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This paper proposes an adaptive bit allocation scheme by using a fully connected (FC) deep neural
network (DNN) considering imperfect channel state information (CSI) for heterogeneous networks.
Achieving an accurate CSI has a crucial role on the system performance of the heterogeneous networks.
Different quantization techniques have been employed to reduce the feedback overhead. However, the
system performance cannot increase linearly with the number of bits increasing exponentially. Since
optimizing the total number of bits is too complex for the entire network, an initial step is performed
to distribute the bits to each cell in the conventional method. Then, the distributed bits are further
allocated to each channel optimally. In order to enable direct allocation for the entire network, a FC-
DNN based method is presented in this study. The optimized number of bits can be directly obtained
for a different number of bits and scenarios by the proposed approach. The simulations are performed
by using various scenarios with different allocation schemes. The performance results show that the
DNN based method achieves a closer performance to the conventional approach.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Multiple input multiple output (MIMO) systems in heteroge-
eous networks are widely studied as a major technology for
uture wireless communication systems. By equipping a base
tation (BS) with multiple antennas in a centralized [1] or dis-
ributed [2] manner, co-channel interference can be reduced.
s a result the total cell throughput can be increased [3]. This
otential benefit is mainly obtained by obtaining the channel
tate information (CSI) at the base stations (BSs).
In frequency division duplexed (FDD) MIMO systems, CSI is

cquired at the receiver using feedback methods in which the CSI
s sent to the transmitters through feedback channels [4]. In feed-
ack systems, receivers estimate the forward channels by using
he pilot signals. After the estimation of the forward channels,
eceivers quantize the CSI, and feedback it to the transmitters.
n order to reduce the feedback overhead, vector quantization
pproaches have been studied [5,6]. The distortion caused by the
uantizaton process can be decreased by increasing the size of the
odebook, however this results with the exponentially growth in
he feedback overhead. Therefore, the number of bits should be
ptimized depending on the channel conditions [7].

∗ Corresponding author.
E-mail address: esra.aycan@ikcu.edu.tr (E. Aycan Beyazıt).
ttps://doi.org/10.1016/j.phycom.2021.101364
874-4907/© 2021 Elsevier B.V. All rights reserved.
In the context of heterogeneous networks, there are different
studies on the optimization of the bit allocation for limited feed-
back schemes. The performance of the feedback schemes can be
increased by benefiting from the heterogeneous features of the
considered network, which are different transmit power levels
and unequal number of antennas [8,9]. However, optimizing the
total number of bits for the whole network is too complex to
fulfill the requirements [10]. In order to find a local optimum,
the optimization problems are handled for each cell. In the study
of Aycan Beyazit et al. [11], a two-step solution is studied for the
adaptive bit allocation scheme in heterogeneous networks. First
the total number of feedback bits is shared to each cell consid-
ering the transmit powers and the interference levels, then the
shared bits are adaptively and locally allocated to each channel in
the considered cell. However, as the number of antenna and user
increases as in massive MIMO multi-user systems, the complexity
of the mentioned technique will even increase.

In this paper, we address the above problem and we propose
a data-driven solution for the limited feedback systems through
artificial neural networks which is also called deep learning.
Recently, deep learning (DL) algorithms have a great attraction
in communication systems due to their potentials in pointing
out the wireless communication challenges which are nonlin-
ear complex problems. As the data volume increases with the

increasing number of users, antennas and base stations, more
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trict requirements have to be considered for the next gener-
tion communication systems. In order to fulfill these complex
equirements, research studies have been focused on artificial
ntelligence [12,13]. Deep learning based solutions have been
tudied for different research areas of the communication sys-
ems, such as Massive MIMO [14], heterogeneous network [15,
6], interference management [17] and mm-Wave [7]. Also some
ther studies employing DL approaches can be found in the
iterature, such as radio signal classification [18], resource allo-
ation [19] and compression of the CSI [20,21]. It is worthy of
NN-based FDD networks with limited feedback has been studied
n some recent works. For the feedback channels, an extended
ecurrent neural network (RNN) to jointly optimize the encoding
nd decoding in the study of Kim et al. [22]. As another study
n feedback channels, a joint DNN-based solution is performed
o produce both the quantization and the beamforming vectors
or homogeneous networks [23].

The main idea of this study is to achieve the direct allocation
f the feedback bits to the users so that the initial step which is
haring the bits to each cell first can be eliminated. Since there
re many output variables in the training set, supervised learning
hat learn to affiliate the input data with the output data for a
iven training set algorithms are suitable for this study [24].
Another property of the training data set of the handled prob-

em is that both the input and output variables are continuous.
herefore, a regression algorithm is trained with a higher number
f data obtained with the conventional bit allocation (CBA)
cheme as in Aycan Beyazit et al. [11] for several different scenar-
os. In this study, a fully connected deep neural network (FC-DNN)
s used as a regression method since there are multiple number
f output variables due to the nature of the MIMO systems.
The main contributions of this study can be listed as follows.

• We propose a DNN based bit allocation learning method for
a limited feedback in heterogeneous networks. In particular
allocation of the feedback bits can be achieved for the entire
network at once by training the DNN. So that the initial
step which is the sharing of the bits among the cells can be
skipped and the total computational time can be decreased.
As a result, the total number of feedback bits can be directly
and adaptively allocated to each user equipment (UE) by the
proposed DNN based model.

• By exploiting the