin aydınlatılması, beynin dinamik ve doğrusal olmayan doğası 

nedeniyle çözümsüz kalmaktadır. Bu tezde, elektroansefalografi sinyallerini kullanarak 

hayali motor fonksiyonlar esnasında beynin zamanlama organizasyonu karakterize 

edilmiştir. İlk olarak, farklı beyin bölgelerinden elde edilen elektroansefalografi sinyalleri 

arasındaki aktiviteye-özgü zaman gecikmesine dayanan yeni bir hayali motor 

fonksiyonları tanıma yaklaşımı önerilmiştir. Daha sonra, aktiviteye-özgü kısa-süreli 

senkronizasyonların zamanlama profilini genelleştirmek için üç-parametreli bir tanıma 

yaklaşımı önerdik. Aktiviteye-özgü zamanlama parametreleri, ilgili görev aktivite 

periyodları esnasında en yüksek seviyede ortalama senkronizasyonu dikkate alan sezgisel 

bir yöntemle elde edilmiştir. Tezin sonraki aşamasında, beynin bölgesel olarak aktiviteye-

özgü özniteliklerinin bulunduğu elektroansefalografi sinyallerinin zamanlamasını bulan 

ve kullanan yeni bir beyin-bilgisayar ara yüzü yaklaşımı önerilmiştir. Her bir aktivite ve 

beyin bölgesi için bu parametreleri sezgisel-olasılıksal bir yöntem ile belirlenmiştir. Tezin 

son bölümünde, her farklı bilişsel aktivite için temsili bir model bulan yeni bir öz-

bağlanımlı modelleme yaklaşımı önerilmiştir. Önerilen bu yöntemlerin başarımları, halka 

açık olarak paylaşılan beyin-bilgisayar ara yüzü veri setlerindeki tanıma başarımları ile 

gösterilmiştir. Performans sonuçları, bilişsel aktivitelerin karakterizasyonu için beynin 

sistematik zamanlama organizasyonunun dikkate alınmasının önemini vurgulamaktadır. 

Buna ek olarak, bu yöntemler farklı katılımcılardan elde edilen beyin-bilgisayar ara yüzü 

kullanım performansının tutarsızlığını da açıklayabilmektedir.  
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CHAPTER 1 

INTRODUCTION 

If the brain were simple enough for us to understand it, 

we would be too simple to understand. 

-Ken Hill- 

The human brain is known as the most complex structure of the central nervous 

system (CNS) of the human body that is located inside the skull. It contains more than 

100 billion neurons and each of them has more than ten thousand structural connections 

with other neurons (Eagleman 2019). It controls and also regulates our behaviors, 

motions, emotions, and thoughts. Besides, it conducts continuous interactions with the 

other mechanisms/subsystems of our body that undertake substantial roles for our living 

(Sanei and Chambers 2013; Bilal Orkan Olcay 2014). 

The question “how the brain works” is the oldest as well as the most difficult 

problem (Fadlallah 2015). Understanding and characterization of the operational 

dynamics of such a complex system during various types of sensory, perceptual, cognitive 

events as well as in the case of neurological impairments have been the subject of intense 

research of neuroscience discipline for many years (Güdücü et al. 2019; Koley and Dey 

2012; Asif, Majid, and Anwar 2019; Hipólito et al. 2021). The experimental and clinical 

studies for understanding the principles of brain machinery were accelerated shortly after 

noticing that the collected electrical activity from the brain is far from a simple noise. 

This finding, which is discovered by Hans Berger, told that the brain generates 

measurable as well as meaningful electrical oscillations that were considered as the 

renaissance for brain researches. This renaissance opened new avenues for the discovery 

of mysteries of the brain (Berger 1929; Başar 2006). 

Advanced mathematical methods, biophysical models, and visualization 

techniques have been developed for different brain scales to extinguish the debates faced 

in the cognitive and systems neuroscience field (Jensen and Mazaheri 2010; Makeig et 

al. 2004). These methodological and technological advancements in the neuroscience area 

were used together to provide new insights to the researchers and advance their 
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understanding of how brain circuits distributed across many areas orchestrate motor and 

cognitive functions (Shenoy and Kao 2021). Also, these advancements enabled the 

researchers to put several basic principles related to the operation/coordination dynamics 

of the brain (F. He and Yang 2021). The four basic principles are (Başar 2006): 

• Brain functions are manifested themselves as oscillations at specialized frequency 

tones (Özgören, Başar-Eroǧlu, and Başar 2005; Başar et al. 2008). Multiple 

oscillations occurred in the distributed regions of the brain provides the basis of 

integrative brain functions (Başar et al. 2001). 

• There is a super-synergy mechanism in the brain that emerged in all memory, 

cognitive, and perceptual processes. This mechanism manifests itself as 

synchronization between the oscillatory activities generate from distinct brain 

regions (Fingelkurts, Fingelkurts, and Kähkönen 2005; Hutchison et al. 2013; 

Tognoli and Kelso 2009). 

• The super-synergy between distinct brain regions is selective. The selectivity of 

this inter-regional cooperation demonstrates itself by the magnitude of the 

synchronization (B. Orkan Olcay and Karaçalı 2019; Cornelis J. Stam et al. 2003; 

Bilal Orkan Olcay et al. 2017; B. M. Adhikari, Epstein, and Dhamala 2018). 

• The super-synergy machinery is comprised of many cortical sub-mechanisms. 

These sub-mechanisms act in a coherent way during the cognitive, motor, or 

perceptual tasks (C. J. Stam and van Straaten 2012; Fries 2005). 

In addition to the principles given above, several theoretical/experimental models have 

pointed that the coordination dynamics (i.e., self-organization, multi-functionality, 

switching, stability,…) and complexity are of great importance that governs the dynamics 

of the brain (Tognoli and Kelso 2009; Kelso, Dumas, and Tognoli 2013; D. J. J. Wang et 

al. 2018a). The complexity of the brain viewed as information processing capacity and 

shows a strong correlation with the transiently organized neural interactions which may 

alter depending on the analyzed temporal and spatial scale (D. J. J. Wang et al. 2018a; 

Nobukawa et al. 2020; 2019). The flexibility of transient organization implies that there 

is a low energy barrier among the quasi stable brain states in which the brain adjusts its 

operational dynamics rapidly. In addition to these, it was demonstrated that neural 

interactions represent a “small-world” topological structure which has been observed 

from micro- to large-scale networks (Danielle Smith Bassett and Bullmore 2006). Besides 
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these, two important models have been proposed to describe the collective dynamics of 

neuronal populations during executive functioning. These are (O’Neill et al. 2018; 

Breakspear 2017): 

• Fokker-Planck equations (FPE) that assumes uncorrelatedness of distinct 

activities of ensembles (Bahraminasab et al. 2009). 

• Neural Mass Models (NMM) that assumes existence of statistical correlation 

among neuronal activities which is biologically more meaningful (Shine et al. 

2021). 

These models can unveil how brain execute, inhibit, and delay the inherent processes 

which are important features of executive brain functioning (D. Huang et al. 2016). The 

above mentioned models and principles have opened new avenues that enable 

understanding not only the underlying neural mechanism of cognition but also the 

reasons/consequences of impairments of the functional organization of the brain during 

neurological disorders (Dawson 2004; Mammone et al. 2018). 

Neurological disorders significantly affects the quality of human life by disrupting 

the communication among neural structures or the communication pathway between the 

brain and some parts of the muscular system (i.e., failure of organic neuromuscular 

communication) (C. J. Stam and Van Dijk 2002). In such a case, several 

capabilities/flexibilities of the human body may be lost or restricted, which imposes 

challenges to individuals during interacting with their surroundings (Ramadan and 

Vasilakos 2017). Among a wide variety of neurological disorders, amyotrophic lateral 

sclerosis (ALS), locked-in syndrome, brainstem stroke, cerebral palsy, multiple sclerosis 

(MS), Alzheimer and epilepsy are some of the widely encountered disorders that 

significantly limits the control ability of the brain on muscles (Wolpaw et al. 2002; 

Afshari and Jalili 2017; Sharma, Pachori, and Acharya 2015). Fortunately, with the recent 

advancements in the medical/health sciences, it is now possible that neurological 

disorders can be repaired with surgical operations (via tissue resection) and/or 

rehabilitation. In rare cases, these damages cannot be repaired. In such circumstances, 

three different ways were stressed in the literature for regaining the brain-muscle 

communication ability (Wolpaw et al. 2002). The adopted ways are as follows: 

• Enforce using different neural pathways. 

• Enhance the capabilities of the remaining intact neural communication channels. 
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• Use brain-computer interface (BCI) technology as an alternative means to the 

organic brain-muscle or brain-environment communication. 

Please note that we will mainly be concentrated on the brain-computer interface systems 

and related mental activity decoding algorithms in this thesis. 

1.1. BCI Systems 

Basically, the BCI system aims to provide an external communication pathway 

via computers between the brain and the real world that helps to retrieve, among other 

things, the movement ability of subjects who suffer from movement disabilities (Wolpaw 

et al. 2002; Nicolas-Alonso and Gomez-Gil 2012). It basically translates neural signals 

from nervous system into commands for assistive technology (Chestek et al. 2013). In 

line with technological advancements, BCI systems have become a crucial alternative in 

many areas, especially in rehabilitation technologies (U. Chaudhary, Birbaumer, and 

Ramos-Murguialday 2016). Some well-known applications of the BCI system can be 

wheelchair control that retrieves the movement ability for paralyzed individuals (Yuan 

and He 2014), computer control (Bai, Yu, and Li 2015), internet surfing (Yu et al. 2012), 

deceit identification (Dodia et al. 2019), and implicit intent recognition (J. S. Kang et al. 

2015). 

There are different types of BCI systems that use different neural signals to 

provide communication between the brain and computer. Among several alternatives, 

researchers have put their efforts to improve the usage capability of the motor imagery 

type BCI technology for several years. This is due to the fact that the previous studies 

showed that people can learn to modulate their brain activities for a better BCI control 

performance to a certain extent. As the result of these modulations, it was observed that 

the damaged functions of the brain were restored and the movement talent of healthy 

individuals was enhanced (B. He et al. 2015). 

In a generic BCI system, the feature extraction block extracts salient features from 

the electrophysiological/hemodynamical brain activity via mathematical methods, and a 

classification algorithm decides the category of the user intent by classifying the features 

extracted from the brain activity (Sitaram, Caria, and Birbaumer 2009; Blankertz et al. 
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2006). In Figure 1, we illustrated a generic block diagram that represents the operational 

steps of a generic BCI system. The blocks of the BCI system are as follows: 

• Recording the brain activity. 

• Preprocessing the recorded brain activity to make the raw data suitable for the 

feature extraction procedure. 

• Extracting salient features for characterizing the cognitive task. 

• Classification of the features for deciding the category of performed cognitive 

task. 

• Translation of the estimated category of the brain activity into a real world action. 

 

Figure 1. The graphical illustration of the generic framework of a BCI system. 

In order to convert human intentions into a real world actions via a computerized 

system (i.e., BCI system), various types of brain imaging modalities have been used in 

many studies (Lenartowicz and Poldrack 2010). Some of the well-known 

electrical/magnetic as well as the hemodynamic neuroimaging modalities are as follows: 

• Electroencephalography (EEG) (Berger 1929) 

• Magnetoencephalography (MEG) (D. Cohen 1968) 

• Electrocorticography (ECoG) (Palmini 2006; Chestek et al. 2013) 

• Intracortical single neuron recordings, 

• Functional magnetic resonance imaging (fMRI) (Mizuhara and Yamaguchi 2007), 

• Positron emission tomography (PET), 

• Functional near infrared spectroscopy (fNIRS) (Batula et al. 2017), 

• Single-photon emission computerized tomography (SPECT). 
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The advantages/disadvantages of each different recording modality were provided in 

detail in (Ramadan and Vasilakos 2017). Note that the recording modalities such as fMRI, 

fNIRS, PET, and SPECT are known to collect slow metabolic (i.e., hemodynamical -

blood oxygen level dependent (BOLD)-) activity which means they are not good at 

collecting fast transient oscillatory dynamics of the brain (Milton et al. 2007). This 

incapability states that they are not suitable for providing the rapid communication 

required for BCI systems. However, few studies in the literature make use of 

hemodynamical measurement modalities in BCI frameworks in rehabilitation and 

communication manner (Sitaram, Caria, and Birbaumer 2009; Porro et al. 1996). Since 

they cannot provide fast and effective communication as an electrophysiological 

modality, their main usage purpose is to understand the metabolic behavior of the brain 

by analyzing task-related BOLD responses during motor imagery activity. 

The majority of the current BCI settings are designed for M/EEG signals due to 

their high temporal resolution which enables recording time-resolved brain dynamics 

(Lenartowicz and Poldrack 2010; Ramadan and Vasilakos 2017; Guger 2018). Another 

advantage of using EEG is that its ease of use, high portability, noninvasiveness, and 

harmlessness to man’s health (Morash et al. 2008; Yuan and He 2014). Despite its 

numerous advantages, however, the main disadvantage of using M/EEG is it has very low 

spatial resolution due to the volume (tissue) conduction which may cause emergence of 

spurious or ghost interactions/activation patterns (Palva et al. 2018). Technically 

speaking, the volume conduction problem is defined as the smearing of the electrical 

activity, which is generated by the underlying neuronal networks, during traveling 

towards the scalp. The scalp, skull, and the other intracortical layers of the head act as a 

low-pass filter to these electrical signals which means that the EEG sensors collect the 

spatially weighted combination of the underlying neuronal activities. This problem 

markedly complicates the recording of localized brain signals from a particular cortical 

region (Babiloni et al. 2005). In Figure 2, we provided the temporal as well as the spatial 

resolutions of different neuroimaging modalities. 

In order to recover the spatially-resolved cortical oscillations different kinds of 

spatial filtering methods, inverse solutions, and head conductivity/shape modeling 

approaches have been developed (Rathee et al. 2017; Nyhof 2014; Tsuchimoto et al. 

2021). Some of the popular referencing/spatial filtering approaches can be listed as: 

• Common average reference (CAR) (McFarland et al. 1997) 
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• Surface (small/large) Laplacian filtering (Hjorth Derivation) (McFarland et al. 

1997; Oostendorp and Van Oosterom 1996; Carvalhaes and De Barros 2015) 

• Spline Laplacian filtering (Deng et al. 2012) 

• Common spatial subspace decomposition (CSSD) (Yunhua Wang, Berg, and 

Scherg 1999) 

• Common spatial patterns (CSP) (Ramoser, Müller-Gerking, and Pfurtscheller 

2000; Blankertz et al. 2008) 

• ICA/PCA (Hyvärinen and Oja 2000; Jolliffe 1986) 

These approaches, in general, tries to minimize the effects of the volume conduction by 

incorporating some mathematical/biophysical assumptions and provides an estimate of 

localized brain oscillations (McFarland et al. 1997). Several studies conducted 

comparative performance analyses on these methods to see which method perform better. 

The outcome of these analyses highlights that none of the proposed methods are better 

than another and importantly, the performance of these methods heavily depends on the 

preferred signal processing method for brain activity characterization and adopted a priori 

model of choice (i.e., inverse lead field model) (Van de Steen et al. 2019; Rathee et al. 

2017). 

The performance of the inverse models and current source density estimation 

methods for obtaining the electrical activities of current dipole sources achieved slightly 

better estimates than the other methods (Rathee et al. 2017). However, these models 

assume that each participant has a nearly similar head conductivity model, which may not 

be a realistic case. In such circumstances, the spatial filtering methods, which does not 

consider a priori model, are appeared to be the simplest and most applicable methods 

(Tsuchimoto et al. 2021). In this thesis, we proposed novel brain activity characterization 

methods for BCI frameworks. We evaluated the performance of these methods on the 

publicly available EEG signals collected from individuals during several imagery 

hand/foot movement experiments. We adopted the CAR method to reduce the effects of 

volume conduction, referencing problems, and voltage level shifts in EEG signals 

throughout this thesis (Fabien Lotte 2008; McFarland et al. 1997). The mathematical 

expression of CAR method will be provided in the next chapter. 



8 
 

 

Figure 2. Spatial and temporal resolutions of the most appealing brain activity 

monitoring/recording methods. (Source: (Lenartowicz and Poldrack 2010)) 

1.1.1. Control Signal Types used in BCI and Brain Activity 

Characterization Studies 

The use of EEG signals in BCI frameworks enables researchers to acquire 

temporally-resolved dynamics of the electrical activities of the brain that contains the 

information that are related to the intentions/thoughts of individuals. The most used 

control signal types in BCI settings are provided in Table 1. The brief descriptions for 

each control signal type are provided in this section.  
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Table 1. The commonly used BCI control signals and their psychological phenomenon. 

Control Signal Psychological Phenomenon 

VEP Frequency-modulated brain activity (flickering visual object) 

P300 
Positive deflections mainly observed at 300ms after target 

stimulus have been observed (oddball paradigm) 

SCP Slow cortical voltage oscillations (voltage shifts) 

Sensorimotor 

Rhythms 

Modulations of signals in 8-30 Hz frequency band (due to real or 

imagery motor functions) 

1.1.1.1. Visual Evoked Potentials (VEP) 

The visual evoked potentials (VEP) are the brain oscillations observed at occipital 

regions of the brain (Dreyer and Herrmann 2015). The common methodology of the usage 

of visual-evoked brain responses is that the participants concentrate on one of the 

flickering visual objects which they select from a computer screen. The flickering 

frequency of the concentrated visual object affects the frequency of the electrical brain 

oscillations that are acquired via occipital region electrodes. The concentrated visual 

object can then be estimated by analyzing the frequency response of these occipital brain 

oscillations. Depending upon the flickering frequency of the visual object, VEP can also 

be categorized as steady-state visual evoked potentials (SSVEP) and transient visual 

evoked potentials (TVEP). 

The high signal-to-noise ratio (SNR) of VEP signals enables the BCI researchers 

to use it in brain-computer communication (Dreyer and Herrmann 2015). One important 

disadvantage of using VEP as a BCI control signal is that the participants had to maintain 

his/her concentrate on the visual objects for a long time (may last for minutes to hours) 

which may become tiring for the participants as the experiment time goes on.  
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1.1.1.2. P300 

The P300 signal is a transient positive deflection that emerges almost ~300 ms 

after the presentation of less frequent (often referred to as the target) auditory, visual, or 

somatosensory (tactile) stimuli (oddball paradigm) (J. Jin et al. 2012). This short-lasting 

brain oscillation is thought to carry a cognitive component that is related to the presented 

stimulus. The typical application of P300 type BCI is the matrix speller BCI which is 

proposed by Farwell and Donchin in 1988 (Farwell and Donchin 1988). 

The P300 type BCI applications are not preferred due to their low SNR and low 

information transmission rate (ITR) problems. Many different solutions were proposed 

to increase the performance and also the usability of P300 signals. Martens et al. changed 

the stimulus presentation type and observed that this change enhances the performance 

of P300 BCI (Martens et al. 2009). Another improvement is achieved by Jin et al. They 

offered using the combination of both “P300” and “SSVEP” to increase the 

communication rate of P300 type BCI systems (J. Jin et al. 2012). 

1.1.1.3. Slow Cortical Potentials 

The slow cortical potential signal (SCP) is another important control signal type 

utilized in BCI systems. It is known as the slowest signals of all scalp recorded EEG 

activities. It is basically referred to as the mean cortical voltage shifts of EEG activities 

and their oscillating frequencies are typically below than 1Hz. In the literature, it was 

highlighted that negative and positive SCP oscillation refers to mental preparation and 

mental inhibition (Tallgren et al. 2005). Although its relation to the mental processes, 

many SCP-related BCI systems use combination of different features to achieve a brilliant 

recognition performance (Wolpaw et al. 2002; Salyers, Dong, and Gai 2019). Another 

methodology for increasing the SCP-based BCI performance is to use the convex-

concave feature extraction method (Hou, Sun, and Meng 2019). The popularity of the 

SCP signals in BCI experiments comes from the fact that people can learn to modulate 

their SCP activities in response to given feedback in BCI training sessions. 
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1.1.1.4. Sensorimotor Rhythms 

Beyond a doubt, sensorimotor signals are the most preferred control signal type 

in the majority of commercial and clinical BCI applications. Its popularity comes from 

the fact that SMR signals offer the highest level of control capability (i.e. degree of 

freedom) than the other type of BCI control signals (Yuan and He 2014). Sensorimotor 

rhythms are of great importance associated with the control of the motor imagery-based 

BCI systems. Despite its wide usage, it is known that the motor imagination is the most 

difficult mental simulation type among the other alternatives such as mental rotation, 

word association, auditory imagination, mental math operation, spatial navigation, and 

face perception. That is why %20 of total BCI participants cannot learn how to modulate 

their SMR signals (Friedrich, Scherer, and Neuper 2012; Allison and Neuper 2010). In 

addition to these, nearly around ~%50 of people do not elicit clear SMR 

modulation/demodulation characteristics (Solis-Escalante et al. 2012). 

The main reason for choosing the SMR as a control signal is that the majority of 

BCI user can easily learn how to modulate their sensorimotor rhythms given feedback 

information related to their motor imagery performances (Christa Neuper et al. 2009a). 

Another reason is that the brain generates similar sensorimotor rhythm changes (i.e., 

amplitude modulation patterns both during upper as well as lower limb movements) 

during both real and imagery motor tasks. The similarity of the activity patterns is thought 

to be the result of both motor imagery and motor execution tasks uses similar brain 

regions to achieve neural coordination dynamics during motor preparation and 

programming (Marc Jeannerod 2001; M. Jeannerod et al. 1995; Morash et al. 2008). 

Many studies in the literature have analyzed similarities/dissimilarities of these activation 

patterns that emerged during real and imagery motor movements. Llanos et al. performed 

an experiment to observe the distinctiveness of the sensorimotor rhythms of motor 

activity-related cortical areas. They found that the sensorimotor oscillations have a unique 

characteristic and that oscillatory patterns acquired for both real and imagery movement 

produce similar neural activity patterns within similar brain regions (Llanos et al. 2013). 

On the contrary, several studies have highlighted the differences of brain activity patterns 

emerged in imagery and execution cases (Kraeutner et al. 2014; Xu et al. 2014). He et al. 

analyzed the different perspectives of SMR signals in motor imagery functions and stated 
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that the SMR signals are known to be the most robust oscillatory responses that provide 

reproducible brain patterns embedded in the EEG activity (B. He et al. 2015). 

The neural mechanism of SMR signals has been a well-studied subject (Halder et 

al. 2011). SMR signals generally show significant spectral modulations in 8-13 Hz (𝜇 

rhythms) and also in 14-30 Hz (𝛽 rhythms) during both in imagery and real movement 

tasks in contralateral region to the movement in the brain (GASTAUT 1952; Yuan and 

He 2014; Höller et al. 2013; G. Pfurtscheller et al. 2006). It was demonstrated that analysis 

of higher frequency oscillations elicited more activity-specific spectral patterns (Miller et 

al., 2010). In general, the amplitudes of Rolandic 𝜇 and 𝛽 are known to start to decrease 

before the movement onset and lasts until the task finishes (G. Pfurtscheller et al. 1998). 

This decrease in amplitude is referred to as the event-related desynchronization (ERD). 

After the task finishes, the amplitude of both 𝜇 and 𝛽 rhythms increase to its initial value 

which is referred to as event-related synchronization (ERS). These rhythms (i.e., 𝛽 and 𝜇 

band oscillations) has been a subject of detailed biophysical analysis for a long time. As 

a result of these researches, it has been understood that the 𝛽 oscillations take place in 

cortical setting/resetting which states the inhibition of the information processing in 

underlying neuronal networks (G. Pfurtscheller and Lopes Da Silva 1999; G. 

Pfurtscheller et al. 2005). Furthermore, the 𝛼  (i.e., 𝜇  for sensorimotor cortical 

oscillations) are responsible for functional inhibition of task-irrelevant cortical pathways 

for optimal cognitive task performances (Jensen and Mazaheri 2010). On the contrary to 

𝜇 and 𝛽 rhythms, vast amount of literature proved that the ERS in the 𝛾 band (i.e. > 30 

Hz) amplitude which is observed with task initiation (Grosse-Wentrup, Schölkopf, and 

Hill 2011; Başar et al. 2001). 

Gastaut et al. showed that the similar 𝜇  and 𝛽  ERD/ERS patterns was also 

observed in amputee subjects (Gastaut, Naquet, and Gastaut 1965). For both normal and 

amputee subjects, these ERD and ERS patterns in both 𝜇 and 𝛽 band primarily observed 

in contralateral regions of the sensorimotor/primary motor cortices. Ince et al. 

demonstrated that imagination of foot movement desynchronizes the 𝜇  and 𝛽  band 

activity in foot area of the brain but synchronizes the activity in hand area in the 

sensorimotor cortex and vice versa (Firat Ince, Arica, and Tewfik 2006). This antagonist 

behavior of event-related synchronization and desynchronization is known as the “focal 

ERD/surround ERS” phenomenon. This phenomenon describes the organization 

mechanism of the thalamo-cortical structure of the brain (C. Neuper and Pfurtscheller 
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2001). The antagonist ERD/ERS behavior of the brain forces the focal cortical activation 

of relevant brain region by simultaneous deactivation (i.e., inhibition) of other regions of 

the brain (Z. Zhou and Wan 2012). Also, 𝜇 rhythm desynchronization in contralateral 

sensorimotor cortex during a motor imagery task is observed while there is a significant 

𝛼  band ERS in parieto-occipital cortex. This mechanism enhance the discrimination 

capacity of localized changes of the sensorimotor rhythms for BCI systems (G. 

Pfurtscheller et al. 2006). 

In general, the ERD during motor imagery task in corresponding cortical areas 

states the reactivity of the corresponding brain regions. The ERS after the ERD is known 

as the inhibition/deactivation of cortical networks involved in motor imagery (Christa 

Neuper, Wörtz, and Pfurtscheller 2006) . Note that, the 𝛽 band synchronization following 

the imagery/real movement is named as post-movement 𝛽 rebound (G. Pfurtscheller et 

al. 2005). Pfurtscheller et al. observed that the most discriminative spectral component is 

the 𝜇 band and the electrodes that elicited most discriminative patterns are C3, Cz, and 

C4 EEG electrodes. These electrodes collect the electrophysiological activity mainly 

from left and right sides of the motor/sensorimotor cortex (G. Pfurtscheller et al. 1998; 

Munzert, Lorey, and Zentgraf 2009a). Neuper et al. stated that the ERD/ERS patterns 

observed in 𝜇 and 𝛽 bands during the sensory, motor, or cognitive tasks represents the 

status of the underlying cortical networks. The power of 𝜇 rhythm can be used as an 

indicator of the activation level of cortical areas that allocates the resources for processing 

the information peculiar to the specific cognitive tasks (Christa Neuper et al. 2009a; 

2005). Note that the amount of ERD in the task-specific frequency bands is generally 

modulated by task complexity, participant’s concentration level, intelligent quotient 

scores and so forth (Llanos et al. 2013). In the same vein, Mashat et al. discovered that 

the increase in the motor imagery task complexity provides larger ERD/ERS changes 

(Mashat, Lin, and Zhang 2019). These amplitude modulations are believed to be the 

signature of thalamo-cortical as well as the cortico-cortical information transfer between 

distributed neuronal networks that are interconnected with feedback loops (C. Neuper and 

Pfurtscheller 2001).  
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1.2. The Literature Overview 

After the discovery of the effectiveness of the electrophysiological activities for 

communication and control, a vast amount of novel brain activity analysis methods and 

BCI approaches have been proposed (F. Lotte et al. 2007; Abiri et al. 2019). In this 

section, we give a literature overview related to BCI studies. We provided it by dividing 

the studies into subsections according to the used for signal processing/feature extraction 

methods for a better understanding of the logic of the proposed brain activity 

characterization methods in this thesis. Also note that, in this section, we did not restrict 

ourselves to the literature that only related to the motor imagery activity recognition 

studies. We tried to provide an extensive overview that includes the other types of mental 

imagery (non-BCI) as well as brain activity characterization studies to make a general 

insight about adopted perspectives when characterizing the brain activities. Note that, the 

mathematical details of these methods described in the below subsections is given in the 

second chapter of this thesis. 

1.2.1. Autoregressive Modelling Studies 

One of the most popular parametric methods for brain activity characterization 

are the autoregressive (AR), moving average (MA) and autoregressive moving average 

(ARMA) modelling (Haykin and Widrow 2005). Among them, autoregressive modelling 

by far the one of the most appealed method for EEG signal analysis. Briefly, 

autoregressive model is a linear forward prediction filtering model that estimates the 

signal sample by using the weighted combinations of the past samples of the 

corresponding signal (Troughton and Godsill 1998). The weights (i.e., the model 

coefficients) serve information about the signal characteristics. Two types of AR 

modelling approaches, named as univariate and multivariate modelling, can be found. 

The AR model coefficients were used as discriminating feature in many brain activity 

characterization frameworks. In here, we briefly summarized some of brain activity 

characterization studies that uses the AR model coefficients as characteristic features. 

Anderson et al. used both univariate and multivariate AR modelling based method to 
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characterize different types of mental tasks which was collected by Keirn and Aunon 

(Keirn and Aunon 1990). They achieved satisfactory recognition performance with the 

autoregressive model coefficients of six EEG channels. One important outcome of this 

study is that, unlike the merits of multivariate AR model, univariate autoregressive 

modelling is more effective in both computation time and recognition performance 

(Anderson, Stolz, and Shamsunder 1998). Pfurtscheller et al. adopted using adaptive AR 

model coefficients obtained for each time instant to capture the transient changes in the 

brain dynamics against its dynamically changing nature (G. Pfurtscheller et al. 1998) The 

adaptive AR coefficients calculated for each of the EEG channels placed on the 

sensorimotor cortices. Authors calculated the adaptive AR model coefficients via 

recursive least squares method. Arnold et al. offered using a Kalman filter to estimate and 

update the multivariate and univariate AR model coefficients for each time instant. This 

approach is adopted by the authors that it is beneficial to incorporate the nonstationary 

and dynamical changing characteristics of brain activity (Arnold et al. 1998). The 

proposed approach was tested on EEG signals and observed that the coefficient update 

procedure is critical to capture the relevant features to characterize the cognitive task in 

the dynamically changing nature of the brain. Huan et al. compared the performance of 

the 6 different AR modelling approach and two different classification (linear 

discriminant analysis (LDA), multilayer perceptron with back propagation (MLP-BP)) 

methods using a two-state mental task imagery characterization framework. They used 

least squares (LS) method, Burg method, adaptive autoregressive (AAR) method with 

least mean squares with and without signal segmentation. In contrast to the prior works, 

they found that AR-LS without signal segmentation with LDA classifier achieved the best 

classification performances in mental task characterization study (Huan and Palaniappan 

2004). Chen et al. proposed an AR forward prediction based methodology to accurately 

estimate phase and frequency of the narrow-band brain oscillations for clinical 

applications. The main reason for estimating instantaneous phase and frequency 

accurately and send transcranial magnetic/electric pulses is to observe the exact changes 

of memory performance of the subjects under different phase and frequency organization 

of respective cortical areas. They tested their algorithm on two patients while they were 

performing Sternberg memory task. They achieved clinically as well as biophysically 

acceptable phase-locking performances during memory task obtained via the intracranial 

EEG signals (L. L. Chen et al. 2013). Krusienski et al. conducted an AR-based online 

cursor control study and evaluated the computer control performances of method with 
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different AR model orders. In that study, authors observed that the increase of the AR 

model order causes a gradual increase in the control performance of the subjects and 

stated that when different frequency bands are utilized for BCI purposes, choosing of 

band-specific model orders would be beneficial. One important thing -also discussed in 

(McFarland and Wolpaw 2008)- is that minimizing the penalty term introduced by model 

order estimation methods is not directly related to the activity recognition performances 

of the AR-based BCI systems. The model order must be determined by considering the 

user’s control performance in training phase of the BCI experiments. Schlögl et al. used 

four different classification methods namely minimum distance analysis (MDA), support 

vector machine (SVM), linear discriminant analysis (LDA) and k-nearest neighborhood 

(kNN) to determine the best classification method when using adaptive AR modelling for 

motor imagery activity recognition framework. The overall results show that SVM 

achieved a better recognition performance in both single channel and multivariate AR 

modelling frameworks (Schlögl et al. 2005). Similarly, Hettiarachchi et al. compared 

short-time moving window and Kalman filtering methods in estimating the adaptive 

autoregressive model coefficients in a motor imagery BCI scenario. They found that 

Kalman filtering approach is better in extracting adaptive AR and MVAR model 

coefficients (Hettiarachchi, Nguyen, and Nahavandi 2016).  

Besides the motor imagery related brain activity characterization, AR models can 

be used the detect neurological deteriorations. In that context, Altunay et al. proposed an 

autoregressive error prediction filtering approach to determine the epilepsy onsets 

(Altunay, Telatar, and Erogul 2010). They filtered the EEG activity and observed the 

forward prediction error for epilepsy detection. EEG signals usually subject to external 

and physiological disturbances such as movement artifacts, eye blinks and so forth. Li et 

al. considers 𝐿𝑝 norm (𝑝 ≤ 1) instead of 𝐿2 norm as objective function for calculating the 

AR model for EEG analysis to reduce the effects of outliers on model coefficients 

(Peiyang Li et al. 2015). Another approach to filter out the subject-generated non-EEG 

components such as jaw clenching, eye blinking, eyebrow moving and head rotation 

approach was developed by Lawhern et al. (Lawhern et al. 2012). They modelled the 

different types of artifacts via AR modelling and used SVM classifier to determine the 

categories of the disturbance accurately. Authors claimed that the AR coefficients 

obtained for each different type of artifacts may be used for cleaning the EEG activity 

and thus obtaining better EEG characterization. Also, the removal of the artifacts via the 
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method proposed by Lawhern et al. may help to obtain exact dipole-source modelling of 

EEG activity (Lawhern et al. 2012). 

1.2.2. Time-Frequency Analysis Studies 

Besides the autoregressive modelling, a vast amount of literature utilized the time-

frequency decomposition methods for analyzing the EEG signals for brain activity 

recognition/characterization purposes. Time-frequency methods can decompose the 

signals into several time-frequency atoms to unveil the discriminative patterns. In Figure 

3, we provided an illustrative example of time-frequency energy distributions of right foot 

and right hand motor imagery activities. 

 

Figure 3. The time-frequency distribution of different motor imagery-related 

electrophysiological activities. The time-frequency energy distributions in 

the left column represents the of right foot motor imagery activity and the 

right column represents the right hand motor imagery activities. 
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This exemplary figure shows that different cognitive tasks produce conspicuously 

different energy concentrations at each time-frequency point. After the discovery of the 

discriminative strength of time-frequency methods, several brain-computer interface 

studies were started to adopt these methods for feature extraction purposes (Hsu 2011; 

Ince, Tewfik, and Arica 2007; Salyers, Dong, and Gai 2019). 

In line with this, Zhou et al. offered a wavelet packet independent component 

analysis method to extract activity-specific frequency-resolved ERD/ERS patterns from 

the EEG activity to characterize the complex motor imagery tasks such as standing up, 

right/left imagery foot movement with homolateral imagery hand movement (Z. Zhou 

and Wan 2012). Ince et al. proposed finding and using multiple informative time-

frequency patterns captured using dyadic tree segmentation of time and frequency axis. 

Authors used discrete cosine transform to decompose the brain signals. The captured 

electrophysiological patterns during the motor imagery tasks were mainly the time and 

frequency localized sensorimotor ERD/ERS features (Ince, Tewfik, and Arica 2007). 

They claimed their proposed method can extract subject-specific localized time-

frequency patterns and also takes the hemispheric asymmetry of the brain dynamics 

induced during motor imagery tasks into account. A non-dyadic segmentation version of 

the previous time-frequency method proposed by Ince et al. to get rid of the limitations 

of the dyadic time segmentation procedure. They observed that the non-dyadic 

segmentation method captured more discriminative as well as time-sensitive ERD/ERS 

features for motor imagery activity recognition (Firat Ince, Arica, and Tewfik 2006). An 

improved version of the time-frequency segmentation approach described above 

proposed by Ince et al (Ince et al. 2009). The improved version of the method identifies 

the electrodes that elicit most informative time-frequency features and discards the 

uninformative ones. They again used the most informative time-frequency features for 

motor imagery activity characterization purposes. Their results suggest that this improved 

version achieved better results than two well-known benchmark method common spatial 

patterns (CSP) and AR. Zarjam et al. calculated the entropies of the wavelet coefficients 

of the source localized EEG signals and used them as features to categorize the EEG 

signals collected under different type of cognitive workloads (Zarjam et al. 2013). Lerga 

et al. used the Wigner-Ville transform and Renyi entropy methods to show that the motor 

functions cause short-lived spectral changes in the neural activity (Lerga, Saulig, and 

Mozetič 2017). Cek et al. used wavelet-based information theoretic measures to analyze 

the stimulus related evoked brain potentials (Emre Cek, Ozgoren, and Acar Savaci 2010). 
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In our past study, we used wavelet-based methods to observe the changes of the 

electrophysiological activity during olfactory stimulus presentation (Bilal Orkan Olcay 

2014). Goksu et al. calculated the log-energy entropy of the wavelet packet transform 

coefficients of slow cortical potentials to achieve a satisfactory motor imagery task 

recognition performance (Göksu 2018). Chaudhary et al. used flexible analytic wavelet 

transform to decompose EEG activities into sub bands recorded during motor imagery 

tasks. The narrow-band brain activities for each EEG channel were used to obtain the 

temporal moment features to characterize the motor imagery related brain dynamics (S. 

Chaudhary et al. 2020). Wavelet analysis is also helpful to understand the inherent chaotic 

dynamics of the epileptic and normal EEG activities. Adeli et al. used wavelet 

decomposition to calculate the correlation dimension (CD2) and largest Lyapunov 

exponent (LLE, (L1)) values of each sub-band of EEG signals collected during seizure 

and seizure-free cases. The major aim of the authors is to highlight the significant 

difference in CD and LLE between epileptic and normal brain dynamics which is usually 

hidden in broad-band brain activity (Adeli, Ghosh-Dastidar, and Dadmehr 2007). 

Özgören et al. conducted a wavelet analysis on the responses collected during auditory 

stimulations for analysis of consciousness of the subjects during anesthesia administration 

(Ozgoren et al. 2010). Also, wavelet analysis was used to delineate the 𝜇 and 𝛽 band 

modulation characteristics of primary motor and somatosensory cortices during 

movement observation cases which was due to the activation of mirror neuron system 

which includes these cortical regions (Muthukumaraswamy and Johnson 2004). 

1.2.3. Spatial Filtering Based Studies 

In the literature majority of the BCI studies utilize the common spatial patterns 

(CSP) method which is the most popular spatial filtering/transformation approach. In 

general sense, a typical motor imagery-based BCI system aims to capture the concomitant 

changes of electrophysiological activity due to the imagination of movements via the 

electrodes placed on the motor activity related cortical regions (i.e., homunculus). On the 

homunculus, there are several cortical representation areas of both upper and lower 

extremities can be found which is illustrated graphically in Figure 4. 
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Figure 4. The illustration of representation of the extremities and non-extremities on both 

motor and sensory cortices (Blankertz et al. 2008). (This figure used with 

permissions under the Copyright © 2008, IEEE) 

The graphical illustration of the cortical regions of the upper and lower extremities 

shows that each of the representation areas located as very close to each other. The tight 

closeness of these representation areas of each extremity as well as other non-extremity 

regions and the volume conduction problem makes detection of the particular 

modulations of each representation areas due to the motor movement/imagery using EEG 

signals a vexing problem. In such cases, the spatial filters are the vital signal processing 

methods to cope with the two aforementioned problems. Spatial filtering of the 

frequency-resolved EEG activities enables the researchers to distinguish the motor 

imagery/movement-related cortical modulations to a certain extent. In a study, diverse 

spatial filtering methods such as common average reference (CAR), Laplacian filtering, 

bipolar derivation, and CSP methods were evaluated (Blankertz et al. 2008). Among these 

spatial filtering techniques, the CSP method achieved the best classification performance 

between occipital-𝛼 and Rolandic 𝜇 rhythm. In general, the CSP method designs a spatial 

filter and conduct a spatial linear transformation so that the variance of resulting CSP-

filtered activity belongs to one class is maximized and the variance of the other activity 

is minimized simultaneously (Ramoser, Müller-Gerking, and Pfurtscheller 2000; 

Blankertz et al. 2008). Thereafter the effectiveness of the CSP method was proved, the 

BCI researchers try to improve the discrimination capacity the CSP method by 

incorporating several different optimization criteria into the optimization problem. 

Common spatio-spectral patterns (CSSP) (Lemm et al. 2005), common sparse spatio-
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spectral pattern (CSSSP) (Dornhege et al. 2006; W. Wu et al. 2008), Tikhonov-

regularized CSP (referenced therein (F. Lotte et al. 2007; Fabien Lotte and Guan 2010)), 

local-temporal CSP (H. Wang and Zheng 2008), augmented complex common spatial 

patterns (Cheolsoo Park, Took, and Mandic 2014), and probabilistic common spatial 

patterns (W. Wu et al. 2015) are the well-known variants of the CSP method. Vast amount 

of motor imagery activity recognition studies uses the CSP and its extensions in the 

literature. Zhang et al. adopted a procedure that optimize both spatial and spectral filter 

for motor imagery based BCI frameworks (Yu Zhang et al. 2015). Ang et al. proposed to 

find different CSP filters to each band-pass filtered EEG activities (Ang et al. 2008). 

Wang et al. used CSP filter to enhance the dichotomy between EEG signals belongs to 

different type of motor imagery tasks (J. Wang et al. 2018). Jiao et al. used sparse group 

representation method (SGRM) to enhance the classification performance of target 

subject having insufficient number training samples. This method extracts the CSP based 

features from both target and nontarget subjects to generate composite dictionary matrix. 

Then, these vectors are used to represent each test feature vectors of target subject. The 

results obtained via publicly available BCI datasets showed that this method enables to 

reduce the demand of training task periods thus reduces the training/calibration time of 

BCI systems (Jiao et al. 2019). Similarly, composite CSP method were proposed by Kang 

et al. to handle the small training sample problem in BCI studies (H. Kang, Nam, and 

Choi 2009). Authors proposed two method that composes the spatial covariance matrices 

of different subjects for an accurate motor imagery activity recognition for target subject.  

Bruner et al. performed a comparison between different spatial filtering approaches 

(Brunner, Naeem, and Pfurtscheller 2009). The authors used four different spatial filtering 

approaches based on PCA and ICA methods. The classification performance results found 

for the case, where using PCA as preprocessing dimensional reduction purpose, showed 

that PCA as preprocessing did not provide any advantage for motor imagery 

classification. This shows that, PCA-based dimension reduction, which relies on selecting 

components with largest variances, did not retain the motor imagery activity related brain 

patterns. Furthermore, they found that using EEG channels except for frontal and occipital 

regions for ICA and CSP decomposition achieved satisfactory recognition performances. 

Liao et al. used a two different spatial filters, CSP and discriminative spatial patterns 

(DSP) to extract relevant features from both movement related cortical potentials and 

sensorimotor rhythms for imager finger movement classification (Liao et al. 2007). 

Mishuhina et al. proposed a complex CSP method that captures spectral, spatial, and 
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temporally relevant features for a successful recognition (Mishuhina and Jiang 2021). 

Several strategies were adopted to improve both accuracy and information transfer rate 

of EEG-CSP based BCI systems. One important approach in the literature is exhibited by 

Khalaf et al. that combines EEG derived CSP features with fTCD (functional transcranial 

Doppler)-derived wavelet features (Khalaf, Sejdic, and Akcakaya 2019). 

1.2.4. Connectivity Based Studies 

The majority of the analysis methods, as well as BCI frameworks, have achieved 

notable recognition performance by extracting and using relevant brain patterns from the 

neural activities acquired from distinct regions of the brain. However, it is also known 

that the brain is organized as a dynamical complex network in which the neural 

information is continuously processed and transferred between different regions of the 

brain (Olaf Sporns et al. 2004; S. H. Jin, Lin, and Hallett 2012; C. J. Stam and Van Dijk 

2002). Contemporary brain mapping techniques, models, and theories, which was putted 

forward to delineate the brain functioning, signifies the collective behavior of distinct 

cortical regions (Mišić and Sporns 2016). Distinct regions that take part in this complex 

network are in continuous interaction with each other functionally in a nonlinear as well 

as dynamic fashion (O. Sporns, Tononi, and Edelman 2000; Rubinov and Sporns 2010; 

Marinazzo et al. 2011; Bullmore and Sporns 2009). These interaction patterns are thought 

to be generated during information transmission between different regions of the brain 

(please see Figure 5). 

Two types of statistical interactions, also termed statistical connectivity, have 

been proposed to take place between brain regions (Fingelkurts, Fingelkurts, and 

Kähkönen 2005; C. J. Stam and van Straaten 2012). Functional connectivity refers to 

temporal synchronization and effective connectivity refers to the causal synchronization 

between the electrophysiological/hemodynamic signals, also referred to as the undirected 

and directed interaction, respectively (Bowyer 2016). Note that these terms will be 

explained in detail in the upcoming chapter. Brain connectivity appears to be central to 

understanding the systematic information processing organization of the brain for 

cognitive, sensory as well as other processes (Tognoli and Kelso 2009; Harrison, Penny, 
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and Friston 2003). It offers a fundamental insight into the functional network organization 

of the brain (Hipp et al. 2012). 

In the literature, these interaction patterns are tried to captured and used to derive 

network-theoretic features (i.e., centrality, clustering coefficient, characteristic path 

length,…) to understand the organization of the brain network and network topology for 

different cognitive tasks (Telesford et al. 2011; Rubinov and Sporns 2010). However, 

these graph-theoretic measures may not be applicable to fully characterize the whole brain 

dynamics without capturing the true interaction dynamics. It is clear that there is an urgent 

need for advanced synchronization calculation methods to understand the true interaction 

dynamics of the brain. However, the exact model of the synchronization among the brain 

regions and its functional role in cognitive, sensory, and motor tasks is still unclear 

(Marinazzo et al. 2011). In the last few years, researchers have spent substantial effort to 

develop more advanced mathematical methods to elucidate details of these complex brain 

interactions during cognitive tasks (Sargolzaei et al. 2015; Meunier, Lambiotte, and 

Bullmore 2010). 

 

Figure 5. Typical flow of the functional connectivity-based brain network inference 

(Source: Fadlallah, 2015). 
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In this sense, various model-based and model-free synchronization methods have been 

proposed and used to disentangle the underlying true cortical interactions (Duckrow and 

Albano 2003; Pereda, Quiroga, and Bhattacharya 2005; Sakkalis 2011; Greenblatt, 

Pflieger, and Ossadtchi 2012; Bakhshayesh et al. 2019b; 2019a; B. Orkan Olcay and 

Karaçalı 2019; Kaminski et al. 2016; Jalili, Barzegaran, and Knyazeva 2014). Along with 

this perspective, researchers adopted to use these advanced brain connectivity estimation 

methods for motor imagery/execution -based studies to capture and use the task-related 

brain synchronizations as features. Gonuguntla et al. classified motor imagery tasks by 

using the task-specific phase couplings between remote brain regions (Gonuguntla, 

Wang, and Veluvolu 2016). Rocca et al. calculated magnitude squared coherences (MSC) 

between EEG signals as a biomarker for a person identification purpose (Rocca et al. 

2014). Billinger et al. proposed using directed transfer function (DTF) to identify the 

causal interaction between EEG sources obtained during motor imagery tasks (Billinger, 

Brunner, and Müller-Putz 2013). Siuly et al. offered a cross-correlogram based method 

that calculates the correlation between EEG signals and extract several statistical features 

to characterize the right hand/right foot motor imagery tasks (Siuly and Li 2012). Li et al. 

proposed joint distribution entropy method to capture the coupling dynamics of 

electrophysiological activity collected from different regions of the brain (Peng Li et al. 

2016). Faes et al. used a compensated transfer entropy analysis to capture volume 

conduction-free information flow between EEG channels (Faes et al. 2016). Brunner et 

al. offered using the phase coupling between EEG channels to design an online BCI 

framework (Brunner et al. 2006). Wei et al. performed a phase coupling based motor 

imagery activity recognition study to find the brain regions that elicit significant 

connectivity patterns during motor imagery tasks (Q. Wei et al. 2007). Daly et al. 

proposed using frequency-resolved phase coupling statistics for an accurate detection of 

motor imagery task (Daly, Nasuto, and Warwick 2012). Makarov et al. used wavelet bi-

coherence method to observe the frequency-resolved task-specific pairwise brain 

synchronization modulations during motor movement/imagery tasks (Makarov et al. 

2018). Wang et al. utilized phase coupling statistics between specialized brain regions 

(Supplementary Motor Area (SMA) and Primary Motor Cortex (M1)) during right/left 

motor imagery hand movement (Yijun Wang et al. 2006) which are demonstrated to play 

key role during motor imagery tasks (Halder et al. 2011). Gao et al. used relative wavelet 

entropy to determine the changes in the functional brain network topology to characterize 

the fatigue during driving task (Z. Gao et al. 2019). Babiloni et al. used Directed Transfer 
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Function (DTF) to reveal the directional information transfer among different brain 

regions during finger movement task (Babiloni et al. 2005). 

Besides the BCI studies described above, the notion of brain connectivity has also 

been used for clinical researches. Calhoun et al. extracted connectivity features from the 

brain activity for detecting the schizophrenia disorder (Calhoun, Kiehl, and Pearlson 

2008). Sarmukadam et al. proposed connectivity based approach to observe the effects of 

autism spectrum disorder (Sarmukadam et al. 2020). Olcay et al. proposed a mutual 

information-based technique that determines the functional channel clusters in the brain 

to determine the type of tactile stimulus (Bilal Orkan Olcay et al. 2017). Melia et al. used 

several connectivity methods such as mutual information, cross-correntropy to determine 

the changes in the brain connectivity patterns in sleep related disorders (Melia et al. 2014; 

2015). Vergara et al. calculated inter-regional brain synchronizations for different spatial 

scales to observe the differences between healthy individuals and schizophrenia patients 

(Vergara et al. 2019). Skidmore et al. offered using wavelet-based connectivity features 

to capture the alterations of the interactions of distinct brain regions (Skidmore et al. 

2011). Gurkan et al. multivariate autoregressive model based method (i.e. generalized 

Partial Directed Coherence (gPDC)) to analyze the effects of propofol injection on the 

changes of connectivity of distinct regions of the brain (Gürkan, Akan, and Seyhan 2014). 

All the connectivity-based studies mentioned above helped researchers to uncover the 

inter-regional cross-talk among the brain regions during cognitive activities to a certain 

extent. 

In the literature, a large number of the synchronization (i.e. connectivity)-based 

brain activity characterization studies disregard the dynamically changing characteristics 

of the brain and assume that the inter-regional synchronization profile among the brain 

regions remains constant throughout the cognitive task periods (Makarov et al. 2018; 

Yijun Wang et al. 2006; Brunner et al. 2006; Gonuguntla, Wang, and Veluvolu 2016; 

Olejarczyk et al. 2017; Van de Steen et al. 2019). However, as previously stated, despite 

its fixed anatomical structure, brain exhibits a dynamically changing as well as nonlinear 

synchronization characteristics, which introduces an additional challenge in elucidating 

the cognitive dynamics (Rabinovich and Muezzinoglu 2010; C. J. Stam 2005; Ince et al. 

2009; Cornelis J. Stam et al. 2003; Hutchison et al. 2013; Andre M. Bastos, Vezoli, and 

Fries 2015; Fries 2005). The intermittent characteristics of the inter-regional brain 

synchronizations were demonstrated to be the results of transient (i.e. short-lived) 

activations/synchronizations of localized neuronal ensembles (Cornelis J. Stam et al. 
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2003). Few studies that try to extract and interpret the intermittent dynamical 

characteristics of the brain activity for modelling cognitive tasks/states. Lu et al. analyzed 

short-lived functional interactions of EEG channels via time-frequency cross mutual 

information analysis. They observed the dynamical changes of the channel 

synchronizations with regard to the changes of the task demands accordingly (C. F. Lu et 

al. 2011). Hipp et al. demonstrated that transiently changing perceptual (visual 

perception) stimuli causes emergence of dynamically changing task-specific cortical 

synchronization patterns at task-specific frequency and spatial locations (Hipp, Engel, 

and Siegel 2011). Baker et al. used Hidden Markov Model (HMM) to capture consistent 

short-lived brain states that are emerged with transiently coherent spatial networks to 

characterize the behavior of the brain during idling conditions (Baker et al. 2014). 

Santamaria et al. identified the short-lived phase synchronized states during motor 

imagery tasks and used them for activity recognition purposes (Santamaria and James 

2019). Rosario et al. used motif synchronization method to discover the time-varying 

brain networks during a visual experiment (Rosário et al. 2015). Pfurtscheller et al. 

highlighted the emergence of short-lived somatotopically-specific brain states during 

motor imagery activities (G. Pfurtscheller et al. 2008). Gu et al. used time-frequency 

decomposition for EEG signal collected during lower extremity motor imagery tasks and 

observed short-lived frequency-specific the ERD/ERS patterns (Gu et al. 2020). Ambrosi 

et al. proposed a particle filtering-based method to analyze the temporal variations of 

brain synchronization (Ambrosi et al. 2019). Hansen et al. addressed the transient nature 

of the synchronization between brain regions during the rest state (Hansen et al. 2015). 

Ren et al. analyzed the fluctuations of information integration/segregation via dynamic 

graph metrics and showed that during cognitive tasks, dynamic small world architecture 

emerges in the brain (Ren et al. 2017). Karamzadeh et al. used a dynamic time warping 

based approach to track and analyze the characteristics of time-varying brain 

synchronization due to auditory and visual stimulus presentation (Karamzadeh et al. 

2013). Li et al, proposed a conditional Granger causality analysis to track the dynamic 

connectivity between brain regions (Y. Li et al. 2019). Spiegler et al. analyzed the 

frequency-specific time-varying phase coupling characteristics of tongue-movement 

imagery activity on the time-frequency domain (Spiegler, Graimann, and Pfurtscheller 

2004). Dimitriadis et al. proposed a scheme that discretizes the captured short-lived 

phase-synchronized microstate patterns to analyze the transitory behavior of brain regions 

during task periods (S. I. Dimitriadis, Laskaris, and Tzelepi 2013). Schack et al. captured 
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the activity-specific short-lived cortical connectivity profiles during abstract and concrete 

noun processing (Schack, Weiss, and Rappelsberger 2003). 

All these studies stress the importance of considering the dynamic nature of the 

brain in characterizing electrical activity during any kind of cognitive task (D. Vidaurre 

et al. 2018; G. Pfurtscheller et al. 2008). Additional studies stressed another related 

phenomenon; the emergence of systematic timing organization of synchronization 

between the electrical activity of the brain during cognitive tasks (Jeong, Gore, and 

Peterson 2001; Na et al. 2002; Ktonas and Mallart 1991; Boeijinga and Lopes da Silva 

1989; A. Adhikari et al. 2010; Roelfsema et al. 1997; B. Orkan Olcay and Karaçalı 2019; 

Dawson 2004). The studies that consider the systematic timing organization of brain 

synchronization is based on the premise that the brain coordinates the information routing 

between its regions by re-organizing the synchronization timings between the particular 

brain regions for each different type of cognitive task according to the task demands 

(Dawson 2004; S. H. Jin, Lin, and Hallett 2012; Alais, Blake, and Lee 1998; Lin et al. 

2020). Hereby, the brain integrates the localized neural activities by creating a short-lived 

communication window at different temporal and spatial scales between different brain 

regions by reciprocally modulating the inter-areal synchronization of the neural activities 

at activity-specific timings during the information routing (Palmigiano et al. 2017). This 

hypothesis is called the communication-through-coherence (CTC) hypothesis (Fries 

2005). Also, it has been demonstrated that the timing organization between the brain 

regions at different spatial scales significantly enrich the repertoire of cognitive dynamics 

(Madadi Asl, Valizadeh, and Tass 2018). Supporting this hypothesis, Kirschner et al. 

identified the task-specific brain synchronization patterns that are consistently emerged 

during the particular cognitive task and these synchronization patterns remains more 

active than some of the inter-regional synchronizations observed within the default mode 

network (Kirschner et al. 2012). In a face recognition study, Wang et al. realized that the 

phase coherence simultaneously increases at infra-slow frequency bands between task-

specific brain regions during face recognition task. Also, between the brain regions, the 

synchronization lag among the oscillatory activities becomes smaller for faster and 

accurate inter-regional communication. Additionally, they realized that the inter-regional 

synchronization lag flexibly re-organized to adapt to the requirements of cognitive 

activities (Yifeng Wang et al. 2019). 

The issue of synchronization timing has also been analyzed in neuronal level. 

Vibert et al. and Asl et. al. performed several analyses on the inter-neural synchronization 
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delays and stated that the inter-neural synchronization timing is crucial to consider when 

characterizing the neural-level network behavior since synchronization timing is a 

controlling factor of brain functioning (Vibert, Pakdaman, and Azmy 1994). 

1.2.5. Brain Activity Characterization Studies Using Different Methods 

There are many BCI as well as brain activity characterization studies that uses 

different approaches than given above. Some approaches adopted parametric and non-

parametric EEG modelling approaches. Tzovara et al. modelled the voltage topographies 

of different tasks and used this approach in a BCI framework (Tzovara et al. 2012). Mateo 

et al. used Volterra modelling for analysis for a brain activity characterization purpose 

(Mateo et al. 2013). Using same Volterra modelling approach, authors try to suppress the 

eye movement artifacts (Mateo et al. 2015). As a nonlinear signal processing method, 

entropy has proven to be a crucial method to capture vital features of the 

electrophysiological signals. Up to now, several different entropy methods was proposed. 

Approximate entropy (Pincus 1991), sample entropy (Richman and Moorman 2000), 

Renyi entropy (Principe 2010), bubble entropy (Manis, Aktaruzzaman, and Sassi 2017) 

are the most popular ones that are used in electrophysiological activity analysis. 

Arunkumar et al. used three different entropy measures to capture the dichotomy between 

the normal EEG and focal EEG activities (Arunkumar et al. 2017). Authors used for 

entropy features for classification purposes. They achieved brilliant recognition 

performances via non-nested generalized exemplars classifier. Raghu et al. proposed an 

epileptic activity classification method that calculates the sigmoid entropy of sub-bands 

of EEG activities (Raghu et al. 2019). Srinivasan et al. used approximate entropy to detect 

epileptic activity from EEG signals (Srinivasan, Eswaran, and Sriraam 2007). Sun 

discriminated the healthy people and stroke patients by detecting the changes of the 

cortical dynamics during motor observation task via fuzzy Approximate entropy (R. Sun 

et al. 2017). Olcay et al. used entropy to discriminate somatosensory stimulations 

presented to different hands (Bilal Orkan Olcay et al. 2017). Guducu et al. used an entropy 

estimation method to detect and separate the normal and anosmic subjects by evaluating 

the entropies of the different time intervals of EEG-derived potentials (Güdücü et al. 

2019). Zeng et al. used multivariate multiscale permutation entropy method to track the 
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transient dynamics of the multichannel brain activity during interictal, pre-ictal and ictal 

periods (Zeng et al. 2018). The authors concluded that including the inter-regional 

interactions rather using only localized activity provides a better understanding of 

inherent nature of generation of absence epilepsy. Entropy has been used to uncover the 

significant changes in the brain dynamics during meditation (Vivot et al. 2020). Authors 

found that meditation induces considerable entropic changes in gamma band in the frontal 

brain regions and in alpha bands across all regions of the brain. In addition to these, brain 

complexity measures show a significant correlation with the brain functional connectivity 

(D. J. J. Wang et al. 2018b; Nobukawa et al. 2020). These two different perspectives (i.e., 

complexity and functional connectivity) are strongly related to the information processing 

capacity of the brain and can be used together the changes of neural behavior due to the 

diseases (Nobukawa et al. 2020). In this sense, McDonough et al. stated that the greater 

entropy is related to the greater neural activity complexity which possesses great potential 

for information processing especially at larger spatial scales (McDonough and Nashiro 

2014). Previous studies have demonstrated that distinct pathological cases, as well as 

cognitive status, produce distinct nonlinear dynamics on physiological signals which can 

be detected by entropy measures (Labate et al. 2013; Zeng et al. 2018). 

Besides the entropy, some other nonlinear signal analysis methods were employed 

to extract salient features from electrophysiological signals. Bola et al. used several fractal 

dimension determination methods to observe the changes of synchronization of local as 

well as distant brain regions during visual stimulus presentation (Bola, Gall, and Sabel 

2015). Swiderski et al. characterized the short-lived epileptic brain oscillations by 

calculating the Lyapunov exponents (Swiderski, Osowski, and Rysz 2005). Vidaurre et 

al. used time domain statistical features for brain activity characterization (C. Vidaurre et 

al. 2009). 

1.2.6. Brain Activity Characterization Studies Using Transfer Entropy 

As stated above, the information transfer between the brain structures is realized 

by selective inter-regional functional synchronizations. These interactions should occur 

in a systematic timing organization for efficient and economical information transfer 

(Bullmore and Sporns 2012). Capturing these time-sensitive synchronizations requires 
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considering causality in synchronization pattern analyses. In this manner, several 

causality analysis methods were proposed to capture these causal interactions such as 

dynamic causal modelling (DCM) (K. J. Friston et al. 2019), Granger Causality (GC) 

(Granger 1969), kernel Granger Causality (Marinazzo et al. 2011), local linear nonlinear 

autoregressive model (LLNAR) (Freiwald et al. 1999). Among these methods, transfer 

entropy is one of the most crucial causality analysis approaches that has been frequently 

used to identify both linear and nonlinear causal interactions (Schreiber 2000). In essence, 

transfer entropy is a model-free and information-theoretic-based effective connectivity 

analysis method (Vicente et al. 2011) that should be carefully considered. In that sense, 

we opened a separate subsection for causality and transfer entropy. 

Many studies employed transfer entropy to capture the causal synchronization 

patterns during the cognitive, motor, and perceptual processes (Vicente et al. 2011; S. 

Dimitriadis et al. 2016; Faes et al. 2016). Besides, Montalto et al. and Lindner et al. 

proposed transfer entropy calculation toolboxes for enabling wide usage of this method 

(Montalto, Faes, and Marinazzo 2014; Vicente et al. 2011). Although there are numerous 

merits of transfer entropy underlined in the previous literature, however, there some 

important drawbacks that must be considered. The most important one is that the transfer 

entropy requires a large number of signal samples and assumes stationarity for 

calculation. This means, transfer entropy inherently neglects the dynamical (i.e., 

transient) nature of the brain. This means that the transfer entropy method cannot consider 

the short-lived driver-response relationship between EEG channels. To cope with this 

drawback, Herrero et al. proposed a novel formulation of transfer entropy assessing the 

transient coupling dynamics of the brain regions (Gómez-Herrero et al. 2015). Although 

this method partially overcomes the stationarity assumption, it requires a large number of 

EEG trials for accurate estimation. 

1.3. Objectives of the Thesis  

In the literature, the methods, as well as the frameworks proposed either for brain-

computer interfacing or other types of brain activity characterization studies, adopt using 

either the pairwise brain synchronization features or the features extracted from localized 

brain activities. The majority of these approaches assumes that the brain shows a 
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stationary behavior especially during cognitive activities which does not consistent with 

the dynamically changing nature of the brain. Besides, the studies that consider the 

transient and dynamically changing nature of the brain, however, mainly disregard the 

systematically adjusted timing organization that emerge among the brain regions. 

Brain functional organization is flexible and economic which lead to a dynamic 

modulations of functional interactions among brain structures by changing its 

coordination dynamics due to changing cognitive conditions accordingly (Tognoli and 

Kelso 2009; C. F. Lu et al. 2011). Taking these transient coordination dynamics into 

consideration may elicit an accurate brain activity characterization for cognitive, 

perceptual, and motor processes. Additionally, Hermanto et al. hypothesized that the 

brain should generate similar neural responses as well as synchronization patterns at 

similar timings among its regions for each of every trial of a particular cognitive task to 

meet the task-specific demands (Hermanto et al. 2013). By considering these two 

important statements which refer to both the dynamic nature of the brain coordination and 

the systematic timing organization, an accurate characterization of the cognitive tasks can 

thus be obtained by capturing and using activity-specific timings at which the systematic, 

as well as characteristic inter-regional short-lived brain patterns (Danielle S. Bassett et al. 

2006; S. H. Jin, Lin, and Hallett 2012). 

In this thesis, we intend to obtain the timings of the activity-specific short-lived 

(i.e., transient) brain patterns for cognitive activity characterization. The brain patterns 

that we identify the timings are 1) pairwise inter-regional brain synchronizations, 2) 

localized brain activities. We figured out the importance of considering the systematic 

timing organization during cognitive activity characterization in a motor imagery activity 

characterization framework. We selected this framework due to its popularity in the 

neuroscience area. The methods proposed in this thesis can be used to characterize any 

type of cognitive activity.  

To sum up, the main message of this thesis is that the brain generates 

cognition/behavior by adaptively changing the timing organization of both 

synchronizations between different regions and local information encoding. In that sense, 

the characterization of brain activity by using entire task periods are not meaningful. In 

order to obtain a logical and reliable characterization accuracy, one must consider the 

systematically adjusted temporal dynamics of the brain. 

Please note that, the performances, especially obtained using PhysioNet dataset, 

were relatively low when comparing with the performances of existing BCI literature. It 



32 
 

is important to highlight that, as stated above, the common approach for removing the 

muscular or other type of artifacts is to decompose the EEG signal via independent 

component analysis method (Varsehi and Firoozabadi 2021). This kind of approach may 

not be applicable in a real-time BCI setting since it enhances the recognition time 

dramatically. So, in this thesis, we did not use any blind signal source separation method 

as preprocessing. 

1.4. Organization of the Thesis 

We start our discussion in Chapter 2 by introducing the definitions of EEG. Then, 

we give some information about the neurophysiological basis of motor imagery, the 

notion of brain connectivity. Then, we provided the mathematical expression of the 

methods that we used throughout this thesis. Next, we described the motor imagery based 

EEG datasets that we used for evaluating the proposed BCI models. 

In Chapter 3, we proposed a novel motor imagery activity recognition framework. 

In this framework, we captured the activity-specific time lags (𝜏) between the EEG 

channels by using the task periods in the training dataset. We then used this time lags to 

calculate the inter-channel synchronizations for each training and test task periods. We 

compared the recognition performance of the method with well-known method CSP. In 

the last section of this chapter, we discussed the significant points of the outcomes. 

In Chapter 4, we extend the perspective in the previous chapter by introducing 

two more timing parameters (i.e., Δ𝑡 and 𝑤) for brain activity characterization. In this 

chapter, we propose a heuristic search strategy to find activity-specific timing parameter 

triplets (i.e., Δ𝑡, 𝜏, and 𝑤) for each EEG channel pair and cognitive activity type. We then 

characterized each motor imagery task in dataset by calculating the inter-channel 

synchronization by using the timing parameter triplets and performed a classification 

analysis. We again compared the performance results with CSP method and univariate 

AR modelling method. 

In Chapter 5, we characterized the motor imagery activities by clustering 

transiently synchronized EEG channel pairs according to their synchronization values. 

Note that the inter-channel synchronizations are calculated at activity-specific timings. 

The channel clusters that elicited 𝑃 -values are then used for feature for recognition 
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purposes. We provided and discussed both recognition performances and the statistically 

significant clusters in the last part of this chapter. 

In Chapter 6, we proposed a brain activity characterization method that finds and 

uses the timings of the short-lived brain oscillations where the entropies of the brain 

oscillations are appeared as activity-specific. In order to find these timings parameters, 

we adopted a heuristic-probabilistic search strategy. We provided the classification 

performances as well as the biophysical outcomes with necessary discussion at the end of 

this chapter. 

In Chapter 7, we proposed a novel autoregressive modelling for cognitive activity 

recognition purposes. This method incorporates both channel interactions and internal 

channel dynamics into a single model. In order to construct this combined model, we used 

both multivariate (channel interactions) and univariate AR modelling (internal channel 

dynamics) together to obtain a representative model for each type of cognitive activity. 

The performances show that, we achieved a better activity recognition performances than 

the previously presented methods and benchmark BCI methods. 

In Chapter 8, we provided a general conclusion related to the results obtained in 

this thesis and also some future directions that may contribute an important insight to the 

timing organization of the brain. 
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CHAPTER 2 

BACKGROUND 

Any man could, if he were so inclined, 

Be the sculptor of his own brain 

-Santiago Ramon y Cajal- 

In this chapter, we provide the background information for the important topics 

related to content of this thesis. Throughout this thesis, we proposed different brain 

activity characterization methods and we evaluated their performances on the publicly 

available two EEG datasets collected under different motor activity imagery experiments. 

We provide the details of these datasets in the upcoming subsections. We first give some 

brief information about EEG and generation of EEG signal. Then in the next subsection, 

we give details of neurophysiological basis of motor imagery and notion of brain 

connectivity. Thereafter, we give the details of the mathematical methods and the datasets 

that we used in this thesis. 

2.1. Electroencephalogram (EEG) 

The EEG is the brain’s electrical activity that is collected via electrodes on the 

scalp (Sanei and Chambers 2013). It mainly reflects the oscillations produced by 

ensembles of cortical-pyramidal neurons. The recording of electrical oscillations was 

done by Richard Caton in 1875 (Caton 1875). This experiment was conducted on 

monkeys’ and rabbits’ brains by using a simple galvanometer. Shortly after, Caton 

performed similar experiments on the human brain. In 1929, Hans Berger was the person 

who conducted an experiment on the human brain via a powerful Siemens double-coil 

galvanometer (Berger 1929). This experiment was assumed as the milestone of system 

neuroscience since important findings were discovered that shed light on many mysteries 

of the brain. The “EEG” terminology was put forward in these years. A few months later, 
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Berger conducted another experiment on the human brain via a bipolar recording from 

frontal-occipital sites and concluded that alpha oscillations are major oscillation 

components within the brain. 

Thereafter, many developments came through. The importance of multichannel 

EEG recordings was noticed by Kornmüller (Kornmüller 1935). The EEG was used to 

investigate the brain rhythms of human brain during sleep by Hallowel and Davis. 

Thereafter, Loomis and friends conducted mathematical analysis to sleep EEG patterns. 

First intracerebral EEG recordings was performed by Mayer and Hayne in 1948, and first 

intracortical EEG recording was conducted by Phillips in 1961. 

Berger and Dietch performed Fourier analysis to EEG recordings in 1932. This 

attempt was used to investigate sleep related disorders by Kleitman. In 1960, it was 

realized that the evoked potentials embedded in EEG signals contains vital information 

about mental status. 

2.1.1. Generation of EEG Signals 

As provided, the EEG signal is the measurement of current flows during synaptic 

excitations of pyramidal cortical neurons. This current is generated by motion of positive 

(i.e., Na+, K+ and, Ca++) and negative ions (i.e., Cl-). This motion of ions is mostly 

governed by changes of membrane potentials of neural cells. 

The human head consist of three main layers. These are scalp, skull, and the brain. 

We presented the resistivity values of each layer in Figure 6. There are many different 

thin layers between these layers. The EEG activities and many other noise components 

were low-pass filtered and attenuated while travelling from neuronal tissue through scalp. 

Approximately, there are more than 100 billion of neurons inside the brain and each one 

of them is interconnected to ten thousands of other neurons (Eagleman 2019). Note that 

the number of neurons and their synaptic connection amounts may alter during life span 

due to several reasons such as aging, changes in health condition, and some other 

environmental/genetic factors. 
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Figure 6. The three main layers and their resistivity values  

(Source: Sanei and Chambers, 2013). 

The brain processes are known to be highly complex and manifests itself in 

multiple frequency bands (J. Li et al. 2016). For analysis and diagnosis purpose, the EEG 

signal is divided into smaller frequency bands according to their inherent characteristics 

(Başar et al. 2001; Klimesch 1996; Sanei and Chambers 2013). The name and 

corresponding frequencies of these bands are provided in Table 2. 

Table 2. The major frequency bands and their frequencies 

Band Name Corresponding Frequency Range 

Delta (𝛿) 0.5-4 Hz 

Theta (𝜃) 4-7.5 Hz 

Alpha (𝛼) 8-13 Hz 

Beta (𝛽) 14-28 (~30) Hz 

Gamma (𝛾) Upper than 30 Hz 
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In the literature, there are vast number of studies have analyzed the relationship 

between these frequency bands and cognitive activities/status (Klimesch, Sauseng, and 

Hanslmayr 2007; Sauseng et al. 2005; Klimesch 2012; 1996; Ozgoren et al. 2010). We 

will not provide the details of this relationships since this topic is out of the scope of this 

thesis. Interested readers may look at the references provided herein. 

2.1.2. EEG Measurement 

In order to collect the electroencephalography signals, different EEG recording 

systems and setups were developed. Basically, these systems have similar structure. The 

EEG system generally consist of four different subsystems. These are: 

• Electrodes 

• Amplifier with filters 

• Analog-to-digital converter 

• Recording 

The very first step in EEG signal collection procedure is the electrodes and their 

montages on the scalp surface. The electrodes should be attached to the participants 

according to previously adopted standards. There are several electrode types that can be 

listed as: 

• Disposable electrodes (gel-less, and pre-gelled types) 

• Reusable electrodes (gold-, silver-made) 

• Electrode caps and head bands 

• Saline-based electrodes 

• Needle electrodes 

For both clinical and research purposes, in general, electrode caps are preferred 

where multichannel EEG recordings are required (Teplan 2002). The electrodes are 

placed onto had surface according to a standardized positioning system. In 1958, the 

10/20 system were adopted as standard for electrode placement. According to this system, 

the head surface is separated into the corresponding proportional distances (i.e., %10-

%20) by considering important landmarks such as inion, nasion, and preauricular points 
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(Teplan 2002). Please note that apart from 10/20, there are several widely adopted 

electrode positioning systems can be used such as 10/10, 10/5, 5/5 (Jurcak, Tsuzuki, and 

Dan 2007). In Figure 7, we provided an illustration of electrode cap with 64 electrodes 

placed in 10/10 system. Note that the electrodes are pre-gelled type electrodes represented 

in this figure. 

 

Figure 7. The illustration of 64 electrodes on a head model placed according to 10/10 

recording system. 

The collected EEG signals should initially be amplified and filtered to enhance 

the visibility of the neural activities for further processing before recording. The basic 

requirements of the EEG amplifiers are (Nagel 2003; Teplan 2002): 

• Amplifier should not distort the neural activity 

• Amplifier should clearly separate neural activity and unwanted noise components 

• Amplifiers should have a power protection against electric shocks 

• Amplifiers should protect itself from high input voltage shocks. 
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The conversion of amplified and filtered analog EEG activities into a digitized 

form is called analog-to-digital conversion. The repetition of this conversion in a second 

determines the sampling frequency of the digitized signal. The sampling frequency of 

EEG signals is of great importance for extracting meaningful information (B. Orkan 

Olcay and Karaçalı 2019). 

The quantization of EEG signals is related to the accuracy of the signal 

amplitudes. The majority of EEG recording systems adopt 16-bit quantization (Schalk et 

al. 2004). Besides, 24-, 32- and 64-bit systems is available in market (Guger 2018). 

Besides the traditional in-lab EEG recording systems, mobile EEG recording 

systems are attracting technology nowadays. These systems provides unprecedented 

flexibilities to the researchers to develop new strategies for studying neurodevelopmental 

cognitive disorders (Lau-Zhu, Lau, and McLoughlin 2019). These systems use, in 

general, dry electrodes, light-weight amplifiers, and wireless transmission which are 

important for portability. These systems can be used in any purpose such as analyzing the 

event-related potentials (P300, N1, N2), brain-computer interfacing, analyzing the 

functional connectivity patterns for various neurophysiological disorders. Mobile EEG 

systems can analyze the data with advanced analytical approaches such as time-frequency 

methods, statistical subspace decomposition methods (e.g., ICA, PCA), causality 

methods to extract biomarkers for various scientific aims. 

2.2. The Neurophysiological Basis of Motor Imagery 

Motor imagery is arguably one of the most remarkable and interesting, even 

referred to as “embodied cognition” to study brain functioning (Höller et al. 2013; 

Hanakawa 2016). It includes specific brain regions related to cognitive control and 

movement planning and generation (Decety 1996). As Jeannerod stated, motor imagery 

can be thought of as a dynamic preparation phase of the brain before the real motor 

execution (M. Jeannerod et al. 1995). In this preparation phase, several movement-related 

parameters, duration, and motor programs are adjusted. As evidence, the majority of 

neuroimaging studies related to motor imagery/execution highlighted that the consciously 

performed motor imagery and motor preparation phases activate similar brain regions. 

This argument may explain the reason for the similarity of activated neural structures both 
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in motor execution and imagery tasks. This similarity can also be observed 

physiologically. Shaw et al. observed that, during the imagery weightlifting task, linear 

relationship was observed between the weight and amplitude increase of 

electromyography (EMG) signals collected from the forearm. This significant outcome 

stresses that the neural organization of motor imagery is not the result of having an ability 

of movement execution. In order to gain a better insight related to the regions of the brain 

we provided a graphical illustration that presents the brain regions to achieve a general 

overview of which regions are responsible for motor imagery functioning in the upcoming 

part of this subsection (please see Figure 8). 

 

Figure 8. An illustration of regions of the brain (Sukel Kayt 2019) 

(Source: dana.org/article/neuroanatomy-the-basics) 

Motor imagery functions, in general, is controlled by the frontal regions of the 

brain. One of the crucial brain regions is the primary motor cortex (M1) for both motor 

execution and imagery. This brain region is located in the dorsal portion of the frontal 

lobe. Its functional roles are planning and executing the motor actions. During motor task, 



41 
 

contralateral M1 demonstrates strong desynchronization (i.e., ERD) which indicates the 

reactivity of this region. Several studies in the literature stressed the activation of M1 

region but some of them were not (Dechent, Merboldt, and Frahm 2004). According to 

the Lotze et al., the major reason of such inconsistent results may be the relatively small 

amount of and shorter time of M1 regions than that of  during execution (Lotze and 

Halsband 2006). From the biophysical point of view, M1 region in separated into two 

distinct subregions. One of the subregions (dorsal part of M1) is closely related to the 

pure motor execution tasks, another one in close interaction with BA6 area of the brain 

which plays active role especially in complicated motor execution/imagery tasks. The 

type and complexity of imagery movements may be another reason of this inconsistent 

activation profile of M1. 

Another important brain region is cerebellum. This area is responsible for 

reciprocal information transform the internal (i.e., neural) image of the movement into 

actual physical conditions for execution/imagery. Neuroimaging studies demonstrated 

that the cerebellum and other important structures such as prefrontal cortex, premotor 

cortex, and basal ganglia show significant activation simultaneously. The anterior part of 

the cerebellum elicits significant activation during sensorimotor exploratory movement 

tasks, and it shows strong functional correlation with contralateral M1 region for 

facilitation. The other parts of cerebellum such as Purkinje cells, however, have inhibitory 

impact on contralateral motor cortex to prevent the efferent impulses reach to target 

muscles (Cengiz and Boran 2016). Movement/imagery related information is conveyed 

by corticopontino-cerebellar tract. This structural connection links cerebellum to the 

supplementary motor area (SMA) and premotor area (PMA) which means this connection 

carries vital motor imagery related to information (Wheaton et al. 2005). 

SMA and PMA are known as the most crucial brain areas for motor imagery tasks 

(Kasess et al. 2008). Studies that analyzes the neural correlates of motor imagery captured 

strong and consistent activation from these two brain regions (Q. Gao, Duan, and Chen 

2011; Hanakawa 2016). SMA is mainly responsible for processing the aspects of 

movement during preparation phase. In the literature, it is pointed that some parts of the 

SMA regions plays active role in selection of correct movement prior to the preparatory 

phase. Kasess et al. stated that functional connectivity between SMA and M1 may be due 

to the inhibition of M1 activity to avoid unwanted muscular movement during motor 

imagery (Kasess et al. 2008). Similarly, PMA region is one of the key brain regions for 

motor imagery tasks. It is stated in the literature that different motor imagery strategies 



42 
 

(kinesthetic / visual modalities) activate different portions of PMA. Also, it elicited 

significant activation during language production and movement observation. 

Superior parietal lobe (SPL), inferior parietal lobe (IPL) and precuneus also play 

key role in motor imagery tasks. They are responsible for processing spatial information 

of the movement execution/imagery. The processed spatial information of motor 

movement/imagery is transferred and stored into premotor cortex. SPL are functionally 

linked to posterior part of SMA and also premotor cortex. 

The dorsolateral prefrontal cortex and prefrontal cortex are of great importance in 

motor imagery tasks. They reciprocally interact and adjust the timing of the overt/covert 

movements (Petrides 1994). Rather than these brain regions, basal ganglia, anterior 

cingulate cortex, inferior frontal gyrus may play significant roles in motor imagery 

activity preparation. Please note that we aimed to provide general information and 

activation profiles of motor imagery-related brain regions. In the upcoming chapters, we 

will provide extra information about activated brain regions and compare the resulting 

brain regions with existing biophysical literature. 

2.3. Brain Connectivity Phenomenon 

There are two main types of connectivity appears in the brain. These are 

connectivity types are as follows: 

• Anatomical (structural) connectivity 

• Statistical connectivity 

A central paradigm in modern neuroscience points that the anatomical and statistical 

connections are adapted in a way for optimal information processing. As the result of this 

optimality, the brain regions are organized as spatially distributed and but functionally 

connected regions (Lang et al. 2012). 

In the previous chapter, we simply mentioned the notion of statistical connectivity 

and related studies. Anatomical connectivity refers to the physical connections between 

brain structures. It simply connects different neuronal tissues by fiber tracts. The bunch 

of many of those fiber tracts forms the white matter of the brain. As depicted in the 

previous chapter, the statistical connectivity is related to the instantaneous correlation of 
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electrical/hemodynamical activities of different brain regions (Fingelkurts, Fingelkurts, 

and Kähkönen 2005). The statistical connectivity can be divided into two categories as: 

• Functional Connectivity 

• Effective Connectivity 

Functional connectivity refers to the undirected temporal correlation between activities 

of brain regions. Effective connectivity describes the directed correlation of the activity 

of a brain region that exerts on another, which refers to the causal relationship between 

these brain activities. 

The statistical connectivity phenomenon accommodates the mechanism of 

coordination of interactions of brain activity emerged from different neuronal 

populations. In the recent past, however, statistical connectivity was understood as an 

elusive concept due to the fact that the perspectives and theories put forward by 

neuroscientist were enormously different. As time went on, these debates have arrived at 

a unique solution. The researchers realized that the major source of occurrence of 

statistical connectivity is the brain plasticity. Simply, brain plasticity is the term that 

describes the rewiring of the structure of the brain itself for adaptation, learning, and so 

forth (Costandi 2016). After a while, researchers understood that brain plasticity is too 

slow to explain the fast changes of statistical connectivity within the brain during 

cognitive and perceptual processes (Fingelkurts, Fingelkurts, and Kähkönen 2005). A 

detailed understand of brain operations has now become possible with the realization of 

exact meaning of the notion of statistical connectivity. It is therefore clarified that further 

understanding of the brain operations from correlated neural events rely on suitable 

mathematical methods. 

2.4. The Mathematical Expressions of the EEG Analysis Methods 

In this section, we give the mathematical expressions of each method that were 

used in this thesis. Note that, we provided the formulations of entropy as well as 

synchronization methods without introducing any timing parameter for the sake of 

simplicity. Note also that, we used these methods in upcoming chapters by introducing 

these parameters into these formulations. 
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2.4.1. Entropy Estimation 

The notion of entropy has been proved its effectiveness in EEG signal analysis 

studies. It is powerful information-theoretic method to quantify the brain functioning 

ranging from functional interactivity between brain regions to quantification of state of 

consciousness (Keshmiri 2020). Various type of entropy definitions has been proposed 

for brain research studies. We described these entropy methods and related studies in the 

previous chapter. 

In this thesis, we adopted quantifying differential entropy of EEG signals. The 

mathematical expression of differential entropy is given as 

𝐻(𝑋) = −∫ 𝑓𝑋(𝑥) log 𝑓𝑋(𝑥)  𝑑𝑥
+∞

∞

 (2.1) 

where 𝑓𝑋(𝑥) is the marginal probability density function (pdf). The equation given above 

says that, calculating the differential entropy requires probability density function of 

signal 𝑋. However, calculating the density function of the corresponding signal from its 

limited number of observations is not straightforward. In the literature, there two 

estimation methods, K-L (Kozachenko and Leonenko 1987) and Vasicek’s estimator 

(Vasicek 1976). Due to its computation speed and slightly better accuracy, we used 

Vasicek’s unbiased entropy estimation method to estimate the entropy of EEG signals. 

The mathematical expression of the Vasicek’s entropy estimator 𝐻̂(⋅)  is given as 

(Ibrahim Al-Omari 2014) 
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where 𝑁  is the total number of samples of 𝑋 , 𝑚  denotes the neighborhood used for 

entropy estimation, 𝜓(⋅)  denotes the digamma function, and 𝑋̃  denotes the sample-

ordered version of the signal 𝑋. Note that, we used the first neighborhood statistics (i.e., 

𝑚 = 1) when calculating the entropies. 

2.4.2. Synchronization Measures 

In this thesis, one of our major aim is to capture the timing parameters of the 

characteristic brain synchronization patterns. To that end, we used ten different 

synchronization metrics throughout this thesis to determine which synchronization 

measure is good at capturing biophysically relevant synchronization patterns as well as 

provides useful synchronization features for a satisfactory recognition performance. Note 

that each of these measures has its own advantages and disadvantages. Besides these 

measures, there are many different measures that was reviewed in the literature (André 

M. Bastos and Schoffelen 2016; H. E. Wang et al. 2014). We provided the mathematical 

expressions of each one of the individual synchronization metrics in detail below. Note 

that we treat the signals 𝑥 and 𝑦 as realizations of random variables 𝑋 and 𝑌.  
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2.4.2.1. Mutual Information 

The mutual information is a well-known synchronization measure that calculates 

the common statistical uncertainty shared between two signals 𝑋  and 𝑌 . The mutual 

information between signals can be expressed as 

𝑆𝑀𝐼(𝑋, 𝑌) = ∫ ∫ 𝑓𝑋𝑌(𝑥, 𝑦) log
𝑓𝑋𝑌(𝑥, 𝑦)

𝑓𝑋(𝑥) 𝑓𝑌(𝑦)
 𝑑𝑥 𝑑𝑦

∞

−∞

∞

−∞

 (2.3) 

where 𝑓𝑋(𝑥)  and 𝑓𝑌(𝑦)  are the respective first-order marginal probability density 

functions, and 𝑓𝑋𝑌(𝑥, 𝑦)  is the corresponding joint probability density function.  

However, obtaining the probability densities above from a limited number of samples is 

not straightforward. A common approach is to partition the samples into several bins and 

calculate histograms. Another well-known strategy is to use kernel-based density 

estimators (Hill 1985; Principe 2010). Yet, these methods need large sample sets to 

provide an accurate mutual information estimation. As an alternative approach, Kraskov 

et al. proposed a method based on neighborhood statistics of the data samples given by 

𝑆𝑘𝑟𝑎𝑠𝑘𝑜𝑣𝑀𝐼(𝑋, 𝑌) = 𝜓(𝑘) − 〈𝜓(𝑛𝑥 + 1) + 𝜓(𝑛𝑦 + 1)〉 + 𝜓(𝑁) (2.4) 

where 𝜓(∙)  is the derivative of gamma function (i.e. digamma function) (Kraskov, 

Stögbauer, and Grassberger 2004). The parameters 𝑛𝑥 ,  𝑛𝑦 denote the number of points 

whose distances are less than 𝜖(𝑖)/2 to points 𝑥𝑖 and 𝑦𝑖 respectively, while 𝜖(𝑖)/2 is the 

maximum of the Euclidean distance between 𝑥𝑖 and 𝑦𝑖 and their 𝑘𝑡ℎ neighbor, 𝑁 is the 

number of samples, and 〈∙〉 represent the calculation of average over 𝑖.  
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2.4.2.2. Cross-Correntropy 

Correntropy is a measure of similarity that calculates the similarity of two signals 

𝑋 and 𝑌 by utilizing both the probability and the time domain structures. (Santamaría, 

Pokharel, and Principe 2006; Liu, Pokharel, and Principe 2007; Principe 2010). The 

formulation of the cross-correntropy measure between the signals 𝑋 and 𝑌 is given in 

terms of their samples (𝑥𝑖, 𝑦𝑗) for 𝑖, 𝑗 = 1,2, . . , 𝑁 as 

𝑆𝑐𝑜𝑟𝑟𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑋, 𝑌) =
1

𝑁
∑𝜅𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(𝑥𝑖 , 𝑦𝑖)

𝑁

𝑖=1

 (2.5) 

where 𝑁 is the number of data samples and 𝜅𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(⋅,⋅) denotes the Laplacian kernel 

function. This kernel function can be defined as (M. Rao et al. 2011) 

𝜅(𝑥𝑖 , 𝑦𝑖) = exp(−|𝑥𝑖 − 𝑦𝑖|) (2.6) 

where exp(⋅) denotes the exponential function. 

2.4.2.3. Phase Locking Value 

The PLV method calculates the stability of the phase difference between two 

oscillations by averaging the instantaneous phases across trials (Lachaux et al. 1999; 

Varela et al. 2001; Lachaux et al. 2002; Aviyente et al. 2011). The instantaneous phases 

can be calculated via wavelet transform, Fourier transform, and Hilbert transform 

(Brunner et al. 2006). In this thesis, we calculated the instantaneous phases by taking the 

Hilbert transform of the signals. For the signal 𝑥, the Hilbert transform is calculated as 
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𝑥̃(𝑡) =
1

𝜋
 𝑃𝑉 ∫

𝑥(𝑡′)

𝑡 − 𝑡′
 𝑑𝑡′

∞

−∞

 (2.7) 

where PV indicates the Cauchy Principal Value. The instantaneous phase of the signal 

𝑥(𝑡) can then be calculated using 

𝜃𝑥(𝑡) = arctan
𝑥̃{(𝑡)

𝑥(𝑡)
 (2.8) 

In our analysis, we obtained the phase locking value between the EEG signals 𝑋 and 𝑌 as 

𝑆𝑃𝐿𝑉(𝑋, 𝑌) =
1

𝑁
|∑exp

𝑁

𝑖=1

{𝑗(𝜃𝑥𝑖 − 𝜃𝑦𝑖)}| (2.9) 

where 𝑁 is the common signal length and 𝜃𝑥𝑖 and 𝜃𝑦𝑖 represent the instantaneous phases 

of the corresponding signals (Daly, Nasuto, and Warwick 2012; Gonuguntla, Wang, and 

Veluvolu 2016; Brunner et al. 2006). The PLV equals 1 if the phase difference is 0, and 

the PLV attains 0 when the phase difference shows a random distribution across trials. 

2.4.2.4. Phase Coherence Value 

The phase coherence value between the signals 𝑋  and 𝑌  can be obtained by 

calculating the entropies of their instantaneous phase differences (Bakhshayesh et al. 

2019b; Tass et al. 1998; Ziqiang and Puthusserypady 2007). The phase coherence value 

can be calculated as 
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𝑆𝑃𝐶𝑉(𝑋, 𝑌) =
𝐻𝑚 − 𝐻̂(𝜃𝑥 − 𝜃𝑦)

𝐻𝑚
 (2.10) 

where 𝐻̂(⋅)  is the Vasicek’s entropy estimation function, 𝐻𝑚 = log(𝑁𝐹𝑠) , 𝐹𝑠  is the 

sampling frequency, 𝑁 is the common length of the used signals. Note also that, when the 

phase difference shows a regular behavior, PCV based synchronization between the 

signal segments approaches to 1, when phase difference shows a random behavior PCV 

decays to 0. 

2.4.2.5. Cosine-based Similarity 

The cosine-based similarity method simply calculates the angle of energy-

normalized correlation of two signals 𝑋 and 𝑌 and subtracts from 𝜋. The mathematical 

expression of cosine-based similarity is given as (Sargolzaei et al. 2015; Herff et al. 2019) 

𝑆𝑐𝑜𝑠𝑖𝑛𝑒(𝑋, 𝑌) = 𝜋 − arccos (
〈𝑥, 𝑦〉

‖𝑥‖‖𝑦‖
) (2.11) 

where 〈⋅,⋅〉  and ‖⋅‖  represent the inner product and the Euclidean norm operators, 

respectively. The maximum synchronization between signals occurs when the correlation 

angle between them is zero. For the signals 𝑧1(𝑡) and 𝑧2(𝑡), the dot product 〈𝑧1, 𝑧2〉 is 

calculated as 

〈𝑧1, 𝑧2〉 = ∫ 𝑧1(𝑡)𝑧2(𝑡)
∞

−∞

 𝑑𝑡 (2.12) 

providing an expression for the signal norm 
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‖𝑧‖ = √〈𝑧, 𝑧〉 (2.13) 

In the implementation, the discrete versions of the above expressions were used to suit 

the digitally recorded EEG data using sums instead of the integrals. 

2.4.2.6. Cross-Correlation 

The cross-correlation method measures the linear statistical dependency between 

two signals 𝑋 and 𝑌. The sample estimate of the cross-correlation can be calculated as 

𝑆𝑥𝑐𝑜𝑟𝑟(𝑋, 𝑌) =
1

𝑁
∑𝑥𝑖𝑦𝑖

𝑁

𝑖=1

 (2.14) 

The sign of the cross-correlation is an indicator of the direction of the correlation. Note, 

however, throughout this study, we take the absolute value of the resulting correlation 

value to find the activity-specific synchronization based on magnitude of the resulting 

correlation only. 

2.4.2.7. Linearized Mutual Information 

Although the Kraskov’s mutual information estimation methods achieved a 

notable success, calculation of mutual information via this method requires huge amount 

of computation time. A simplified approach is to assume that the signal segments are 

Gaussian distributed with zero mean and unity variance (Kraskov, Stögbauer, and 

Grassberger 2004; S. H. Jin, Lin, and Hallett 2010; Montalto, Faes, and Marinazzo 2014). 

In this case, the mutual information between the signals 𝑋 and 𝑌 can be calculated as 
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𝑆𝑙𝑖𝑛𝑒𝑎𝑟𝑀𝐼(𝑋, 𝑌) = −
1

2
log(1 − 𝜌𝑋𝑌

2 ) (2.15) 

where 𝜌𝑋𝑌  is denoted as the correlation coefficient between the signals 𝑋 and 𝑌. The 

correlation coefficient can be calculated as 

𝜌𝑋𝑌 =
cov(𝑋, 𝑌)

𝜎𝑋  𝜎𝑌
 (2.16) 

where cov(𝑋, 𝑌) is the function that calculates the covariance between 𝑋 and 𝑌 𝜎𝑋 is the 

standard deviation of 𝑋 . Note that, the linearized mutual information uncovers the 

second-order correlation statistics between 𝑋 and 𝑌. However, the mutual information 

estimation methods (i.e., Kraskov’s method) can consider higher order correlation 

statistics when calculating the synchronization. We tried linearized mutual information to 

observe if there is an advantage of assuming the Gaussianity for the distribution of the 

signals which is usually reasonable for the short-lasting quasi-stationary EEG activities 

(Lemm, Schäfer, and Curio 2004). Another reason for using linearized mutual 

information is its advantage in computational speed. 

2.4.2.8. Nonlinear Interdependency 

Consider the time series data of the signals 𝑋 and 𝑌 collected into phase space 

vectors  𝒙𝒊 = (𝑥𝑖 , 𝑥𝑖−𝑑 , … , 𝑥𝑖−(𝑚−1)𝑑)
𝑇

  and 𝒚𝒋 = (𝑦𝑗 , 𝑦𝑗−𝑑, … , 𝑦𝑗−(𝑚−1)𝑑)
𝑇

 where 𝑚 

and 𝑑 parameters represent the phase space dimension and the time delay defined in phase 

space, respectively, and 𝑥𝑖 and 𝑦𝑗 are the samples of the time series. Then, the average 

Euclidean distance between 𝑛𝑡ℎ  phase space vector of observation 𝑋  and its first 𝑘 

nearest neighbors is given as 
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𝑅𝑛
𝑘(𝑋) =

1

𝑘
∑‖𝒙𝒏 − 𝒙𝒓𝒏,𝒑‖

2
𝑘

𝑝=1

 (2.17) 

where 𝑟𝑛,𝑝 represents the indices of the nearest neighbors of 𝑛𝑡ℎ phase space vector of 

observation 𝑥𝑖. Likewise, the 𝑌-conditioned average Euclidean square distance to its 𝑘 

nearest neighbor of the vectors of observation 𝑋 is 

𝑅𝑛
𝑘(𝑋|𝑌) =

1

𝑘
∑‖𝒙𝒏 − 𝒙𝒔𝒏,𝒑‖

2
𝑘

𝑝=1

 (2.18) 

where 𝑠𝑛,𝑝 denotes the indices of the nearest phase space vectors of 𝑌. The nonlinear 

interdependence measure between the time series 𝑋  and 𝑌  (Arnhold et al. 1999) is 

defined as 

𝑆𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟𝐼𝑛𝑡(𝑋, 𝑌) =
1

𝑁
∑

𝑅𝑛
𝑘(𝑋)

𝑅𝑛
𝑘(𝑋|𝑌)

𝑁

𝑛=1

 (2.19) 

By construction, 𝑅𝑛
𝑘(𝑋|𝑌𝜏) ≥ 𝑅𝑛

𝑘(𝑋), so the result is between 0 and 1. The parameter 𝑁 

denotes the sample size. In this study, we selected 𝑘 as 10, dimension 𝑚 of phase space 

vectors as 6, and delay for phase space representation as 1 as initially suggested by Bandt 

and Pompe (C. Bandt and Pompe 2002; Román Baravalle, Rosso, and Montani 2018; 

Roman Baravalle, Rosso, and Montani 2018).  
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2.4.2.9. Wavelet Bi-Coherence 

The continuous wavelet transforms of the signals 𝑋 and 𝑌 can be calculated as 

(Mallat 2009) 

𝑊𝑥(𝑎, 𝑡) = ∫ 𝑥(𝑡)̅

∞

−∞

1

√𝑎
𝜙∗ (

𝑡̅ − 𝑡

𝑎
)  𝑑𝑡̅ (2.20) 

and 

𝑊𝑦(𝑎, 𝑡) = ∫ 𝑦(𝑡)̅

∞

−∞

1

√𝑎
𝜙∗ (

𝑡̅ − 𝑡

𝑎
)  𝑑𝑡̅ (2.21) 

where 𝜙(⋅) is the mother wavelet function of choice, 𝑎 and 𝑡 are the scale and translation 

parameters, respectively. In this thesis, we used complex-valued Morlet function as 

mother wavelet which is the most used wavelet function in biological signal analysis 

(Alexander E. Hramov et al. 2015; Makarov et al. 2018). The scale to frequency 

conversion can be done by using the formula (Emre Cek, Ozgoren, and Acar Savaci 2010) 

𝑓 =
𝐹𝑐  𝐹𝑠
𝑎

 (2.22) 

In the above equation 𝐹𝑐  denotes center frequency of the mother wavelet function, 𝐹𝑠 

represent the sampling frequency of the EEG signal. The real and imaginary part of the 

complex wavelet coefficients can be represented as 𝑊𝑥(𝑓, 𝑡) = 𝑚𝑥(𝑓, 𝑡) + 𝑖𝑛𝑥(𝑓, 𝑡) and 

𝑊𝑦(𝑓, 𝑡) = 𝑚𝑦(𝑓, 𝑡) + 𝑖𝑛𝑦(𝑓, 𝑡) . The real and imaginary part of the mutual wavelet 

spectrum 𝛾𝑋,𝑌 from their individual wavelet coefficients can be calculated as (Makarov 

et al. 2018; Alexander E. Hramov et al. 2015) 
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𝑅𝑒[𝛾𝑋,𝑌(𝑓, 𝑡)] =
𝑚𝑥(𝑓, 𝑡) 𝑚𝑦(𝑓, 𝑡) + 𝑛𝑥(𝑓, 𝑡) 𝑛𝑦(𝑓, 𝑡)

√𝑚𝑥
2(𝑓, 𝑡) + 𝑛𝑥2(𝑓, 𝑡)√𝑚𝑦

2(𝑓, 𝑡) + 𝑛𝑦2(𝑓, 𝑡)
 (2.23) 

and 

𝐼𝑚[𝛾𝑋,𝑌(𝑓, 𝑡)] =
𝑛𝑥(𝑓, 𝑡) 𝑚𝑦(𝑓, 𝑡) − 𝑛𝑦(𝑓, 𝑡) 𝑚𝑥(𝑓, 𝑡)

√𝑚𝑥
2(𝑓, 𝑡) + 𝑛𝑥2(𝑓, 𝑡)√𝑚𝑦

2(𝑓, 𝑡) + 𝑛𝑦2(𝑓, 𝑡)
 (2.24) 

The time average of the real and imaginary parts of the mutual wavelet spectrum is 

expressed as 

𝑅𝑒[𝛾𝑋,𝑌(𝑓)]𝑇𝐴 =
1

𝑁
∫𝑅𝑒[𝛾𝑋,𝑌(𝑓, 𝑡)]𝑑𝑡 (2.25) 

and 

𝐼𝑚[𝛾𝑋,𝑌(𝑓)]𝑇𝐴 =
1

𝑁
∫𝐼𝑚[𝛾𝑋,𝑌(𝑓, 𝑡)]𝑑𝑡 (2.26) 

The magnitude of the time-averaged wavelet spectrum can be calculated as 

𝛾𝑋,𝑌(𝑓) = √{𝑅𝑒[𝛾𝑋,𝑌(𝑓)]𝑇𝐴}
2

+ {𝐼𝑚[𝛾𝑋,𝑌(𝑓)]𝑇𝐴}
2

 (2.27) 

We then averaged the magnitude of the time-averaged mutual wavelet spectrum across 

the frequency tones and obtained the wavelet bi-coherence between the signals as 
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𝑆𝑊𝑎𝑣𝑒𝑙𝑒𝑡𝐵𝑖𝐶𝑜ℎ(𝑋, 𝑌) =
1

Δ𝑓
∫ 𝛾𝑋,𝑌(𝑓) 𝑑𝑓

𝑓𝑗

𝑓𝑖

 (2.28) 

where Δ𝑓 represents the length of the interval of frequency of interest. In this study, we 

took 𝑓𝑖 = 8 Hz and 𝑓𝑗 = 30 Hz. 

2.4.2.10. Kendall’s Tau Correlation 

Kendall’s tau correlation coefficient is a rank-based correlation method that 

simply uses the total number of pairs of the signs of the difference of signal samples with 

their successive ones for calculating the synchronization (M. G. Kendall 1946; M. 

Kendall 1938). The mathematical expression of Kendall’s tau correlation can be given as 

𝑆𝐾𝑒𝑛𝑑𝑎𝑙𝑙(𝑋, 𝑌) = |
2𝐾𝑋𝑌

𝑁(𝑁 − 1)
| (2.29) 

 where 𝐾𝑋𝑌  is the total number of signal samples that their difference with upcoming 

signal sample have similar signs, and 𝑁  is the total number of signal samples. The 

parameter 𝐾𝑋𝑌 can be calculated as 

𝐾𝑋𝑌 = ∑ ∑ sgn((𝑥𝑖 − 𝑥𝑗) ⋅ (𝑦𝑖 − 𝑦𝑗))

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 (2.30) 
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2.4.3. Autoregressive Modelling 

The autoregressive models are denoted as linear predictive models so that their 

observations are obtained by filtering the past samples of a stochastic processes. There 

are two types of AR processes, univariate, and multivariate AR. The generic formulation 

of a univariate AR process is expressed as 

𝑢(𝑛) = 𝑎1𝑢(𝑛 − 1) + 𝑎2𝑢(𝑛 − 2) + ⋯+ 𝑎𝑀𝑢(𝑛 −𝑀) + 𝑣(𝑛) (2.31) 

where 𝑎1, 𝑎2, … , 𝑎𝑀  are the AR model coefficients, 𝑣(𝑛)  is the residual term (i.e. 

sometimes referred to as error or innovation term) which is generally accepted as 

normally distributed (Haykin and Widrow 2005; Haykin 2001). The current value of the 

signal 𝑢(𝑛) is obtained by summing the linear combinations of the past samples of 𝑢(𝑛) 

(i.e., 𝑢(𝑛 − 1), 𝑢(𝑛 − 2),…𝑢(𝑛 −𝑀)). The AR model parameters can be estimated by 

adopting the methods of least squares, Yule-Walker, Burg, maximum likelihood 

estimation, modified covariance method (Kuruoǧlu 2002; Golub and Saunders 1970; 

Subasi 2007). In this thesis, we used the methods of least squares to estimate the model 

parameters (Kuruoǧlu 2002; Billinger, Brunner, and Müller-Putz 2013). The initial point 

of methods of least squares for estimating the model coefficients is minimization of the 

mean squared error 

𝐸{|𝑣(𝑛)|2} = 𝐸{|𝑢(𝑛) − 𝑢̂(𝑛)|2} (2.32) 

where 𝑢̂(𝑛) = ∑ 𝑎𝑘𝑢(𝑛 − 𝑘)
𝑀
𝑘=1 . The term 𝑣(𝑛) = 𝑢(𝑛) − 𝑢̂(𝑛)  can be written in 

matrix-vector form as  
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𝑣(𝑛) = [

𝑢(𝑀 + 1)

𝑢(𝑀 + 2)
⋮

𝑢(𝑁)

] − [

𝑢(𝑀)

𝑢(𝑀 + 1)
𝑢(𝑀 − 1)

𝑢(𝑀)
⋯ 𝑢(1)

⋯ 𝑢(2)
⋮ ⋮ ⋮ ⋮

𝑢(𝑁 − 1) 𝑢(𝑁 − 2) ⋯ 𝑢(𝑁 −𝑀 + 1)

] [

𝑎1
𝑎2
⋮
𝑎𝑀

] (2.33) 

The first and second terms of the right-side of the above equality can be represented as 𝒖 

and 𝑼𝒂, respectively. The minimization of the error term ‖𝒖 − 𝑼𝒂‖2 can be obtained by 

𝒂 = −(𝑼𝑻𝑼)−𝟏𝑼𝑻𝒖 (2.34) 

where the bold symbols represent the matrices and the vectors, the exponent symbol 𝑇 

represents transpose operation. 

Similarly, we used the formulation for estimating the coefficients of the 

multivariate AR model in (Gürkan, Akan, and Seyhan 2014). Assume that for an M-

channel EEG system the multivariate AR model is expressed as 

𝑈(𝑛) = 𝐴1𝑈(𝑛 − 1) + 𝐴2𝑈(𝑛 − 2) + ⋯+ 𝐴𝑝𝑈(𝑛 − 𝑝) (2.35) 

where 𝑈(𝑛) = [

𝑢1(𝑛)

𝑢2(𝑛)
⋮

𝑢𝑀(𝑛)

] and 𝐴𝑘 = [
𝑎11(𝑘) … 𝑎1𝑀(𝑘)
⋮ ⋱ ⋮

𝑎𝑀1(𝑘) … 𝑎𝑀𝑀(𝑘)
]. For the first term of 𝑈(𝑛), 

we can easily write the autoregressive model as 

𝑢1(𝑛) = 𝐴1(1, : )𝑈(𝑛 − 1) + 𝐴2(1, : )𝑈(𝑛 − 2) + ⋯+ 𝐴𝑝(1, : )𝑈(𝑛 − 𝑝) (2.36) 

We can reorganize the Eq.(2.36) in a matrix form as 
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𝑢1(𝑛) = [𝑈
𝑇(𝑛 − 1) 𝑈𝑇(𝑛 − 2) ⋯ 𝑈𝑇(𝑛 − 𝑝)]

[
 
 
 
𝐴1
𝑇(1, : )

𝐴2
𝑇(1, : )
⋮

𝐴𝑀
𝑇 (1, : )]

 
 
 
 (2.37) 

For 𝑛 = 𝑝 + 1,… ,𝑁, we write equations in matrix form as 

[

𝑢1(𝑝 + 1)

𝑢1(𝑝 + 2)
⋮

𝑢1(𝑁)

]

⏟        
𝒃

=

[
 
 
 
𝑈𝑇(𝑝) 𝑈𝑇(𝑝 − 1) ⋯ 𝑈𝑇(1)

𝑈𝑇(𝑝 + 1) 𝑈𝑇(𝑝) ⋯ 𝑈𝑇(2)
⋮

𝑈𝑇(𝑁 − 1)
⋮

𝑈𝑇(𝑁 − 2)
⋱
⋯

⋮
𝑈𝑇(𝑁 − 𝑝)]

 
 
 

⏟                            

 

[
 
 
 
𝐴1
𝑇(1, : )

𝐴2
𝑇(1, : )
⋮

𝐴𝑀
𝑇 (1, : )]

 
 
 

⏟      
𝑨𝟏

𝑼

 
(2.38) 

For the first channel (i.e., 𝑢1(𝑛)) the corresponding multivariate AR coefficients can be 

calculated by using methods of least squares as in univariate case. The solution can be 

obtained as 

𝑨𝟏 = (𝑼𝑻𝑼)
−𝟏
𝑼𝑻𝒃 (2.39) 

This procedure should be repeated for each channel to find the remaining AR coefficients 

(i.e., 𝐴2, 𝐴3, … , 𝐴𝑀). 

The optimum model order identification is critical for AR-based studies. Up to 

now, several model order identification approaches have been proposed. These 

approaches are Recursive Jump Markov Chain Monte Carlo (RJMCMC) (Karakus, 

Kuruoglu, and Altinkaya 2015; Troughton and Godsill 1998), Akaike Information 

Criterion (Akaike 1969), Bayesian Information Criterion (Mariani, Giorgetti, and Chiani 

2015), information complexity (Aşikgil 2011), Minimum Description Length (Haykin 

2001). These approaches, in general, selects the model order which minimizes a priori 

defined cost function (especially prediction error power). For the BCI frameworks, 

however, a fixed and relatively long model order is selected for each task period since 

each training task period requires a largely different model order. (Übeyli 2010; 

Anderson, Stolz, and Shamsunder 1998). Although this approach is mainly falls at odds 
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with the minimum prediction error principle as adopted in other types of EEG signal 

processing approaches (Subasi 2007), the most crucial thing for the BCI frameworks 

discussed by McFarland et al. is that the minimum error criterion is proved to be 

something different than the classification/recognition performance (McFarland and 

Wolpaw 2008). 

2.4.4. Common Spatial Patterns 

CSP is an effective supervised data-driven method and it plays a crucial role in 

motor imagery (MI) signal processing (Blankertz et al. 2008). The CSP calculates spatial 

filters for the multi-channel dataset that optimizes the variances of the signals for an 

efficient task discrimination (Ramoser, Müller-Gerking, and Pfurtscheller 2000; 

Dornhege et al. 2004). It is demonstrated that CSP filtering provides better discrimination 

capacity than Laplacian, common average referencing (CAR) and bipolar derivations 

(Blankertz et al. 2008). 

Suppose that the task periods in the filtered 𝑀-channel EEG data 

𝒙[𝑛] = [

𝑥1[𝑛]

𝑥2[𝑛]
⋮

𝑥𝑀[𝑛]

] (2.40) 

are collected into 𝑚 × 𝑛 data matrices 𝑋𝑖, where 𝑚 denotes number of channels and 𝑛 

denotes the time samples that are collected for each task period. Given the index pair 

(𝑛𝑖
𝑏 , 𝑛𝑖

𝑒) that denote the beginning and ending time samples of the 𝑖𝑡ℎ task period, the 

data matrices 𝑋𝑖 are constructed using 

𝑋𝑖 = [𝒙[𝑛𝑖
𝑏] 𝒙[𝑛𝑖

𝑏 + 1]…  𝒙[𝑛𝑖
𝑒]] (2.41) 
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In addition, let the motor imagery activity type associated with each task indexed by 𝑖 is 

represented by the labels 𝑌𝑖 ∈ {1,2}  for the two activity types, respectively. The 

methodology for CSP first calculates the covariance matrices Σ1  and Σ2  for the two 

activities using 

Σ1 =
1

ℓ1
∑𝑋𝑖𝑋𝑖

𝑇

𝑖∈𝐼1

 (2.42) 

and 

Σ2 =
1

ℓ2
∑𝑋𝑖𝑋𝑖

𝑇

𝑖∈𝐼2

 (2.43) 

where 𝐼1 = {𝑖|𝑌𝑖 = 1}  and 𝐼2 = {𝑖|𝑌𝑖 = 2}  with ℓ1 = |𝐼1|  and ℓ2 = |𝐼2|  denoting the 

number of activity periods associated with the two activity types, respectively. The spatial 

filters are then calculated by solving the generalized eigenvalue problem in terms of 

eigenvectors 𝑤𝑗 and eigenvalues 𝜆𝑗 for which the equality 

Σ1𝑤𝑗 = 𝜆𝑗Σ2𝑤𝑗 (2.44) 

is satisfied, for 𝑗 = 1,2, … ,𝑀. Finally, CSP selects the eigenvectors 𝑤𝑗 with the largest 

and the smallest 𝜆𝑗 that characterize the latent channels over which the ratio of average 

energies is maximized and minimized, respectively, across the task periods of the two 

activity types. Note that the latent channels corresponding to a weighted linear 

combination sum of existing electroencephalography channels with weights determined 

by the coefficients of selected eigenvectors. Note also that by convention, a typical CSP 

uses the three maximal eigenvalue channels along with three minimal eigenvalue 

channels to characterize the discriminative electroencephalography profiles associated 

with the two activity types (i.e. 𝑚 = 3 ) (Blankertz et al. 2008). Adopting same 
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convention, we have collected the six eigenvectors associated with the top and bottom 

three eigenvalues into a matrix 𝑊 and calculated the latent channel signals 𝒙̃[𝑛] using 

𝒙̃[𝑛] = 𝑊𝑇𝒙[𝑛] (2.45) 

for all task periods 𝑖. 

Please note that besides the two class discrimination, there are several multiclass 

extension approaches of CSP method have been proposed in the literature (Grosse-

Wentrup and Buss 2008; W. Wei, Xiaorong, and Shangkai 2005). 

2.5. The Classification Methods 

There are many classification methods that have been used to evaluate the 

performance of the extracted features via brain activity characterization methods. Among 

them, there are three outperforming classification methods named as, Fisher’s linear 

discriminant, linear support vector machines and nonlinear support vector machines. We 

used these classifiers in this thesis to evaluate the performance of the proposed brain 

activity characterization methods. In below, we give brief information about these 

classification methods. 

2.5.1. Fisher’s Linear Discriminant (FLD) 

The Fisher’s linear discriminant classifier is known as simple linear classifier that 

utilizes the covariance information of the feature vectors. For this classification method, 

the idea is to find a projection vector that maximizes the differences of the mean values 

of samples of different classes,  at the same time minimizes sum of within class variances 

of the projected samples. This can be expressed in mathematical manner as (Fisher 1936) 



62 
 

𝐽(𝑣) =
|𝜇1 − 𝜇2|

2

𝑠̃1
2 + 𝑠̃2

2  (2.46) 

where 𝐽(⋅) denotes the cost function to be maximized, 𝜇1, 𝜇2 and 𝑠̃1
2, 𝑠̃2

2 are the mean and 

scatter values of the projected samples (i.e., 𝑣𝑇𝑥𝑖) that are belong to class-1 and class-2, 

respectively (please see Figure 9). By using several mathematical operations, we can 

express the cost function as (Duda and Hart 2000) 

𝐽(𝑣) =
𝑣𝑇𝑆𝐵𝑣

𝑣𝑇𝑆𝑊𝑣
 (2.47) 

 

Figure 9. The illustration of the projection vector for a FLD classifier. The parameters 𝜇1 

and 𝜇2 represents the projected mean values of the samples belongs to class-1 

and class-2. 

where 𝑣  is the projection vector, 𝑆𝐵  and 𝑆𝑊  are the between and within class scatter 

matrices, respectively. From this equation, we can obtain the weight vector 𝑣 by solving 

a generalized eigenvalue problem as 
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𝑣 = (S1 + S2)
−1(𝜇1 − 𝜇2) (2.48) 

where  𝑆1 , 𝑆2  denote scatter matrices and 𝜇1 , 𝜇2  denote mean vectors of the samples 

belongs to class-1 and class-2, respectively. The functional form of FLD classifier is then 

expressed as 

𝑓(𝑥) = sgn(𝑣𝑇𝑥 + 𝑣0) (2.49) 

where the parameter 𝑣0 is the bias parameter that minimizes the classification error on 

the training set. 

2.5.2. Support Vector Machines (SVM) 

There are many linear classifications method type can be used in any pattern 

recognition problem. Each linear classifier generates a hyperplane (or a threshold value) 

to discriminate the samples into classes. Among the linear classifiers, linear support 

vector machine classifier maximizes the margin (distance between hyperplane and nearest 

samples). This linear machine can be termed as optimal separating hyperplane. The 

optimum separating hyperplane is so that it classifies the samples correctly and the 

distance to the nearest sample for each category is maximal (please see Figure 10). The 

optimum separating hyperplane can mathematically be expressed as (Vapnik 2000) 

min
𝑖
|〈𝑣, 𝑥𝑖〉 + 𝑏| = 1 (2.50) 

where 𝑣  denotes the separating hyperplane and b denotes the bias term which is be 

calculated in training vectors so that training error of the support vector classification is 

minimal. 
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The optimum separating hyperplane can be obtained via optimization techniques 

based on the premise that the norm of weight vector 𝑣 should be equal to the inverse of 

the distance of the nearest point in training data to the hyperplane. We can obtain the 

corresponding weight vector using the mathematical formula of the distance between 

margins and nearest samples 

𝜌(𝑣, 𝑏) = min
𝑥𝑖:𝑦𝑖=−1

𝑑(𝑣, 𝑏; 𝑥𝑖) + min
𝑥𝑖:𝑦𝑖=+1

𝑑(𝑣, 𝑏; 𝑥𝑖) 

= min
𝑥𝑖:𝑦𝑖=−1

|〈𝑣, 𝑥𝑖〉 + 𝑏|

‖𝑤‖
+ min
𝑥𝑖:𝑦𝑖=+1

|〈𝑣, 𝑥𝑖〉 + 𝑏|

‖𝑤‖
 

=
1

‖𝑤‖
( min
𝑥𝑖:𝑦𝑖=−1

|〈𝑣, 𝑥𝑖〉 + 𝑏| + min
𝑥𝑖:𝑦𝑖=+1

|〈𝑣, 𝑥𝑖〉 + 𝑏|) 

=
2

‖𝑤‖
 

(2.51) 

Finally, the optimally separating hyperplane can be obtained by adopting a minimization 

of the function 

Φ(𝑤) =
1

2
‖𝑤‖2 (2.52) 

The weight vector and bias term can be obtained via methods of Lagrange multipliers 

(Haykin 1995; Duda and Hart 2000). Thus, the hard classification function can be 

expressed as 

𝑓(𝑥) = sgn(〈𝑣∗, 𝑥〉 + 𝑏∗) (2.53) 

where terms 𝑣∗ and 𝑏∗ are optimum weight vector and bias for optimum classification. 

However, many real-world classification problems are linearly non-separable 

problems (Özbek 2009; F. Lotte et al. 2007). In such cases, to minimize the classification 

error, a generalization may be beneficial for linear classifier formulated above. The 
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generalization to the linear SVM formulation can be done by introducing slack variables. 

The mathematical expression for obtaining the optimum separating hyperplane after 

introducing the slack variables is then becomes 

Φ(𝑣, 𝜉) =
1

2
‖𝑣‖2 + 𝐶∑𝜁𝑖

𝑛

𝑖=1

  (2.54) 

where 𝐶 is known as the regularization parameter and 𝜁𝑖 is the slack variable introduced 

for generalization of the hard linear classifier detailed above. 

Alternatively, for a linearly non-separable classification problem, kernel functions 

can be adopted. Simply, kernel functions are used to map input pattern vectors into a 

higher dimensional feature space where a linear separation can be achieved (see Figure 

11). A kernel function 𝜅(⋅,⋅) selected for this nonlinear mapping is simply a dot product 

operator in feature space which can be expressed as 

𝜅(𝑥, 𝑦) = 〈𝜙(𝑥), 𝜙(𝑦)〉 (2.55) 

where 𝜙(⋅) is the mapping operator. The classification function can be expressed as 

𝑓(𝑥) = sgn (∑ 𝛼𝑖
𝑖∈𝑆𝑉

𝜅(𝑥, 𝑥𝑖) + 𝑏) (2.56) 

where 𝑆𝑉 represents support vectors. The most used kernels and their functional forms 

are presented in Table 3. In this thesis, for nonlinear classification, we used radial basis 

function kernel to evaluate the performance of synchronization and entropy based 

features extracted for brain activity characterization purposes. We calculated the kernel 

parameter 𝛾 as 
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𝛾 = √
1

𝐿(𝐿 − 1)
∑ ∑ ‖𝜉𝑖 − 𝜉𝑗‖

2
𝐿

𝑗=𝑖+1

𝐿−1

𝑖=1

 (2.57) 

where L is number of training feature vectors which are represented by 𝜉. 

 

Figure 10. The illustration of importance of choosing optimal separating hyperplane. The 

thickest separating plane should be chosen as optimal hyperplane for 

minimizing the misclassification risk. 

Table 3. Summary of kernels (Haykin 1995) 

Type of Kernel Functional Form Some Comments 

Polynomial (𝑥𝑇𝑥 + 1)𝑝 
Power 𝑝 must be determined 

a priori 

Radial-basis function exp(−𝛾 ‖𝑥 − 𝑦‖2) 
Kernel parameter 𝛾 should be 

specified a priori 

Hyperbolic tanh(𝛽0𝑥
𝑇𝑥 + 𝛽1) 

Mercer’s theorem satisfies 

only for some 𝛽0 and 𝛽1 
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Figure 11. Mapping input space into a high dimensional feature space via kernel methods. 

2.6. Feature Ranking/Selection Method 

We used feature ranking to quantify and select the most informative features to 

reduce the dimension before the classification. In the literature, various feature 

ranking/selection methods can be (Malan and Sharma 2019; Yijun Sun 2007; Kira and 

Rendell 1992; Ang et al. 2012; Gosset 1908; Pudil, Novovičová, and Kittler 1994). We 

adopted Fisher’s ratio method for quantifying the discrimination power of each extracted 

feature (Duda and Hart 2000; Fisher 1936). Simply, Fisher’s ratio calculates separability 

power of each feature indexed by 𝛼 by using its mean and standard deviation values for 

different classes. The mathematical expression of calculation of Fisher’s ratio can be 

given as 

𝐹(𝛼) =
|𝜇𝛼,𝐴1 − 𝜇𝛼,𝐴2|

𝜎𝛼,𝐴1 + 𝜎𝛼,𝐴2
 (2.58) 

where 𝜇𝛼,𝐴1 , 𝜇𝛼,𝐴2  are the mean and 𝜎𝛼,𝐴1 , 𝜎𝛼,𝐴2  values denote the mean and standard 

deviations calculated for the classes 𝐴1  and 𝐴2 . As for the feature selection, we first 
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calculated each features Fisher ratio by using the training vectors, then we selected the 

features that has higher Fisher ratio than mean plus two times standard deviation of Fisher 

ratio values calculated for all features. 

2.7. The Datasets Used in this Thesis 

In this study, comparative performance evaluations were carried out on two 

different motor imagery datasets, BCI Competition-III Ⅳa and PhysioNet Motor 

Movement/Imagery Dataset. The former dataset comprises EEG recordings of 5 subjects 

as they perform 140 right hand and 140 right foot imagery activity in a randomized order 

(Blankertz et al. 2006). This dataset was collected using 118 electrodes according to 

extended international 10/20 system at a sampling frequency of 1000 Hz (Dornhege et al. 

2004). During each trial, subjects performed the imagery activities approximately for 3.5 

seconds. Note that we used the 100 Hz down-sampled version of this dataset which is 

also available online on the competition website. 

The latter dataset comprises EEG signals of 109 subjects recorded under real and 

imaginary motor tasks (Goldberger et al. 2000). EEG signals were collected via a 

BCI2000 system with 160 Hz sampling frequency (Schalk et al. 2004). The recording 

system was international 10/10 system with 64 electrodes. The electrode montages used 

for the collection of the corresponding dataset is presented in Figure 12. 
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Figure 12. The illustration of the 10/10 electrode montage with 64 electrodes used for 

collecting the EEG signals (PhysioNet Motor Movement/Imagery dataset). 

 For each subject, the experiment was composed of 14 separate sessions, beginning with 

two eyes open/eyes closed sessions. The progression of the remaining 12 sessions is given 

in Table 4. Note that each task period lasted about 4.1 seconds, followed by a rest period 

with a duration of 4.2 seconds. We illustrated the sequence of task and rest periods for a 

session in Figure 13.  
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Table 4. Content of remaining 12 sessions with real/imagery task 

Task Name 
Real Motor  

Activity Sessions 

Imaginary Motor  

Activity Sessions 

Right/Left Fist 3, 7, 11 4, 8, 12 

Both Fist/Both Feet 5, 9, 13 6, 10, 14 

 

Figure 13. Illustration of timing diagram of a session with rest and task periods 

(PhysioNet Dataset). 

Each session contains a total of 30 mixed blocks of task and rest periods. Please note that, 

we evaluated the performance of the proposed activity recognition frameworks using the 

EEG recordings of right fist versus left fist motor imagery task sessions of the first 20 

subjects in the dataset throughout this thesis. 

As a preprocessing step, for both datasets, we re-referenced the signals to the 

common average to reduce the effect of volume conduction (Olejarczyk et al. 2017; 

Fabien Lotte 2008; McFarland et al. 1997). The mathematical formulation of the common 

average referencing (CAR) is expressed as 
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𝑠𝑖(𝑡) = 𝑠𝑖(𝑡) −
1

𝑀
∑𝑠𝑗(𝑡)

𝑀

𝑗=1

 (2.59) 

 where 𝑠𝑖(𝑡) represents the EEG signal recording at 𝑖𝑡ℎ channel, 𝑀 represents the total 

number of channels used for collecting EEG signals, and 𝑡 denotes the time. Basically, 

CAR filter enhances the signal-to-noise ratio of the channels by removing the noises 

common to all EEG channels. It transforms EEG signal distributions into a zero-mean 

scalp voltage distribution. Thereafter, to avoid the phase distortion, we used a finite-

impulse response (FIR) band-pass filter with a passband of 8-30 Hz to filter the signals 

into SMR related frequency band (see Figure 14) (Fabien Lotte 2008; Jian, Chen, and 

McFarland 2017). Finally, by using the task initiation indices given in these datasets, we 

extracted the task periods of the EEG signals with the corresponding task label indicating 

the type of motor imagery activity. 
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Figure 14. Illustration of the original EEG signals and the filtered EEG signals of a subject 

during right-hand motor imagery activity (BCI Competition-Ⅲ dataset Ⅳa).  
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CHAPTER 3 

TIME-LAGGED SYNCHRONIZATION BETWEEN EEG 

CHANNELS FOR COGNITIVE TASK RECOGNITION 

May be the human brain is an object beyond the reach of metaphor, 

for the simple reason that is the only object capable of creating metaphors to describe itself… 

-Luke Dittrich- 

3.1. Introduction 

In this chapter, we propose a novel approach for cognitive task recognition that 

captures and uses the activity-specific inter-channel synchronization timings between 

distant brain regions. As timing parameter, we used only the time lag (𝜏). Basically, our 

approach proposed in here is based on the premise that during a particular cognitive tasks, 

selective interactions between distant brain regions arise at a time lag profile that is 

specific to and characteristic of the task at hand (Chen, Guanrong and Dong 1998; 

Shahverdiev, Sivaprakasam, and Shore 2002; O. Sporns, Tononi, and Edelman 2000; 

Wibral et al. 2011; Pampu et al. 2013). 

In the literature, several studies exploit the time lag as the only parameter of timing 

organization of maximal information transfer in detecting functional impairment in the 

analysis of brain activity via information theoretic methods (Jeong, Gore, and Peterson 

2001; Na et al. 2002). In addition, time lag between EEG channels has been used to 

identify the epileptic foci (Gotman 1983; Ktonas and Mallart 1991). Similarly, Bandt et 

al. showed that the epilepsy disorder significantly alter the physiological lag organization 

among the brain regions (S. K. Bandt et al. 2019). Van Bergen estimated and analyzed 

the time lag by calculating the mutual information between EEG signals for brain activity 

characterization (Bergen 1986). Boeijinga and Lopez da Silva estimated lag between EEG 

channels to identify the propagation direction of beta activity in the cat brain (Boeijinga 

and Lopes da Silva 1989). Adhikari et. al. evaluated a study on mice and discovered 

consistent time lag organization by applying a cross-correlation analysis to envelope of 
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instantaneous amplitudes of local field potentials recorded from medial prefrontal cortex 

and ventral hippocampus during awake state (A. Adhikari et al. 2010). Mijalkov et al. 

studied delayed correlations between distant brain regions to identify the exact structural 

connections (Mijalkov, Pereira, and Volpe 2020). Authors in this study demonstrated that 

the functional synchronizations of distant brain regions are dependent on the sequential 

activations as well as the activation degree of individual brain regions which can be 

detected by delayed correlations of the brain regions. 

All these studies given above stress that there is an inherent time lag organization 

in the synchronization of distinct areas of the brain during particular cognitive states due 

to the activation sequence of individual brain regions. If that is the case, brain synchrony 

between different regions that arise in accordance with cognitive or motor tasks may go 

undetected by an approach that does not consider the inherent time lag. Indeed, it is highly 

possible that the conspicuous lack of synchrony-based task recognition studies is due to 

the inability of establishing the synchrony using methods that disregard this time lag. So 

as the initial step, we addressed this issue by carrying out a comparative evaluation of 

well-known synchronization measures to assess activity specific time lag organization 

between EEG channels in a motor imagery activity recognition scenario. Note that the 

approach adopted in this chapter can also be easily adapted to analyze other types of 

cognitive tasks/states. 

The remainder of this chapter is organized as follows: In the Section 3.2, the 

properties of the EEG datasets used in this study are described, accompanied by an 

operational pipeline of the proposed method. Next, the definitions and formulations of 

coherence measures are provided. In Section 3.3, the classification and the novel cross 

validation schemes are summarized, and performance results obtained via the proposed 

method are presented. In Section 3.4, we elaborate on the merits and drawbacks of the 

approach and the obtained results in comparison with a benchmark method. 

3.2. Proposed Method 

In this section, we first describe the operational pipeline of the proposed method 

is given, along with the calculation of the activity specific time lag and construction of 
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training and test feature vectors generated from both training and test datasets. Finally, 

the definitions and formulations of the applied synchronization measures are presented. 

3.2.1. Synchronization Metrics Used for Capturing Lagged Brain 

Synchronization 

We estimated the time lag between the brain regions by capturing the time lag at 

which the maximum synchronization occurs as adopted in (Govindan et al. 2005). The 

lagged synchronization between EEG channels was calculated using six different 

methods that are listed as: 

• Cross-correntropy (I. Park and Príncipe 2008; Principe 2010; Santamaría, 

Pokharel, and Principe 2006) 

• Mutual information (Altermann and Kuhn 1994; Kraskov, Stögbauer, and 

Grassberger 2004) 

• Phase locking value (Lachaux et al. 1999) 

• Cross-correlation (Stoica 1997) 

• Nonlinear interdependency (Arnhold et al. 1999) 

• Cosine-based similarity (Sargolzaei et al. 2015; Herff et al. 2019) (B. Orkan 

Olcay and Karaçalı 2019). 

It is important to note that, by using different time lags 𝜏 ranging from −125 𝑚𝑠 to 

125 𝑚𝑠 (B. Orkan Olcay and Karaçalı 2019), we calculated the synchronization value 

between the signals that falls into the time window illustrated with dashed lines in Figure 

15. In the proposed method section, we represent the discretized and delayed signal 𝑠𝑗−𝑓𝑠𝜏 

as 𝑠𝑗
𝜏. In here, 𝜏 represents the time lag, an integer multiple of 1 𝑓𝑠

⁄  in milliseconds, and 

𝑓𝑠 denotes the sampling frequency in Hertz. In Figure 16, we presented an exemplary 

illustration of the evolution of average synchronization between C3-C4 channels during 

left fist imagery activity on EEG signals of three sessions of subject S001 in the PhysioNet 

dataset for varying time lags according to the synchronization measures listed above. 
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Figure 15. The signal segments in the yellow and green time windows were used in the 

calculation of inter-channel synchrony for 𝜏 < 0, 𝜏 = 0 and 𝜏 > 0.  
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Figure 16. The time lag versus average synchronization value of all six methods included 

in this study for the C3-C4 channel pair of subject S001 (exemplary 

demonstration from left fist imagination-PhysioNet Dataset). 

 

Figure 17. Flow diagram of the proposed framework (𝜏-based method). 

3.2.2. The Recognition Framework 

The operational flow diagram of the proposed brain activity recognition 

framework is given in Figure 17. The details of both training and test phases are described 
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below. In the training phase of the proposed framework, we calculated the 

synchronization values between EEG signals between each channel pair for different time 

lags 𝜏 running from −125𝑚𝑠 to 125𝑚𝑠 in the Synchronization Calculation block, for 

the training task periods of each type of imagery activity (B. Orkan Olcay and Karaçalı 

2019; Gotman 1983). Then, in the 𝜏𝑜𝑝𝑡 block, for each type of imagery activity (say 𝐴1 

and 𝐴2), the optimum time lags 𝜏𝑖,𝑗
𝐴1 and 𝜏𝑖,𝑗

𝐴2 that maximize the average synchronization 

value between channels 𝑖  and 𝑗  are determined as the activity-specific time lag. We 

calculate the inter-channel activity-specific time lags 𝜏𝑖,𝑗
𝐴1 and 𝜏𝑖,𝑗

𝐴2 for each channel pair 

(𝑖, 𝑗) and each type of imagery task using 

𝜏𝑖,𝑗
𝐴1 = argmax

𝜏
(
1

𝑁𝐴1
∑ 𝑆(𝑠𝑖,𝑘, 𝑠𝑗,𝑘

𝜏 )

𝑘∈𝐼𝐴1

) (3.1) 

and 

𝜏𝑖,𝑗
𝐴2 = argmax

𝜏
(
1

𝑁𝐴2
∑ 𝑆(𝑠𝑖,ℓ, 𝑠𝑗,ℓ

𝜏 )

ℓ∈𝐼𝐴2

) (3.2) 

where 𝑘  and ℓ  are the indices of the period, 𝐼𝐴1  and 𝐼𝐴2  represent the indices of the 

respective imagery task periods in the training set, and 𝑁𝐴1  and 𝑁𝐴2  denote the 

corresponding number of periods. Furthermore, 𝑠𝑖,𝑘  is the EEG signal from the 𝑖𝑡ℎ 

channel of the 𝑘𝑡ℎ imagery activity period. Note that we used training task periods for 

calculating the activity-specific inter-channel time lags. Note also that argmax
𝜌
𝑞(𝜌) 

returns value 𝜌∗ over which the function 𝑞(∙) is maximized. Finally, 𝑆(𝑠𝑖, 𝑠𝑗) denotes the 

synchronization measure of choice that measures the interrelation between the signals 𝑠𝑖 

and 𝑠𝑗. Then, in the Classifier Training for FLD block, for the subsequent recognition of 

each imagery activity period 𝑘 in the training dataset, the feature vector 𝜉𝑘 that contains 
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synchronization values between EEG signals were constructed at time delays 𝜏𝑖,𝑗
𝐴1 and 𝜏𝑖,𝑗

𝐴2 

as 

𝜉𝑘 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑆 (𝑠1,𝑘, 𝑠2,𝑘

𝜏1,2
𝐴1

)

𝑆 (𝑠1,𝑘, 𝑠3,𝑘
𝜏1,3
𝐴1

)

⋮

𝑆 (𝑠𝑀−2,𝑘, 𝑠𝑀,𝑘
𝜏𝑀−2,𝑀
𝐴1

)

𝑆 (𝑠𝑀−1,𝑘, 𝑠𝑀,𝑘
𝜏𝑀−1,𝑀
𝐴1

)

𝑆 (𝑠1,𝑘, 𝑠2,𝑘
𝜏1,2
𝐴2

)

𝑆 (𝑠1,𝑘, 𝑠3,𝑘
𝜏1,3
𝐴2

)

⋮

𝑆 (𝑠𝑀−2,𝑘, 𝑠𝑀,𝑘
𝜏𝑀−2,𝑀
𝐴2

)

𝑆 (𝑠𝑀−1,𝑘, 𝑠𝑀,𝑘
𝜏𝑀−1,𝑀
𝐴2

)
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.3) 

by collecting inter-channel synchronization values calculated at activity-specific inter-

channel time lags from contending cognitive activities into a column vector. In the 

expression above, 𝑀 represents the number of channels. Note that the number of channels 

𝑀 = 118 for the BCI Competition-III dataset Ⅳa, 𝑀 = 64 for the PhysioNet Motor 

Movement/Imagery datasets. We obtained the feature vectors for each training task period 

of size 𝑀(𝑀 − 1) × 1 . We calculated the weight vector and bias parameters of the 

Fisher’s linear discriminant classifier by using the training feature vectors (Fisher 1936). 

In the test phase, we obtained a feature vector 𝜉  using the inter-channel 

synchronization values calculated at same activity-specific time lags and organized into 

a matching column vectors  in the Synchronization Calculation block, for each task period 

of interest characterized by EEG signals 𝑠1, 𝑠2, … , 𝑠𝑀. The feature vector constructed for 

a test period can be represented as 
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𝜉 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑆 (𝑠1, 𝑠2

𝜏1,2
𝐴1

)

𝑆 (𝑠1, 𝑠3
𝜏1,3
𝐴1

)

⋮

𝑆 (𝑠𝑀−2, 𝑠𝑀
𝜏𝑀−2,𝑀
𝐴1

)

𝑆 (𝑠𝑀−1, 𝑠𝑀
𝜏𝑀−1,𝑀
𝐴1

)

𝑆 (𝑠1, 𝑠2
𝜏1,2
𝐴2

)

𝑆 (𝑠1, 𝑠3
𝜏1,3
𝐴2

)

⋮

𝑆 (𝑠𝑀−2, 𝑠𝑀
𝜏𝑀−2,𝑀
𝐴2

)

𝑆 (𝑠𝑀−1, 𝑠𝑀
𝜏𝑀−1,𝑀
𝐴2

)
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.4) 

In the Classification Using FLD block, the imagery activity period in question 

was then decided upon by conducting a Fisher’s linear discriminant analysis using the 

formula given in Eq. (3.4), assigning test feature vectors to either first or second category 

of imagery activity (i.e., 𝐴1 or 𝐴2). 

3.3. Results 

In order to determine the way in which recognition performance varies in response 

to varying size of the training set, we chronologically partitioned the dataset in two 

different ways as follows: 

• In scenario-1, for PhysioNet dataset, imagery activity periods in session-4 were 

used for training, imagery activity periods in session-8 and session-12 were used 

for testing purposes. For BCI Competition-III dataset, the first 94 imagery activity 

periods were used for training, and the remaining 186 imagery activity periods 

used for testing purposes. For each dataset, this corresponds to using the first 
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%33,3 of total imagery activity periods for training, and the remaining %66,7 of 

total imagery activity periods for testing. 

• In scenario-2, for PhysioNet dataset, imagery activity periods in session-4 and 

session-8 were used for training while imagery activity periods in session-12 were 

used for testing purposes. For BCI Competition-III dataset, the first 186 imagery 

activity periods were used for training, and the remaining 94 imagery activity 

periods used for testing. For each dataset, this corresponds to using the first %66,7 

of total imagery activity periods for training, and the remaining %33,3 for testing. 

Note also that this kind of partitioning of the data in training and test sets is also more 

realistic compared to a typical 𝑛-fold cross validation scheme with randomly selected 

training and test sets, since training naturally precedes testing in real applications. We 

will use this cross-validation approach throughout this thesis. In addition, it is also useful 

to evaluate how much improvement can be expected by increasing the amount of training 

data. 

Prior to classifier construction, to reduce the dimensionality, we have applied 

feature selection according to each feature’s Fisher ratio (Dat and Guan 2007; Guyon 

1998; Duda and Hart 2000). In each chronological cross validation scenario, we selected 

the features that had higher Fisher ratio values than the mean plus two times the standard 

deviation of all Fisher ratios across all features. For each scenario, the average 

classification performance results over 20 subjects from the PhysioNet dataset and the 

average performance over all 5 subjects of BCI Competition-Ⅲ dataset are given in Table 

6 and Table 7, respectively. 

For comparison purposes, we also evaluated the recognition performance using a 

priori selected channel pairs that were identified to be meaningful for right hand versus 

left hand imagery activity discrimination in previous EEG connectivity-based studies. 

Krusienski et al. has proposed to use 9 channels (producing 36 channel pairs) to elucidate 

the merits and drawbacks of the phase locking value (PLV) method for imagery activity 

recognition (Krusienski, McFarland, and Wolpaw 2012). The performance of additional 

electrode subsets were also compared for PLV-based activity recognition (Q. Wei et al. 

2007). Daly et al. argued for the importance of using all spatial and spectral information 

in the connectivity-based BCI framework which amounts to using all channel pairs (Daly, 

Nasuto, and Warwick 2012). Wang et al. also proposed using a large number of electrode 

pairs to couple up the motor-activity related brain regions for activity recognition (Yijun 
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Wang et al. 2006). Rathee et al. proposed three channel pairs arguably offering the 

greatest contribution for right hand/left hand imagery activity recognition (Rathee, 

Cecotti, and Prasad 2017). Hamedi et al. identified additional channel pairs for right- and 

left-hand imagery activity recognition (Hamedi et al. 2015). These a priori channel pairs 

are listed in Table 5 below. Note, however, these channels/channel pairs were identified 

for right fist versus left fist recognition; thus, we applied them for performance evaluation 

on PhysioNet dataset only and not on BCI Competition dataset as it contains right hand 

versus right foot imagery activity periods. A similar analysis using a priori selected 

channels for right hand/right foot recognition was not possible as a comparable list of 

channels that discriminate between right hand and right foot activities is lacking from the 

literature. In (Gaxiola-Tirado, Salazar-Varas, and Gutierrez 2018), authors identified 

EEG channel networks for BCI Competition-Ⅲ Ⅳa dataset claimed to be highly 

discriminative for right foot/right hand motor imagery activity. However, these channel 

networks are highly subject and frequency specific, and thus, not viable for performance 

comparison across different subjects (see (Gaxiola-Tirado, Salazar-Varas, and Gutierrez 

2018) and Table Ⅰ therein). As a result, we did not include these channels. The 

performance results obtained using this a priori selected right hand versus left hand 

connectivity features are also given in Table 6 and Table 7 for scenario-1 and scenario-2, 

respectively. 

Finally, we compared the performance of the cognitive task recognition 

framework evaluating the various synchronization measure with a well-known BCI 

strategy, CSP (Ramoser, Müller-Gerking, and Pfurtscheller 2000). In the training phase, 

we filtered the signals with 8-30 hertz FIR band-pass filter and obtained the CSP filter 

(𝑚 =  3). We then applied the CSP filter on both training and test periods. We calculated 

the log-variance features from CSP-filtered activity periods for recognition purpose.  
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Table 5. The a priori selected channel pairs given in previous studies for right fist/left fist 

recognition 

 
 

# 

Pairs 

# 

Channels 
Channels / Channel Pairs 

Krusienski et. al. 36 9 [T7, F3, P3, C3, Cz, C4, P4, F4, T8] 

Wei-CW et. al. 45 10 [C5, FC3, CP3, C3, C1, C2, C4, FC4, CP4, C6] 

Wei-CB1 et. al. 25 10 [C5, FC3, CP3, C3, C1] ↔ [C2, C4, FC4, CP4, C6] 

Wei-CB2 et. al. 50 15 
[AFz, Fz, FCz, F1, F2] ↔ [C5, FC3, CP3, C3, C1] 

[AFz, Fz, FCz, F1, F2] ↔ [C2, C4, FC4, CP4, C6] 

Wang et. al. 3 3 [FCz, C3, C4] 

Rathee et. al. 3 5 [CP1 ↔ C4], [C3 ↔ FC1], [C4 ↔ Cz] 

Hamedi et. al. 5 6 
[C3 ↔ C4], [C1 ↔ Cz], [C2 ↔ Cz],  

[C1 ↔ C2], [C2 ↔ CPz] 
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Table 6. The average performance results of subjects for different datasets for Scenario-

1. The rows marked with an asterisk represents the a priori selected channel pairs 

(Right/Left Hand) from the literature. 

 

Average Performances of Different Synch. Measures (%) 

Mutual 

Information 
Cosine PLV 

Nonlinear 

Int. 
Correlation Correntropy 

P
h

y
si

o
N

et
 M

o
to

r 
Im

a
g

er
y

 D
a

ta
se

t 
(R

ig
h

t/
L

ef
t 

F
is

t 
Im

a
g

er
y

) 

Fisher ratio 58.33 ± 10.57 56.83 ± 10.17 54.67 ± 10.83 57.0 ± 11.44 55.67 ± 8.02 56.16 ± 15.07 

*Krusienski,

2012 
53.83 ± 10.66 54.16 ± 8.15 55.16 ± 11.96 53.0 ± 7.1 51.67 ± 8.95 53.17 ± 10.45 

*Wei-CW, 

2007 
54.0 ± 13.35 54.67 ± 9.75 53.67 ± 10.97 56.16 ± 12.29 59.83 ± 11.96 56.67 ± 9.85 

*Wei-CB1, 

2007 
53.67 ± 6.65 54.33 ± 10.71 51.33 ± 8.94 54.0 ± 6.89 53.5 ± 9.07 52.5 ± 7.78 

*Wei-CB2, 

2007 
58.5 ± 9.14 52.33 ± 10.71 53.5 ± 10.0 53.33 ± 8.71 54.5 ± 9.74 50.83 ± 9.48 

*Wang, 2006 53.17 ± 6.7 55.33 ± 8.67 54.83 ± 8.12 52.16 ± 8.67 53.5 ± 9.39 53.17 ± 11.67 

*Rathee, 

2017 
55.0 ± 10.0 53.17 ± 11.41 54.83 ± 8.94 52.0 ± 10.39 56.5 ± 11.21 54.67 ± 9.32 

*Hamedi, 

2016 
53.33 ± 9.97 50.5 ± 6.76 52.83 ± 9.13 51.83 ± 9.08 54.0 ± 6.89 53.16 ± 9.64 

B
C

I 
C

o
m

p
. 

Ⅲ
 

Fisher ratio 76.69 ± 12.88 70.52 ± 9.0 68.08 ± 8.7 72.55 ± 9.65 72.65 ± 8.77 75.95 ± 11.56 
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Table 7. The average performance results of subjects for different datasets for Scenario-

2. The rows marked with an asterisk represents the a priori selected channel pairs 

(Right/Left Hand) from the literature. 

   

Average Performances of Different Synch. Measures (%) 

Mutual 

Information 
Cosine PLV 

Nonlinear 

Int. 
Correlation Correntropy 

P
h

y
si

o
N

et
 M

o
to

r 
Im

a
g

er
y

 D
a

ta
se

t 
(R

ig
h

t/
L

ef
t 

F
is

t 
Im

a
g

er
y

) 

Fisher ratio 59.33 ± 15.12 61.0 ± 10.2 59.67 ± 15.06 60.67 ± 13.83 60.33 ± 15.37 59.33 ± 16.17 

*Krusienski, 

2012 
58.67 ± 13.26 56.0 ± 13.22 57.67 ± 17.34 57.33 ± 15.2 57.33 ± 12.12 55.67 ± 11.9 

*Wei-CW, 

2007 
51.0 ± 20.55 57.0 ± 15.81 56.67 ± 16.11 55.67 ± 17.06 58.67 ± 12.34 51.67 ± 21.61 

*Wei-CB1, 

2007 
55.33 ± 15.0 52.0 ± 11.15 53.33 ± 10.59 56.67 ± 13.42 54.67 ± 13.08 48.33 ± 12.4 

*Wei-CB2, 

2007 
55.0 ± 8.88 53.33 ± 16.32 56.0 ± 13.74 55.33 ± 16.9 53.0 ± 10.0 58.33 ± 16.31 

*Wang, 2006 47.33 ± 15.43 56.33 ± 11.94 54.67 ± 12.9 54.67 ± 12.72 54.0 ± 8.62 56.33 ± 15.51 

*Rathee, 

2017 
54.33 ± 15.48 55.33 ± 14.36 50.0 ± 10.92 53.33 ± 14.66 56.0 ± 12.86 55.33 ± 17.58 

*Hamedi, 

2016 
51.0 ± 11.9 54.3 ± 10.65 51.33 ± 10.61 51.67 ± 13.48 53.67 ± 10.91 52.67 ± 11.0 

B
C

I 
- 

Ⅲ
 

Fisher ratio 75.76 ± 12.3 76.0 ± 8.43 68.41 ± 11.98 70.73 ± 8.79 68.83 ± 9.72 72.0 ± 13.07 
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Table 8. Comparison of average performances (Our method versus CSP) 

 Average Performances (%) 

Method 

PhysioNet Dataset BCI Competition-Ⅲ Dataset 

Scenario-1 Scenario-2 Scenario-1 Scenario-2 

CSP (𝑚 = 3) 53.83 ± 4.87 55.65 ± 9.97 82.33 ± 11.46 84.67 ± 15.38 

Our method 

(Cosine-based) 
56.83 ± 10.17 61.0 ± 10.2 70.52 ± 9.0 76.0 ± 8.43 

The classification was evaluated again using a FLD analysis. We demonstrate the average 

performance results in Table 8. 

3.4. Discussion 

The immediate observation on the performance results (i.e., presented in Table 6 

and Table 7 for both scenarios) is the stark discrepancies between the recognition 

performances achieved on the PhysioNet and BCI Competition-Ⅲ Ⅳa datasets. Based 

on the performance evaluation criteria proposed by Müller (Müller-Putz et al. 2007), this 

appears to be a common trait of the PhysioNet dataset as observed in similar studies that 

report results only on a limited, well-performing subset of the subjects (please see Table 

9) (Cheolsoo Park, Took, and Mandic 2014; Kim et al. 2016; Handiru and Prasad 2016; 

Tolić and Jović 2013; Athif and Ren 2019). While this can be justified to a certain extent 

by arguing that poor-performing subjects belonged to a presumed BCI-illiterate category, 

it falls at odds with the original premise of independent experimental validation. Our 

results, however, have been obtained from the first 20 subjects in PhysioNet dataset, 

without any performance-related exclusion criteria in order to avoid such controversies. 

Another important point is that, in general, the BCI studies using PhysioNet Motor 

Movement/Imagery dataset which elicited brilliant recognition performances uses 

independent component analysis-based methods as preprocessing to filter out the non-

neural artifacts from each task period (Varsehi and Firoozabadi 2021). This approach may 
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not be applicable in real-time BCI systems. So, in this study, we did not adopt any 

statistical noise removal approach. The average performances on BCI Competition-Ⅲ 

dataset Ⅳa given in Table 6 (in Scenario-1) reveals that Kraskov’s mutual information 

method can better capture the task specific time lags when the size of the training dataset 

is small. However, with a larger training dataset (in scenario-2), cosine-based similarity 

captured the task specific time lags more accurately and achieved the best average 

performance on both PhysioNet and BCI Competition-Ⅲ datasets (please see Table 7). 

Performance of both mutual information-based and cosine similarity-based methods for 

both scenarios for different BCI Competition-Ⅲ subjects shown in Table 10 indicate that 

for three well-performing subjects, the recognition accuracies are in the %70-%90 

interval, while the accuracies for the other two is around %60-%65. 

Table 9. Performance demonstration styles of studies that use the PhysioNet dataset 

Author Proposed Method 
Performance Demonstration 

Style 

Park et al. (Cheolsoo Park, 

Took, and Mandic 2014) 
Augmented Complex CSP 

Eliminates subjects with 

performance below the %64 

Handiru et al. (Handiru and 

Prasad 2016) 

Optimized Bi-Objective Chan. 

Selection Method 

Uses 35 best performing 

subjects 

Athif et al. (Athif and Ren 

2019) 

Wavelet transform and CSP 

filtering based method 

Eliminates subject with 

performance below the %64 

Kim et al. (Kim et al. 2016) 
Complex CSP with Strong 

Uncorrelating Transformation 

Eliminates subjects with 

performance below the %64 

To see the ranking of the proposed method, by using original train and test dataset 

sizes given in the competition website, we also compared our recognition performances 

with the performances presented in the BCI Competition-Ⅲ winner tables (performance 

rankings are given in the competition website). The mutual information-based and the 

cosine-based activity recognition methods ranked the 7𝑡ℎ  place and 11𝑡ℎ  places, 

respectively. 
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Table 10. Individual performances of BCI Competition-III dataset Ⅳa subject for 

Scenario-1 and Scenario-2. The subjects al, aw and ay are the well-performing 

subject. 

 Scenario-1 Performances (%) Scenario-2 Performances (%) 

Subject Mutual Inf. Cosine Mutual Inf. Cosine 

aa 64.36 67.55 70.52 73.68 

al 90.95 82.97 92.63 84.21 

av 62.23 60.1 64.21 64.21 

aw 79.78 65.95 66.31 73.68 

ay 86.17 76.06 84.21 84.21 

Note also that, further developments may be expected on the recognition 

performance with some additional efforts such as elimination of the background activity 

(Hyvärinen and Oja 2000; Von Bünau et al. 2009; Jolliffe 1986) or using tailored spatial 

filters (Carvalhaes and De Barros 2015; Song and Epps 2007). The average performance 

can also be improved by increasing the size of the training set (BCI Competition-Ⅲ 

dataset Ⅳa contains more imagery activity periods than PhysioNet dataset). This suggests 

that using larger training sets or longer training sequences may lead to better learning and 

a higher recognition rate than obtained here. 

In this study, our main aim was to highlight the potential of the inter-channel 

activity specific time lags in a cognitive task recognition scheme. The feature vectors 

obtained using these activity-specific time lags were expected to be an indicator of the 

dichotomy between different cognitive tasks (right/left hand motor imagery for 

PhysioNet, right hand/right foot for BCI Competition-Ⅲ dataset). In that spirit, we used 

FLD analysis as a benchmark classifier. However, for the highest recognition 

performance, more sophisticated classification methods such as support vector machine 

(SVM) (Vapnik 2000), extreme learning machine (G. Bin Huang, Chen, and Siew 2006), 

kernel based extreme learning machine (Yu Zhang et al. 2018) or sparse Bayesian 

learning machine classifiers (Z. Jin et al. 2018) can certainly be evaluated. 
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Yet, an extended analysis involving linear and nonlinear SVM classifiers on both 

Scenario-1 and Scenario-2 that we have carried out reveals interesting results (please see 

Table 11 and Table 12 below). Linear SVM outperformed the FLD analysis, especially 

on the BCI Competition-Ⅲ dataset Ⅳa, in all synchronization measures while 

performance dropped using a radial basis function kernel. This suggests that a linear 

classification approach is more reliable in this instance, potentially due to high number 

of features against a low number of training samples. Furthermore, a conspicuous 

superiority of linear maximum margin classification on FLD analysis indicates that the 

generalization ability of FLD analysis is worsened when training samples are low in 

number, possibly due to the inability to calculate class covariance matrices with sufficient 

accuracy. 

We tested our lagged synchronization-based framework with two datasets having 

160 Hz. (PhysioNet) and 100 Hz. (BCI Competition-Ⅲ dataset Ⅳa) sampling 

frequencies. Note that, the sampling frequency of the EEG signals constitutes a 

fundamental limitation for the method that calculates and uses the inter-channel time lags 

that emerge between EEG signals during particular cognitive tasks. Actually, it is possible 

that the true inter-channel time lags deviated from those calculated by the synchronization 

measures evaluated here due to the low sampling frequency. It is evident that, increasing 

the sampling frequency may be expected to lead to an increase the accuracy of the 

activity-specific time lags that emerge between channels are calculated, as it would 

provide more data points for the calculation. However, it should also be noted that a 

higher sampling frequency would cause a sharp increase in computation time. 

In this study, even for a low sampling frequency, we showed that the inter-channel 

time lags that maximizes the average synchronization values for each EEG channel pairs 

(i.e., activity-specific time lags), have potential in characterizing the cognitive task-

related neural activity during a task period. Another limitation, the present framework 

disregards the subject-specific frequency bands. In general sense, filter bank strategy 

overcomes the subject-specific frequency band identification problem by incorporating 

different band-pass filters and identifies most discriminative frequency-specific features 

before the classification (S. H. Park, Lee, and Lee 2018; Higashi and Tanaka 2013; Ang 

et al. 2008; Gysels, Renevey, and Celka 2005). For our framework, instead of using 8-30 

Hertz frequency band, incorporating a filter bank structure can be used in this method 

before the determination of activity-specific time lags.   
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Table 11. The comparison of the classification methods for Scenario-1 

 

Average Performances (%) 

Cosine 
Cross 

Corr. 
Non. Int. Corr. 

Mutual 

Inf. 
PLV 

F
L

D
 

PhysioNet 
56.83 ± 

10.17 

55.67 ± 

8.02 

57.0 ± 

11.44 

56.16 ± 

15.07 

58.33 ± 

10.57 

54.67 ± 

10.83 

BCI 

Comp. 

70.52 ± 

9.0 

72.65 ± 

8.77 

72.55 ± 

9.65 

75.95 ± 

11.56 

76.69 ± 

12.88 

68.08 ± 

8.7 

L
in

ea
r 

S
V

M
 PhysioNet 

57.83 ± 

10.38 

58.17 ± 

10.73 

50.17 ± 

2.28 

50.17 ± 

9.93 

58.5 ± 

10.78 

60.5 ± 

10.99 

BCI 

Comp. 

74.46 ± 

9.52 

72.97 ± 

10.93 

77.65 ± 

11.89 

77.34 ± 

9.5 

77.97 ± 

10.35 

70.31 ± 

10.58 

N
o

n
li

n
ea

r 
S

V
M

 

PhysioNet 
58.83 ± 

11.0 

55.83 ± 

11.54 

58.16 ± 

9.58 

55.67 ± 

14.71 

59.83 ± 

9.33 

58.83 ± 

10.21 

BCI 

Comp. 

71.7 ± 

8.07 

72.12 ± 

8.33 

76.38 ± 

12.36 

77.02 ± 

8.42 

75.0 ± 

10.52 

69.78 ± 

8.22 
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Table 12. The comparison of the classification methods for Scenario-2 

 

Average Performances (%) 

Cosine 
Cross 

Corr. 
Non. Int. Corr. 

Mutual 

Inf. 
PLV 

F
L

D
 

PhysioNet 
61.0 ± 

10.2 

60.33 ± 

15.37 

60.67 ± 

13.83 

59.33 ± 

16.17 

59.33 ± 

15.12 

59.67 ± 

15.06 

BCI Comp. 
76.0 ± 

8.43 

68.83 ± 

9.72 

70.73 ± 

8.79 

72.0 ± 

13.07 

75.76 ± 

12.3 

68.41 ± 

11.98 

L
in

ea
r 

S
V

M
 PhysioNet 

59.33 ± 

16.02 

61.67 ± 

14.8 

51.0 ± 

10.43 

62.33 ± 

16.51 

59.33 ± 

14.96 

59.67 ± 

15.36 

BCI Comp. 
79.57 ± 

9.52 

77.26 ± 

9.75 

81.05 ± 

8.93 

80.21 ± 

10.35 

81.89 ± 

11.8 

75.15 ± 

13.03 

N
o

n
li

n
ea

r 
S

V
M

 

PhysioNet 
58.67 ± 

12.53 

58.66 ± 

14.28 

62.0 ± 

13.36 

65.33 ± 

17.91 

59.67 ± 

15.21 

60.0 ± 

14.82 

BCI Comp. 
74.73 ± 

5.47 

74.1 ± 

4.85 

78.1 ± 

7.85 

80.0 ± 

6.69 

77.89 ± 

10.26 

70.94 ± 

8.1 
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This enables us to calculate and use the frequency-resolved activity-specific time 

lags may also be expected to improve recognition performance, albeit in expense of 

computation time (Goldhacker et al. 2018). Still, once the salient subject-specific 

frequency bands are identified, activity-specific time lags can easily be calculated and 

used for subsequent recognition purposes (Kumar, Sharma, and Tsunoda 2017). 

In the present study, we aimed to determine the most powerful synchronization 

method among six different methods that captures the most appropriate time lag (activity-

specific time lag) between EEG channels that the synchronization (evaluated at this lag) 

is characteristic to the particular cognitive tasks. In the literature, many different 

synchronization measures were proposed and subjected to performance comparison using 

various types of synthetic and real datasets collected under various experimental 

conditions (Bakhshayesh et al. 2019b; Dauwels et al. 2010; Duckrow and Albano 2003; 

M. H. Wu, Frye, and Zouridakis 2011). However, the main outcome of these studies 

indicates that there is no universal synchronization measure that works better than all 

others. It appears a general consensus that different measures calculate the 

synchronization by taking different feature types of the input signals into consideration 

(Bakhshayesh et al. 2019b; Sakkalis 2011). During cognitive tasks, the brain presents 

dynamically changing electrophysiological characteristics and also, the functional 

connectivity between distant regions is affected from these dynamical changes. Each of 

the different synchronization methods used in this study attempts to find the activity-

specific time lags between electrophysiological signals as captured by the method itself. 

Since each method evaluates a different aspect of the signals, it is not surprising to 

observe dissimilar time lags. In the absence of full knowledge of exact time lags between 

the signals, it is impossible to tell which method appeared to be more accurate in 

calculating the time lag of interest. 

In addition to those evaluated in this study, further synchronization estimation 

methods exist in the literature. Notably, the transfer entropy has been frequently used in 

both sensor space and source space connectivity studies (Faes et al. 2016; Olejarczyk et 

al. 2017; Wibral et al. 2013; Pampu et al. 2013; Montalto, Faes, and Marinazzo 2014; 

Schreiber 2000). However, due to the high computational requirements during its 

calculation, transfer entropy does not appear to be a viable method for brain activity 

recognition. As a result, it was not included in this work. Even then, calculating the mutual 

information, correntropy and nonlinear interdependency measures for 20 subjects in 

PhysioNet dataset and 5 subjects for BCI Competition-Ⅲ dataset Ⅳa took several days. 
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However, for PhysioNet dataset, the required computation time for cross-correlation and 

cosine-based similarity are about 15,6 seconds and 13,7 seconds per subject, respectively. 

As for BCI Competition-Ⅲ dataset Ⅳa, for five subjects, the corresponding computations 

took 154,7 seconds and 202,2 seconds per subject. While these computation times are not 

extensive, with the high speed and parallel computing architectures, cosine similarity-

based measure stands out as the more practical synchronization evaluation method for a 

real time cognitive status analysis. 

The recognition performance results for the PhysioNet dataset, given in both 

Tables 6 and 7 show that we did not achieve the minimum reliable communication rate 

(%70). These low performances may be due to relatively small training sample size or 

low-quality of EEG recordings. For the small sample size problem of FLD and/or SVM 

classifiers, increasing the number of training samples may require long training sequences 

which then very tiring and therefore challenging for the participants. Pooling and using 

informative feature vectors from all other subjects may also improve the classification 

performance of the proposed framework. Jiao et al. proposed sparse group representation 

method (SGRM) to reduce the required training time without any performance 

degradation for motor imagery brain computer interface approaches (Jiao et al. 2019). 

Briefly, this method identifies and uses informative feature vectors (also features) from a 

dictionary matrix constructed using both non-target subjects’ and target subject’s training 

feature vectors. For our study, as proposed in (Jiao et al. 2019), exploiting the informative 

features and feature vectors obtained from both target and non-target subjects’ training 

task periods (for each subject, feature vectors are constructed via inter-channel 

synchronization values evaluated at activity-specific time lags) may improve the 

recognition performances especially obtained for PhysioNet dataset. Similar sparse 

representation approach for frequency-resolved informative feature identification was 

proposed and can be applied to our framework (Yu Zhang et al. 2015). Another problem, 

since we do not accurately know when the subject begins and ends the imagination of the 

motor movement task, we used whole task period EEG signals to calculate the activity-

specific time lags. For an accurate brain activity characterization, an extended approach 

that jointly optimizes the time window and the frequency band can also be adopted in our 

framework before the inter-channel activity-specific time lag estimation (Yu Zhang et al. 

2019). 

For both PhysioNet and BCI Competition-Ⅲ dataset Ⅳa datasets, we listed the 

electrode pairs that provide meaningful differences between two cognitive tasks along 
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with five most significant electrode pairs that achieve maximum separability among 

different type of motor imagery activities in Table 13 (for scenario-2). We observed that 

on the BCI Competition-Ⅲ dataset, all synchronization measures identified couplings 

between similar group of electrode pairs. However, on the PhysioNet dataset, the groups 

of electrode pairs identified to be in synchrony differed for the different synchronization 

measures. While this makes the interpretation of identified couplings challenging 

meaningful comparisons can still be made as follows, 

A first-look analysis on PhysioNet dataset (right fist versus left fist imagination) 

reveals that cosine-based similarity captured mostly the parietal-central electrode 

couplings, cross-correlation the parietal-parietal electrode couplings, nonlinear 

interdependency central-parietal electrode pairs, mutual information the frontal and 

parietal electrode couplings, correntropy the frontal electrode couplings and finally PLV 

the parietal-parietal electrode couplings. 

As for the BCI Competition-Ⅲ dataset Ⅳa (right hand versus right foot 

imagination), we observed that all synchronization measures consistently captured the 

left fronto central-central, left central-centro parietal and left fronto central-centro parietal 

connectivity. By taking both results into consideration, mutual information method can 

better unveil motor imagery task related connectivity patterns than the other 

synchronization methods. These electrode couplings result for each dataset shows that, 

for both datasets, mutual information can better unveil motor imagery task related 

connectivity patterns than the other synchronization measures. 

For the right/left fist motor imagery task, mutual information captured the 

synchronization patterns that reflect the functional connectivity of left premotor area-right 

premotor area, supplementary motor area-left sensorimotor cortex, right premotor area-

right sensorimotor cortex, and right-left parietal regions. In the literature, these brain 

regions have already been identified to be strongly associated with hand motor imagery 

tasks. While the right and left premotor areas are responsible for the integration and 

processing of information collected from other regions of the brain (Xu et al. 2014; 

Luppino and Rizzolatti 2000), sensorimotor cortex plays a role in spatial control and 

motor planning (Porro et al. 1996). In (H. Chen et al. 2009), authors found that both 

sensorimotor cortices and premotor area are simultaneously activated with supplementary 

motor area during hand motor imagery activity. In a later study, the same group identified 

connectivity patterns between similar regions for right- and left-hand motor imagery task 

(Q. Gao, Duan, and Chen 2011).  
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Table 13. The 5 most frequent electrode pairs obtained for both PhysioNet Motor 

Movement/Imagery and BCI Competition-Ⅲ dataset Ⅳa (for scenario-2) 

 Cosine Correlation Non. Int. Corr. 
Mutual 

Information 
PLV 

P
h

y
si

o
N

et
 D

a
ta

se
t 

Fc3-P5 C6-AF3 C4-Po4 Fcz-Ft8 F5-F8 Tp8-Po7 

Fc6-Ft7 Cp3-Fp1 C6-Po4 F7-O1 Tp8-Po3 P5-P8 

C1-P7 Cp6-Po3 Cp5-O2 Fc1-Ft8 P8-Po7 P1-P8 

Cp5-P2 P5-P8 Cp1-Po4 Fcz-F8 Fc4-Tp8 Fc3-Ft7 

Cp6-Iz P3-P8 Ft8-Po4 Fcz-Ft7 C5-F1 C4-P8 

B
C

I 
C

o
m

p
et

it
io

n
-Ⅲ

  
D

a
ta

se
t 

Fc1-C1 Fc1-C1 Fc1-C1 Fc1-C1 Fc1-C1 CFC1-CCP3 

F3-CCP5 Fc1-CCP3 CFC1-Cp3 CFC1-Cp3 Fc1-CCP3 Cz-CCP3 

F1-CCP3 CFC1-CCP3 F7-CCP5 Cz-CP3 CFC1-CCP3 Fc1-CCP3 

F1-CCP5 Cz-CCP3 F5-CCP5 F1-CCP5 Cz-CCP3 Fcz-CCP3 

F1-Cp5 Cz-Cp1 FFC7-CCP5 F1-CCP3 Cz-Cp1 FFC1-CCP3 
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Cognitive, sensory and motor functions require interconnectivity of anatomically 

as well as functionally different regions of the brain (Y. Gao et al. 2019). Basically, these 

regions reciprocally process and exchange neural information for each specific brain 

activity (Rangaprakash 2014). So far, in the literature, a great deal of brain activity 

recognition/characterization studies analyzed and used power-based features of 

electrophysiological data obtained from focal cortical activity of the brain with notable 

success (Ramoser, Müller-Gerking, and Pfurtscheller 2000; Fabien Lotte and Guan 2011; 

Yu Zhang et al. 2015; 2019). However, as also depicted in many other studies, a complete 

assessment of brain function requires a detailed evaluation of the interaction between 

electrophysiological data collected from distinct regions of the brain (Sakkalis 2011; 

Rocca et al. 2014; Greenblatt, Pflieger, and Ossadtchi 2012). Indeed, this perspective 

forms the main premise of the current study. 

Yet, for a more concrete comparison of CSP-based power features and 

synchronization-based features, it may be helpful to recognize that, CSP essentially 

calculates the power of the latent channels obtained as weighted linear combinations of 

actual EEG signals. In case where synchronization occurs through concurrent power 

increase or decrease that is preserved through the prescribed linear weighting by the CSP, 

the resulting power features can be expected to be useful for task recognition. However, 

there is no clear indication on how synchrony manifests between different brain regions 

during tasks of interest. This, in fact, was the main reason for evaluating a battery of 

potential synchronization measures in a cognitive task recognition scenario in this 

manuscript. Consequently, CSP-based power features may be insensitive to 

synchronization modes that do not survive weighted linear average over a large number 

of brain regions, that may also explain their apparent weakness in the recognition problem 

considered here. 

For right fist/left fist motor imagery recognition, performances obtained from a 

priori selected channel pairs show that the channel pairs proposed by Krusienski et al. 

(Krusienski, McFarland, and Wolpaw 2012) generally achieves better accuracy than the 

other ones. From a biophysical point of view, these channel pairs constitute inter- and 

intra-hemispheric connections and collect electrophysiological activity from premotor, 

primary motor, sensorimotor and central-parietal regions. In the literature, these brain 

areas are listed among the critical brain for regions and constitute the functional network 

related with the right/left hand/finger motor imagination tasks (Xu et al. 2014). In line 

with the previous studies that examine the intra- and inter-hemispheric interactions, stated 
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that these electrodes mainly manifest the electrical activity of parietal, central and 

premotor regions during right and left hand motor imagination (Q. Gao, Duan, and Chen 

2011; Solodkin et al. 2004). A study accomplished by L. A. Wheaton et al. further stated 

that the increase of synchronization between premotor and parietal cortices are the 

signature of motor preparation task for praxis hand movements (Wheaton et al. 2005). 

Since right/left fist imagination is not a fully praxis movement, it is reasonable to expect 

that these channel pairs demonstrate better recognition performance than the other ones. 

Another study that evaluates the functional networks during finger tapping imagination 

identified eight connections that are mainly observed between premotor and motor 

cortices (Xu et al. 2014). Yet, the results in Table 6 and Table 7 show that automatically 

selected channel pairs outperform these a priori determined channel pairs for imaginary 

motor activity recognition. Clearly, the issue of which channel pairs are useful for which 

activity is to be elucidated further. One possible avenue of research may be to evaluate 

which channel pairs are often selected across the subjects of a large cohort. The current 

study forms the initial stage of a funded project that addresses a connectivity-based brain 

activity characterization. We are currently seeking to capture the characteristic short-lived 

synchronization patterns that emerge during the cognitive task in different time lags as 

well as in different latency values. This, however, entails a 3-parameter optimization (i.e., 

Δ𝑡, 𝜏 and 𝑤) with additional algorithmic and computational challenges and is studied in 

the next chapter.
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CHAPTER 4 

SHORT-LIVED SYNCHRONIZATION BETWEEN EEG 

CHANNELS FOR CHARACTERIZATION OF 

COGNITIVE ACTIVITIES 

It is necessary to study not only parts and processes in isolation, 

but also, to solve the decisive problems found in organization and order unifying them, 

resulting from dynamic interactions of parts, and making the behavior of the 

parts different when studied in isolation or within the whole… 

-Ludwig won Bertalanffy- 

4.1. Introduction 

In this chapter, we propose a novel brain activity characterization framework that 

tries to improve the characterization ability of the method presented in the previous 

chapter (Orkan Olcay, Özgören, and Karaçalı 2021). Our approach in this chapter is based 

on the premise that the activity-specific synchrony between EEG channels may emerge 

and vanish in a short period of time. The method presented here identifies and uses the 

timing parameter triplets of the activity-specific short-lived synchronizations between the 

EEG channels emerged for each specific mental task. We captured the timings of maximal 

average short-lived synchronization for characterization of brain activities. Note that the 

short-lived maximal synchrony between the brain electrical signals during a cognitive 

task can be thought of evidencing cognitive task-specific information exchange/flow 

between brain regions and possibly also in specific frequency bands (Maars and Lopes 

Da Silva 1983; Gonuguntla, Wang, and Veluvolu 2016; Wibral et al. 2011; Zanon, 

Borgomaneri, and Avenanti 2018), which may further signify the presence of an activity-

specific functional integration mechanism (Rubinov and Sporns 2010; S. H. Jin et al. 

2006). The three timing parameters we use to calculate pairwise channel synchrony are: 

• Δ𝑡 for latency of maximally synchronized signal segments from activity onset 

(𝑡 = 0). 
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•  𝜏 for the time lag between maximally synchronized signal segments. 

• 𝑤 for the length of the maximally synchronized signal segments. 

The graphical illustration of these timing parameters is presented in Figure 18. To identify 

the three timing parameters of the activity-specific synchronization for each type of motor 

imagery activity and each EEG channel pair, we adopted a heuristic optimization that 

evaluates the channel synchronizations calculated using a fixed-length sliding time 

window. Simply, the optimization method captures and evaluates the significant 

synchronization patterns (i.e., candidate patterns) aligned on Δ𝑡  axis emerged for 

different 𝜏  parameters. Next, we evaluated the significance of each candidate 

synchronization patterns by conducting one-sample 𝑡-tests to identify the most significant 

synchronization timings. The timing parameter triplet that elicited the most significant 

synchronization (i.e., the smallest 𝑃-value) among all candidate timing parameter triplets 

is identified as the activity-specific timing parameter triplet for the corresponding motor 

imagery activity type and channel pairs duely. The activity-specific timing parameter 

triplet can be represented by {Δ𝑡𝑖,𝑗
𝐴 , 𝜏𝑖,𝑗

𝐴 , 𝑤𝑖,𝑗
𝐴 } for motor imagery activity type 𝐴 and for 

channel pair (𝑖, 𝑗). 

After finding the activity-specific timing parameter triplets for each channel pair 

and each type of motor imagery activity, we evaluated the discrimination ability of the 

activity-specific timing parameter triplets both in a motor imagery activity recognition 

framework and statistical tests. To that end, we used the activity-specific timing 

parameter triplets to calculate and use the inter-channel short-lived synchronizations as 

features. 

We expect that the inter-channel short-lived synchronizations calculated using the 

corresponding activity-specific timing parameter triplets for the respective activity 

periods will be significantly distinct from those calculated with the same parameters for 

other types of activity periods. We conducted these analyses for six different 

synchronization measures to specify the most successful measure at capturing the timings 

of characteristic pairwise channel synchronizations (H. E. Wang et al. 2014; Sakkalis 

2011; Greenblatt, Pflieger, and Ossadtchi 2012). 

The remainder of this chapter is organized as follows: In Section 4.2, we provided 

the synchronization measures and the details of the proposed method along with the 

heuristic optimization approach adopted in this study. In Section 4.3, we present the 

recognition performance results that compare channel synchronization values obtained 
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for different tasks calculated using the activity-specific timing parameter triplets. In 

Section 4.4, we discuss the classification performances and the biophysical findings 

obtained from the motor imagery activity recognition framework adopted for testing the 

proposed method. 

 

Figure 18. The illustration of the timing parameters Δ𝑡 , 𝜏 , and 𝑤  used to determine 

pairwise short-lived synchronization between two EEG channels. Δ𝑡 stands 

for latency of characteristic synchronization from activity onset, 𝜏 for time 

lag between synchronized signal segments, and 𝑤  for duration of 

characteristic synchronization. We demonstrated the three cases which time-

directional synchronization calculated for 𝜏 < 0, 𝜏 = 0, and 𝜏 > 0.  
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4.2. Proposed Method 

In order to capture the timings of the activity-specific short-lived synchronization 

between the EEG channels, we used six different synchronization measures. The 

measures that we used in this framework are: 

• Cosine-based similarity (B. Orkan Olcay and Karaçalı 2019; Sargolzaei et al. 

2015; Herff et al. 2019) 

• Wavelet bi-coherence (Makarov et al. 2018) 

• Phase locking value (Lachaux et al. 1999; Varela et al. 2001) 

• Phase coherence value (Tass et al. 1998; Ziqiang and Puthusserypady 2007; 

Bakhshayesh et al. 2019b) 

• Linearized mutual information (S. H. Jin, Lin, and Hallett 2010; Montalto, Faes, 

and Marinazzo 2014) 

• Cross-correntropy (Santamaría, Pokharel, and Principe 2006; Liu, Pokharel, and 

Principe 2007; Principe 2010) 

We adopted Vasicek’s entropy estimation method (Ibrahim Al-Omari 2014; Vasicek 

1976) to estimate the entropies of the phase difference signals for the phase coherence 

value method. Furthermore, we used complex Morlet wavelets, which is the most used 

wavelet function in biological signal analysis, to calculate the wavelet transforms of the 

EEG signals for the wavelet bi-coherence method (Alexander E. Hramov et al. 2015). 

Also, we used linearized mutual information due to the computation speed issues faced 

using Kraskov’s method. As a note, the linearized mutual information uses the linear 

correlation coefficient when calculating the synchrony between the short-lived signals. 

Prior to the synchronization calculation, we extracted the signal segments of each 

task period from each channel represented by 𝑠𝑖,𝑛
Δ𝑡,𝑤 = 𝑠𝑖(𝑡)|𝑡∈[𝑡𝑛+Δ𝑡,   𝑡𝑛+Δ𝑡+𝑤] where the 

signal segments extracted from task period 𝑛 and channel 𝑖 that starts at Δ𝑡 milliseconds 

from the activity onset 𝑡𝑛  and lasts for 𝑤  milliseconds. Similarly, 𝑠𝑗,𝑛
Δ𝑡+𝜏,𝑤 =

𝑠𝑗(𝑡)|𝑡∈[𝑡𝑛+Δ𝑡+𝜏,   𝑡𝑛+Δ𝑡+𝜏+𝑤] represents the signal segment extracted from task period 𝑛 

and channel 𝑗 that starts at Δ𝑡 + 𝜏 milliseconds from the activity onset 𝑡𝑛 and lasts for 𝑤 

milliseconds (please see Figure 19). Note that while 𝜏  can take positive or negative 
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values, Δ𝑡 takes values that are greater than or equal to zero only. Consequently, 𝑠𝑗,𝑛
Δ𝑡+𝜏,𝑤

 

may lead or lag 𝑠𝑖,𝑛
Δ𝑡,𝑤

 on the time axis. 

 

Figure 19. Illustration of short-lived signal segments obtained from EEG channels i and j 

for task period indexed by n. Note that in here, 𝜏  takes a positive value, 

suggesting that the ith channel leading the jth channel. 

4.2.1. Heuristic Search Method for Determining the Activity-Specific 

Timing Parameters 

Our main aim here is to determine the activity-specific timing parameter triplets 

for each specific cognitive activity and channel pairs. To that end, we adopted the 

heuristic parameter search strategy described in detail below to capture these timing 

parameter triplets. Since the EEG signals as well as their short-lived synchronization 

estimates are quite noisy, using well-known search methods such as gradient descent, 

Nelder-Mead (i.e., simplex search), simulated annealing, leads to an erroneous parameter 

triplet estimation. 

In order to determine the activity-specific timing parameter triplets {Δ𝑡, 𝜏, 𝑤} for 

each channel pair and each type of cognitive activity, we adopted a sliding time window 

based search method with a fixed length of 300ms as in (Roelfsema et al. 1997) and (Bola, 

Gall, and Sabel 2015). In this method, we first calculated the short-lived synchronization 

between the signal segments obtained for each channel pair (𝑖, 𝑗) and training task period 
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𝑛 for varying Δ𝑡 ∈ [0𝑚𝑠, 2000𝑚𝑠] as in (Chung, Kang, and Kim 2012; Christa Neuper 

et al. 2009a) and 𝜏 ∈ [−125𝑚𝑠, 125𝑚𝑠] as in (B. Orkan Olcay and Karaçalı 2019) at a 

fixed duration of 300ms as 

𝐷𝑖,𝑗(Δ𝑡, 𝜏, 𝑛) = 𝑆(𝑠𝑖,𝑛
Δ𝑡,300𝑚𝑠, 𝑠𝑗,𝑛

Δ𝑡+𝜏,300𝑚𝑠) (4.1) 

where 𝑆(∙,∙)  denotes the synchronization measure of choice. We then calculated the 

average synchronization across the training task periods of the same cognitive activity 

type for each channel pair (𝑖, 𝑗) as 

𝐷̅
𝑖,𝑗

𝐴1/2(Δ𝑡, 𝜏) =
1

|𝐼1/2|
∑ 𝐷𝑖,𝑗(Δ𝑡, 𝜏, 𝑛)

𝑛∈𝐼1/2

 (4.2) 

where 𝐷̅
𝑖,𝑗

𝐴1/2(Δ𝑡, 𝜏)  is the average synchronization matrix calculated across the 

corresponding training task periods, and 𝐼1  and 𝐼2  are the indices of the training task 

periods belonging to activity types 𝐴1 and 𝐴2, respectively. Since the aim of this study is 

to analyze the short-lived brain interactions, we adopted a quantile (or alternatively 

percentile) based thresholding to capture the important synchronization dynamics as in 

(Zink, Mückschel, and Beste 2020). Next, we thresholded the average synchronization 

values 𝐷̅
𝑖,𝑗

𝐴1/2(Δ𝑡, 𝜏)  with respect to the %99 quantile of the cumulative distribution 

functions of all values of {𝐷̅
𝑖,𝑗

𝐴1/2(Δ𝑡, 𝜏)} for all combinations of Δ𝑡 and 𝜏. This revealed 

candidate short-lived synchronization patterns that extend the along the Δ𝑡 axis, that were 

then subjected to statistical evaluation. 

For the statistical evaluation, we identified the timing parameter triplets that 

correspond to each of candidate short-lived synchronization patterns. Note that a 

synchronization pattern observed at 𝜏 = 𝜏0  and Δ𝑡1 ≤  Δ𝑡 ≤ Δ𝑡2  suggests significant 

synchronization between 𝑠𝑖,𝑛
Δ𝑡1,Δ𝑡2−Δ𝑡1+300𝑚𝑠  and 𝑠𝑗,𝑛

Δ𝑡1+𝜏0,Δ𝑡2−Δ𝑡1+300𝑚𝑠  (see Figure 20). 

The statistical test evaluated the channel synchronizations obtained from corresponding 

task periods observed for each such triple timing parameter against zero for each channel 
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pair (𝑖, 𝑗) in case multiple patterns emerged and selected the one with the lowest 𝑃-value 

observed as a result of 𝑡-test. Consequently, we identified the activity-specific timing 

parameter triplet that maximizes the statistical significance of channel synchronizations 

for each activity type and for each channel pair separately. 

 

Figure 20. An exemplary illustration of timings of the three candidate maximal 

synchronization patterns obtained after thresholding for a channel pair (𝑖, 𝑗). 

We determined the latency (𝛥𝑡) of the candidate signal segment as 𝛥𝑡1, time 

lag (𝜏) between the candidate signal segments as 𝜏0, and the duration of 

signal segments (𝑤) as 𝛥𝑡2 − 𝛥𝑡1 + 300𝑚𝑠. 
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Figure 21. The illustration of the operational flow diagram of the short-lived 

synchronization based proposed method. 

4.2.2. The Proposed Cognitive Activity Recognition Method 

In this section, we provided the details of operational flow diagram of the brain 

activity recognition scheme in Figure 21. In the training phase, we determined the 

activity-specific timing parameter triplets {Δ𝑡
𝑖,𝑗

𝐴1/2 , 𝜏
𝑖,𝑗

𝐴1/2 , 𝑤
𝑖,𝑗

𝐴1/2} for cognitive activities 

𝐴1  and 𝐴2  for each channel pair (𝑖, 𝑗) . Next, we used the activity-specific timing 

parameter triplets to calculate inter-channel characteristic synchronization values and 

then collected these synchronization values into a feature vector for each training task 

period. Thus, the training feature vector 𝜉ℓ for the training task period indexed by ℓ is 

constructed as 
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𝜉ℓ =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑆 (𝑠

1,ℓ

Δ𝑡1,2
𝐴1 ,𝑤1,2

𝐴1

, 𝑠
2,ℓ

Δ𝑡1,2
𝐴1+𝜏1,2

𝐴1 ,𝑤1,2
𝐴1

)

𝑆 (𝑠
1,ℓ

Δ𝑡1,3
𝐴1 ,𝑤1,3

𝐴1

, 𝑠
3,ℓ

Δ𝑡1,3
𝐴1+𝜏1,3

𝐴1 ,𝑤1,3
𝐴1

)

⋮

𝑆 (𝑠
𝑀−2,ℓ

Δ𝑡𝑀−2,𝑀
𝐴1 ,𝑤𝑀−2,𝑀

𝐴1

, 𝑠
𝑀,ℓ

Δ𝑡𝑀−2,𝑀
𝐴1 +𝜏𝑀−2,𝑀

𝐴1 ,𝑤𝑀−2,𝑀
𝐴1

)

𝑆 (𝑠
𝑀−1,ℓ

Δ𝑡𝑀−1,𝑀
𝐴1 ,𝑤𝑀−1,𝑀

𝐴1

, 𝑠
𝑀,ℓ

Δ𝑡𝑀−1,𝑀
𝐴1 +𝜏𝑀−1,𝑀

𝐴1 ,𝑤𝑀−1,𝑀
𝐴1

)

𝑆 (𝑠
1,ℓ

Δ𝑡1,2
𝐴2 ,𝑤1,2

𝐴2

, 𝑠
2,ℓ

Δ𝑡1,2
𝐴2+𝜏1,2

𝐴2 ,𝑤1,2
𝐴2

)

𝑆 (𝑠
1,ℓ

Δ𝑡1,3
𝐴2 ,𝑤1,3

𝐴2

, 𝑠
3,ℓ

Δ𝑡1,3
𝐴2+𝜏1,3

𝐴2 ,𝑤1,3
𝐴2

)

⋮

𝑆 (𝑠
𝑀−2,ℓ

Δ𝑡𝑀−2,𝑀
𝐴2 ,𝑤𝑀−2,𝑀

𝐴2

, 𝑠
𝑀,ℓ

Δ𝑡𝑀−2,𝑀
𝐴2 +𝜏𝑀−2,𝑀

𝐴2 ,𝑤𝑀−2,𝑀
𝐴2

)

𝑆 (𝑠
𝑀−1,ℓ

Δ𝑡𝑀−1,𝑀
𝐴2 ,𝑤𝑀−1,𝑀

𝐴2

, 𝑠
𝑀,ℓ

Δ𝑡𝑀−1,𝑀
𝐴2 +𝜏𝑀−1,𝑀

𝐴2 ,𝑤𝑀−1,𝑀
𝐴2

)
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (4.3) 

where 𝑀 denotes the total number of channels (i.e., 𝑀 = 118 for BCI Competition-Ⅲ 

dataset Ⅳa, 𝑀 = 64  for PhysioNet dataset). After constructing the training feature 

vectors, we performed a feature selection procedure to determine the most discriminative 

features. To that end, we calculated the Fisher’s ratio of each feature as in the previous 

chapter. We selected the features that elicited a Fisher’s ratio higher than the mean plus 

two times the standard deviation of the Fisher’s ratios of all features. Finally, we trained 

classifiers on the reduced training feature vectors. In this study, we used three different 

classification methods, namely Fishers’ linear discriminant (FLD), linear support vector 

machines (linear SVM), and nonlinear (radial basis function) support vector machines 

(nonlinear SVM). The kernel width parameter for nonlinear SVM classifier was 

calculated using the Eq. (2.57). 

In the test phase, we constructed the test feature vectors 𝜉 for each test task periods 

using the activity-specific timing parameter triplets obtained in the training phase as 
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𝜉 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑆 (𝑠1

Δ𝑡1,2
𝐴1 ,𝑤1,2

𝐴1

, 𝑠2
Δ𝑡1,2
𝐴1+𝜏1,2

𝐴1 ,𝑤1,2
𝐴1

)

𝑆 (𝑠1
Δ𝑡1,3
𝐴1 ,𝑤1,3

𝐴1

, 𝑠3
Δ𝑡1,3
𝐴1+𝜏1,3

𝐴1 ,𝑤1,3
𝐴1

)

⋮

𝑆 (𝑠𝑀−2
Δ𝑡𝑀−2,𝑀
𝐴1 ,𝑤𝑀−2,𝑀

𝐴1

, 𝑠𝑀
Δ𝑡𝑀−2,𝑀
𝐴1 +𝜏𝑀−2,𝑀

𝐴1 ,𝑤𝑀−2,𝑀
𝐴1

)

𝑆 (𝑠𝑀−1
Δ𝑡𝑀−1,𝑀
𝐴1 ,𝑤𝑀−1,𝑀

𝐴1

, 𝑠𝑀
Δ𝑡𝑀−1,𝑀
𝐴1 +𝜏𝑀−1,𝑀

𝐴1 ,𝑤𝑀−1,𝑀
𝐴1

)

𝑆 (𝑠1
Δ𝑡1,2
𝐴2 ,𝑤1,2

𝐴2

, 𝑠2
Δ𝑡1,2
𝐴2+𝜏1,2

𝐴2 ,𝑤1,2
𝐴2

)

𝑆 (𝑠1
Δ𝑡1,3
𝐴2 ,𝑤1,3

𝐴2

, 𝑠3
Δ𝑡1,3
𝐴2+𝜏1,3

𝐴2 ,𝑤1,3
𝐴2

)

⋮

𝑆 (𝑠𝑀−2
Δ𝑡𝑀−2,𝑀
𝐴2 ,𝑤𝑀−2,𝑀

𝐴2

, 𝑠𝑀
Δ𝑡𝑀−2,𝑀
𝐴2 +𝜏𝑀−2,𝑀

𝐴2 ,𝑤𝑀−2,𝑀
𝐴2

)

𝑆 (𝑠𝑀−1
Δ𝑡𝑀−1,𝑀
𝐴2 ,𝑤𝑀−1,𝑀

𝐴2

, 𝑠𝑀
Δ𝑡𝑀−1,𝑀
𝐴2 +𝜏𝑀−1,𝑀

𝐴2 ,𝑤𝑀−1,𝑀
𝐴2

)
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (4.4) 

After the construction of the test feature vectors, we extracted the features that were 

identified in the training phase, applied the classifiers constructed earlier on the reduced 

test feature vectors and correspondingly assigned the associated cognitive task period 

either to 𝐴1 or 𝐴2. 

To be clearer, we constructed the algorithmic steps in tabular form (please see 

Tables 14 and 15) to capture the activity-specific timing parameter triplets, and the 

classification framework that we adopted in this chapter.  
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Table 14. The algorithmic steps for finding activity-specific timing parameter triplets. 

Algorithm-1: Finding Activity-Specific Timing Parameter Triplets 

Step-1 

For the channel pair (𝑖, 𝑗) , calculate inter-channel synchronizations for Δ𝑡 ∈
[0𝑚𝑠 2000𝑚𝑠], 𝜏 ∈ [−125𝑚𝑠 125𝑚𝑠]  via 𝑤 = 300𝑚𝑠  length sliding time window for 

each training task period of activity 𝐴. 

Step-2 Calculate the average the synchronization values across training task periods of activity 𝐴. 

Step-3 
Set the threshold to %99 quantile of average synchronization values. Then, compare each 

entry of average synchronization matrix with the threshold. 

Step-4 

Determine the timings of each of synchronization patterns remaining after thresholding. Use 

each one of these candidate timings to extract the signal segments from corresponding 

training task periods. 

Step-5 
Calculate the synchronization between the extracted signal segments. Apply 𝑡-test to these 

synchronization values to determine 𝑃-value of each timing parameter. 

Step-6 

Identify the timing parameter triplet for channel pair (𝑖, 𝑗) and activity 𝐴, which elicited the 

smallest 𝑃-value as activity-specific timing parameter triplet (i.e., {Δ𝑡𝑖,𝑗
𝐴 , 𝜏𝑖,𝑗

𝐴 , 𝑤𝑖,𝑗
𝐴 }). Repeat 

these calculations from the steps 1-6 for all channel pairs. 

Table 15. The algorithmic steps of the classification framework. 

Algorithm-2: The Classification Framework 

Step-1 Use 8-30 Hz bandpass filter and CAR to filter the data spectrally and spatially. 

Step-2 
Use Algorithm-1 to obtain the 𝐴1 activity-specific timing parameter triplets for each 

channel pair. 

Step-3 
Use Algorithm-1 to obtain the 𝐴2 activity-specific timing parameter triplets for each 

channel pair. 

Step-4 
Use both 𝐴1  and 𝐴2  activity-specific timing parameter triplets to construct training 

feature vectors. 

Step-5 
Calculate the Fisher ratio of each feature. Identify the features that elicited higher than 

mean plus two standard deviation of Fisher ratios of all features. 

Step-6 Train the classifiers by using reduced training feature vectors. 

Step-7 
Use both 𝐴1 and 𝐴2 activity-specific timing parameter triplets to construct reduced test 

feature vectors. 

Step-8 Determine the category of each test feature by using the classifier trained in step-6 
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4.2.3. Comparative Analysis Using Benchmark BCI Methods 

We employed conventional CSP and AR modelling methods to compare the 

performance of the proposed method. We calculated the CSP filters on the training task 

periods by setting the number of eigenvectors 𝑚 = 3 in accordance with the literature 

and filtered all training and test task periods by CSP filters (Blankertz et al. 2008). Then, 

we extracted the log-variance features from CSP-filtered task periods. For AR modelling, 

we used a least-squares method to calculate the univariate model coefficients over signal 

segments of one-second sliding time windows with %50 percent overlap and 

concatenated them together to incorporate the dynamic changes of the spectral 

information of the electrophysiological activity as adopted in past literature (Ince, Tewfik, 

and Arica 2007; Gürkan, Akan, and Seyhan 2014; Kuruoǧlu 2002; Golub and Saunders 

1970). We set the AR model order of each channel to six as in (Ince, Tewfik, and Arica 

2007; Anderson, Stolz, and Shamsunder 1998) unlike in (McFarland and Wolpaw 2008) 

due to the limited number of signal samples in the sliding time window. Next, we selected 

the most informative AR modelling features via Fisher’s ratio as adopted for the proposed 

method. We then trained the classifiers using the reduced training AR features. A similar 

feature extraction procedure was adopted for the test task periods. We finally used the 

reduced features for constructing the test feature vectors for performance evaluation. 

4.3. Results 

We used two distinct chronological cross-validation scenarios (i.e., scenario-1 and 

scenario-2) to evaluate the performance of our brain activity characterization method for 

different training set sizes as in (B. Orkan Olcay and Karaçalı 2019). We determined the 

activity-specific timing parameter triplets for each type of motor imagery activities by 

using the training task periods for each subject individually in both BCI Competition-Ⅲ 

dataset Ⅳa (i.e., right hand/right foot imagery movement) and PhysioNet dataset 

(right/left fist imagery movement). Afterwards, we constructed the synchronization-

based feature vectors by using these parameters as in Eq. (4.3) and (4.4) and carried out 
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training and testing procedures as described earlier. Average classification performances 

are shown in Table 16 and the performance comparison results are presented in Table 17. 

In Table 16, we presented the average performances obtained using the six 

different synchronization measures obtained via three different classifiers. In Table 17, 

we provided the maximum performances obtained via the currently proposed method, the 

earlier 𝜏-based method developed by our group (B. Orkan Olcay and Karaçalı 2019), the 

common spatial patterns (CSP) method (Ramoser, Müller-Gerking, and Pfurtscheller 

2000; Blankertz et al. 2008), and the univariate autoregressive (AR) modelling based 

method (Anderson, Stolz, and Shamsunder 1998). Note that the last two are the popular 

benchmark methods in the mental imagery activity related brain activity recognition 

literature (G. Pfurtscheller et al. 2000; Coyle, Prasad, and McGinnity 2005). The results 

show that the proposed method trails the earlier 𝜏-based and CSP methods on the BCI 

Competition-Ⅲ dataset Ⅳa dataset while surpassing them significantly on the PhysioNet 

dataset. Interestingly, the univariate AR model-based method no better than random 

classification for the most parts. 

In order to provide additional insights on these results, we identified the most 

frequently selected channel pairs during feature selection in scenario-2 that has a larger 

collection of training task periods. We then carried out unpaired two-tailed 𝑡-tests among 

the synchronization values between contending motor imagery task periods and obtained 

the 𝑃-values of these synchronizations for each subject. We corrected the 𝑃-values of the 

channel synchronizations via Benjamini-Hochberg’s (B-H) method to minimize the type-

I error rates observed during statistical testing (Benjamini and Hochberg 1995). Finally, 

we calculated the geometric means of the corrected 𝑃-values of the synchronization 

values for each channel pair across all subjects.  
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Table 16. Average correct classification rates obtained across 5 subjects for BCI 

Competition-3 dataset Ⅳa and first 20 subjects for PhysioNet Motor 

Movement/Imagery datasets. S1 and S2 represents scenario-1 and scenario-2, 

respectively. 

 

Performances of Synch. Measures (%) 

Cosine 
Wavelet-

BiCoh 
PLV PCV 

Linear 

MI 
Corr. 

B
C

I 
C

o
m

p
et

it
io

n
-Ⅲ

  
d

a
ta

se
t 

Ⅳ
a

 F
L

D
 

S1 
62.97 ± 

8.84 

62.12 ± 

6.86 

55.42 ± 

4.04 

61.48 ± 

8.18 

65.63 ± 

9.8 

65.85 ± 

9.1 

S2 
73.04 ± 

8.97 

63.69 ± 

8.26 

62.61 ± 

5.62 

66.95 ± 

11.77 

71.95 ± 

11.04 

73.91 ± 

9.19 

L
in

ea
r 

S
V

M
 

S1 
65.95 ± 

8.68 

66.06 ± 

7.32 

60.0 ± 

5.60 

62.97 ± 

6.23 

67.02 ± 

10.91 

67.55 ± 

7.67 

S2 
76.52 ± 

6.85 

64.34 ± 

7.66 

66.3 ± 

7.37 

69.56 ± 

10.92 

76.52 ± 

13.34 

75.43 ± 

12.82 

N
o

n
li

n
ea

r 
S

V
M

 

S1 
65.53 ± 

9.53 

66.48 ± 

5.92 

60.85 ± 

5.71 

61.7 ± 

6.05 

67.97 ± 

11.05 

65.95 ± 

9.74 

S2 
73.69 ± 

8.22 

70.21 ± 

9.11 

63.26 ± 

7.26 

69.78 ± 

9.19 

75.0 ± 

12.46 

73.91 ± 

8.48 

P
h

y
si

o
N

et
 M

o
to

r 
M

o
v

em
en

t/
Im

a
g

er
y

 D
a
ta

se
t 

F
L

D
 

S1 
56.33 ± 

10.19 

52.83 ± 

7.11 

50.67 ± 

5.14 

52.83 ± 

6.94 

55.33 ± 

11.2 

55.34 ± 

6.87 

S2 
61.0 ± 

10.65 

58.0 ± 

8.94 

54.67 ± 

13.43 

53.67 ± 

16.11 

59.33 ± 

13.66 

58.0 ± 

12.44 

L
in

ea
r 

S
V

M
 

S1 
62.0 ± 

15.3 

55.33 ± 

10.33 

52.67 ± 

7.76 

54.0 ± 

6.45 

58.33 ± 

14.69 

60.0 ± 

14.18 

S2 
63.67 ± 

13.76 

59.0 ± 

10.87 

54.33 ± 

10.2 

57.33 ± 

8.75 

63.67 ± 

13.41 

64.0 ± 

15.04 

N
o

n
li

n
ea

r 
S

V
M

 

S1 
63.5 ± 

15.08 

55.0 ± 

10.05 

53.33 ± 

6.75 

54.16 ± 

6.74 

60.33 ± 

14.62 

59.83 ± 

14.72 

S2 
65.33 ± 

13.61 

57.0 ± 

11.74 

54.67 ± 

10.5 

58.0 ± 

10.16 

60.67 ± 

13.13 

64.33 ± 

14.87 

  



112 
 

 

 

Table 17. Average correct classification rates of best performing configurations of  

maximum average   performances obtained from currently proposed 𝛥𝑡, 𝜏, 𝑤 

method along with 𝜏-based, CSP, and autoregressive methods. 

  Performance Comparison of Different Approaches (%) 

  

{𝚫𝒕, 𝝉, 𝒘}-based 

Method 

(Linear MI for BCI 

Comp-Ⅲ, cosine 

similarity for 

PhysioNet) 

𝝉-based Method 

 (B. Orkan Olcay 

and Karaçalı 2019) 

(With Kraskov’s 

Mutual Information 

for both dataset) 

CSP 

 (Ramoser, Müller-

Gerking, and 

Pfurtscheller 2000) 

(With log-variance 

features) 

Univariate AR 

Model 

(With model order 

as 6) 

  S1 S2 S1 S2 S1 S2 S1 S2 

B
C

I 
C

o
m

p
et

it
io

n
-Ⅲ

 d
a

ta
se

t 
Ⅳ

a
 

F
L

D
 65.63 ± 

9.8 

71.95 ± 

11.04 

76.69 ± 

12.88 

75.76 ± 

12.3 

82.33 ± 

11.46 

84.67 ± 

15.38 

54.68 ± 

6.16 

56.73 ± 

5.17 

L
in

ea
r 

S
V

M
 67.02 ± 

10.91 

76.52 ± 

13.34 

77.97 ± 

10.35 

81.89 ± 

11.8 

80.0 ± 

11.45 

83.91 ± 

17.33 

55.63 ± 

5.47 

60.86 ± 

4.0 

N
o

n
li

n
ea

r 

S
V

M
 67.97 ± 

11.05 

75.0 ± 

12.46 

75.0 ± 

10.52 

77.89 ± 

10.26 

82.12 ± 

12.61 

84.13 ± 

18.23 

54.14 ± 

4.22 

54.78 ± 

1.97 

P
h

y
si

o
N

et
 M

o
to

r 
M

o
v

em
en

t/
Im

a
g

er
y

 

D
a

ta
se

t 

F
L

D
 56.33 ± 

10.19 

61.0 ± 

10.65 

58.33 ± 

10.57 

59.33 ± 

15.12 

53.83 ± 

4.87 

55.65 ± 

9.97 

52.0 ± 

8.47 

53.67 ± 

14.74 

L
in

ea
r 

S
V

M
 62.0 ± 

15.3 

63.67 ± 

13.76 

58.50 ± 

10.78 

59.33 ± 

14.96 

57.66 ± 

14.11 

62.88 ± 

15.91 

51.83 ± 

10.84 

50.33 ± 

13.58 

N
o

n
li

n
ea

r 

S
V

M
 63.50 ± 

15.08 

65.33 ± 

13.61 

59.83 ± 

9.33 

59.67 ± 

15.21 

60.11 ± 

14.0 

64.0 ± 

16.47 

51.0 ± 

12.47 

48.0 ± 

12.72 
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The most significant three channel pairs and their corrected 𝑃-values obtained for 

BCI Competition-Ⅲ dataset Ⅳa were CCP5-CP3 (𝑝 < 0.001), C3-CCP3 (𝑝 < 0.001) 

and C5-CCP5 (𝑝 < 0.001) for right foot motor imagery, F3-CFC3 (𝑝 < 0.001), FFC3-

FC3 (𝑝 < 0.001), and FC1-C3 (𝑝 < 0.001) for right hand motor imagery tasks. The three 

channel pairs that reveals the most significant short-lived synchronization for the 

PhysioNet Motor Movement/Imagery dataset were FPz-FT7 (𝑝 > 0.05), FP2-FT7 (𝑝 >

0.05), and FP1-FT7 (𝑝 > 0.05) for left fist motor imagery, FPz-T10 (𝑝 > 0.05), FP2-F8 

(𝑝 > 0.05), and FP2-T10 for right fist motor imagery tasks. All the 𝑃-values obtained 

from the PhysioNet dataset are well above the significance threshold (𝑝 < 0.05). We 

performed second evaluation on the PhysioNet dataset by discarding the subjects that 

elicited the performance below 64% in scenario-2 in accordance with (Müller-Putz et al. 

2007; Athif and Ren 2019; Cheolsoo Park, Took, and Mandic 2014) revealed channel 

pairs with significant task-specific synchronizations: The three channel pairs that elicited 

the most significant synchronizations were FPz-FT7 (𝑝 < 0.05), FP2-FT7 (𝑝 < 0.05), 

and FP1-FT7 (𝑝 < 0.05) for left fist motor imagery, FP2-F8 (𝑝 < 0.05), FPz-F8 (𝑝 <

0.05), and FPz-T10 (𝑝 < 0.05) for right fist motor imagery tasks. 

In order to elucidate the temporal dynamics of task-specific short-lived channel 

synchronizations, we plotted the average synchronizations patterns that emerge on the 

CCP5-CP3 channel pair for right foot and the F3-CFC3 pair for right hand motor imagery 

activity obtained at different {Δ𝑡, 𝜏}  combinations for the subject 𝑎𝑙  of the BCI 

Competition-Ⅲ dataset Ⅳa during scenario-2. On the upper rows of Figure 22 and Figure 

23, we presented the average synchronization values calculated using different {Δ𝑡, 𝜏} 

parameters for the right foot and right hand motor imagery activities. On the lower rows, 

we presented the candidate synchronization patterns with a black pattern that exceeded 

the threshold value. The plots in these figures reveal that maximal synchronization is 

observed for this subjects CCP5-CP3 channels for 𝜏 = 0 and Δ𝑡 varying between 1540-

1860ms, corresponding to a timing parameter triplet of {Δ𝑡, 𝜏, 𝑤} = 

{1540ms, 0ms, 620ms}. Similarly, the synchronization pattern observed for channels 

F3-CFC3 corresponded to the timing parameter triplet {Δ𝑡, 𝜏, 𝑤} = 

{580ms, 0ms, 1240ms}.  
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Figure 22. (upper) The illustration of the averaged synchronization values between CCP5-

CP3 channels calculated for each {𝛥𝑡, 𝜏}  combination for right foot motor 

imagery activity. The green ellipse represents the candidate maximal 

synchronization pattern. (lower) The illustration of the candidate maximal 

synchronization pattern after thresholding. We used linearized mutual 

information method to calculate the synchronization values of subject al who 

elicited the most successful recognition performance for BCI Competition-Ⅲ 

dataset. The darker colors and the lighter colors in the upper figure representing 

low and high synchronization values, respectively.  
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Figure 23. (upper) The illustration of the averaged synchronization values between F3-

CFC3 channels calculated for each {𝛥𝑡, 𝜏} combination for right hand motor 

imagery activity. The green ellipse represents the candidate maximal 

synchronization patterns. (lower) The illustration of the candidate maximal 

synchronization patterns after thresholding. We used linearized mutual 

information method to calculate the synchronization values of subject al who 

elicited the most successful recognition performance for BCI Competition-Ⅲ 

dataset. The darker colors and the lighter colors in the upper figure 

representing low and high synchronization values, respectively.  
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Figure 24. (upper) The illustration of the averaged synchronization values between FPz-

FT7 channels calculated for each {𝛥𝑡, 𝜏}  combination for left fist motor 

imagery activity. The green ellipse represents the candidate maximal 

synchronization patterns. (lower) The illustration of the candidate maximal 

synchronization patterns after thresholding. We used cosine similarity method 

to calculate the synchronization values of subject S004 who elicited the one of 

the most successful recognition performances for the PhysioNet Motor 

Movement/Imagery dataset. The darker colors and the lighter colors in the 

upper figure representing low and high synchronization values, respectively.  
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Figure 25. (upper) The illustration of the averaged synchronization values between FP2-

F8 channels calculated for each {𝛥𝑡, 𝜏}  combination for right fist motor 

imagery activity. The green ellipse represents the candidate maximal 

synchronization patterns. (lower) The illustration of the candidate maximal 

synchronization patterns after thresholding. We used cosine similarity method 

to calculate the synchronization values of subject S004 who elicited the one of 

the most successful recognition performances for the PhysioNet Motor 

Movement/Imagery dataset. The darker colors and the lighter colors in the 

upper figure representing low and high synchronization values, respectively.  



118 
 

Likewise, we demonstrated both average synchronization values as well as the 

candidate synchronization patterns between channel pairs Fp2-F8 and FPz-FT7 of the 

best performer PhysioNet subject (S004) for both right and left fist motor imagery activity 

in Figure 24 and in Figure 25, respectively. Note that compared to the averaged 

synchronization patterns observed for the BCI Competition-Ⅲ dataset Ⅳa (subject 𝑎𝑙), 

these patterns are much noisier and the distinction between maximal synchronization 

pattern and the rest is much less clear. 

It is important note that the black lines observed for each different time lag are the 

candidate synchronization patterns obtained for different type of motor imagery tasks 

presented above. In Table 18 and Table 19, we presented the activity-specific timings for 

the most significant channel pairs identified for different motor imagery tasks for both 

BCI Competition-Ⅲ dataset Ⅳa and PhysioNet Motor Movement/Imagery dataset, 

respectively. Note that we presented the timings of all of the five subjects in former 

dataset; however, and we presented the timings of the subjects which exceeds 64% 

recognition performance in the latter. 

Table 18. The activity-specific timing parameter triplets obtained during scenario-2 using 

linearized mutual information metric for CCP5-CP3 channel pair for right foot 

and F3-CFC3 for right hand motor imagery activity (BCI Competition-Ⅲ 

dataset Ⅳa). 

Subject 

ID 

Right Foot Imagery Activity-

Specific Timing Parameter 

(CCP5-CP3) 

Right Hand Imagery Activity-

Specific Timing Parameter 

(F3-CFC3) 

Performance 

(at scenario-2) 

𝚫𝒕 (ms) 𝝉 (ms) 𝒘 (ms) 𝚫𝒕 (ms) 𝝉 (ms) 𝒘 (ms) 

aa 1590 0 520 220 0 580 67.39% 

al 1540 0 620 580 0 960 91.30% 

av 800 0 560 360 0 550 60.86% 

aw 1280 0 450 1730 0 570 73.91% 

ay 770 0 360 1460 0 820 89.13% 
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Table 19. The activity-specific timing parameter triplets obtained during scenario-2 using 

linearized mutual information for FPz-FT7 channel pair for left fist motor 

imagery activity and for FP2-F8 for right fist motor imagery activity (PhysioNet 

Motor Movement/Imagery dataset). We used the most successful eight subjects 

that elicited more than 64% performance (Müller-Putz et al. 2007). 

Subject 

ID 

Left Fist Imagery Activity-

Specific Timing Parameter 

(FPz-FT7) 

Right Fist Imagery Activity-

Specific Timing Parameter 

(FP2-F8) 

Performance 

(at scenario-2) 

𝚫𝒕 (ms) 𝝉 (ms) 𝒘 (ms) 𝚫𝒕 (ms) 𝝉 (ms) 𝒘 (ms) 

S001 0 0 563 0 0 518.8 73.33% 

S002 1912 0 387.5 31.3 0 493.8 80% 

S004 31 6.25 462.5 0 -6.25 500 86.67% 

S006 231 0 575 0 0 818.8 73.33% 

S007 0 0 493.8 0 0 650 73.33% 

S015 118.8 0 487.5 12.5 0 662.5 86.87% 

S018 0 0 512.5 0 -6.25 443.8 80% 

S020 225 -6.25 462.5 12.5 -6.25 431.3 73.33% 
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4.4. Discussion 

Our main motivation for proposing this method is based on the premise that the 

brain regions transiently interact with each other during periods of cognitive activity 

(Fries 2005; Andre M. Bastos, Vezoli, and Fries 2015). These reciprocal interactions may 

carry critical neural information which is vital for the generation of task-specific neural 

patterns within the brain. In our previous study, we calculated only the synchronization 

lags (𝜏) between the channel pairs which was found to be useful for characterizing the 

cognitive activity (B. Orkan Olcay and Karaçalı 2019). However, according to Bastos et 

al. and Fries et al., the activity-specific inter-regional interactions emerge and vanish in 

relatively short time intervals within the task periods. In order to track this behavior, in 

this study, we extended our earlier approach with the addition of two new timing 

parameters (i.e., the latency of maximal synchronization between channel pairs from 

activity onset (Δ𝑡), and duration of maximal synchronization among channel pairs (𝑤)) 

to characterize the cognitive activities. 

Since we do not know which synchronization measure would capture the actual 

neural synchronization patterns that emerge within the brain better, we tried six different 

synchronization measures and evaluated their performance in a motor imagery activity 

recognition framework. The reason for using these synchronization measures is that they 

elicited a better characterization performance in the past literature and that they had 

favorable computational properties. In the literature, there are many additional 

synchronization methods that have been used in various types of brain activity 

characterization studies. We believe that the six measures we have evaluated in our study 

covers the range of prominent and effective similarity measures well. 

Lastly, the majority of brain activity characterization studies in the literature use 

the entire task periods to calculate connectivity-based features. As depicted above, there 

is evidence in the literature that the task-related information is embedded within the signal 

pairs only for a limited duration. These finite-length signal pairs can thus be used to 

calculate several features such as common spatial patterns (CSP), power-based features, 

time domain features … etc. to further improve task recognition performances. 

In the light of these motivations, our method presented in this chapter determines 

and uses the activity-specific timing parameter triplets of the characteristic short-lived 

synchronization for each channel pair and each type of cognitive activity. In order to 
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determine the activity-specific timing parameter triplets for each channel pair and each 

type of cognitive activity, we adopted a heuristic search method that uses a 300ms-length 

sliding time window to calculate average the channel synchronizations across all task 

periods for different {Δ𝑡, 𝜏} parameter combinations. As a note, the timing parameter 

search that we adopted in this chapter increases the computation time in a quadratic 

manner in comparison with the previous chapter. We then evaluated the usefulness of the 

channel synchronizations calculated at activity-specific timing parameter triplets in a 

motor imagery task recognition setting by using them as features as well as via statistical 

comparisons of the channel synchronizations between the different cognitive tasks. Prior 

to the classification, we selected the most discriminative synchronization features for a 

better classification. We observed that, for both dataset, both adjacent and non-adjacent 

channel pairs remained after the feature selection which is in line with the fact that many 

different brain regions are involved to integrate information during cognitive tasks 

(Telesford et al. 2011; Mišić and Sporns 2016; Uhlhaas et al. 2009). The recognition 

performances as well as the statistical test results reveal several insights on connectivity 

based brain activity characterization as discussed below. 

4.4.1. Performance Evaluation and Comparison 

The average recognition performances obtained for six different synchronization 

metrics for both BCI Competition-Ⅲ dataset Ⅳa (right-foot / right-hand imagery) and 

PhysioNet Motor Movement/Imagery (right-fist / left-fist imagery) in Table 16 show that 

the linear mutual information and cosine-based similarity methods demonstrated the top-

ranking average performances for BCI Competition-Ⅲ dataset Ⅳa and PhysioNet 

datasets, respectively. This outcome indicates that these two synchronization metrics 

capture the timings of the characteristic synchronizations of the channel pairs more 

accurately than the other methods used in this chapter. 

In comparative performance evaluation, the CSP-based method ranked supreme 

on the BCI Competition-Ⅲ dataset Ⅳa as expected since a CSP-based approach was the 

winner of the competition. On the PhysioNet dataset, the proposed method surpasses CSP 

recognition performance which suggests that the CSP method may be overfitted to the 

BCI Competition data and may not necessarily do as well in other instances. In a detailed 
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manner, the CSP method exhibits satisfactory recognition performances when there is a 

conspicuous dichotomy between the spatio-spectral patterns (i.e., band powers of 

spatially localized activities) for contending cognitive activities. Unfortunately, the 

differences in the band powers are not clearly observed for the most cases of motor 

imagery-based BCI experiments. In such circumstances, the CSP method unable to show 

its discrimination ability. In comparison, the performance of the proposed method was 

more stable on both datasets. The univariate AR model based method, on the other hand, 

did not perform well despite its popularity in the literature. 

Note that the most likely reason for performances lower than 70% on the 

PhysioNet dataset may be the small number of task periods considering that even 30 task 

periods for training in scenario-2 may not be sufficient to extract reliable discriminative 

content. In the specific case of CSP these results suggest that the method could not find 

appropriate spatial filters to discriminate between different cognitive activities due to 

inaccurate estimates of spatial covariance matrices. Another possible reason for low 

performances on the PhysioNet dataset may be a low signal-to-noise ratio. In the 

literature, the studies that employs the PhysioNet dataset, in general, use noise/artifact 

removal methods to filter out the non-neural signals (Varsehi and Firoozabadi 2021). In 

such a case, it may be helpful to use various denoising techniques in the preprocessing 

step to identify and hopefully remove the noise component from the EEG signals 

(Hyvärinen and Oja 2000; Von Bünau et al. 2009; Jolliffe 1986). Despite these problems, 

it is noteworthy that the proposed method achieved the best performance among the four 

competing approaches on the PhysioNet dataset, indicating robustness against various 

pitfalls associated with changes in EEG procedures, equipment, or signal recording 

quality. Note also that, in the literature, the majority of the motor imagery activity 

recognition studies on the PhysioNet dataset report the performance results of only the 

well-performing subjects with recognition performances over 64% (Handiru and Prasad 

2016; Cheolsoo Park, Took, and Mandic 2014; Tolić and Jović 2013; Kim et al. 2016; 

Athif and Ren 2019). Note that, in this study, we showed the average performances of the 

first 20 subjects without any performance related elimination criteria to clarify the pros 

and cons of the proposed method along with the alternative techniques. 

The reason for the slightly lower performances obtained from the BCI 

Competition-Ⅲ (𝑓𝑠 = 100  Hz) dataset may probably be the result of an insufficient 

number of signal samples since we used only 30 samples (i.e., 300ms) for short-lived 

synchronization calculation. During calculation, using low number of samples lead to an 
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underestimation of synchronization (Fraschini et al. 2016; Sideridis et al. 2014). As an 

evidence, for the PhysioNet Motor Movement/Imagery dataset ( 𝑓𝑠 = 160  Hz), our 

{Δ𝑡, 𝜏, 𝑤}-based method achieved a better recognition performance than the other three 

methods. This result suggests that using an EEG recording system with a greater sampling 

frequency increases the resolution of the timing parameters to be captured for each 

channel pair and each activity type and also, inherently increases the number of samples 

in the 300ms-length time window which avoids underestimation of short-lived 

synchronization quite likely. 

In this comparison, the autoregressive modelling achieved the worst performance 

among the four methods used here. In the literature, several brain activity characterization 

studies underwent performance comparison with AR modelling-based method. As an 

example, Ince et al. compared the performance of their proposed method with AR 

modelling on the BCI Competition-Ⅲ dataset Ⅳa (Ince et al. 2009). During performance 

comparison, they adopted the procedure in (Song and Epps 2007). The performance 

results show that the AR modelling based method achieved a success rate of nearly ~%80. 

The main reason for the performance differences obtained during performance 

comparison via AR modeling method is that they adopted using separate frequency bands 

and different signal length for features extraction as in (Dornhege et al. 2004). 

4.4.2. Effect of Number of Training Task Periods 

It is apparent in Table 16 that as the number of training task period increases (in 

scenario-2), the performance of the proposed method increases considerably for most of 

the synchronization measures. This indicates that increasing the number of training task 

periods provides accurate capturing of the timing parameters of characteristic short-lived 

patterns. In the past BCI literature, a considerable amount of effort has been spent to 

overcome the problem caused by an insufficient number of training task periods (Jiao et 

al. 2019; Azab et al. 2019; H. Kang, Nam, and Choi 2009). The outcomes of the past 

literature suggest that the motor imagery related neural activity characterization methods 

requires a considerable number of training task periods to achieve a reliable performance. 
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4.4.3. Biophysical Relevance of the Significant Channels Pairs 

We provided the top three significant channel pairs as well as their geometric 

means of corrected 𝑃-values of timings of the activity-specific channel synchronizations 

obtained from training task periods of the BCI Competition-Ⅲ dataset Ⅳa and the 

PhysioNet Motor Movement/Imagery dataset in scenario-2. The most significant channel 

pairs identified for right foot motor imagery activity task mainly include the left central 

and left centro-parietal electrode pairs. As for right hand motor imagery activity, the most 

significant channel pairs include left frontal, left fronto-central and left central 

electrodes/electrode pairs. The analysis results suggests that, for right hand/foot imagery 

activities, the majority of the electrodes that constitute the significant pairs across all 5 

subjects are mainly located on the left hemisphere, which is consistent with the existing 

literature (Chung, Kim, and Kim 2011; Gonuguntla, Wang, and Veluvolu 2016; Chung, 

Kang, and Kim 2012). It is important to note that the determined channel pairs are located 

in contralateral region of performed imagery movement which is also consistent with the 

past literature (G. Pfurtscheller and Berghold 1989; Gert Pfurtscheller and Neuper 1997). 

The frontal electrodes obtained for BCI Competition-Ⅲ dataset Ⅳa during hand 

motor imagery activity collect electrophysiological activity mainly from prefrontal 

regions such as supplementary motor area (SMA), precentral motor area (PMA), inferior 

frontal gyrus (IFG), medial precentral gyrus (hand representation area), middle frontal 

gyrus (MFG) which are known to be higher order information processing and 

coordination (Hétu et al. 2013; Ehrsson, Geyer, and Naito 2003; Chung, Kang, and Kim 

2012; Lotze et al. 1999), and motor planning and preparation centers of the hand 

movement imagination (Chang hyun Park et al. 2015; Hanakawa 2016; Halder et al. 2011; 

Lotze et al. 1999). Among these regions, PMA is declared as to be the most critical region 

on performance of hand and foot motor imagery as well as motor execution in motor 

imagery training studies (H. Zhang et al. 2011; Pilgramm et al. 2016). The activity levels 

of the aforementioned regions was shown to be strongly correlated with SMR-related BCI 

performance (Halder et al. 2011). 

The central electrodes mainly collect electrophysiological activity from the 

primary motor (M1) and sensorimotor (S1) regions (Dechent, Merboldt, and Frahm 2004) 

that are generally believed to be activated during hand motor imagery task periods (Lotze 
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et al. 1999; Xu et al. 2014; Carrillo-de-la-Peña, Galdo-Álvarez, and Lastra-Barreira 2008; 

Q. Gao, Duan, and Chen 2011). 

The parietal regions obtained during both hand and foot motor imagery tasks 

including the inferior parietal lobule (IPL), superior parietal lobule (SPL), precuneus, and 

postcentral gyrus also play important roles such as sensory integration hub, online 

movement/imagination control, motor attention (especially in motor planning), and motor 

imagery activity production (Xu et al. 2014; Hétu et al. 2013; H. Zhang et al. 2011; 

Pilgramm et al. 2016). Among these regions, the postcentral gyrus and precuneus regions 

play a central role in episodic memory retrieval which is thought to be critical especially 

in visual motor imagery modality (H. Zhang et al. 2011), and the activity levels of IPL 

and SPL are known to vary according to the specific type of hand actions (Pilgramm et 

al. 2016). 

As for the PhysioNet dataset, we presented the frequently observed significant 

channel pairs and their geometric means of 𝑃-values for the first 20 subjects for left fist 

motor imagery activity are generally the left frontal, left fronto-temporal and left temporal 

electrodes. Similarly, the frequently observed significant channel pairs for the first 20 

subjects during right fist imagery activities include right and left frontal and right frontal 

as well as temporal electrodes, respectively. Although these biophysical as well as 

statistical findings mainly falls at odds with the current biophysical literature on the 

right/left hand motor imagery activity that points to the significance of the contralateral 

connectivity patterns during motor imagery tasks, there are several important biophysical 

studies that found ipsilateral activations/synchronization profiles as significant (Q. Gao, 

Duan, and Chen 2011; Kraeutner et al. 2014; Brunner et al. 2006; Alanis-Espinosa and 

Gutiérrez 2020) especially for the novice participants (Milton et al. 2007). 

These ipsilateral synchronization patterns that observed both in our study and 

some of the past literature might be due to several reasons. The first reason may be due 

to the excessive information flow from parietal to frontal regions. Menicucci et al. 

realized that a significant amount of information flow occurs towards the frontal areas to 

compensate for the imagination inability during kinesthetic motor imagery task 

(Menicucci et al. 2020). These information overflow may produce several unexpected 

short-lived synchronization patterns within the frontal/fronto-temporal electrodes. 

Similarly, another reason of observing frontal synchronization patterns is the increased 

activity of dorsolateral prefrontal cortex, which is a key brain region of central executive 

network, during cognitively demanding tasks (C. F. Lu et al. 2011). As another viewpoint, 
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the reason for the emergence of synchronization/activation of rarely or never observed 

channel pairs may be due to an inability to plan or execute motor imagery properly or 

failure to perform kinesthetic/visual motor imagery (Bauer et al. 2015; Gu et al. 2020). 

Another reason may be the insufficient number of training task periods available used in 

statistical analysis: in the PhysioNet dataset, there are only 45 motor imagery activity task 

periods for each subject. With a greater number of motor imagery task periods, more 

reliable and consistent as well as biophysically relevant channel pairs may be expected to 

emerge. Furthermore, as also suggested by Xie et al., subject-specific but task un-specific 

synchronization modulations may be present and associated with the emergence of 

unanticipated channel pairs (Xie et al. 2018). Similarly, Demuru et al. speculated that the 

aperiodic parts of EEG signal contains subject-specific activation/synchronization 

patterns (Demuru and Fraschini 2020). It is possible that task-specific synchronization 

modulations as well as the task relevant channel pairs can be obtained by filtering the 

subject-specific modulations (Allen et al. 2014). 

Besides the biophysical factors, there are some important subjective factors for 

this ambiguity. The results obtained from PhysioNet dataset may be affected from the 

inherent condition of the human brain. The participants’ “mind sets” cannot be expected 

to be fully isolated from internal (e.g., concentration, focusing momentarily on other 

issues, some accompanying thoughts, etc.) or external (any minor external trigger etc.) 

factors, which may then cause the electrophysiological organization of the brain to 

fluctuate substantially between successive task periods. Alternatively, change of the 

imagination strategy such as from kinesthetic imagery to visual imagery or vice versa by 

the participants during the experiment may significantly alter the information processing 

scheme and thus inter-regional synchronization timings of the brain which may cause 

performance deterioration as illustrated in (Christa Neuper et al. 2005). 

4.4.4. Effect of Time Lag on the Characterization Performance 

We presented the average synchronization, and the candidate synchronization 

patterns in Figures 22-25. Interestingly, these figures and also the timings parameters (see 

Table 18 for BCI Competition-Ⅲ dataset Ⅳa and Table 19 for PhysioNet results) show 

that the short-lived synchronization patterns are emerged and vanished at different 



127 
 

timings but more importantly, the time lag between the corresponding signals segments 

is near or exactly equal to zero. This suggests that the brain systematically organizes the 

synchronization between the primarily task-related regions at zero-lag for effective as 

well as efficient information transfer during a cognitive task. Similar outcomes were 

observed in (Roelfsema et al. 1997) that the brain itself dynamically adjusts the 

synchronization lag between its visual-specific regions to zero during visual stimulus 

presentation to integrate the neural information into coherent representational states. The 

zero-lagged synchronization between task-related regions may constitute evidence of the 

information relaying mechanism that organizes the synchrony dynamically to transfer the 

neural information among the cortical and subcortical structures reliably via 

thalamocortical and/or hippocampal circuits. This mechanism overcomes the delay 

interference induced by information transfer between distant structures of the brain 

(Vicente et al. 2008). 

The channel pairs that we identified as the most significant for BCI Competition-

Ⅲ dataset Ⅳa (CCP5-CP3 for right foot activity, and F3-CFC3 for right hand activity), 

and for PhysioNet Motor Movement/Imagery dataset (FPz-F7 for left fist activity, and 

FP2-F8 for right fist activity) are relatively close to each other as demonstrated in Figure 

26. 

 

Figure 26. Illustration of the electrode montages of both PhysioNet and BCI Competition-

Ⅲ dataset Ⅳa. The electrodes that marked with red star was found as 

significant channel for one cognitive activity, and the electrodes marked with 

blue star was found as significant for another cognitive activity. 
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Since the aforementioned electrodes are placed relatively close to each other, they tend 

to collect the electrophysiological activities from overlapping cortical structures. In this 

circumstance, the most probable reason why the time lag between these channel pairs is 

near or equal to zero for each subject is the volume conduction problem which hampers 

the actual time lag between these channel pairs (André M. Bastos and Schoffelen 2016; 

Tognoli and Kelso 2009). To minimize the effects of volume conduction, we used the 

common average referencing (CAR) method before the short-lived synchronization 

calculation (McFarland et al. 1997; Tsuchimoto et al. 2021). However, as Cohen stated, 

there is no perfect method that completely eliminates the effects of volume conduction 

(M. X. Cohen 2015). In order to achieve a slightly better characterization performance, 

more advanced spatial filtering techniques are required albeit with a greater 

computational cost (Rathee et al. 2017). 

Although the volume conduction appeared as the primary reason, we actually do 

not know the exact timings (Δ𝑡, 𝜏, and 𝑤) of the activity-specific synchronization for each 

channel pair. In our results, we observed zero-lagged short-lived synchronization for the 

most significant channel pair which is not necessarily completely due to volume 

conduction phenomena. For instance, Witham et al. observed in the monkeys that the 

movement-related cortical synchronization between relatively close areas emerges at zero 

time lag (Witham, Wang, and Baker 2007). 

It is important to highlight that, not all channel pairs synchronize at zero time lag. 

The channel pairs presented in Tables 18 and 19 in this study, were the most statistically 

significant in terms of their short-lived interactions (as the result of 𝑡-tests), and also, 

these channels are the one of most frequently selected channel pairs as features (according 

to the Fisher ratio) for each activity type. In addition to these channel pairs, there are also 

other channel pairs that elicit significant synchronization with an inter-channel time lag 

different from zero. 

We  performed an extra analysis and observed that not only adjacent but also non-

adjacent channels may elicit zero-lag synchronization. We used several channel pairs that 

were used in previous motor imagery activity recognition studies. We determined the 

activity-specific timings of these channel pairs for each different cognitive activity, and 

we calculated the channel synchronizations to use in a motor activity recognition 

framework. In a previous synchronization-based motor imagery activity characterization 

study, both adjacent and non-adjacent channel pairs were used (Q. Wei et al. 2007). In 

that study, the channels Fz and its neighbors (Cluster-1), C3 and its neighbors (Cluster-
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2), and C4 and its neighbors (Cluster-3) achieved the best recognition accuracy. These 

electrodes are known to collect the electrophysiological activity from left and right 

primary motor, sensorimotor, premotor and prefrontal cortices which are actively 

engaged in motor imagery tasks (Decety 1996; Chung, Kang, and Kim 2012; Munzert, 

Lorey, and Zentgraf 2009b). We paired the channels (i.e., Cluster-1 ↔ Cluster-2, Cluster-

1 ↔ Cluster-3, and Cluster-2 ↔ Cluster-3) contained in different clusters without 

considering the intra-cluster channel pairs, providing a total of 85 non-adjacent channel 

pairs (please see Table 20 for the channels). Please note that since the EEG recording 

system that was used to collect BCI Competition-Ⅲ dataset Ⅳa did not contain the AFz 

electrode, we included both AF3 and AF4 electrodes instead of AFz. 

Table 20. The electrode clusters of BCI Competition-Ⅲ dataset Ⅳa and PhysioNet 

dataset according to CB2 subset. This clusters contain C3, C4, and Fz channels 

and their nearest neighbors. 

Cluster-1 Cluster-2 Cluster-3 

Fz C3 C4 

AF3 FC3 FC4 

AF4 CP3 CP4 

F1 C5 C6 

F2 C1 C2 

FCz - - 

We showed the time lags of the channel synchronizations for each of the 85 pairs during 

right hand motor imagery activity in Figure 27. Note also that, for synchronization 

calculation, we used linear MI which appeared as the most successful measure for BCI 

Competition-Ⅲ dataset Ⅳa on the average. The “*” symbol above or below the time lag 

bars indicates that the timing parameter triplet elicited statistically significant 

synchronization for that channel pair for right hand motor imagery activity.  
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Figure 27. The illustration of time lag parameters for short-lived synchronization of non-

adjacent channels for right hand motor imagery activity for subject al (for 

linear MI). Note that the ‘*’ symbol above or below the lag representation bar 

plots denotes that the synchronization of corresponding channel pair is 

statistically significant (P < 0.05). 

We repeated the time lag estimation for the correntropy method for the subject al for 

which we observed the highest performance (93.47%). We showed the correntropy results 

in Figure 28 below. 

 

Figure 28. The illustration of time lag parameters for short-lived synchronization of non-

adjacent channels for right hand motor imagery activity for subject al (for 

correntropy). Note that the ‘*’ symbol above or below the lag representation 

bar plots denotes that the synchronization of corresponding channel pair is 

statistically significant (P < 0.05). 



131 
 

In these figures, it is clear that not only the adjacent channel pairs synchronized at zero 

lag but also several non-adjacent channel pairs significantly synchronized at zero-lag 

along with several other pairs for which activity-specific synchronization occurred at non-

zero time lags. 

In addition to the above analysis, we obtained 1452 pairwise short-lived 

synchronizations as significant. Among these synchronizations 391 of them demonstrated 

non-zero time lag for linear mutual information method. Furthermore, for the correntropy 

method, out of the 1757 significant pairwise synchronizations, 1017 of them 

demonstrated non-zero time lag. These results points that the main source of lag between 

the EEG signals as identified by the synchronization measure of choice is the delay 

between electrophysiological signals generated by the brain during cognitive tasks 

according to a timing organization (Hari and Parkkonen 2015). 

This shows that the brain adjusts the timings of the synchronizations according to 

the task demands in the associated regions with communication-through-coherence 

hypothesis. This hypothesis suggests that the brain generates temporal communication 

windows by maximizing the temporal synchronization among its regions for task-specific 

neural information transfer (Andre M. Bastos, Vezoli, and Fries 2015; Fries 2005). These 

inter-areal communication windows integrate the processed segregated information. We 

observed that the timings of the short-lived maximal synchronization elicited significantly 

different synchronizations for different types of motor imagery activities. The differences 

of the timing parameters triplets are thought to be the result of different neural 

mechanisms taking place for different activities. In (Z. Gao et al. 2019), it was 

demonstrated that neural synchronizations calculated at normal conditions show a 

significant difference when calculated in a fatigue mood. This shows that neuronal 

conditions exhibit significant alteration between different brain states, and this alteration 

affects the neural synchronization dynamics. In a similar vein, Salyers et al. showed that 

different task conditions requires different network coordination (Salyers, Dong, and Gai 

2019). 

Another possible mechanism, which characterizes the organization of the zero 

lagged synchrony between cortical circuits, is the spike-timing dependent plasticity 

(STDP). Basically, the STDP interplay the synchronization regimes between the sender-

receiver brain regions (i.e. delayed synchronization (DS) and anticipated synchronization 

(AS)) to organize the information transfer lag (i.e., synchronization lag) by altering the 
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activation degree of inhibitory neural structures placed within the information-receiving-

end regions (Matias et al. 2015). 

Besides the above descriptions pointing the significance of zero-lagged brain 

synchronizations among primarily task-related regions, we previously provided that there 

exist a systematic time lag organization between the brain regions which means that not 

all pairs of brain regions simultaneously synchronized at zero lag (B. Orkan Olcay and 

Karaçalı 2019). To stress the necessity of considering a time-lag analysis, we urgently 

conducted another classification analysis using the same datasets. In this analysis, we 

neglected the time lag (i.e., 𝜏) between the EEG channels and assumed that the maximal 

channel synchrony always occurs simultaneously (i.e., at 𝜏 = 0) and at specific latency 

(Δ𝑡) and time window (𝑤) for each channel pair and each type of motor imagery activity. 

The performance results presented in Table 21 shows that the recognition performances 

obtained using {Δ𝑡, 𝜏, 𝑤}-based method is greater than the performances obtained by 

considering zero time lag (i.e., considering only {Δ𝑡, 𝑤}). These results suggest that not 

all of the brain regions synchronized at zero-lag during cognitive tasks. This outcome 

stresses the importance of the considering time-lagged synchronization between the brain 

regions during characterization. 

Another interesting thing that was observed in Figures 22 and 23 is that, apart 

from the time-lag that the maximal short-lived synchronization emerged, there are short-

lived synchronization patterns that emerged at different time-lags which are observed as 

periodic red colors at different time lags. These red-colored synchronization patterns 

emerged at different time lags throughout the motor imagery tasks may indicate an inter-

areal communication patterns in both feedforward and feedback directions which may 

also supports the hypothesis of the communication through coherence with inter-areal 

time lags (Andre M. Bastos, Vezoli, and Fries 2015). Further analysis should be 

conducted to uncover the exact mechanism of these inter-areal communication patterns.  
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Table 21. The recognition performances obtained when inter-channel time lags are/are 

not considered. 

  Average Recognition Performances (%) 

  FLD Linear SVM Nonlinear SVM 

  S1 S2 S1 S2 S1 S2 

P
h

y
si

o
N

et
 

(c
o

si
n

e)
 

{𝚫𝒕, 𝝉, 𝒘} 
56.33 ± 

10.19 

61.0 ± 

10.65 

62.0 ± 

15.33 

63.67 ± 

13.76 

63.5 ± 

15.08 

65.33 ± 

15.08 

{𝚫𝒕,𝒘} 
58.5 ± 

12.54 

58.67 ± 

13.08 

61.16 ± 

13.07 

60.0 ± 

14.98 

61.83 ± 

13.44 

65.67 ± 

14.55 

B
C

I 
C

o
m

p
.-

Ⅲ
 

(L
in

ea
r 

M
I)

 {𝚫𝒕, 𝝉, 𝒘} 
65.63 ± 

9.8 

71.95 ± 

11.04 

67.02 ± 

10.91 

76.52 ± 

13.34 

67.97 ± 

11.05 

75.0 ± 

12.46 

{𝚫𝒕,𝒘} 
65.0 ± 

9.38 

71.08 ± 

11.74 

67.12 ± 

9.0 

74.78 ± 

12.01 

65.95 ± 

10.71 

74.13 ± 

11.59 

4.4.5. Biophysical Evidences for Considering Latency (𝚫𝒕) and Duration 

(𝒘) Parameters 

The electrophysiological signals acquired from controlled biophysical 

experiments show that the brain activation/synchronization patterns from any external (or 

internal) stimulation would continue for hundreds of milliseconds (Güdücü et al. 2019; 

Bilal Orkan Olcay et al. 2017; Schack, Weiss, and Rappelsberger 2003). For instance, it 

was shown during dichotic auditory stimulations that intra-hemispheric reciprocal 

auditory processing occurs first, followed by inter-hemispheric communication across the 

corpus callosum, and finally by the posterior-frontal communication to evaluate the 

complex nature of the stimulus (Bayazit et al. 2009). Similar results were obtained in the 

literature that the visual input is processed reciprocally between different brain regions 

which produces a complex short-lived synchronization patterns on the alpha band. The 

temporal complexity of the inter-areal synchronization may point the importance of 

adaptive organization of neural information processing (Bola, Gall, and Sabel 2015). 
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Similarly, comparison of motor imagery and motor execution tasks shows that different 

temporal brain dynamics arise for each type of task (Solomon et al. 2019). In a similar 

manner, a single pulse TMS-EEG (transcranial magnetic stimulation) study reveals that 

during the finger movement, inferior frontal cortex establishes causal synchronization 

first with fronto-parietal regions and then with the default mode network (Zanon, 

Borgomaneri, and Avenanti 2018). This shows, among other things, that the bottom-up 

stimulus/cognitive task processing is embraced with top-down higher-level content 

assessment. But more importantly, it signifies that the reactions of different and distant 

brain regions to stimulus/cognitive task manifest according to a temporal order (Dawson 

2004). The temporal order of short-lived synchronization between brain regions may be 

a signature of the transitory behavior of the changes of synchronization between brain 

areas which sub-serve an efficient short-lasting brain coordination (S. I. Dimitriadis, 

Laskaris, and Tzelepi 2013). These discussions point the importance of considering 

latency (Δ𝑡) as well as duration (𝑤) parameters during the analysis of characteristic brain 

synchronization. 

As an important point, it was presented in Tables 18 and 19, the latency (Δ𝑡) and 

duration (𝑤 ) parameters vary considerably across the subjects. According to the 

information provided by the two datasets that we used in our study; these subjects 

performed only motor imagery tasks associated with the command provided by the 

experimenter (Goldberger et al. 2000; Dornhege et al. 2004). 

The variation of these parameters is thought to be due to the different mental 

strategies adopted by the subjects during these tasks (Friedrich, Scherer, and Neuper 

2012; Kilintari et al. 2016). Differences in mental strategies among the subjects can be 

observed in the timing parameter triplets identified for each mental task and channel pair. 

Please note that the latency (Δ𝑡) and duration (𝑤) parameters are thought to be indicators 

of temporal processing of the task-related information in the brain. The timing parameters 

(Δ𝑡, 𝜏, and 𝑤) are systematically adjusted according to the mental strategies that the 

subjects adopt. 

It is important to note that the subject’s condition may also have a significant 

impact on these parameters in addition to the task requirements. Especially the latency Δ𝑡 

parameter is inevitably affected by several important factors such as the subject’s 

command perception time, and initialization time to motor imagination, which may cause 

random variations from trial to trial during motor imagery tasks. 
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Our reasoning in seeking the optimal timing parameters using the average 

synchronization values is based on the premise that since perception and task initiation 

are subjective parameters and vary randomly according to the aforementioned reasons, 

averaging of synchronization values ought to minimize these task-unspecific (i.e., 

subject-specific) variations and allow capturing the task-specific timing parameters. The 

performance results, which we presented in the manuscript, show that, especially in 

scenario-2 that uses a greater number of training task periods, we elicited a better 

recognition performance than obtained in scenario-1. 

4.4.6. Using Different Synchronization Measures 

We tried six different synchronization measures to evaluate which 

synchronization measure captures the timings of the most informative short-lived 

synchronization. We used cosine based similarity (Sargolzaei et al. 2015; B. Orkan Olcay 

and Karaçalı 2019; Herff et al. 2019), phase locking value (Lachaux et al. 1999; Varela 

et al. 2001), phase coherence value (Tass et al. 1998; Bakhshayesh et al. 2019b), wavelet 

bi-coherence (Makarov et al. 2018; Alexander E. Hramov et al. 2015), linearized mutual 

information (S. H. Jin, Lin, and Hallett 2010; Montalto, Faes, and Marinazzo 2014), 

cross-correntropy (Liu, Pokharel, and Principe 2007; Santamaría, Pokharel, and Principe 

2006; Principe 2010). The choice of these similarity metrics to evaluate channel 

synchronization was also in part due to its computational efficiency, along with its success 

both in past studies and also in our previous study as revealed by the recognition 

performances. The differences observed in the recognition performances for each metric 

(please see Table 16 and performance results in (B. Orkan Olcay and Karaçalı 2019)) is 

due to the differences of the timing parameters captured by each of the synchronization 

method. The main reason of such diversity of captured triple parameters is that each 

method extracts and uses different aspects of the signal features to calculate the 

synchronization in mathematical manner.  

Alternative measures can also be evaluated such, phase lag index (PLI) (Cornelis 

J. Stam, Nolte, and Daffertshofer 2007), imaginary part of coherency (imCOH) (Nolte et 

al. 2004), transfer entropy (TE) (Wibral, Vicente, and Lindner 2014; Wibral et al. 2013; 

Schreiber 2000), coherence (COH) (Rocca et al. 2014; Wendling et al. 2009; 
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Bakhshayesh et al. 2019a; Greenblatt, Pflieger, and Ossadtchi 2012; Sakkalis 2011), 

cross-sample entropy (Gomez et al. 2016), eigenvalue-based synchrony measures (Jalili, 

Barzegaran, and Knyazeva 2014) and synchronization likelihood (C. J. Stam and Van 

Dijk 2002). The short-lived synchronization calculation adopted here can also be 

calculated via Kraskov’s mutual information estimation method (Kraskov, Stögbauer, 

and Grassberger 2004) which elicited the best performance in our previous study (B. 

Orkan Olcay and Karaçalı 2019). However, calculating the mutual information between 

the signal segments via Kraskov’s method requires huge amount of computation time 

which may be unsuitable for a short-lived synchronization-based BCI application. 

However, advanced parallel computing architectures as well as efficient computation 

algorithms can be incorporated here to overcome the computation speed issues of the 

Kraskov’s mutual information estimation. 

4.4.7. Future Directions of the Proposed Method 

As for the potential extension of the methodology proposed here to brain-

computer interfacing applications, it should be noted that the core of the method relies on 

identifying the channel pairs with significantly different synchronization characteristics 

during different activities in terms of optimal activity-specific timing parameters. Clearly, 

once the activity-specific timing parameter triplets and channel pairs are identified from 

a training set, they can be used as features in a connectivity-based BCI framework. First 

and foremost, filtering of the EEG signals into 8-30 Hz frequency band is consistent with 

many BCI studies where the motor imagery related information is sought within the 

frequency range of 8-30 Hz (Yuan and He 2014; Lafleur et al. 2013; McFarland and 

Wolpaw 2008). Several studies used a filter-bank structure or wavelet-based methods 

prior to the feature extraction to obtain frequency-resolved features for motor imagery 

related brain activity characterization (Kumar, Sharma, and Tsunoda 2017; S. H. Park, 

Lee, and Lee 2018; Higashi and Tanaka 2013). Clearly, a filter-bank strategy or 

maximally overlap discrete wavelet transform analysis may also be incorporated here 

prior to the synchronization calculation, allowing analysis of different frequency bands 

in the sense of the activity-specific timing parameter triplets and the related channel pairs 

(S. H. Park, Lee, and Lee 2018; Ang et al. 2008; Walden and Contreras Cristan 1998). 
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For instance, the role of 𝜇 and 𝛽 bands during motor imagery activity was revealed in 

earlier studies (Gu et al. 2020; Athanasiou et al. 2018). Also, Gu et al. found that during 

lower extremity motor imagery trials, right and left foot imagination revealed 

significantly different 𝜇 and 𝛽 band networks/subnetworks (Gu et al. 2020). Also, the 𝜇 

rhythm dynamics have been associated with the motor imagery related information 

processing among the motor cortical regions (Başar et al. 2001; Llanos et al. 2013). 

However, increase in the spectral resolution entails substantial computational cost, 

requiring repeated calculations for each frequency band. Alternatively, since wavelet-

based methods have also been used in the brain activity analysis (O. A. Rosso et al. 2006; 

Emre Cek, Ozgoren, and Acar Savaci 2010; Osvaldo A. Rosso et al. 2001; Nguyen-Ky et 

al. 2012), frequency-resolved activity-specific short-lived synchronization can also be 

identified over time-frequency scalograms of the EEG channels (Z. Gao et al. 2019; 

Osvaldo A. Rosso et al. 2001), albeit with a similar computational cost. 

As an extension, our method can reliably be considered in human-computer 

interaction such as gesture recognition applications. Up to now, many different 

conspicuous efforts have been spent to increase the accuracy of gesture recognition 

applications (G. Li, Li, et al. 2019; Ying Sun et al. 2020). In this respect, brain 

synchronization/activation features can additionally be adopted to increase the 

recognition accuracy. Once the important EEG channel pairs and the corresponding 

movement-specific inter-regional synchronization timings are determined in training 

phase, our method can reliably be used in conjunction with current surface EMG-based 

gesture recognition methods to achieve improved movement identification performances 

and thus be used in hand motion controlled devices. In a similar manner, the proposed 

timing-based brain activity analysis method can also be used to detect brain lesions, which 

may cause significant alterations of inter-regional communication patterns (G. Li, Jiang, 

et al. 2019). 

On a final note, it should be emphasized that, the approach presented here deviates 

significantly from the majority of the brain activity characterization studies in the 

literature that aim to extract characteristic synchronization-based features for different 

motor imagery tasks using whole activity periods (Anderson, Stolz, and Shamsunder 

1998; Feng et al. 2018; Lemm et al. 2005). Notably, a critical issue can arise when using 

the whole activity periods to determine activity-specific brain patterns. Although the 

exact time of initiation and end cue for motor imagery activity is known in synchronous 

BCI experiments, the initiation and end time of the reciprocal information processing can 
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be different for each different pairs of brain regions (Curran and Stokes 2003). That means 

the activity-related localized activation/synchronization dynamics may emerge and 

disappear in a short period of time thanks to the activity-specific timing organization. In 

the literature, few studies address this issue. Zhang et al. proposed a temporally 

constrained sparse group spatial pattern method to locate the time window where the 

short-lived frequency-specific patterns emerge (Yu Zhang et al. 2019). Ang et al. 

proposed an information-theoretic method to determine the optimal time window and 

frequency band simultaneously to characterize the motor imagery periods accurately 

(Ang et al. 2012). Wang et al. proposed a Kullback-Liebler divergence based method to 

identify the most informative time segment for EEG signal classification (J. Wang et al. 

2020; 2018). Hsu et al. adopted a wavelet-based active segment selection strategy to 

isolate the most informative features from the EEG signals recorded over sensorimotor 

regions (Hsu et al. 2007). Feng et al. proposed a correlation-based optimal time segment 

selection for CSP based BCI applications (Feng et al. 2018). These studies, however, used 

time windows of fixed duration, usually 1 or 2 seconds, and calculated features to be used 

in a classification setting to decide which time window is the most informative based on 

their discrimination ability. This approach may assume that the statistics of EEG activity 

do not change in a considerable extent (Bullmore and Sporns 2009). Furthermore, this 

strategy disregards variations in the duration of the brain’s responses. In this chapter, 

optimal latency (Δ𝑡), time lag (𝜏) and duration (𝑤) of the coupling were determined to 

capture activity-specific inter-channel synchronization for each motor imagery activity 

type and each channel pair, addressing both issues listed above to their full complexity. 
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CHAPTER 5 

COGNITIVE ACTIVITY RECOGNITION BY USING 

CLUSTERS OF TRANSIENTLY SYNCHRONIZED EEG 

CHANNELS 

The brain is the citadel of the senses, 

This guides the principles of thoughts 

-Pliny the Elder- 

5.1. Introduction 

In the previous chapters, following the similar way of Friston et al. (Karl J. Friston 

2000), we highlighted the importance of considering the time-sensitive brain 

synchronization analysis to reveal how the cognitive functions are generated (Burgess 

2011). The main outcomes of the previous chapter tell us that brain systematically adjusts 

the timings of inter-regional synchronizations to generate desired cognitive processes. 

It is argued that the characteristic inter-regional synchronization may constitute a 

hierarchical organization among the brain regions (Ravasz and Barabási 2003). The 

hierarchical clusters that emerged within the brain regions constitutes the transient neural 

communication channels for information integration and segregation (C. Zhou et al. 2006; 

Miraglia, Vecchio, and Rossini 2018). Along with these findings, in this chapter, we 

aimed to capture this transiently synchronized activity-specific hierarchical channel 

networks and use them for a cognitive activity characterization. 

In this method, we initially captured the activity-specific inter-channel 

synchronization timings (i.e., {Δ𝑡
𝑖,𝑗

𝐴1/2 , 𝜏
𝑖,𝑗

𝐴1/2 , 𝑤
𝑖,𝑗

𝐴1/2}). To that end, we used the same 

optimization method described in Chapter 4. Next, we used agglomerative hierarchical 

clustering method to obtain the channel groups (i.e., clusters) by considering their average 

short-lived activity-specific synchronizations. We characterized these channel groups via 

first order statistical features. We used unpaired two-tailed 𝑡 -tests to determine the 
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activity-specific transiently synchronized channel groups. We used activity-specific 

channel groups to recognize the cognitive task. 

5.2. Proposed Method 

In this chapter, we again used six different synchronization measure to calculate 

short-lived brain synchronizations. The synchronization measures are listed as follows: 

• Cosine-based similarity (B. Orkan Olcay and Karaçalı 2019; Sargolzaei et al. 

2015; Herff et al. 2019) 

• Linearized mutual information (S. H. Jin, Lin, and Hallett 2010) 

• Kendall’s tau correlation (M. Kendall 1938; M. G. Kendall 1946) 

• Phase locking value (Lachaux et al. 1999) 

• Phase coherence value (Tass et al. 1998; Bakhshayesh et al. 2019b) 

• Cross-correntropy (Liu, Pokharel, and Principe 2007; Santamaría, Pokharel, and 

Principe 2006) 

Note that we used the same heuristic optimization procedure as in Chapter 4 to determine 

the inter-channel activity-specific timing parameter triplets. 

5.2.1. Determination of Hierarchical Channel Clusters 

We used the activity-specific timing parameter triplets, which was calculated in 

the previous chapter (i. e. , {Δ𝑡𝑖,𝑗
𝐴1 , 𝜏𝑖,𝑗

𝐴1 , 𝑤𝑖,𝑗
𝐴1} and {Δ𝑡𝑖,𝑗

𝐴2 , 𝜏𝑖,𝑗
𝐴2 , 𝑤𝑖,𝑗

𝐴2}) , to calculate the 

pairwise synchronizations matrices Σ for each corresponding training task period and 

channel pair (𝑖, 𝑗). The mathematical expression of the synchronization matrices is given 

as  
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Σ𝐴1|𝐴1(𝑖, 𝑗; 𝑘) = 𝑆 (𝑠
𝑖,𝑘

Δ𝑡𝑖,𝑗
𝐴1 ,𝑤𝑖,𝑗

𝐴1

, 𝑠
𝑗,𝑘

Δ𝑡𝑖,𝑗
𝐴1+𝜏𝑖,𝑗

𝐴1 ,𝑤𝑖,𝑗
𝐴1

) 

Σ𝐴2|𝐴2(𝑖, 𝑗;𝑚) = 𝑆 (𝑠
𝑖,𝑚

Δ𝑡𝑖,𝑗
𝐴2 ,𝑤𝑖,𝑗

𝐴2

, 𝑠
𝑗,𝑚

Δ𝑡𝑖,𝑗
𝐴2+𝜏𝑖,𝑗

𝐴2 ,𝑤𝑖,𝑗
𝐴2

) 

(5.1) 

where Σ𝐴1|𝐴1(𝑖, 𝑗; 𝑘) denote the synchronization calculated for the training task 𝑘 ∈ 𝐼𝐴1 

(𝑚 ∈ 𝐼𝐴2) by using the 𝐴1-specific timing parameter triplet for the channel pair (𝑖, 𝑗) and, 

𝐼𝐴1 denote the indices of the training task periods belongs to 𝐴1 activity. After finding the 

pairwise synchronization matrices, we calculated their average as 

Σ̅𝐴1|𝐴1(𝑖, 𝑗) =
1

|𝐼𝐴1|
∑ Σ𝐴1|𝐴1(𝑖, 𝑗; 𝑘)

𝑘∈𝐼𝐴1

 

Σ̅𝐴2|𝐴2(𝑖, 𝑗) =
1

|𝐼𝐴2|
∑ Σ𝐴2|𝐴2(𝑖, 𝑗;𝑚)

𝑚∈𝐼𝐴2

 

(5.2) 

where |𝐼𝐴1/2| denote the total number of training task periods belong to 𝐴1/2 activity. We 

then applied agglomerative hierarchical clustering to averaged synchronization matrices 

to obtain the channel clusters. We used all the three linkage methods since we do not 

know the actual hierarchical organization among the brain regions. The cluster similarity 

between channel groups 𝐼 and 𝐽 can be calculated for the complete linkage as 

𝑆(𝐼, 𝐽) = min
𝑖∈𝐼,𝑗∈𝐽

Σ̅(𝑖, 𝑗) (5.3) 

for the single linkage as  
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𝑆(𝐼, 𝐽) = max
𝑖∈𝐼,𝑗∈𝐽

Σ̅(𝑖, 𝑗) (5.4) 

and finally, for the average linkage as 

𝑆(𝐼, 𝐽) =
1

𝑀𝐼𝑀𝐽
∑ Σ̅(𝑖, 𝑗)

𝑖∈𝐼,𝑗∈𝐽

 (5.5) 

where 𝑀𝐼 and 𝑀𝐽 are the total number of EEG channels inside the clusters 𝐼 and 𝐽. For 

the BCI Competition-Ⅲ dataset Ⅳa, we obtained 117 clusters for each different linkage 

method and activity type which are represented as {𝐶
𝑙𝑖𝑛𝑘𝑎𝑔𝑒

𝐴1/2 (𝑥)}
𝑥=1

117

. For the PhysioNet 

dataset, we obtained 63 clusters. In this study, we use three linkage methods which means 

we obtained 351 and 189 clusters for each activity type for BCI Competition-Ⅲ dataset 

Ⅳa and PhysioNet datasets, respectively. Note that, among the 351 clusters obtained for 

the BCI Competition-Ⅲ dataset (189 for PhysioNet), some of the clusters may appear 

similar to each other. In such a case, we kept one replica of the similar clusters and throw 

the other replicas out. 

5.2.2. Activity Recognition Framework 

The flow diagram of hierarchical clustering based activity recognition framework 

is presented in Figure 29. In the training phase of the proposed method, in the first step, 

we captured the activity-specific timing parameter triplets for each channel pair and 

activity type (i. e., {Δ𝑡𝑖,𝑗
𝐴1 , 𝜏𝑖,𝑗

𝐴1 , 𝑤𝑖,𝑗
𝐴1} and {Δ𝑡𝑖,𝑗

𝐴2 , 𝜏𝑖,𝑗
𝐴2 , 𝑤𝑖,𝑗

𝐴2}) as in the previous chapter. In 

the second step, we obtained the hierarchical channel clusters for each activity type as 

described above. In the third step, for each training task period, the pairwise 

synchronizations between the channels in each cluster obtained for 𝐴1/2  activity was 

calculated using the timing parameters specific to respective channel pairs for 𝐴1/2 

activity. Then, these pairwise synchronizations were used to calculate six statistical 
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features (i.e., mean, maximum, minimum, %75 quantile, median, %25 quantile) to 

characterize the corresponding clusters. The feature vector 𝜉ℓ for the training task period 

ℓ can be expressed as 

𝜉ℓ =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐹𝑚𝑒𝑎𝑛(Σ

𝐴1(𝑖, 𝑗; ℓ)|𝐶𝐴1(1))

𝐹𝑚𝑎𝑥(Σ
𝐴1(𝑖, 𝑗; ℓ)|𝐶𝐴1(1))

⋮
𝐹𝑞25(Σ

𝐴1(𝑖, 𝑗; ℓ)|𝐶𝐴1(1))

𝐹𝑚𝑒𝑎𝑛(Σ
𝐴1(𝑖, 𝑗; ℓ)|𝐶𝐴1(2))

⋮
𝐹𝑞25(Σ

𝐴1(𝑖, 𝑗; ℓ)|𝐶𝐴1(2))

⋮
𝐹𝑞25(Σ

𝐴1(𝑖, 𝑗; ℓ)|𝐶𝐴1(𝑀 − 1))

𝐹𝑚𝑒𝑎𝑛(Σ
𝐴2(𝑖, 𝑗; ℓ)|𝐶𝐴2(1))

𝐹𝑚𝑎𝑥(Σ
𝐴2(𝑖, 𝑗; ℓ)|𝐶𝐴2(1))

⋮
𝐹𝑞25(Σ

𝐴2(𝑖, 𝑗; ℓ)|𝐶𝐴2(1))

𝐹𝑚𝑒𝑎𝑛(Σ
𝐴2(𝑖, 𝑗; ℓ)|𝐶𝐴2(2))

⋮
𝐹𝑞25(Σ

𝐴2(𝑖, 𝑗; ℓ)|𝐶𝐴2(2))

⋮
𝐹𝑞25(Σ

𝐴2(𝑖, 𝑗; ℓ)|𝐶𝐴2(𝑀 − 1))]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (5.6) 

where 𝐹(Σ|𝐶) calculates the feature by using the pairwise synchronizations Σ  of the 

channel pairs that is contained in the cluster 𝐶. At the end of these feature extraction step, 

we obtained 1404-dimensional training feature vectors for the BCI Competition-Ⅲ 

dataset, and 756-dimensional for the PhysioNet. As feature selection, we performed a 

two-tailed unpaired 𝑡 -test between the statistical features calculated from the 

synchronization values calculated using 𝐴1/2 -specific timing parameter triplets and 

clusters separately. Then, we used Benjamini-Hochberg to correct the resulting 𝑃-values 

against multiple comparison problem (Benjamini and Hochberg 1995). We selected and 

used the significant features (i.e., 𝑃 < 0.05) for classifier training. 
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Figure 29. The demonstration of the block diagram of the proposed brain activity 

characterization method. Red and green square represented the training task 

periods with known classes while yellow square representing the test task 

periods with unknown class. 

In the test phase of the proposed recognition framework, we used activity-specific 

timing parameter triplets to calculate short-lived pairwise synchronization values for each 

test task period. For each test period, we obtained the feature vector 𝜉 as 
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𝜉 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐹𝑚𝑒𝑎𝑛(Σ

𝐴1(𝑖, 𝑗)|𝐶𝐴1(1))

𝐹𝑚𝑎𝑥(Σ
𝐴1(𝑖, 𝑗)|𝐶𝐴1(1))

⋮
𝐹𝑞25(Σ

𝐴1(𝑖, 𝑗)|𝐶𝐴1(1))

𝐹𝑚𝑒𝑎𝑛(Σ
𝐴1(𝑖, 𝑗)|𝐶𝐴1(2))

⋮
𝐹𝑞25(Σ

𝐴1(𝑖, 𝑗)|𝐶𝐴1(2))

⋮
𝐹𝑞25(Σ

𝐴1(𝑖, 𝑗)|𝐶𝐴1(𝑀 − 1))

𝐹𝑚𝑒𝑎𝑛(Σ
𝐴2(𝑖, 𝑗)|𝐶𝐴2(1))

𝐹𝑚𝑎𝑥(Σ
𝐴2(𝑖, 𝑗)|𝐶𝐴2(1))

⋮
𝐹𝑞25(Σ

𝐴2(𝑖, 𝑗)|𝐶𝐴2(1))

𝐹𝑚𝑒𝑎𝑛(Σ
𝐴2(𝑖, 𝑗)|𝐶𝐴2(2))

⋮
𝐹𝑞25(Σ

𝐴2(𝑖, 𝑗)|𝐶𝐴2(2))

⋮
𝐹𝑞25(Σ

𝐴2(𝑖, 𝑗)|𝐶𝐴2(𝑀 − 1))]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (5.7) 

We reduced the feature vector by selecting the similar features that was found as 

significant in feature selection step of training phase. At the final step, we determined the 

category of corresponding test period by classifying its reduced feature vector. 

5.3. Results 

In order to evaluate the performance of the proposed method for varying sizes of 

the training task periods, we performed a chronological partitioning on the datasets as in 

previous chapters. The recognition performances for different synchronization measures 

for both scenario-1 and scenario-2 are provided in Table 22. We also provided the most 

three successful performances using correntropy method for BCI Competition-Ⅲ dataset 

Ⅳa, and linearized mutual information for PhysioNet Motor Imagery datasets in Table 

23.  
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Table 22. The average performances of the proposed clustering based framework 

calculated across 5 subjects from BCI Competition-Ⅲ dataset Ⅳa and first 

20 subjects from PhysioNet Motor Movement/Imagery datasets. We again 

used three different classifiers, FLD, Linear SVM, and Nonlinear (Gauss) 

SVM. 

 

Scenario-1 Performances (%) Scenario-2 Performances (%) 

FLD 
Linear 

SVM 

Gauss 

SVM 
FLD 

Linear 

SVM 

Gauss 

SVM 

B
C

I 
C

o
m

p
et

it
io

n
-Ⅲ

  
d

a
ta

se
t 

Ⅳ
a

 

Cosine 
59.89 ± 

7.75 

64.04 ± 

8.93 

65.42 ± 

8.88 

69.78 ± 

10.2 

70.86 ± 

9.94 

70.43 ± 

9.61 

Linear MI 
68.93 ± 

5.48 

69.14 ± 

8.23 

66.06 ± 

5.85 

69.56 ± 

9.69 

70.0 ± 

11.74 

68.26 ± 

8.5 

Correntropy 
63.08 ± 

6.69 

67.12 ± 

6.88 

67.87 ± 

5.24 

67.17 ± 

5.77 

71.73 ± 

9.72 

69.34 ± 

9.04 

PLV 
56.06 ± 

6.07 

61.80 ± 

5.65 

62.34 ± 

5.92 

63.91 ± 

7.42 

65.21 ± 

8.93 

66.95 ± 

6.27 

PCV 
62.23 ± 

5.43 

62.02 ± 

4.82 

65.53 ± 

7.89 

61.73 ± 

9.64 

63.91 ± 

13.47 

62.17 ± 

11.12 

Kendall 
61.14 ± 

4.87 

66.44 ± 

6.26 

65.49 ± 

6.01 

67.51 ± 

7.21 

67.09 ± 

8.78 

66.36 ± 

7.41 

P
h

y
si

o
N

et
 M

o
to

r 
M

o
v

em
en

t/
Im

a
g

er
y

 

Cosine 
55.17 ± 

8.41 

59.83 ± 

11.82 

61.5 ± 

10.78 

57.33 ± 

12.86 

62.67 ± 

15.65 

64.0 ± 

16.52 

Linear MI 
57.83 ± 

10.55 

62.33 ± 

12.38 

61.83 ± 

11.26 

59.33 ± 

9.40 

63.0 ± 

15.36 

60.67 ± 

13.49 

Correntropy 
57.67 ± 

10.15 

60.5 ± 

13.16 

61.67 ± 

12.86 

56.0 ± 

11.11 

61.67 ± 

15.87 

60.0 ± 

16.61 

PLV 
52.17 ± 

5.85 

54.0 ± 

7.91 

53.17 ± 

7.91 

52.67 ± 

11.0 

54.67 ± 

9.07 

56.0 ± 

10.0 

PCV 
51.83 ± 

5.45 

55.67 ± 

8.72 

54.67 ± 

7.61 

59.33 ± 

9.88 

60.0 ± 

12.97 

60.33 ± 

11.74 

Kendall 
54.12 ± 

7.41 

59.54 ± 

9.72 

58.62 ± 

8.85 

56.74 ± 

9.64 

60.05 ± 

11.34 

59.54 ± 

10.63 
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Table 23. The highest three performances obtained for BCI Competition-Ⅲ dataset Ⅳa 

and PhysioNet Motor Movement/Imagery datasets. 

 Scenario-1 Performances (%) Scenario-2 Performances (%) 

Dataset ID FLD 
Linear 

SVM 

Nonlinear 

SVM 
FLD 

Linear 

SVM 

Nonlinear 

SVM 

B
C

I 
C

o
m

p
et

it
io

n
-Ⅲ

 

(C
o

rr
en

tr
o

p
y

) 

𝒂𝒍 68.61 76.06 75.0 67.39 79.34 72.87 

𝒂𝒗 63.29 63.82 65.95 73.91 75.0 64.13 

𝒂𝒚 70.44 72.87 71.27 71.73 81.52 83.69 

P
h

y
si

o
N

et
 

(L
in

ea
r 

M
I)

 

S002 73.33 70.0 73.33 66.67 80.0 73.33 

S007 63.33 56.67 66.67 60.0 86.67 73.33 

S015 66.67 93.33 86.67 86.67 80.0 86.67 

The average recognition performance results obtained for both datasets show that 

the proposed clustering based method is no better than the performances of the methods 

described in previous chapters. We also showed, however, that the method achieved 

satisfactory recognition performances (especially in scenario-2) for some of the subjects 

both in BCI Competition-Ⅲ dataset Ⅳa and PhysioNet Motor Movement/Imagery 

datasets. 

We also demonstrated the most selected three clusters as characteristic features 

for the subjects that elicited the highest performances for both datasets in Figures 30-35. 

Note that, in these figures, the EEG electrodes inside the corresponding cluster are marked 

by a red star on the location where the corresponding electrode located. The black dots 

represent the remaining electrodes. We organized the cluster plots in these figures from 

up to down according to their significance level.  
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Figure 30. The first three significant cluster obtained subject al of BCI Competition-Ⅲ 

(scenario-2).  
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Figure 31. The first three significant cluster obtained subject av of BCI Competition-Ⅲ 

(scenario-2).  
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Figure 32. The first three significant cluster obtained subject ay of BCI Competition-Ⅲ 

(scenario-2).  
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Figure 33. The first three significant cluster obtained subject S002 of PhysioNet dataset 

(scenario-2).  
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Figure 34. The first three significant cluster obtained subject S007 of PhysioNet dataset 

(scenario-2).  



153 
 

 

 

 

 

Figure 35. The first three significant cluster obtained subject S015 of PhysioNet dataset 

(scenario-2)  
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We finally analyzed the selected (i.e., significant) clusters and observed that the 

25% quantile statistical feature appeared as the most prominent feature that makes the 

channel clusters as the most statistically significant one. 

5.4. Discussion 

In this chapter, we studied a novel cognitive activity characterization framework 

that finds and uses the channel clusters according to their short-lived pairwise 

synchronizations of the EEG channels. To this end, we first determined the activity-

specific timing parameter triplets for each channel pair and activity type as in the previous 

chapter. Then, we calculated the task-specific average synchronization matrices. These 

matrices were then used to obtain the hierarchical channel clusters. We characterized 

these clusters with several statistical features and determined the activity-specific features 

via two-tailed unpaired 𝑡-tests. In order to evaluate the characterization performance of 

the proposed method, we tested our method in a motor imagery activity recognition 

framework as in previous chapters. We presented the average performances results across 

five subjects for BCI Competition-Ⅲ dataset Ⅳa and, the first 20 subjects for PhysioNet 

Motor Movement/Imagery datasets in Table 22. These results show that correntropy and 

linearized mutual information methods achieved better recognition performances for the 

BCI Competition-Ⅲ dataset Ⅳa and the PhysioNet Motor Movement/Imagery dataset, 

respectively. As an important point, the recognition performances in scenario-2 

apparently higher than the performances in scenario-1 which means our method may elicit 

satisfactory recognition performances for larger training sets. 

In comparison with the performances of the cognitive task recognition methods 

proposed in previous chapters, however, the clustering-based method achieved slightly 

lower performances. It is apparent that the shortcomings (i.e., low sample size, low signal-

to-noise ratio, …) noticed in the previous chapters can be the source of these low 

recognition performances obtained here. In addition to these, it may be another significant 

reason that the synchronization measures found as successful in this study was not the 

same measures found in the previous chapter. 

Here, we captured the activity-related channel clusters from the training task 

periods by only considering the average short-lived pairwise channel synchronization 
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values. In the analysis of the synchronization timings of channel pairs, we observed that 

the majority of the channel pairs synchronized at distinct time instants. In that context, 

the characterization of the bunch of synchronized channels in activity-related clusters by 

disregarding the timings failed to provide accurate task recognition performance. As a 

solution, the channel clustering criteria (only the short-lived synchronizations) may be 

upgraded by inserting a criterion of “synchronization timing of channel pairs” for 

capturing the clusters with collectively synchronized channels. 

It is obvious that the maximal performance obtained from both datasets was 

significantly different from each other. Among the other reasons, the difference in the 

number of EEG channels used for collecting electrical activity may have an influence on 

this performance difference (Wierzgała et al. 2018). This may suggest that using an EEG 

system having much denser electrodes may provide spatially more detailed 

synchronization features that is expected to provide biophysically meaningful clusters of 

synchronized channels. 

Another reason for the low recognition performance obtained from the PhysioNet 

dataset is maybe the session-to-session variability problem mainly faced in BCI systems. 

We used a chronological cross validation (training sessions and test sessions are different) 

to simulate a realistic brain activity recognition scenario. In the literature, many studies 

addressed the difficulties of the recognition of cognitive tasks collected at different 

sessions which impose challenges on brain activity characterization due to the alteration 

of the dynamics of the EEG signal across different recording sessions (Gowreesunker et 

al. 2009; Saha et al. 2018a). 

As depicted in previous chapters and in (Olcay and Karaçalı, 2019), the common 

approach of the BCI studies that employs the PhysioNet dataset is the elimination of the 

performances which are lower than ~64% (Athif and Ren 2019; Kim et al. 2016; Cheolsoo 

Park, Took, and Mandic 2014) or adopting blind signal decomposition methods as 

preprocessing (Varsehi and Firoozabadi 2021). Again, in here, we neither applied any 

performance elimination criteria not adopted using blind signal decomposition methods. 

Besides the average performance results, we presented the most three successful 

performances for both the PhysioNet and BCI Competition-Ⅲ dataset in Table 23 to 

examine the powerful sides of our method. The performances obtained for the subjects 

S002, S007 and, S015 for PhysioNet, and 𝑎𝑙 , 𝑎𝑤 , and 𝑎𝑦  for BCI Competition-Ⅲ 

datasets show that the proposed method somehow captured relevant features during  
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characterization of imagery movement of upper and lower extremities for a limited 

number of subjects. 

The clusters captured from three successful subjects for the BCI Competition-Ⅲ 

dataset mainly contain left central, left centroparietal electrodes for the right foot, and left 

central, frontocentral, and centroparietal regions for right hand motor imagery activity. It 

is important to note that, except the subject 𝑎𝑣, while the right foot clusters obtained from 

these subjects are appeared to be more localized in the sense of contained electrodes, the 

right hand clusters are comprised of electrodes from several regions of the brain which 

means that our method could not capture the right hand-specific clusters. 

The contralaterality of the obtained foot channels/channel clusters obtained for 

BCI Competition-Ⅲ dataset Ⅳa were similarly observed in previous chapter and in past 

literature (Chung, Kim, and Kim 2011; Gonuguntla, Wang, and Veluvolu 2016). Also, 

the importance and related functionality of the electrodes captured for right foot clusters 

(left centro-parietal and central electrodes) were described in previous chapter (Dechent, 

Merboldt, and Frahm 2004; Q. Gao, Duan, and Chen 2011; Xu et al. 2014; Hétu et al. 

2013; Sirigu et al. 1996). For the PhysioNet dataset, however, we could not capture 

consistently localized and biophysically relevant electrodes for both right and left fist 

motor imagery activities since the clusters of all successful subjects contain majority of 

all EEG electrodes. 

As an improvement, this study may be repeated by using a frequency-resolved 

EEG signals to capture frequency-specific clusters for each activity type since different 

cognitive processes evoke the exhibit inter-regional communication in different 

frequency tones (Rahman and Fattah 2020; Ziaeemehr et al. 2020). For our study, it is 

beneficial to calculate frequency-specific timing parameter triplets as well as significant 

channel clusters to reveal more informative activity-specific features. However, in such 

a case the time required to obtain the timing parameters and clusters from the training 

data would increase. 

In this study, we tried to identify the activity-related channel clusters that exhibit 

significant short-lived functional interactions between the among the constituent 

channels. This approach can be assumed as a channel subset selection procedure which 

can used channel subset selection for accurate characterization (Royer et al. 2010; J. Jin 

et al. 2019; Varsehi and Firoozabadi 2021). As an improvement, adopting upgraded 

channel clustering method may both improve the characterization performance and 

greatly reduces the time required to extract connectivity-based features. 
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We observed that the 25% quantile feature was mostly selected feature type for 

characterizing the clusters obtained for the right foot, and minimum for the right hand 

motor imagery activities. However, the linkage methods of the significant clusters were 

dependent on the subjects (i.e., subject-specific) (Jeunet et al. 2015). In order to capture 

subject-unspecific channel clusters, some filtering operations may be required to for 

capturing activity-specific clusters (Xie et al. 2018; Allen et al. 2014). 
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CHAPTER 6 

CAPTURING THE TIMINGS FOR ENTROPIC 

CHARACTERIZATION OF COGNITIVE ACTIVITIES 

As long as our brain is a mystery, the universe, 

the reflection of the structure of the brain will also be a mystery 

-Santiago Ramon y Cajal- 

6.1. Introduction 

In the previous chapters, we proposed several synchronization-based cognitive 

activity characterization methods that capture the timings of characteristic brain 

synchronizations. Their relatively low recognition performance and their vast amount of 

computation time requirements for capturing the activity-specific synchronization 

timings indicate that these methods are not considerable as feature extraction methods for 

BCI frameworks in their present form. To that end, in this chapter, we propose a novel 

entropy-based cognitive activity recognition frameworks. Their prominent advantages 

from BCI perspective are: 1) They achieve better recognition performances, 2) They 

require much less computation time than previously proposed methods. On the other 

hand, more importantly, their methodological advantages are they aim to capture the 

timings of frequency-resolved brain oscillations that the provides the useful information 

for recognition of ongoing cognitive tasks. 

In this chapter, we propose a time-sensitive feature extraction perspective for 

cognitive activity characterization as adopted in (J. Li et al. 2016). Our method considers 

the fact that the characteristic features of each cognitive activity are encoded in a 

particular temporal region of electrophysiological signals at each different spatial location 

and frequency band as in (Rezaie et al. 2011; S. M. Rao, Mayer, and Harrington 2001; X. 

Ma et al. 2020). The motivation behind adopting this perspective is based on the premise 

that the brain carries out information processing transiently and also, it performs 

information integration by establishing reciprocal synchronizations between its regions 
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for a short period of time. As a result, brain regions get involved in information integration 

mechanisms at different timings, which reveal activity-specific patterns for characterizing 

the ongoing brain activity (Schack, Weiss, and Rappelsberger 2003; Hari and Parkkonen 

2015; Bayazit et al. 2009). As evidence, Mishuhina et al. stated that different cognitive 

tasks elicit different temporal patterns. According to this fact, they proposed a method 

that incorporates the temporal dynamics into a CSP-based motor imagery discrimination 

(Mishuhina and Jiang 2021). Similarly, Gao et al. used Kolmogorov entropy features to 

discriminate different motor imagery tasks between them. The authors used a short-live 

sliding window to calculate the entropies and fed them to a support vector machine 

classifier. They showed that the maximal discrimination is obtained for a short duration 

within the task period (L. Gao, Wang, and Chen 2013). 

In that context, by using the training tasks, our method presented in this chapter 

captures the timings of relevant temporal regions where the activity-specific patterns 

emerged. Then, our method extracts these characteristic features for both training and test 

task periods by using these timings. The timing parameters that we determine for each 

activity type and channel are: Δ𝑡 and 𝑤 parameters denote the latency and duration of the 

signal segment where the activity-specific features are embedded, respectively. Please 

note that we determined the activity-specific timings by evaluating the entropies, which 

proves its efficiency in the previous brain-computer interface and neurological disorder 

studies (Güdücü et al. 2019; X. S. Zhang, Roy, and Jensen 2001; Emre Cek, Ozgoren, 

and Acar Savaci 2010; Bilal Orkan Olcay et al. 2017; Vivot et al. 2020; Román Baravalle, 

Rosso, and Montani 2018; L. Gao, Wang, and Chen 2013; Zeng et al. 2018; Abásolo et 

al. 2006; Kannathal et al. 2005). Briefly, entropy provides useful information about the 

complexity of the underlying dynamical process associated with the ongoing cognitive 

activities (Osvaldo A. Rosso 2007) and some neurophysiological disorders (Thul et al. 

2016). An additional point is that the neural complexity is in correlation with the brain’s 

functional connectivity (D. J. J. Wang et al. 2018b). These two different perspectives (i.e., 

complexity and functional connectivity) related to the information processing capacity of 

the brain. In this sense, McDonough et al. stated that the greater entropy is related to the 

greater neural activity complexity which possesses great potential for information 

processing especially at larger spatial scales (McDonough and Nashiro 2014). Previous 

studies have demonstrated that distinct pathological cases, as well as cognitive status, 

produce distinct nonlinear dynamics on physiological signals which can be detected by 

entropy measures (Labate et al. 2013; Zeng et al. 2018). 
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Figure 36. Illustration of activity-specific timings for activity A and channel i filtered by 

f. Note that f ∈ {f1, f2, ...,f9}. 

Our method adopts a heuristic optimization to determine the activity-specific 

timing parameter pairs (i.e., latency and duration) by evaluating the entropy calculated 

for each latency calculated for each channel and frequency band in a probabilistic manner 

as in (Lemm, Schäfer, and Curio 2004) and (Schalk et al. 2008). After the evaluations, 

the timings of the most significant entropy patterns were identified for each channel and 

frequency band. The graphical illustration of the timing parameter pairs (i.e., 

{Δ𝑡𝑖(𝑓)
𝐴 , 𝑤𝑖(𝑓)

𝐴 }) obtained for activity type 𝐴, channel 𝑖 that was filtered by 𝑓 were given in 

Figure 36. 

Please note that, we will recall the EEG channel indexed by 𝑖 that is filtered by 𝑓 

as channel 𝑖(𝑓) (as demonstrated in Figure 36) in the upcoming parts of this chapter. The 

remainder of this paper is organized as follows: In Section 6.2, we provided the details of 

the operational pipeline of the proposed framework and the details of capturing activity-

specific timing parameter pairs. In Section 6.3, we presented the recognition performance 

as well as the comparative analysis results. In Section 6.4, we discuss the outcomes for 

the proposed framework. The final section concludes the chapter. 

6.2. Proposed Method 

The operational pipeline related to this proposed method is given in Figure 37. As 

the first step of the proposed cognitive activity characterization framework, we used a 
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filter bank structure with 9 finite-impulse-response (FIR) bandpass filters (S. H. Park, 

Lee, and Lee 2018; Ang et al. 2008). The cut-off frequencies and the names of each 

bandpass filter provided in Table 24. 

Table 24. The frequency ranges and names of the filters used in FIR in the filter bank 

structure. 

Filter Name 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 

Cut-off 

Frequencies 

(Hz) 

4-8 8-12 12-16 16-20 20-24 24-28 28-32 32-36 36-40 

The main reason for using the FIR filter is to avoid the distortion of the activity-specific 

timings to be captured for each different frequency band due to the phase distortion effect 

during the filtering the EEG signals (Jian, Chen, and McFarland 2017). In our past study 

(B. Orkan Olcay and Karaçalı 2019), we filtered the EEG signals into 8-30 Hz band to 

obtain sensorimotor rhythms for connectivity analysis of motor imagery activities. Here, 

we divided the frequency spectrum into narrower frequency bands to obtain a better brain 

activity characterization performance as recommended in (Gysels, Renevey, and Celka 

2005) since EEG dynamics associated with the cognitive tasks distributed across multiple 

frequency bands (Ang et al. 2008). 
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Figure 37. Illustration of flow diagram of the activity recognition framework. 

In the training phase, we first filtered each channel of all the training task periods 

into nine distinct frequency bands (i.e., 𝑓1, … , 𝑓9) (please see Table 24 for the cut-off 

frequencies). Then, in the Entropy Calculation block, for each training task period ℓ and 

channel 𝑖(𝑓), we calculated the entropies of the signal segments that falls within the 

fixed-length sliding time window according to Δ𝑡 parameter (please see Figure 38). Note 

that we set the length of the time window as 300ms as in (Bola, Gall, and Sabel 2015; 

Roelfsema et al. 1997). The entropy values calculated for each task period, latency and 

filtered channel can be expressed as 

𝐸𝑖(𝑓)(Δ𝑡, ℓ) = 𝐻̂(𝑠𝑖(𝑓)(𝑡ℓ)|𝑡ℓ∈[Δ𝑡,   Δ𝑡+300𝑚𝑠]) (6.1) 

where 𝐻̂(⋅)  represents the entropy estimator, 𝐸𝑖(𝑓)(Δ𝑡, ℓ)  denotes the entropy value 

estimated for the signal segment, which is extracted from training task period ℓ, channel 

𝑖(𝑓), that starts from Δ𝑡 milliseconds from the activity onset (i.e., 𝑡ℓ = 0) and lasts for 

300ms. Note that, we used Vasicek’s bias-corrected estimation method when obtaining 

the entropies of the signal segments (Vasicek 1976; Ibrahim Al-Omari 2014). Also note 
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that, we maintained the entropy calculation by sliding the time window by an amount of 

one sample at each step starting from Δ𝑡 =  0𝑚𝑠 (activity onset) to the Δ𝑡 = 𝑇 − 300𝑚𝑠 

as illustrated in Figure 38. In here, 𝑇 denotes the end time of the activity. 

 

Figure 38. Demonstration of sliding time window used for calculating the entropies. Note 

that at each calculation step, we slide the window by an amount of one sample 

until the end of the window reaches the end of the task period. 

In the Determination of Activity-Specific Entropic Timings block, we obtained the timing 

parameter pairs (i. e., {Δ𝑡
𝑖(𝑓)

𝐴1/2 , 𝑤
𝑖(𝑓)

𝐴1/2})  for each channel 𝑖(𝑓)  and activity 𝐴1/2  that 

addresses the signal segment which provides activity-specific entropy values. In the 

Extraction of Training Features and Classifier Training block, first, we constructed 

feature vector 𝜉ℓ for each training task period ℓ by concatenating the entropies of the 

signal segments, which were extracted using the activity-specific timing parameter pairs, 

as 
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𝜉ℓ =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝐻̂ (𝑠1(𝑓1)(𝑡ℓ)|𝑡ℓ∈[Δ𝑡1(𝑓1)

𝐴1 ,   Δ𝑡
1(𝑓1)
𝐴1 +w

1(𝑓1)
𝐴1 ]

)

⋮

𝐻̂ (𝑠1(𝑓9)(𝑡ℓ)|𝑡ℓ∈[Δ𝑡1(𝑓9)
𝐴1 ,   Δ𝑡

1(𝑓9)
𝐴1 +w

1(𝑓9)
𝐴1 ]

)

𝐻̂ (𝑠2(𝑓1)(𝑡ℓ)|𝑡ℓ∈[Δ𝑡2(𝑓1)
𝐴1 ,   Δ𝑡

2(𝑓1)
𝐴1 +w

2(𝑓1)
𝐴1 ]

)

⋮

𝐻̂ (𝑠2(𝑓9)(𝑡ℓ)|𝑡ℓ∈[Δ𝑡2(𝑓9)
𝐴1 ,   Δ𝑡

2(𝑓9)
𝐴1 +w

2(𝑓9)
𝐴1 ]

)

⋮

𝐻̂ (𝑠𝑀(𝑓9)(𝑡ℓ)|𝑡ℓ∈[Δ𝑡𝑀(𝑓9)
𝐴1 ,   Δ𝑡

𝑀(𝑓9)
𝐴1 +w

𝑀(𝑓9)
𝐴1 ]

)

𝐻̂ (𝑠1(𝑓1)(𝑡ℓ)|𝑡ℓ∈[Δ𝑡1(𝑓1)
𝐴2 ,   Δ𝑡

1(𝑓1)
𝐴2 +w

1(𝑓1)
𝐴2 ]

)

⋮

𝐻̂ (𝑠1(𝑓9)(𝑡ℓ)|𝑡ℓ∈[Δ𝑡1(𝑓9)
𝐴2 ,   Δ𝑡

1(𝑓9)
𝐴2 +w

1(𝑓9)
𝐴2 ]

)

𝐻̂ (𝑠2(𝑓1)(𝑡ℓ)|𝑡ℓ∈[Δ𝑡2(𝑓1)
𝐴2 ,   Δ𝑡

2(𝑓1)
𝐴2 +w

2(𝑓1)
𝐴2 ]

)

⋮

𝐻̂ (𝑠2(𝑓9)(𝑡ℓ)|𝑡ℓ∈[Δ𝑡2(𝑓9)
𝐴2 ,   Δ𝑡

2(𝑓9)
𝐴2 +w

2(𝑓9)
𝐴2 ]

)

⋮

𝐻̂ (𝑠𝑀(𝑓9)(𝑡ℓ)|𝑡ℓ∈[Δ𝑡𝑀(𝑓9)
𝐴2 ,   Δ𝑡

𝑀(𝑓9)
𝐴2 +w

𝑀(𝑓9)
𝐴2 ]

)
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (6.2) 

where 𝑀 denotes the number of channels (i.e., for PhysioNet dataset 𝑀 =  64, and for 

BCI Competition-Ⅲ dataset Ⅳa 𝑀 = 118). Next, we trained the classifier to obtain 

minimum classification error on the training feature vectors. 

In the test phase, we initially filtered each channel of each test task period by using 

the filter bank. Thereafter, in the Entropy Calculation and Construction of Test Feature 

Vectors block, we calculated the entropies of the signal segments extracted from each 

filtered channel using corresponding activity-specific timings obtained in the training 

phase. Next, for each test task period, we concatenated these entropy values into a column 

vector form as 
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𝜉 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝐻̂ (𝑠1(𝑓1)(𝑡)̀|𝑡̀∈[Δ𝑡

1(𝑓1)
𝐴1 ,   Δ𝑡

1(𝑓1)
𝐴1 +w

1(𝑓1)
𝐴1 ]

)

⋮

𝐻̂ (𝑠1(𝑓9)(𝑡)̀|𝑡̀∈[Δ𝑡
1(𝑓9)
𝐴1 ,   Δ𝑡

1(𝑓9)
𝐴1 +w

1(𝑓9)
𝐴1 ]

)

𝐻̂ (𝑠2(𝑓1)(𝑡)̀|𝑡̀∈[Δ𝑡
2(𝑓1)
𝐴1 ,   Δ𝑡

2(𝑓1)
𝐴1 +w

2(𝑓1)
𝐴1 ]

)

⋮

𝐻̂ (𝑠2(𝑓9)(𝑡)̀|𝑡̀∈[Δ𝑡
2(𝑓9)
𝐴1 ,   Δ𝑡

2(𝑓9)
𝐴1 +w

2(𝑓9)
𝐴1 ]

)

⋮

𝐻̂ (𝑠𝑀(𝑓9)(𝑡)̀|𝑡̀∈[Δ𝑡
𝑀(𝑓9)
𝐴1 ,   Δ𝑡

𝑀(𝑓9)
𝐴1 +w

𝑀(𝑓9)
𝐴1 ]

)

𝐻̂ (𝑠1(𝑓1)(𝑡)̀|𝑡̀∈[Δ𝑡
1(𝑓1)
𝐴2 ,   Δ𝑡

1(𝑓1)
𝐴2 +w

1(𝑓1)
𝐴2 ]

)

⋮

𝐻̂ (𝑠1(𝑓9)(𝑡)̀|𝑡̀∈[Δ𝑡
1(𝑓9)
𝐴2 ,   Δ𝑡

1(𝑓9)
𝐴2 +w

1(𝑓9)
𝐴2 ]

)

𝐻̂ (𝑠2(𝑓1)(𝑡)̀|𝑡̀∈[Δ𝑡
2(𝑓1)
𝐴2 ,   Δ𝑡

2(𝑓1)
𝐴2 +w

2(𝑓1)
𝐴2 ]

)

⋮

𝐻̂ (𝑠2(𝑓9)(𝑡)̀|𝑡̀∈[Δ𝑡
2(𝑓9)
𝐴2 ,   Δ𝑡

2(𝑓9)
𝐴2 +w

2(𝑓9)

𝐴2 ]
)

⋮

𝐻̂ (𝑠𝑀(𝑓9)(𝑡)̀|𝑡̀∈[Δ𝑡
𝑀(𝑓9)
𝐴2 ,   Δ𝑡

𝑀(𝑓9)
𝐴2 +w

𝑀(𝑓9)
𝐴2 ]

)
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (6.3) 

In the Classification block, we determined the category of each test feature vector by 

using the classifier trained in a supervised manner in the training phase. 

6.2.1. Determination of Activity-Specific Entropic Timings 

In order to determine the activity-specific timing parameter pairs for each activity 

type and each channel 𝑖(𝑓) , we adopted a heuristic optimization method which is 

described below. In the first step, we obtained the entropy values (i.e., 𝐸𝑖(𝑓)(Δ𝑡, ℓ)) for 

each latency (Δ𝑡), training task period (ℓ) and channel (𝑖(𝑓)) by using the Eq. (6.1). Next, 

we leaved one training task period out and we calculated the mean 𝜇
𝑖(𝑓)

𝐴1/2(Δ𝑡) and variance 

𝑣
𝑖(𝑓)

𝐴1/2(Δ𝑡) of the entropy values across the remaining training task periods as 
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𝜇
𝑖(𝑓)

𝐴1/2(Δ𝑡) =
1

|𝑖𝐴1/2|
∑ 𝐸𝑖(𝑓)(Δ𝑡, 𝑘)

𝑘∈𝑖𝐴1/2

 

𝑣
𝑖(𝑓)

𝐴1/2(Δ𝑡) =
1

|𝑖𝐴1/2| − 1
∑ (𝐸𝑖(𝑓)(Δ𝑡, 𝑘) − 𝜇𝑖(𝑓)

𝐴1/2(Δ𝑡))
2

𝑘∈𝑖𝐴1/2

 

(6.4) 

where 𝑖𝐴1/2 represents the indices of the remaining training task periods of 𝐴1/2 which 

systematically changes at each leave-one-out cycle, |⋅| denotes the cardinality of the set. 

Note that the mean and variance values were calculated for each latency Δ𝑡, each channel 

𝑖(𝑓), and each activity type. We then used the mean and variance parameters to calculate 

the likelihood of the entropy values obtained for the latency Δ𝑡 and channel 𝑖(𝑓) of the 

excluded training task period by adopting Gaussianity as in (Schalk et al. 2008) 

𝑝(𝐸𝑖(𝑓)(Δ𝑡, 𝑥)|𝐴1) =
1

√2𝜋𝑣𝑖(𝑓)
𝐴1 (Δ𝑡)

exp

{
 

 
−
(𝐸𝑖(𝑓)(Δ𝑡, 𝑥) − 𝜇𝑖(𝑓)

𝐴1 (Δ𝑡))
2

2𝑣
𝑖(𝑓)
𝐴1 (Δ𝑡)

}
 

 
 

𝑝(𝐸𝑖(𝑓)(Δ𝑡, 𝑥)|𝐴2) =
1

√2𝜋𝑣𝑖(𝑓)
𝐴2 (Δ𝑡)

exp

{
 

 
−
(𝐸𝑖(𝑓)(Δ𝑡, 𝑥) − 𝜇𝑖(𝑓)

𝐴2 (Δ𝑡))
2

2𝑣
𝑖(𝑓)
𝐴2 (Δ𝑡)

}
 

 
 

(6.5) 

where 𝑥 represents the index of the excluded training task period in the leave-one-out 

cycle. Next, we calculated the posterior probability of the entropy value calculated for 

latency Δ𝑡 and channel 𝑖(𝑓) of the excluded training task period as 

𝑝 (𝐴1|𝐸𝑖(𝑓)(Δ𝑡, 𝑥))

=
𝑝(𝐸𝑖(𝑓)(Δ𝑡, 𝑥)|𝐴1) ⋅ 𝑝(𝐴1)

𝑝(𝐸𝑖(𝑓)(Δ𝑡, 𝑥)|𝐴1) ⋅ 𝑝(𝐴1) + 𝑝(𝐸𝑖(𝑓)(Δ𝑡, 𝑥)|𝐴2) ⋅ 𝑝(𝐴2)
 

(6.6) 

and 
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𝑝 (𝐴2|𝐸𝑖(𝑓)(Δ𝑡, 𝑥))

=
𝑝(𝐸𝑖(𝑓)(Δ𝑡, 𝑥)|𝐴2) ⋅ 𝑝(𝐴2)

𝑝(𝐸𝑖(𝑓)(Δ𝑡, 𝑥)|𝐴1) ⋅ 𝑝(𝐴1) + 𝑝(𝐸𝑖(𝑓)(Δ𝑡, 𝑥)|𝐴2) ⋅ 𝑝(𝐴2)
 

(6.7) 

where 𝑝 (𝐴1|𝐸𝑖(𝑓)(Δ𝑡, 𝑥)) and 𝑝 (𝐴2|𝐸𝑖(𝑓)(Δ𝑡, 𝑥)) are the posterior probabilities, 𝑝(𝐴1) 

and 𝑝(𝐴2) are the prior probabilities. It is important to note that, we repeated these 

calculations until each training task period excluded once. Please note that calculating 

and using the posterior probabilities help us to find the temporally non-overlapping brain 

oscillation segments, which provide task-specific entropy values, for each filtered 

channel. 

Since we know the categories of each task period in the training set, we can safely 

calculate the mean of these posterior probabilities obtained for each training periods that 

belongs to a specific category ( 𝐴1/2 ). The mean of the posterior probabilities 

𝑝 (𝐴1|𝐸𝑖(𝑓)(Δ𝑡, 𝑥)) calculated for the excluded task periods 𝑥 ∈ 𝐼𝐴1 as 

𝑀𝑃𝑖(𝑓)
𝐴1 (Δ𝑡) =

1

|𝐼𝐴1|
∑ 𝑝 (𝐴1|𝐸𝑖(𝑓)(Δ𝑡, 𝑥))

𝑥∈𝐼𝐴1

 (6.8) 

And also, the mean of the posterior probabilities 𝑝 (𝐴2|𝐸𝑖(𝑓)(Δ𝑡, 𝑥)) calculated for the 

excluded task periods 𝑥 ∈ 𝐼𝐴2 as 

𝑀𝑃𝑖(𝑓)
𝐴2 (Δ𝑡) =

1

|𝐼𝐴2|
∑ 𝑝 (𝐴2|𝐸𝑖(𝑓)(Δ𝑡, 𝑥))

𝑥∈𝐼𝐴2

 (6.9) 

where 𝑀𝑃
𝑖(𝑓)

𝐴1/2(Δ𝑡) denotes the mean posterior probability for the latency Δ𝑡 and channel 

𝑖(𝑓) calculated across posterior probabilities of corresponding training task periods. 
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After obtaining the mean posterior probabilities (i.e., 𝑀𝑃𝑖(𝑓)
𝐴1 (Δ𝑡)  and 

𝑀𝑃𝑖(𝑓)
𝐴2 (Δ𝑡) ), we compared the entries of these mean posterior probabilities with a 

threshold. We set the threshold as 0.5 since we are dealing with a two-class recognition 

problem. Afterwards, we used the entropy patterns that exceed the threshold for further 

analysis (please see Figure 39). 

 

Figure 39. An exemplary illustration of entropy patterns that exceeded the threshold 0.5. 

For some of the filtered channels (i.e., 𝑖(𝑓)), we did not elicit any entropy pattern 

that exceeded the threshold value. In such a case, we did not use any feature of this filtered 

channel in the classification. We also encountered another important case, where we 

observed multiple entropy patterns along the Δ𝑡 axis for some of filtered channels. In this 

circumstances, we first obtained the timings of each entropy pattern as demonstrated in 

Figure 40. 
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Figure 40. Obtaining the timings of the candidate entropy patterns. The timings of first 

candidate entropy pattern are {Δ𝑡, 𝑤} = {Δ𝑡1, Δ𝑡2 − Δ𝑡1 + 300𝑚𝑠}, and the 

timings of second pattern are {Δ𝑡, 𝑤} = {Δ𝑡3, Δ𝑡4 − Δ𝑡3 + 300𝑚𝑠}. 

We then conducted unpaired two-tailed 𝑡-tests to determine the most significant (i.e., 

activity-specific) one. To that end, we used the timing parameter pairs of each entropy 

pattern to calculate the entropy values of both type of cognitive activities for the 𝑡-test 

evaluation. As a result of 𝑡 -test, the entropy pattern which revealed the highest 

significance (i.e., lowest 𝑃-value) was identified as the activity-specific entropy pattern 

for the corresponding filtered channel. Thus, we used the timing parameter pairs of this 

entropy pattern as activity-specific timing parameter pair for cognitive task 

characterization (please see Figure 41). 

 

Figure 41. Illustration of entropy pattern (continuous red line) and related timing 

parameter pairs that achieved highest significance as a result of statistical 

evaluation. Note that the timings of other patterns were not used throughout 

this study. 
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6.2.2. Comparative Analysis 

For a performance comparison, we used two different methods that were mainly 

adopted in BCI frameworks. The first method is common spatial patterns (CSP) method 

which simply finds a linear transformation for multichannel electrophysiological signals 

to calculate discriminative features (Ramoser, Müller-Gerking, and Pfurtscheller 2000; 

Blankertz et al. 2008). For the CSP method, we first filtered the signals into 8-30 Hz band 

via FIR bandpass filter. Then, we calculated the CSP filter (𝑚 = 3) from the training task 

periods. We applied the CSP filter to both training and test task periods and calculated 

log-variance features for task period characterization. 

The second method is a wavelet-based method that was successfully used in 

(Khalaf, Sejdic, and Akcakaya 2019). We used this method with some slight 

modifications. First, we calculated the wavelet transform and thus scalograms of each 

task period and channel by using the complex Morlet wavelet, which is the most preferred 

mother wavelet function for biological data analysis (Alexander E. Hramov et al. 2015; 

Makarov et al. 2018). Next, for each task period and channel, we summed each scalogram 

that falls into the frequency bands 𝑓1, 𝑓2, … , 𝑓9 separately which means we obtained 9 × 𝑁 

dimensional scalograms for each channel and task period. Finally, we calculated mean, 

variance, skewness, and kurtosis features using 𝑁  scalograms obtained for each 

frequency band. For each channel, we obtained 4 × 9 = 36 features. We concatenated 

the 36 features obtained for each channel to form a feature vector with (36𝑥𝑀)𝑥1 

dimensions to characterize each task period. 

6.3. Results 

We tested our recognition framework by adopting two chronological cross-

validation scenarios  (i.e., Scenario-1 and Scenario-2) as adopted in previous chapter and 

in (B. Orkan Olcay and Karaçalı 2019). Please note that, before the classification, we 

adopted a feature selection procedure to select the most informative features. To that end, 

we used the Fisher’s ratio based method as in previous chapters. 
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We presented the average classification performances obtained from BCI 

Competition-Ⅲ dataset Ⅳa and the PhysioNet Motor Movement/Imagery datasets in 

Table 25. Also, we presented the classification performances of the features, that were 

calculated using the corresponding timing parameter pairs, obtained from the channels 

that were used for motor imagery activity recognition in the past studies (Morash et al. 

2008; Q. Wei et al. 2007; Krusienski, McFarland, and Wolpaw 2012). Morash et al. used 

29 channels (i.e., FC1, FC3, FC5, C1, C3, C5, FC2, FC4, FC6, C2, C4, C6, CP1, CP3, 

CP5, P1, P3, P5, CP2, CP4, CP6, P2, P4, P6, Fz, FCz, Cz, CPz, Pz) that contains the 

parietal, central, centro-parietal, and frontal channels for characterization of right/left 

hand, right foot, and tongue imagery movements (Morash et al. 2008). Wei et al. tested 3 

different electrode clusters for calculating the connectivity-based features for motor 

imagery activity recognition. We used the Fz, C3, and C4 and their nearest neighbors 

(i.e., named as CB2 channels), which elicited the best classification performance in (Q. 

Wei et al. 2007). Finally, we used the 9 electrodes (i.e., T7, F3, C3, P3, Cz, F4, C4, P4, 

T8) as used by Krusienski et al. in a PLV-based motor imagery recognition study 

(Krusienski, McFarland, and Wolpaw 2012). Note that, these channels in our study, 

which are mainly located at the sensorimotor, primary motor, and frontal regions, which 

are known to be strongly related to motor movement/imagery activities. Since the 

electrodes used in three different studies collects electrical activity mainly from motor 

imagery-related brain regions, we used the frequency bands 𝑓2 = [8 12]  Hz, 𝑓3 =

[12 16]  Hz, 𝑓4 = [16 20]  Hz, 𝑓5 = [20 24]  Hz, 𝑓6 = [24 28]  Hz, and 𝑓7 =

[28 32]  Hz that which are mainly involved in the motor imagery activity-related 

frequency band (Yuan and He 2014). We also compared the performance of the proposed 

method with the performances of two motor imagery activity recognition method 

(Blankertz et al. 2008; Khalaf, Sejdic, and Akcakaya 2019). The average performances 

of these methods were presented in Table 26. Note that we applied the similar feature 

selection method to the feature vectors obtained from wavelet-based method. 

In order to determine the significance of the parameters that we captured during 

the training phase, we conducted a statistical analysis on the entropy values, which we 

calculated from the signal segments by applying activity-specific timings of all channels 

belong to both corresponding and contending activities. To be clearer, we applied 

{Δ𝑡
𝑖(𝑓)

𝐴1/2 , 𝑤
𝑖(𝑓)

𝐴1/2} parameters to both corresponding and contending training task periods. 

Next, we calculated the entropies of these signal segments. Finally, we conducted 
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unpaired two-tailed 𝑡-tests on these entropy values to determine the significance of the 

distinctiveness of entropies obtained via timing parameters {Δ𝑡
𝑖(𝑓)

𝐴1/2 , 𝑤
𝑖(𝑓)

𝐴1/2}. As a result 

of 𝑡-tests, we obtained a 𝑃-value for each activity-specific timing parameter pairs. The 

aim of this statistical analysis is to show that the extracted entropic features using 𝐴1/2 

activity timing parameter pairs are more significant than the features extracted using 

similar timing parameters for another type of task periods. Please note that, we repeated 

this statistical analysis for each subject, for each filtered channel and each activity type. 

In Tables 27 and 28, we demonstrated the geometric means of the 𝑃-values of the most 

significant five filtered channels calculated across the subjects that we used in this study. 

Note that, prior to the geometric mean calculation, we corrected the 𝑃 -values via 

Benjamini-Hochberg method to avoid from type-I errors (Benjamini and Hochberg 

1995). 

We also obtained the most selected features, which determined via the Fisher ratio 

method, across 5 subjects for BCI Competition-Ⅲ dataset Ⅳa, and across first 20 subject 

for PhysioNet Motor Movement/Imagery datasets. For the BCI Competition-Ⅲ dataset 

Ⅳa, the most selected five entropic features were derived from C3 (8-12 Hz), Fz (12-16 

Hz), FC1 (12-16 Hz), CP3 (12-16 Hz), and C3 (20-24 Hz) channels. For the PhysioNet 

Motor Movement/Imagery dataset, the most selected five entropy features are from F7 

(12-16 Hz), FCz (12-16 Hz), CP4 (24-28 Hz), CP6 (20-24 Hz), and AFz (24-28 Hz) 

channels.  
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Table 25. The average performance of the proposed recognition method calculated across 

5 subjects for BCI Competition-Ⅲ dataset Ⅳa and across the first 20 subjects 

for PhysioNet Motor Movement/Imagery datasets. We also calculated the 

recognition performances for the 3 different channel sets that were used in 

previous motor imagery activity recognition studies (Morash et al. 2008; Q. 

Wei et al. 2007; Krusienski, McFarland, and Wolpaw 2012). 

 

Scenario-1 Performances (%) Scenario-2 Performances (%) 

FLD 
Linear 

SVM 

Nonlinear 

SVM 
FLD 

Linear 

SVM 

Nonlinear 

SVM 

B
C

I 
C

o
m

p
.-

Ⅲ
 d

a
ta

se
t 

Ⅳ
a

 

Fisher’s Ratio 
62.23 ± 

8.74 

75.74 ± 

12.39 

79.46 ± 

11.27 

80.65 ± 

9.33 

85.0 ± 

7.96 

80.86 ± 

10.32 

Morash et al. 

(Morash et al. 

2008) 

75.1 ± 

11.82 

78.82 ± 

12.69 

76.38 ± 

11.78 

68.69 ± 

9.45 

80.65 ± 

9.7 

78.69 ± 

12.04 

Wei et al.  

(Q. Wei et al. 

2007) 

69.04 ± 

10.11 

71.91 ± 

11.69 

74.04 ± 

13.45 

61.95 ± 

5.85 

76.95 ± 

12.87 

77.6 ± 

12.59 

Krusienski et 

al. 

(Krusienski, 

McFarland, and 

Wolpaw 2012) 

60.63 ± 

5.26 

73.29 ± 

15.3 

73.51 ± 

11.94 

73.26 ± 

13.05 

75.86 ± 

12.42 

75.86 ± 

14.0 

P
h

y
si

o
N

et
 M

o
to

r 
M

o
v

em
en

t/
Im

a
g

er
y

 

Fisher’s Ratio 
54.0 ± 

9.34 

53.33 ± 

7.87 

51.83 ± 

9.39 

60.67 ± 

11.0 

62.0 ± 

14.03 

65.0 ± 

13.99 

Morash et al. 

(Morash et al. 

2008) 

57.67 ± 

13.38 

57.5 ± 

13.71 

55.33 ± 

11.51 

58.0 ± 

19.47 

56.67 ± 

18.79 

55.33 ± 

17.31 

Wei et al.  

(Q. Wei et al. 

2007) 

56.33 ± 

8.97 

56.0 ± 

8.69 

56.33 ± 

10.36 

55.67 ± 

14.39 

56.33 ± 

15.81 

56.0 ± 

14.73 

Krusienski et 

al. 

 (Krusienski, 

McFarland, and 

Wolpaw 2012) 

52.33 ± 

6.22 

53.83 ± 

6.14 

52.83 ± 

6.60 

58.67 ± 

13.95 

60.0 ± 

14.98 

57.0 ± 

15.81 
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Table 26. The demonstration of average performances of our method and the CSP 

method. 

 

Scenario-1 Performances (%) Scenario-2 Performances (%) 

Our 

Method 

CSP 

(𝑚 = 3) 

Wavelet-

Based 

Method 

Our 

Method 

CSP 

(𝑚 = 3) 

Wavelet-

Based 

Method 

B
C

I 
C

o
m

p
.-

Ⅲ
 d

a
ta

se
t 

Ⅳ
a

 

FLD 
62.23 ± 

8.74 

82.33 ± 

11.46 

70.31 ± 

8.51 

80.65 ± 

9.33 

84.67 ± 

15.38 

65.0 ± 

14.36 

Linear 

SVM 

75.74 ± 

12.39 

80.0 ± 

11.45 

76.38 ± 

10.91 

85.0 ± 

7.96 

83.91 ± 

17.33 

81.08 ± 

13.63 

Nonlinear 

SVM 

79.46 ± 

11.27 

82.12 ± 

12.61 

68.82 ± 

10.87 

80.86 ± 

10.32 

84.13 ± 

18.23 

73.69 ± 

13.77 

P
h

y
si

o
N

et
 M

o
to

r 
Im

a
g

er
y

 

FLD 
54.0 ± 

9.34 

53.83 ± 

4.87 

57.25 ± 

9.05 

60.67 ± 

11.0 

55.65 ± 

9.97 

59.67 ± 

12.88 

Linear 

SVM 

53.33 ± 

7.87 

57.66 ± 

14.11 

59.51 ± 

8.84 

62.0 ± 

14.03 

62.88 ± 

15.91 

64.0 ± 

14.24 

Nonlinear 

SVM 

51.83 ± 

9.39 

60.11 ± 

14.0 

57.74 ± 

9.81 

65.0 ± 

13.99 

64.0 ± 

16.47 

64.33 ± 

14.39 
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Table 27. The most significant five filtered channels for each activity type for BCI 

Competition-Ⅲ dataset Ⅳa (Scenario-2). 

Right Foot Motor Imagery Right Hand Motor Imagery 

Channel Freq. 𝑷-value Channel Freq. 𝑷-value 

CP3 12-16 Hz < 10−3 CP3 12-16 Hz < 10−3 

PCP3 12-16 Hz < 10−3 PCP3 12-16 Hz < 10−3 

CCP3 12-16 Hz < 10−3 CCP3 12-16 Hz < 10−3 

CCP6 12-16 Hz < 10−3 CCP5 12-16 Hz < 10−3 

CCP5 12-16 Hz < 10−3 CCP6 12-16 Hz < 10−3 

Table 28. The most significant five filtered channels for each activity type for PhysioNet 

Motor Movement/Imagery dataset (Scenario-2) 

Left Fist Motor Imagery Right Fist Motor Imagery 

Channel Freq. 𝑷-value Channel Freq. 𝑷-value 

P3 12-16 Hz 0.06 P3 12-16 Hz 0.0567 

F8 8-12 Hz 0.091 FT8 12-16 Hz 0.0714 

Cz 8-12 Hz 0.095 Cz 8-12 Hz 0.0901 

FT8 12-16 Hz 0.097 F8 8-12 Hz 0.103 

P7 8-12 Hz 0.110 POz 12-16 Hz 0.104 
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6.4. Discussion 

In this study, our main aim is to develop an analytic strategy to identify task-

dependent discriminative spatio-temporal entropic features which they emerged and 

vanished in a short period of time (Mišić and Sporns 2016). To that end, we developed a 

method to capture and use the timing parameter pairs, which addresses signal segments 

which elicits the activity-specific entropy values, for different spatial and also spectral 

regions. We adopted a heuristic search strategy to capture the activity-specific timing 

parameter pairs. At the final step, we conduct classification analysis on two publicly 

available motor imagery EEG dataset to evaluate the performance of our proposed 

method. We discuss the findings related to the proposed method below. 

6.4.1. Performance Comparison 

The performance results presented in Table 25 show that, especially for the BCI 

Competition-Ⅲ dataset Ⅳa, the performance of our method exceeded the minimum 

reliable communication rate (i.e., 70%) which means our method can reliably recognize 

the ongoing cognitive activity (Ahn and Jun 2015). For the PhysioNet dataset, however, 

our method did not exceed the 70% performance. There are several reasons for this 

unexpected performance results. The first reason is that the PhysioNet dataset contains 

only 30 training task periods (for training phase in scenario-2) which is extremely low for 

capturing the activity-specific timing parameter pairs and also, for classifier training 

accurately. Another reason is that the PhysioNet dataset may be collected from BCI-naïve 

(or BCI illiterate) subjects since the mind of the BCI experts is more focused on the 

directives given for imagery tasks to be done (Ahn and Jun 2015; Milton et al. 2007). The 

third reason may be the low signal-to-noise ratio of the PhysioNet dataset. In the 

literature, the successful BCI studies that used the PhysioNet dataset applied independent 

component analysis-based methods to each task period to remove the non-neural signal 

components (Varsehi and Firoozabadi 2021). For our method, it may be beneficial to use 

some statistical noise subspace filtering methods to unveil the accurate activity-specific 

timing parameter pairs and thus, motor imagery related brain patterns (Hyvärinen and Oja 
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2000; Von Bünau et al. 2009; Haykin and Widrow 2005). Another important thing is that, 

when comparing the performances with other methods using PhysioNet dataset is that (B. 

Orkan Olcay and Karaçalı 2019), the majority of conspicuous motor imagery recognition 

studies that uses PhysioNet dataset adopted performance elimination criteria when 

evaluating their methods (Handiru and Prasad 2016; Athif and Ren 2019; Kim et al. 2016; 

Cheolsoo Park, Took, and Mandic 2014) according to (Müller-Putz et al. 2007). Please 

note that we did not adopt a performance elimination criteria when presenting our results. 

An additional note for performances of PhysioNet dataset is that the training and test 

sessions conducted with task periods from different sessions. This may cause 

performance degradation in activity recognition since session-to-session variability of 

brain dynamics significantly affects the recognition performances (Saha et al. 2018b). For 

observing the exact recognition performance of our method especially on PhysioNet 

dataset, different cross-validation approaches (such as N-fold cross-validation) can be 

adopted. 

We compared the performance of the proposed brain activity characterization 

method with two popular benchmark BCI methods, CSP and a wavelet-based method. 

The average performances in Table 26 (in scenario-2) show that on the average, our 

method achieved 85% performance while CSP achieved 83.91% and wavelet based 

method achieved 81.08% with linear SVM. For the PhysioNet dataset, on the average, 

our method achieved a performance as 65% when CSP achieved maximum 64% and 

wavelet-based method achieved 64.33% performance with nonlinear SVM classifier on 

the average. These results indicate that our method can characterize the motor imagery 

task periods better than the benchmark method in a case when the number of training 

samples increases, which enables capturing accurate activity-specific timings when the 

number of training task periods increases. 

Finally, we evaluated the average performances of our method using the entropy 

values as features obtained from the sensorimotor rhythm frequencies (i.e., 𝑓2, 𝑓3, … , 𝑓7) 

and the channels that was used previously in motor imagery-related studies which is 

provided in Table 25. Especially in scenario-2, the performance results shows that, not 

only motor imagery-related channels and frequencies (i.e., 8-30 Hz) but also the other 

brain regions and frequency bands are take place in coordinating/organizing the motor 

imagery-related brain dynamics (Grosse-Wentrup, Schölkopf, and Hill 2011; Başar et al. 

1999). 
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6.4.2. Relevant Channels and Frequencies Used for Recognition 

We identified the channels and corresponding frequency bands that were mostly 

selected as features according to their Fisher ratio. For BCI Competition-Ⅲ dataset Ⅳa, 

the most selected five channels are mainly collected electrophysiological activities from 

primary motor, sensorimotor, and premotor cortices which are known to be involved in 

generation of motor imagery-related brain dynamics (Halder et al. 2011; Xu et al. 2014; 

Q. Gao, Duan, and Chen 2011; Hanakawa 2016; Hétu et al. 2013). For the PhysioNet 

dataset, the most selected five channels are located on the central, frontal, and parietal 

regions of the brain which are also important regions for motor imagination as pointed 

out above for BCI Competition-Ⅲ dataset Ⅳa. More importantly, the most selected 

channels for the PhysioNet dataset are exactly same or very close to the channels that was 

selected in a previous study (Varsehi and Firoozabadi 2021). One important thing is that 

the significant electrodes on the frontal and fronto-temporal regions obtained in our study 

has not been frequently observed in the past motor imagery related studies. On the 

contrary to the majority of literature, some important studies that highlight the 

significance of the frontal electrodes, which are indicated as important nodes of central-

executive (CEN) and default mode (DMN) networks, during attention increase and 

preparation stages for motor tasks (C. F. Lu et al. 2011). 

The results obtained from the proposed methods not only considers the 

sensorimotor related frequencies and sensorimotor/motor related channels but also the 

other brain regions and frequency bands. From these results, it can be inferred that the 

majority of brain regions take place for coordinating/organizing the motor imagery-

related brain dynamics (Grosse-Wentrup, Schölkopf, and Hill 2011; Başar et al. 1999). 

We demonstrated the channels and frequency bands, where the top five statistically 

significant entropic features are found, in Tables 24 and 25. These tables show that, for 

each activity types, we found similar channels and frequency bands as significant. This 

result points that, thanks to using the posterior probabilities, the parameter pairs captured 

for different activities are well-separated from each other in time domain. This inference, 

if this is the case, indicates that for each cognitive activity, the brain encodes the task-

related neural information into the electrophysiological activity according to a systematic 

timing organization. 
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The frequency bands in which the salient features are calculated are mainly found 

in the range of 𝜇  and 𝛽  bands. These findings are in consistent with the previous 

biophysical findings which stresses the importance (in both local and global properties) 

of these frequency bands and their respective roles in motor imagery tasks (Román 

Baravalle, Rosso, and Montani 2018; Athanasiou et al. 2018; Friedrich, Scherer, and 

Neuper 2012; Yuan and He 2014; G Pfurtscheller et al. 1997; C. Neuper and Pfurtscheller 

2001; Christa Neuper et al. 2009a; G. Pfurtscheller and Solis-Escalante 2009), and in 

different mental tasks (D. Huang et al. 2016). The significance of 𝜇 band, which showed 

pronounced hemispheric asymmetry in task-related brain patterns, was illustrated in 

previous BCI studies which plays a crucial role peculiar to the source allocation for 

internal attention increase for cognition, imagination or working memory tasks (Roman 

Baravalle et al. 2019; Christa Neuper et al. 2009b; Pineda 2005). It was also shown that 

the functional connectivity between motor-related areas and the rest of the brain within 

the 𝜇 band directly affects both the motor imagery as well as behavioral task performance 

(Mottaz et al. 2015). Also, the prominent roles and generating methods of 𝛽 oscillations 

within motor-related regions have been described in recent studies (Khanna and Carmena 

2015). Another role of the 𝛽 oscillations is to bind the motor-related remote brain regions 

together for motor task-related information integration (Canolty et al. 2010; C. F. Lu et 

al. 2011), and it indicates the capacity/health of cognitive function (Santos Toural, 

Montoya Pedrón, and Marañón Reyes 2021). 

We demonstrated that using only the sensorimotor rhythms and sensorimotor 

cortex channels did not provide a classification performance as high as obtained when 

using all brain regions and frequencies. As evidence, it was observed that the complexity 

changes due to the cognitive tasks were observed at distributed cortical regions 

(Micheloyannis et al. 2003). On important thing we should emphasize, although it did not 

appear as significant, the frontal theta rhythm may carry a piece of information related to 

the cognitive task performed by subjects since it was demonstrated that frontal theta 

rhythm demonstrates a negative correlation with the activity of the default mode network 

(Scheeringa et al. 2008; 2009). 

Although the majority of the relevant channels found via the Fisher ratio method 

are consistent with the current biophysical studies (Hardwick et al. 2018), they might fall 

at odds with some other existing BCI studies. These negligible deviations might be due 

to the feature type that we used to characterize the neural activity. A similar observation 

was pointed in previous literature, in which during right/left hand motor imagery tasks, 
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the selected band power and autoregressive (i.e., reflection coefficients) features via 

sequential float forward selection (SFFS) method showed significant deviations in terms 

of the EEG channels that they derived from (Dyson, Sepulveda, and Gan 2010). 

In this study, we used nine different FIR filters to decompose the EEG signals in 

a spectral manner. It should be noted that not only the frequency ranges upper than 4 Hz, 

but lower frequency ranges may also contain significant information related to the 

accomplished task. As future research, besides these frequencies used here (Ang et al. 

2008), analyzing the lower frequency such as 0.1-5 Hz, at which the slow cortical 

oscillations are found, for activity-specific features and using them may improve the 

characterization performance (Salyers, Dong, and Gai 2019). 

6.4.3. Importance of Considering Timing Parameters 

The importance of the time-sensitive feature analysis was highlighted in previous 

EEG classification studies. These studies demonstrated that temporal analysis of 

electrophysiological activities are required for effective characterization brain activity 

(Ince, Tewfik, and Arica 2007; Ince et al. 2009; Firat Ince, Arica, and Tewfik 2006; Daly, 

Nasuto, and Warwick 2012; Karamzadeh et al. 2013; Ren et al. 2017; J. Li et al. 2016). 

Along with this fact, several studies aim to find an activity-specific short-lived time 

segment that contains the most relevant localized features (Yu Zhang et al. 2019; Ang et 

al. 2012; J. Wang et al. 2018; Hsu et al. 2007; Feng et al. 2018). These approaches, 

however, use a fixed-length time window (in general, 1 or 2 seconds) with an assumption 

that characteristic features are embedded in a time window no longer than 1-2 seconds. 

Also, they assume that task-related short-lived patterns of all regions of the brain 

emerge/vanish at the same time with each other, which means there are no differences in 

timings that the characteristic brain patterns emerged and vanished at each brain region. 

On the contrary, in our previous study, we observed that the characteristic inter-regional 

brain synchrony patterns are emerges at different timings for each different brain region 

pairs for different cognitive tasks (B. Orkan Olcay and Karaçalı 2019). 

Please keep in mind that, our method captures the time segments where the task-

specific and also discriminative entropy patterns emerge. In that context, one of the main 

contribution of the method presented here is that it can easily be used for multiclass 
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cognitive task classification. It may be possible that, for the multiclass classification, the 

actual task-specific neural activity segments lasts longer than the patterns captured in this 

situation. Even in that case, our method can capture the task-specific temporal segments 

where the characteristic entropy patterns are emerged. For a future research, it may be 

beneficial to capture activity-specific timing parameter pairs by evaluating the entropy 

patterns of task periods and idling (i.e., rest) periods in a probabilistic manner. This 

approach have demonstrated to be provide a better characterization/recognition (Mashat, 

Lin, and Zhang 2019). 

In order to stress the importance of considering activity-specific latency and 

duration parameters for task characterization, we performed an additional classification 

analysis. We used 8-30 Hz FIR bandpass filter to filter all the EEG channels into 

sensorimotor rhythm frequencies. Then, we calculated the entropies of EEG signal 

without considering any timing parameters. The performance results were given in Table 

29. 

The performances demonstrated in Table 29 emphasize the importance of 

considering the frequency-resolved analysis, and time-resolved analysis, which 

delineates temporal organization of brain dynamics in a better way during 

characterization of cognitive task-related brain activities (J. Li et al. 2016; Ince et al. 

2009). One important thing that we should consider is that we identified only one timing 

parameter pair for each frequency-resolved channel and cognitive activity. The 

performance results can be improved by including more timing parameter pairs at which 

are emerged for some of the channels that we mentioned in methods section as Zhou et 

al. adopted (Z. Zhou and Wan 2012).  
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Table 29. The performance results when using and without using activity-specific timing 

parameters. 

 

% Perf. (Scenario-1) % Perf. (Scenario-2) 

FLD  
Linear 

SVM 

Nonlinear  

SVM 
FLD 

Linear 

SVM 

Nonlinear 

SVM 

B
C

I 
C

o
m

p
.-

Ⅲ
 Our 

Method 

62.23 ± 

8.74 

75.74 ± 

12.39 

79.46 ± 

11.27 

80.65 ± 

9.33 

85.0 ± 

7.96 

80.86 ± 

10.32 

Without 

Timing 

Parameters 

69.57 ± 

10.49 

68.29 ± 

9.65 

69.14 ± 

9.72 

72.82 ± 

11.12 

71.08 ± 

7.70 

70.65 ± 

7.16  

P
h

y
si

o
N

et
 

Our 

Method 

54.0 ± 

9.34 

53.33 ± 

7.87 

51.83 ± 

9.39 

60.67 ± 

11.0 

62.0 ± 

14.03 

65.0 ± 

13.99 

Without 

Timing 

Parameters 

57.67 ± 

10.6 

55.5 ± 

10.27 

55.67 ± 

12.09 

57.33 ± 

9.52 

56.67 ± 

12.51 

60.67 ± 

9.4 

We also performed an additional analysis with frontal EEG channels to reflect the 

cognitive performance of subjects during motor imagery tasks. To that end, we used the 

well-performing and worst-performing subjects according to the performances of winner 

algorithm in BCI Competition-Ⅲ. In this competition, the winner algorithm found that 

the best recognition performance belongs to subject 𝑎𝑙  (100%), and the lowest 

performance belongs to subject 𝑎𝑣 (80.6%). We used the EEG signal of these subjects to 

observe the difference of entropies of frontal regions (F3, Fz, and F4 channels), which 

were calculated using the activity-specific timings. The main reason of using the frontal 

region electrodes is that they mainly reflect the neural activities that reflect neural 

information about cognitive planning and consciousness operations (Thul et al. 2016; 

Liang et al. 2013). Our analysis revealed that the most pronounced discrimination in 

entropy values manifested in 8-12 Hz, 12-16 Hz, and 20-24 Hz frequency ranges. This 

result shows that the complexity of neural activity obtained from frontal regions 

conspicuously reflect the differences of cognitive/motor imagery task recognition ability 

of the subjects. 
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6.4.4. Using Different Type of Features 

In this study, our method captured and used the timings of the signal segments 

that providing the most activity-specific entropies for characterization. In accordance 

with the past literature, we aimed that the task-related activation/synchronization patterns 

may emerge and vanish at different timings even for each channel and frequency band 

even in the case of synchronous mode BCI’s (Bayazit et al. 2009; Bola, Gall, and Sabel 

2015; Zanon, Borgomaneri, and Avenanti 2018; Solomon et al. 2019). In order to capture 

the activity-specific timing parameter pairs, we adopted an heuristic optimization that 

evaluates the entropy evolution in a probabilistic manner which was adopted in an 

asynchronous BCI study (Lemm, Schäfer, and Curio 2004). Please note that, we decided 

to use entropy as feature to characterize short-lived brain oscillations due to its 

effectiveness in previous studies. 

It is possible to use a different type of features such as autoregressive model 

coefficients (McFarland and Wolpaw 2008), time-frequency features (Hsu and Sun 2009; 

Ince et al. 2009), time-domain parameters (C. Vidaurre et al. 2009), Hurst exponent 

(Gupta, Singh, and Karlekar 2018). However, their performances should be carefully 

evaluated before using them in the recognition phase. It should be noted that using 

different type of features may unveil different activity-specific timing parameters due to 

the fact that each different feature type captures different characteristics of the 

electrophysiological signals. For a better activity characterization, it may be possible to 

use multiple features in our proposed method. 

In order to emphasize the characterization performance of the entropy feature, we 

performed an additional classification analysis by using three different time-domain 

parameters as features (C. Vidaurre et al. 2009). These parameters are Activity, Mobility, 

and Complexity which were inspired from Hjorth parameters (Hjorth 1970). The first one 

quantifies the signal band power, the second one the mean frequency of the signal and the 

third one the change in the signal frequency. We performed similar analysis as described 

in methods section but for these three parameters. In Table 30, we presented the average 

performances obtained by using these three features. The results presented in Table 30 

indicate the importance of using the information-theoretic features in correlating the set 

of behavioral and task variables with the electrical activity of the brain (Kahana 2006). 

Besides Vasicek’s entropy estimation method, Lempel-Ziv complexity (Ibáñez-Molina et 
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al. 2015), fractal dimension (Loo, Samraj, and Lee 2011), bubble entropy (Manis, 

Aktaruzzaman, and Sassi 2017), permutation entropy and its variants (C. Bandt and 

Pompe 2002; Zeng et al. 2018), Renyi’s quadratic entropy (Principe 2010; Kee, 

Ponnambalam, and Loo 2017), approximate entropy (Pincus 1991), Kolmogorov entropy 

(L. Gao, Wang, and Chen 2013), wavelet entropy (Osvaldo A. Rosso et al. 2001; Osvaldo 

A. Rosso 2007; Emre Cek, Ozgoren, and Acar Savaci 2010; Mooij et al. 2016), fuzzy 

entropy (Fasil and Rajesh 2019), permutation auto mutual information (PAMI) (Liang et 

al. 2013), and sample entropy (Arunkumar et al. 2017) can also be utilized for 

information-theoretic characterization of short-lived neural activities. Importantly, 

different entropy calculation approaches may probably delineate different complexity 

results since they are based on different physical hypothesis for complexity calculation 

which was remarked in a previous literature (J. Kang et al. 2019). In this circumstances, 

it is again mandatory to investigate the usefulness of different entropy methods before 

using them for specific purposes. 

Table 30. The performances of three different features used in the proposed method. 

 

% Perf (Scenario-1) % Perf (Scenario-2) 

FLD 
Linear 

SVM 

Nonlinear 

SVM 
FLD 

Linear 

SVM 

Nonlinear 

SVM 

B
C

I 
C

o
m

p
.-

Ⅲ
  

d
a

ta
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t 
Ⅳ

a
 

Entropy 
62.23 ± 

8.74 

75.74 ± 

12.39 

79.46 ± 

11.27 

80.65 ± 

9.33 

85.0 ± 

7.96 

80.86 ± 

10.32 

Activity 
63.51 ± 

7.87 

73.29 ± 

11.21 

75.63 ± 

10.81 

73.47 ± 

10.0 

83.69 ± 

9.66 

80.21 ± 

11.74 

Mobility 
55.32 ± 

7.29 

61.27 ± 

13.18 

68.82 ± 

13.89 

68.26 ± 

9.76 

68.91 ± 

9.36 

70.65 ± 

9.22 

Complexity 
49.14 ± 

3.29 

53.61 ± 

2.56 

55.31 ± 

4.86 

50.0 ± 

8.89 

51.08 ± 

7.95 

52.82 ± 

9.7 
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Entropy 
54.0 ± 

9.34 

53.33 ± 

7.87 

51.83 ± 

9.39 

60.67 ± 

11.0 

62.0 ± 

14.03 

65.0 ± 

13.99 

Activity 
54.5 ± 

10.21 

54.83 ± 

11.96 

54.5 ± 

10.66 

57.67 ± 

11.5 

62.33 ± 

15.02 

60.67 ± 

15.87 

Mobility 
54.67 ± 

7.36 

57.16 ± 

12.15 

58.5 ± 

12.06 

51.33 ± 

8.67 

53.67 ± 

15.05 

56.67 ± 

14.58 

Complexity 
47.83 ± 

7.74 

49.16 ± 

6.0 

50.83 ± 

7.24 

55.0 ± 

9.88 

43.67 ± 

11.94 

43.66 ± 

11.96 
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6.4.5. Alternative Usage of the Proposed Method 

We performed an additional classification analysis to show the method presented 

here can also be used prior to the CSP method for the purpose of capturing relevant signal 

segments. We initially set the length of the search window to 𝑤 = 2  seconds as in 

(Mishuhina and Jiang 2021; Yu Zhang et al. 2019). Next, we applied the same entropy 

and mean posterior probability calculation steps. For each channel 𝑖(𝑓) and activity type 

𝐴 , we determined the optimum latency parameter ( Δ𝑡𝑖(𝑓)
𝐴 ) at which the most 

discriminative entropy patterns (highest mean posterior probability) emerges. Then, the 

latency parameters are used for extracting 2-seconds-length informative signal segments 

from both training and test task periods. At the final stage, the CSP filters can be obtained 

from the 2-second length training task periods and these filters applied for extracting log-

variance features. We used large-margin classifier (linear SVM) as in (Ince et al. 2009). 

Our classification analysis show that, for scenario-2, we achieved 88.17% accuracy 

(average of five subjects) for BCI Competition-Ⅲ dataset Ⅳa. For further improvement, 

more shorter time windows and also several variants of CSP method or sparse CSP 

method can also be adopted (H. Wang and Zheng 2008; W. Wu et al. 2015; Lemm et al. 

2005; Fabien Lotte and Guan 2011; Goksu, Ince, and Tewfik 2013). 

The datasets that we used for performance evaluation (i.e., BCI Competition-Ⅲ 

dataset Ⅳa (𝑓𝑠 = 100 𝐻𝑧) and PhysioNet Motor Movement/Imagery (𝑓𝑠 = 160 𝐻𝑧)) 

were collected at relatively low sampling frequencies. Although our method achieved 

promising performances, the temporal resolution of the timings captured for brain activity 

characterization is relatively low (10ms resolution for BCI Competition-Ⅲ dataset Ⅳa, 

and 6.25ms resolution for PhysioNet Motor Movement/Imagery datasets). Our method 

may exhibit a better recognition performance with EEG setups having greater sampling 

frequencies albeit with a computational cost. An increase in the sampling frequency of 

EEG signals enables to use of an analysis window smaller than 300ms that enables to 

capture the timings more accurately. Using advanced parallel computing algorithms and 

advanced processor architectures, our method can reliably be used in asynchronous mode 

brain-computer interface applications. 

On a final note, in this study we showed that, the brain encodes the task-specific 

information into the short-lasting electrophysiological activity segment which obeys the 

temporal organization dynamics as highlighted in (Z. Ma and Zhang 2018). We also 
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showed that emerging and vanishing of activity-specific temporal dynamics are not 

synchronized to activity onset within all brain regions. To sum up, our results point that 

obtaining the characteristic brain dynamics for each different cognitive activity requires 

a temporal, spatial and spectral search. 
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CHAPTER 7 

REPRESENTATIVE AUTOREGRESSIVE MODELLING 

OF COGNITIVE ACTIVITIES 

Biology gives you a brain, 

but life turns it into a mind… 

-Jeffrey Eugenides- 

7.1. Introduction 

In the AR modeling-based cognitive activity recognition frameworks, either 

univariate or multivariate autoregressive model coefficients are estimated for each task 

period and used as features for recognition purposes (Huan and Palaniappan 2004; 

Anderson, Stolz, and Shamsunder 1998). It is expected that the AR model coefficients 

calculated for the same type of cognitive tasks are found to be similar. However, the major 

problem in these studies is that the calculated model coefficients for each same type of 

cognitive task may significantly alter due to several internal as well as external factors 

such as physiological factors, movement/eye artifacts, low signal-to noise ratio and so 

forth. Another main reason for this alteration is thought to be the result of dynamically 

changing as well as nonlinear characteristics of brain activity (C. J. Stam 2005). As a 

result, the performance of AR modeling in capturing the inherent dichotomy between 

different cognitive tasks, however, remains modest (Ahn and Jun 2015; Priestley 1988; 

Brunner et al. 2011). This indicates that calculating the linear autoregressive model 

coefficients for each task period separately may not be a reasonable way for accurate 

recognition/characterization. Additional efforts have been spent to improve the 

performance of the frameworks due to the nonlinear and dynamically changing 

characteristics of the brain (C. J. Stam 2005), such as using both autoregressive and other 

different types of features together (Yong Zhang et al. 2017), calculating the AR 

coefficients in phase space (Fang, Chen, and Zheng 2015), calculating the autoregressive 

model coefficients of the wavelet transform of the signal (Yong Zhang et al. 2017), or 



188 
 

using complicated nonlinear classification methods (Anderson, Stolz, and Shamsunder 

1998; Huan and Palaniappan 2004). Also, bilinear autoregressive modeling (Brunner et 

al. 2011; Priestley 1988) and time-varying autoregressive modeling have been offered to 

capture the inherent dichotomy from the nonlinear and dynamically evolving 

electrophysiological characteristics of the brain (Schlögl et al. 2005; Tarvainen et al. 

2004; G. Pfurtscheller et al. 1998; Arnold et al. 1998). Although these intimate efforts 

achieved a conspicuous success, still some meaningful improvements are required 

especially for brain-computer interfacing approaches. 

In this chapter, we propose an alternative AR modeling-based approach in 

response to the model coefficient estimation problem of conventional AR modeling 

described above. Basically, our method generates a representative model for each type of 

cognitive task by incorporating each of every task period of activity of interest into 

coefficient estimation for the representative models during the training phase. Note that 

the representative AR models generated for each cognitive activity contains both 

multivariate and univariate AR model coefficients. In the training phase, our method uses 

the CSP method as a part of preprocessing to emphasize the inherent dichotomy of 

different cognitive tasks (Ramoser, Müller-Gerking, and Pfurtscheller 2000; Blankertz et 

al. 2008). By using the CSP-filtered task periods, the representative AR models calculated 

for each type of cognitive task. Then, each of the CSP-filtered multichannel task periods 

were filtered using the representative AR models obtained for each cognitive task and 

obtained the forward prediction error signals. The forward prediction error signals mainly 

comprised of unpredicted nonlinear as well as nonstationary characteristics of the 

cognitive activities. In the final step, the channel-wise entropies of error signals obtained 

for each task period were calculated and used them as feature vectors to train a Fisher’s 

linear discriminant (FLD) classifier. 

In the test phase, we used the CSP filter, and the representative models calculated 

in training phase to filter each task period. The channel-wise entropies of the error signals 

obtained for each test period were calculated and formed as feature vectors and the trained 

FLD classifier were then decide the category of each test period. We tested our method 

on two BCI datasets available online, PhysioNet Motor Movement/Imagery Dataset and 

BCI Competition-Ⅲ Dataset Ⅳa. The results obtained on these two datasets show that 

the spatial filtering of the motor imagery task periods via CSP filter can uncover the 

inherent dichotomy between different types of motor imagery activities and offers a 

reliable representative modeling of different types of motor imagery tasks (J. Wang et al. 



189 
 

2018). On a final note, this approach can easily be adapted to characterize the various 

type of cognitive tasks. 

The remainder of this paper is organized as follows: In Section 7.2, we present the 

details of the proposed method used in this study. In Section 7.3, we describe the 

performance results obtained across PhysioNet as well as BCI Competition-Ⅲ datasets. 

In Section 7.4, we discuss the results. 

7.2. The Proposed Method 

 

Figure 42. The illustration of the proposed AR-based method. 

The operational flow diagram of the proposed framework is given. This 

framework was implemented following the chronological cross-validation paradigm of 

machine learning with exclusive training and test sets as illustrated in Figure 42. 
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7.2.1. Training Phase 

In the CSP Filter block, we calculated the CSP filter 𝑊 by using all the band-pass 

filtered motor imagery activity periods in the training set. We then filtered each of every 

training task period using CSP filter 𝑊. In the Representative AR Modelling and AR 

Process Analyzer block, we calculated representative model coefficient matrices 

{𝐴1[𝑟], 𝐵1[𝑘]} and {𝐴2[𝑟], 𝐵2[𝑘]} for each different task type (say 𝑇1 and 𝑇2) by using 

corresponding cognitive task periods. After calculating the model coefficient matrix pairs 

(i.e. {𝐴1[𝑟], 𝐵1[𝑘]} and {𝐴2[𝑟], 𝐵2[𝑘]}), we used both models to filter each of every CSP-

filtered task period indexed by 𝑖 in the training set and obtained forward prediction error 

signals 𝝐𝑖
𝐴1,𝐵1[𝑛] and 𝝐𝑖

𝐴2,𝐵2[𝑛] for the task period 𝑖 (Altunay, Telatar, and Erogul 2010). 

Note that, each error signal is 2𝑚 × 𝑁𝑠 dimensional. In here, 2𝑚 denotes the number of 

latent channels and 𝑁𝑠  denotes the number of samples. We concatenated these error 

signals into a single error signal for each of every training task period indexed by 𝑖 as 

𝝐𝑖[𝑛] = [
𝝐𝑖
𝐴1,𝐵1[𝑛]

𝝐𝑖
𝐴2,𝐵2[𝑛]

] (7.1) 

Note also that, the channel size increased to 4𝑚 after the concatenation. In the Entropy 

Calculation block, we calculated channel-wise entropies of the error signal 𝝐𝑖[𝑛] by using 

Vasicek’s method (Vasicek 1976; Ibrahim Al-Omari 2014). The 4𝑚 × 1 dimensional 

entropic feature vectors 𝜉𝑖 calculated for task period 𝑖 to be used for activity recognition. 

The resulting entropic feature vector and class label pairs for training task period 𝑖 {𝜉𝑖, 𝑌𝑖} 

were then used to train a classifier to generalize the associations between the feature 

vectors and activity types to future task periods. In the FLD Training block, by using the 

feature vectors with known labels (i.e., {𝜉𝑖, 𝑌𝑖} ), we calculated the weight and bias 

parameters (i.e., 𝑤  and 𝑤0 ) of the classifiers that minimizes the classification error 

obtained on the training set.  
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7.2.2. Test Phase 

In the CSP Filter block, we used CSP filter matrix W calculated in the training 

phase to filter each test task period (i.e., 𝒙̃[𝑛] = 𝑊𝑇𝒙[𝑛]). In the AR Process Analyzer 

block, we used the representative models (i.e., {𝐴1[𝑟], 𝐵1[𝑘]} and {𝐴2[𝑟], 𝐵2[𝑘]}) to filter 

the CSP-filtered test task period 𝒙̃[𝑛] and obtained error signals 𝝐𝐴1,𝐵1[𝑛] and 𝝐𝐴2,𝐵2[𝑛]. 

We then concatenated the error signals as 

𝝐[𝑛] = [
𝝐𝐴1,𝐵1[𝑛]

𝝐𝐴2,𝐵2[𝑛]
] (7.2) 

Then, in the Entropy Calculation block, we calculated the entropies of each of channel of 

𝝐[𝑛] and constructed the entropic feature vector 𝜉. We then decided the category of that 

motor imagery activity period characterized by 𝜉 in the FLD Classification block. 

7.2.3. Representative Autoregressive Modelling 

Univariate AR modeling calculates the model coefficients for each of every EEG 

channel and also, multivariate AR modeling calculates the model coefficients that 

characterize both individual and pairwise linear relationships between EEG channels. 

From the biophysical point of view, multivariate modeling is more convenient since it 

uncovers the pairwise interaction between different brain regions albeit with requiring a 

large amount of sample size as well as computational cost (M. H. Wu, Frye, and 

Zouridakis 2011; Harrison, Penny, and Friston 2003). Note that, AR coefficient 

calculation step is repeated for each task period in the majority of the AR modeling studies 

(Huan and Palaniappan 2004). 

In this study, we fitted a unique representative model for each different cognitive 

task type that contains both multivariate and univariate AR model coefficients together. 

Using a multivariate and univariate AR model together is beneficial to avoid small sample 

size problems faced during multivariate AR modeling (Lawhern et al. 2012). To 
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characterize the time evolution of the CSP-filtered latent channels for a particular task 

type, we have fitted a representative model separately using all the CSP-filtered task 

periods associated with the two activity types (i.e., 𝑇1 and 𝑇2). The representative models 

were constructed for each different type of task according to 

𝒙̃𝑖1[𝑛] =∑𝐴1[𝑟]𝒙̃𝑖1[𝑛 − 𝑟] +∑𝐵1[𝑘]𝒙̃𝑖1[𝑛 − 𝑝𝑚 − 𝑘] + 𝝐𝑖1[𝑛]

𝑝𝑢

𝑘=1

𝑝𝑚

𝑟=1

 

and 

𝒙𝑖2[𝑛] =∑𝐴2[𝑟]𝒙̃𝑖2[𝑛 − 𝑟] +∑𝐵2[𝑘]𝒙̃𝑖2[𝑛 − 𝑝𝑚 − 𝑘] + 𝝐𝑖2[𝑛]

𝑝𝑢

𝑘=1

𝑝𝑚

𝑟=1

 

(7.3) 

where 𝒙𝑖1[𝑛] and 𝒙̃𝑖2[𝑛] are the CSP-filtered task periods belongs to 𝑇1 and 𝑇2, 𝑖1 and 𝑖2 

representing the indices of the task periods of 𝑇1 and 𝑇2, respectively. 𝐴𝑥[𝑟] represent the 

6 × 6  matrices of multivariate autoregressive coefficients 𝐵𝑥[𝑘]  represent the 6 × 6 

matrices of univariate autoregressive coefficients calculated using task periods of 𝑇𝑥 . 

Note that the 𝐵𝑥[𝑘]  matrices are diagonal matrices that the diagonal elements are 

univariate autoregressive model coefficients and off-diagonal elements are zero. 

Following the literature (McFarland and Wolpaw 2008), the total model was chosen as 

16 with multivariate order of 𝑝𝑚 = 1 and univariate order of 𝑝𝑢 = 15. We calculated a 

unique representative model for each different type of cognitive task by using all 

corresponding task periods at the same time. We pooled the corresponding CSP-filtered 

task periods into a matrix equation to calculate the task-specific model coefficients as  
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[
 
 
 
 𝒚ℓ

𝑇𝑥,1

𝒚ℓ
𝑇𝑥,2

⋮

𝒚
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𝑇𝑥,𝑁𝑇𝑥
]
 
 
 
 

=
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 𝒀ℓ

𝑇𝑥,1

𝒀ℓ
𝑇𝑥,2

⋮

𝒀
ℓ

𝑇𝑥,𝑁𝑇𝑥
]
 
 
 
 

 𝑽𝓵
𝑻𝒙 (7.4) 

where 𝒚ℓ
𝑇𝑥,𝑖  represents the vectors of upcoming samples collected from channel ℓ , 𝑖 

represents the index of task periods belongs to cognitive task type 𝑇𝑥. 𝒀ℓ
𝑇𝑥,𝑖 is the matrix 

of signal samples that are used for calculation of upcoming sample of channel ℓ collected 

from 𝑖𝑡ℎ  task period of cognitive task type 𝑇𝑥 . 𝑽𝓵
𝑻𝒙  contain both multivariate and 

univariate model coefficients that are used for estimating the upcoming sample of channel 

ℓ for task type 𝑇𝑥. 𝑁𝑇𝑥 represents the number of training task periods for cognitive task 

type 𝑇𝑥 . We represented the Eq. (7.4) in a matrix form and calculated the model 

coefficients as 

𝝌𝓵 = 𝚮𝓵 𝑽𝓵
𝑻𝒙 

𝑽𝓵
𝑻𝒙 = (𝚮𝓵

𝑻𝚮𝓵)
−𝟏
𝚮𝓵
𝑻𝝌𝓵 

(7.5) 

where superscript 𝑇 represents the transpose operator. The model coefficient matrices 

𝐴𝑥[𝑟]  and 𝐵𝑥[𝑘]  were then constructed using the estimated task-specific model 

coefficients by solving the matrix equation via channel-wise least squares method used 

in (Gürkan, Akan, and Seyhan 2014) in a way to minimize the error term 𝝐[𝑛] (Peiyang 

Li et al. 2015; Kuruoǧlu 2002; Golub and Saunders 1970; Frye and Wu 2011; G. Chen et 

al. 2011). Please note that these calculations were repeated for each channel ℓ. Note also 

that, the main aim of calculating representative model coefficients by using all the task 

periods is to obtain a common representative model for a particular type of cognitive task. 

The forward prediction error term can be calculated as  
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𝝐𝑖
𝐴𝑥,𝐵𝑥[𝑛] = 𝒙̃𝒊[𝑛] − (∑𝐴𝑥[𝑟]𝒙̃𝒊[𝑛 − 𝑟] +∑𝐵𝑥[𝑘]𝒙̃𝒊[𝑛 − 𝑝𝑚 − 𝑘]

𝑝𝑢

𝑘=1

𝑝𝑚

𝑟=1

) (7.6) 

𝝐𝑖
𝐴𝑥,𝐵𝑥[𝑛] is the forward prediction error signal obtained via filtering the 𝒙̃𝒊[𝑛] by using 

the model coefficient matrix pair {𝐴𝑥[𝑟], 𝐵𝑥[𝑘]}, 𝑖 represents the index of the task period. 

7.3. Results 

We compared the motor imagery activity recognition performance of our 

proposed method with several benchmark methods CSP (Ramoser, Müller-Gerking, and 

Pfurtscheller 2000), common spatio-spectral patterns (CSSP) (Lemm et al. 2005), and 

MVAR model (Anderson, Stolz, and Shamsunder 1998). We applied the same pre-

processing steps during the performance comparison to maintaining the consistency 

between the benchmark methods. We selected the three largest and smallest eigenvalue 

channels for both CSP and CSSP methods (2𝑚 = 6). We selected the six most BCI 

related channels via a correlation-based channel selection strategy as proposed in (J. Jin 

et al. 2019) to maintain the equality of the number of channels between CSP and MVAR 

methods. We fixed the model order of MVAR to 16. We estimated the MVAR model 

coefficients by using the EEG signals that were collected from the channels that were 

identified in the channel selection strategy (J. Jin et al. 2019) and used them as features 

for each motor imagery activity period. For both scenario-1and scenario-2, the 

performance results are given in Table 31. Besides the entropy, we also calculated the 

root-mean-square (RMS) of the residual signals to evaluate the performances of entropy 

and RMS based features in the characterization of nonlinear characteristics of the residual 

signals. Thereafter, we used linear and nonlinear support vector machines (SVM) with 

Gaussian kernels as classifiers. We followed the same procedure for training as well as 

test phases but linear and nonlinear SVM classification. The performance results obtained 

for our method and the CSP for different classifier settings were provided in Table 32.  
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Table 31. The average performances for BCI Competition-Ⅲ dataset Ⅳa and PhysioNet 

Motor Movement/Imagery datasets. 

 % Performance 

Method Dataset Scenario-1 Scenario-2 

Proposed Method 

(Entropy) 

PhysioNet 55.16 ± 7.04 62.33 ± 12.66 

BCI Comp. 81.69 ± 13.62 86.08 ± 12.84 

Proposed Method 

(RMS) 

PhysioNet 53.33 ± 7.33 59.33 ± 13.32 

BCI Comp. 81.27 ± 15.45 85.0 ± 14.1 

CSP 

(Log-variance, 

𝑚 = 3) 

PhysioNet 54.5 ± 6.14 58.33 ± 13.31 

BCI Comp. 82.34 ± 14.9 84.56 ± 16.4 

CSSP 

(Log-variance, 

𝑚 = 3) 

PhysioNet 50.5 ± 3.11 57.57 ± 16.08 

BCI Comp. 81.06 ± 15.66 84.34 ± 18.86 

MVAR 

(𝑝𝑀𝑉𝐴𝑅 = 16) 

PhysioNet 47.5 ± 10.3 47.0 ± 10.91 

BCI Comp. 49.78 ± 4.88 51.52 ± 7.7 
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Table 32. Performance evaluation using different classifiers. 

  Performances of Different Classifiers (%) 

  

FLD Linear SVM Gauss SVM 

S1 S2 S1 S2 S1 S2 

B
C

I 
C

o
m

p
.-

Ⅲ
 

Proposed 
81.69  

± 13.62 

86.08  

± 12.84 

78.4  

± 14.36 

83.25  

± 16.08 

75.73  

± 12.54 

81.51  

± 17.3 

CSP 
82.34 

± 14.9 

84.56  

± 16.4 

79.9  

± 12.42 

84.56  

± 17.58 

80.95  

± 13.53 

83.9  

± 18.5 

P
h

y
si

o
N

et
 Proposed 

55.16  

± 7.04 

62.33  

± 12.66 

58.33  

± 11.87 

59.33  

± 14.65 

57.83  

± 10.5 

59.0  

± 14.39 

CSP 
54.5  

± 6.14 

58.33  

± 13.31 

61.83  

± 14.03 

63.0  

± 16.53 

60.83  

± 14.42 

65.33  

± 16.83 

Apart from fixed model order approach, we tried several model order 

identification techniques (Akaike Information Criterion, Bayesian Information Criterion, 

and Mutual Information) to find optimum multivariate (i.e., 𝑝𝑀) and univariate (i.e., 𝑝𝑈) 

model orders for a better brain activity recognition performances (Gibson 2018; Mariani, 

Giorgetti, and Chiani 2015; Akaike 1969). The recognition performance results are 

provided in Table 33. The performances provided in Table 33 shows that the fixed model 

order approach which is adopted from study of (McFarland and Wolpaw 2008) achieved 

a higher recognition performances than the performance obtained using well-known 

model order identification methods.  
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Table 33. Average recognition performances of different model order identification 

techniques. 

 Dataset 
Scenario-1 

Performances (%) 

Scenario-2 

Performances (%) 

Fixed Order 

(𝑝𝑀 = 1, 𝑝𝑈 = 15) 

BCI-Ⅲ 81.69 ± 13.62 86.08 ± 12.84 

PhysioNet 55.16 ± 7.04 62.33 ± 12.66 

Akaike Information 

Criterion 
(AIC) 

BCI-Ⅲ 78.41 ± 17.59 80.02 ± 18.37 

PhysioNet 50.67 ± 10.1 57.33 ± 8.25 

Bayesian Information 

Criterion  
(BIC) 

BCI-Ⅲ 77.82 ± 14.2 81.24 ± 16.23 

PhysioNet 51.67 ± 9.43 60.33 ± 14.42 

Mutual Information 

(Kraskov’s method) 

BCI-Ⅲ 78.57 ± 15.41 83.27 ± 9.06 

PhysioNet 53.67 ± 9.97 61.67 ± 12.56 

7.4. Discussion 

The performance evaluated in a task recognition framework highlights the 

capability of the proposed method. Results showed that the performance of the proposed 

method exceeded the minimum reliable communication rate (Ahn and Jun 2015). In 

Scenario-2, the proposed method achieved greater recognition performance than the well-

known benchmark methods CSP, CSSP, and MVAR modeling on both datasets. The 

results also showed for the PhysioNet dataset that we could not achieve the minimum 

reliable communication rate for the motor imagery activity recognition. The common 

approach is the elimination of the subjects from the method evaluation who elicit poor 

recognition performances during the motor imagery activity recognition that uses the 

PhysioNet motor imagery dataset (Handiru and Prasad 2016; Athif and Ren 2019; 

Cheolsoo Park, Took, and Mandic 2014; Kim et al. 2016), as pointed out by Müller 

(Müller-Putz et al. 2007). As in our previous study (B. Orkan Olcay and Karaçalı 2019), 

we demonstrated the average performances calculated across the first 20 subjects from 



198 
 

the PhysioNet dataset and we demonstrated the average performances calculated across 

the five subjects BCI Competition-Ⅲ dataset Ⅳa without considering any performance 

exclusion criteria to clearly demonstrate the pros and cons of the proposed method. Also, 

we also used linear as well as nonlinear SVM classifiers. The results presented in Table 

31 shows that the classification performance obtained for CSP, and our method do not 

demonstrate any enormous differences for both datasets when linear and nonlinear SVM 

classifiers are used. In this study, our main idea is not to improve the performance of CSP 

based motor imagery activity recognition (Ramoser, Müller-Gerking, and Pfurtscheller 

2000), is to enhance the characterization capability of autoregressive modeling for motor 

imagery task recognition. Along with this idea, we proposed a method that utilizes the 

merits of CSP in the pre-processing step. We obtained a common representative model 

for each type of cognitive task by using all the CSP-filtered task signals. The performance 

results obtained using both multivariate AR modeling and the proposed method given in 

Table 31 show that we significantly developed the discrimination capability of the AR 

modeling in motor imagery activity characterization/recognition frameworks. To improve 

the performance of the proposed method, as the preprocessing step, different variants of 

the CSP method can be applied as pre-preprocessing (Fabien Lotte and Guan 2011; H. 

Lu, Plataniotis, and Venetsanopoulos 2009; Fabien Lotte and Guan 2010; Ashok et al. 

2013; Cheolsoo Park, Took, and Mandic 2014). 

The characteristics of the brain oscillations alter significantly during the epileptic 

seizures (Sharma, Pachori, and Acharya 2015; Padmasair et al. 2010; Altunay, Telatar, 

and Erogul 2010). Along with this fact, autoregressive modeling approaches used in 

epilepsy detection studies achieved brilliant recognition performances as the result of 

apparently diverging dichotomy emerged between normal and epileptic brain oscillations 

(Altunay, Telatar, and Erogul 2010). However, the dichotomy between two different 

motor imagery tasks is not apparent without using any pre-processing method in the 

motor imagery activity recognition case. Performance results obtained via multivariate 

AR modeling given in Table 31 shows that multivariate AR modeling did not achieve the 

minimum reliable communication rate. These results signify the inability of the 

autoregressive modeling to capture the activity-specific nonlinear brain dynamics emerge 

during cognitive tasks since it characterizes only the linear dynamics of the brain activity. 

For this reason, as pre-processing, we filtered the task periods via CSP filter to amplify 

the characteristic differences of different types of motor imagery activities that help 

autoregressive modeling to capture the activity-specific dichotomies (J. Wang et al. 
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2018). Thereafter we filtered the task periods with these linear models to obtain the 

nonlinear dynamics. Similar autoregressive based filtering has been proposed to detect 

the artifacts of the electrophysiological signals (Schlögl 2000) and epileptic activity 

(Altunay, Telatar, and Erogul 2010). The main idea behind this is that the autoregressive 

model captures the linear portion of the brain activity which can be characterized by a 

continuous function of frequency in power spectra. However, artifacts or transiently 

emerged nonlinear oscillations which are characterized by discrete narrow peaks, in 

general, cannot be modeled by the autoregressive model. Thus, filtering the 

electrophysiological activity produces the transiently emerged nonlinear characteristics 

of the brain activity (C. J. Stam 2005) that are assumed to be the nonlinear portion of 

motor imagery activity related brain processes (Pardey, Roberts, and Tarassenko 1996; 

Akin and Kiymik 2000; Acir and Güzeliş 2004). 

The notion of entropy has proven to be an effective method in uncovering the 

latent nonlinear characteristics of the electrophysiological signals (Güdücü et al. 2019; 

Arunkumar et al. 2017; Liang et al. 2015). We calculated the channel-wise entropies of 

the prediction error signals to characterize the nonlinear dynamics. Many different 

entropy estimation methods such as approximate entropy (Pincus 1991), sample entropy 

(Richman and Moorman 2000), distribution entropy (Peng Li et al. 2015), bubble entropy 

(Manis, Aktaruzzaman, and Sassi 2017), quadratic Renyi entropy (Principe 2010) have 

been proposed and tested on real and synthetically generated signals. Among the several 

alternatives, we selected the Vasicek’s entropy estimator with bias correction term 

(Ibrahim Al-Omari 2014). Besides the entropy, we also calculated channel-wise RMS 

values of the prediction error signals as features to see the effectiveness of the entropy in 

characterizing the prediction error signals. Performance results obtained via proposed 

method show that entropy-based features are better in characterizing the nonlinear 

dynamics of the electrophysiological signals (Güdücü et al. 2019). 

To capture the dynamically changing behavior of the brain, time-varying 

autoregressive modeling was adopted in many studies (Tarvainen et al. 2004; G. 

Pfurtscheller et al. 1998; Schlögl 2000; Schloegl, Lugger, and Pfurtscheller 1997; Arnold 

et al. 1998; Gutiérrez and Salazar-Varas 2012). In these studies, the autoregressive model 

coefficients are iteratively updated to capture the instantaneous brain dynamics. Note that, 

these iterative updates continue either in the testing/recognition phase. The re-calculation 

of model coefficients for an 𝑁-channel EEG system requires a large amount of memory 

as well as computation power to meet the speed requirements for BCI applications in the 
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recognition phase. Unlike these approaches, our method calculates the activity-specific 

representative models only in the training phase. These representative models are then 

used for filtering the upcoming EEG signals which means that the testing/recognition 

phase does not bring any computational cost to the BCI system. 

In the literature, the optimum AR model order identification (i.e. identification of 

𝑝𝑚 or 𝑝𝑢) is generally carried out by using Akaike information criterion (AIC) (Akaike 

1969), Schwartz Bayesian information criterion (BIC), Akaike’s final predictions error 

(FPE), minimum description length (MDL), and RJMCMC (Karakuş 2017; Troughton 

and Godsill 1998). Besides, information-theoretic methods such as entropy power (Bu et 

al. 2018), Kullback-Liebler discrepancy (Broersen and Wensink 1998), generalized 

information criteria (Mariani, Giorgetti, and Chiani 2015), coherence-based methods 

(Thuraisingham 2007) has been proposed to identify the optimum model order. The 

majority of these studies use both the modeling error and model complexity and calculates 

a penalty for each model order. The model order that exhibits the minimum penalty is 

selected as the optimum model order. However, the situation changes in the case of BCI 

studies. In (McFarland and Wolpaw 2008), McFarland et al. highlighted the importance 

of model order selection in sensorimotor-based motor imagery activity characterization 

studies. It was also stated in Refs. (Krusienski, McFarland, and Wolpaw 2006; McFarland 

and Wolpaw 2008), for BCI studies, minimum mean square error performance is 

significantly different from the BCI performance. We choose the total model order as 16 

with the multivariate model order 𝑝𝑚 = 1 and univariate term  𝑝𝑢 = 15 in light of the 

results in (McFarland and Wolpaw 2008). The reason for fixing the multivariate model 

order as one and allowing a large number of univariate model order is twofold. The first 

reason is, adding one more multivariate term requires estimation of 𝑁2 more coefficients 

for an 𝑁-channel dataset. The dramatic increase of the number of multivariate model 

coefficients may cause an erroneous estimation of model coefficients especially for small 

sample-sized datasets This approach facilitates avoiding erroneous estimation of AR 

model coefficients due to the large number of coefficients to be estimated when 

characterizing the cognitive tasks with a limited number of samples as pointed in Ref. 

(Lawhern et al. 2012). The second reason is that the univariate AR modeling elicited 

better cognitive activity recognition performance than multivariate AR modeling for the 

majority of the subjects studied in the past literature (Anderson, Stolz, and Shamsunder 

1998). So, we fixed the multivariate term to one and allowed using a large number of 

univariate terms. Note that, we use the multivariate term as the most recent regression 
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term to capture the inter-channel linear relationship as it provides, to a certain extent, 

characterization of the pairwise channel interactions that spread from the past samples 

used for the estimation of the upcoming signal sample. After the multivariate term, we 

use the univariate terms to capture the temporal dynamics of each channel. As a final 

note, it is possible to acquire better recognition performance from the proposed method 

by evaluating different model orders to univariate part of the representative model to 

different channels using a recognition framework in the training phase (Bufalari et al. 

2006). 

In the training phase, we fitted a mixed AR model for each type of motor imagery 

activity by using the corresponding CSP-filtered task periods. Note that, we used entire 

signal samples of each CSP-filtered training tasks during model fitting. However, 

identifying and using the most informative segment of the task periods may have a 

significant influence on the recognition performances. In the literature, much effort has 

been spent on capturing the most informative signal segment for better motor imagery 

activity characterization. Zhang et al. proposed the temporally constrained sparse group 

spatial patterns method to extract features from the most activity-related signal segment 

(Yu Zhang et al. 2019). Wang et al. proposed the Kullback-Liebler divergence based 

method to identify the most relevant signal segment for a BCI purpose (J. Wang et al. 

2018). Ang et al. proposed an information-theoretic framework to capture the optimal 

time window of task periods for EEG signal classification (Ang et al. 2012). As a pre-

processing step, capturing and using the most informative time segment for the proposed 

method may be beneficial for a better recognition performance.
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CHAPTER 8 

CONCLUSIONS AND FUTURE DIRECTIONS 

The human brain has 100 billion neurons, 

each neuron connected to 10 thousand other ones, 

sitting on your shoulders is the most complex object in the known universe... 

-Michio Kaku- 

The brain appears to operate through multi-dimensional states (Breakspear and 

Stam 2005). Communication among different regions, sensory and motor information 

processing associated areas, and frontal/prefrontal areas co-exist. The nature of 

asymmetrical brain response to dichotic stimulus has given some insight to trans-

hemispheric and posterior-frontal axes in stimulus-specific time intervals (Bayazit et al. 

2009). The operational complexity as well as the timing specialization of the brain forces 

us to seek novel analysis methods that can elucidate the characteristic as well as transient 

synchronization between distinct brain regions. Since cognition as well as other processes 

shows nonstationary behavior, methods that invoke stationarity assumptions on brain 

electrophysiology are rendered inadequate to reveal the characteristic behavior of the 

brain. 

The major shortcoming of the classical analysis approaches is the disregard of the 

transient as well as the complex nature of the brain’s distributed functionality in favor of 

model simplicity. The more adequate distributed systems approach requires new tools as 

the function blocks are widely distributed and the information complexity overwhelms 

locality to a large degree. 

This thesis proposes a new perspective for analysis of brain activity that can be 

useful to trace and characterize the behavior of distributed information processing during 

cognition, perceptual, and other processes. Our perspective in this thesis is based on the 

premise that the brain adapts itself by re-organizing its inter-regional synchronization 

timings for each different cognitive activity for optimal information processing (Bullmore 

and Sporns 2012). In this sense, in Chapter 3, we characterized the brain activity by means 

of calculating the synchronization between EEG channels at task-specific time lags (i.e., 

𝜏). To that end, we applied six synchronization measures and calculated the characteristic 
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time lags (task-specific time lags) associated with different cognitive tasks: mutual 

information, correntropy, phase locking value, cross-correlation, nonlinear 

interdependence, and cosine-based similarity. In the training phase, the task-specific time 

lags were obtained and used for constructing training feature vectors. These lags 

maximized the average synchronization for their respective channel pairs and cognitive 

task types in the training set. In the test phase, we calculated the synchronization values 

at the same task-specific time lags calculated in the training phase and constructed the 

test feature vectors. Due to the high dimensionality of the feature vectors, we carried out 

a feature selection using Fisher ratio along with a priori suggested channel pairs in the 

literature. For recognition, we used a FLD classifier. The results in Tables 3 and 4 show 

that the recognition rates were below the minimum reliable communication rate (i.e. %70) 

for PhysioNet dataset (Ahn and Jun 2015). However, for the BCI Competition-Ⅲ dataset, 

the average performance varied between 69%-76%. 

Performance evaluation was carried out using a realistic cross validation scheme 

that uses a chronological partitioning of the data into training and testing sets. In 

classification results on the PhysioNet Motor Movement/Imagery Dataset, connectivity-

based framework evaluated here outperformed a CSP-based benchmark scheme. Using 

BCI Competition-Ⅲ dataset, it achieved a slightly lower performance than the CSP 

method. These results indicate that task-specific inter-regional lagged synchronization 

between potentially remote brain regions were used effectively to discriminate between 

different motor imagery tasks. 

Since the synchronous type methods calculate relevant features in a pre-

determined time window, the asynchronous version needs to monitor the changes in brain 

activity in flowing EEG data to capture the task-specific changes as quickly as possible. 

This refers to the need of an improved methodology that captures the short-lived activity-

specific synchronization timings between brain regions. 

The methodology proposed in Chapter 4 determines the timings of the short-lived 

characteristic synchronizations (i.e., {Δ𝑡, 𝜏, 𝑤}) among the brain regions for different 

cognitive activities. We again used six different synchronization measures separately to 

capture the activity-specific synchronization pattern between the EEG channels. In order 

to capture the activity-specific timing parameter triplets for each motor imagery activity 

and channel pair, we used a heuristic optimization to determine from the training set. As 

done in Chapter 3, we use these timings for calculating training and test feature vectors. 
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We provided both the performance results as well as the significant channel pairs, 

and also their statistical significance, that were mostly selected in feature selection. The 

performance results show that the pairwise short-lived channel synchronizations 

calculated at these activity-specific timings can be used for characterization of motor 

imagery activities. Although the classification results obtained from BCI Competition-Ⅲ 

dataset Ⅳa was relatively lower than the these obtained using previous method, the 

performances of PhysioNet datasets, in comparison with the performances of previous 

method, manifests the usefulness of our method. The channel pairs that were identified 

as significant during classification sows that, in general, our method captures 

biophysically meaningful channel pairs that we highlighted their relevance to motor 

imagery tasks. 

A critical point related to this method is that the captured timing parameters for 

different cognitive tasks appeared to be deviated from each other to a large extent. The 

differences in the timings for each different cognitive activity and each different brain 

region indicate that the brain generates transient synchronization windows to integrate 

the segregated neural information to support a rich variety of cognitive processes (Zalesky 

et al. 2014). Additionally, these differences in the synchronization timings may constitute 

a “synchrony filter” to inhibit the interference of task-unspecific neural synchronizations 

coming from different brain regions (Patel and Joshi 2013). The cognitive task 

recognition performance results point to the importance of considering time-resolved 

cortical communication for discovering the working principles of the brain. 

It has proven that the hierarchical organization is an inherent characteristic of 

many real complex systems such as brain networks and these elements of these networks 

constitute temporal communication channel by synchronizing their electrophysiological 

activities for global information integration and segregation (Ravasz and Barabási 2003; 

C. Zhou et al. 2006). In Chapter 5, we adopted this idea and try to characterize the brain 

activity by first finding timing parameters and thus the temporally synchronized channel 

clusters. We used a similar strategy for finding activity-specific timing parameter triplets 

as in Chapter 4. Afterward, we used these timings to calculate inter-channel 

synchronizations for obtaining the clusters of temporally synchronized channels. We 

characterized the clusters via statistical features to determine significant ones for use in 

activity recognition. The performance results obtained via this method were slightly lower 

than the performances in previous chapters. However, more importantly, the significant 

channel clusters identified for each successful participant fall at odds with the current 
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biophysical literature. These results shows that our method requires some critical 

methodological improvements for achieving satisfactory results. 

Our proposed synchronization-based methods discussed above barely exceed the 

reliable communication rate (70%) which indicates the need for further improvements for 

use of these approaches in a BCI setting. The systematic timing organization may shape 

not only the pairwise brain synchronizations but also the information content of localized 

electrophysiological activities. To be more precise, thanks to the timing organization, the 

brain may encode the task-specific information content into the electrophysiological 

activity that emerges and vanishes in a short period for efficient as well as effective 

information processing. We suggest that the systematic timing organization can be 

captured and used for characterizing motor imagery tasks using only the localized 

electrophysiological activities. To validate this, in Chapter 6, we propose an information-

theoretic brain activity characterization method. Our method simply captures the timings 

of the signal segments that provides activity-specific entropy features for activity 

characterization. Satisfactory performance results as well as the most selected channels 

and frequency bands highlights the validity of considering timing organization even for 

using individual brain activities. The biophysical results that we found for these methods 

indicates that the 𝜇  and 𝛽  frequency band is appeared as vital for motor imagery 

organization (Román Baravalle, Rosso, and Montani 2018). 

In the final section, we propose a representative model for characterizing the 

motor imagery activities. The representative models constructed for each different type 

of cognitive task is comprised of both multivariate and univariate terms. In the training 

phase, first, we used the CSP filter to enhance the electrophysiological dichotomy 

between different type of motor imagery activities. This enhancement enables the 

representative autoregressive model to achieve a better motor imagery activity 

characterization. The calculated representative model for each type of motor imagery 

activity is used to filter upcoming task periods. We use the errors obtained at the output 

of these filters for characterization the motor imagery activity periods. For 

characterization purpose, we calculate the channel-wise entropies of these error signals 

to quantify the remaining nonlinear content of the prediction errors. The entropies 

calculated for each task period were used to decide the category of the corresponding 

motor imagery activity period via FLD as well as SVM analyses. The performance results 

obtained on both PhysioNet Motor Movement/Imagery and the BCI Competition-Ⅲ 

dataset Ⅳa show that the proposed method achieved a better activity characterization 
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performance than the well-known benchmark methods such as CSP, CSSP, MVAR 

modeling frequently used in BCI literature. This suggests that our modification approach 

for AR-based motor imagery activity classification enhances the characterization capacity 

of autoregressive modeling in case of motor imagery activity recognition. With slight 

improvements, the proposed method can easily be used as an asynchronous BCI 

framework since the evaluation phase is mainly consisting of filtering operations of the 

upcoming EEG samples and channel-wise entropy estimation for recognition purposes. 

To sum up, in this thesis, we show that the temporal organization of the brain is 

systematic so that this feature leads its dynamic operation towards a more optimal and 

economical state. We also showed that accurate characterization of brain activity is 

possible by putting the systematic timing organization into play. 

8.1. Future Research Directions 

So far, we manifest the importance of capturing and using the characteristic 

synchronization timings for brain activity characterization. The idea adopted here is that 

the activity-specific timings is critical so that at these timings the brain conducts similar 

neural operations for accomplishing the desired cognitive tasks. In the light of this idea, 

we will discuss several potential research directions that incorporate the systematic timing 

organization of the brain for potential scientific research avenues. 

8.1.1. Synchronization Timings in Neurodegenerative Diseases 

It is clear that neurodegenerative diseases and pathological problems such as 

Alzheimer’s and Parkinson’s diseases, and traumatic brain injury induces considerable 

deterioration of the interaction of neuronal networks within the brain (Yates 2012; 

McMackin et al. 2019). The recent approach is that these diseases can now be diagnosed 

by analyzing the inter-regional brain synchronizations calculated from 

electrophysiological measurements both during idling and task state. For these diseases, 

the main attractive study topic is the identification of the main reasons for these alterations 
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in brain synchronizations. Our experience from the motor imagery studies says that the 

shift of consciousness and concentration level significantly affects the captured 

synchronization timings which imposes a big challenge in recognizing the motor imagery 

activities. It may worth studying that the alterations in inter-regional synchronization 

timings in neurodegenerative diseases may be the reason for the observed synchronization 

alterations. 

8.1.2. Common Spatial Patterns for Short-Lived EEG Signals 

As the literature overview provided in the first chapter, the majority of BCI studies 

adopted the CSP as the most powerful signal processing method for motor imagery 

activity characterization. The short-lived activity-specific signal segments captured here 

enables satisfactory characterization of motor imagery activities. Using a sparse solutions 

for finding CSP filters from the captured short-lived signal segments and using sparse 

filters for motor imagery related feature extraction may provide brilliant activity 

recognition performances (Goksu, Ince, and Tewfik 2013). 

8.1.3. Activity-Specific Timing Parameters for Multiple Channel 

Synchronizations 

In this thesis, we captured the activity-specific timing parameters from bivariate 

synchronization patterns. In a brain connectivity-based study, the brain synchronization 

was analyzed by considering different spatial scales for healthy controls and 

schizophrenia patients and the major differences were obtained (Vergara et al. 2019). This 

study tells that not only pairwise interactions but also the multiple interactions is critical 

for functional network characterization. By using multivariate synchronization measures, 

the timing parameters for characteristic multivariate channel synchronizations can be 

obtained and used for accurate brain activity characterization which requires solving a 4 

or more-dimensional parameter optimization problem (Shahsavari Baboukani et al. 2019; 

Jalili, Barzegaran, and Knyazeva 2014).
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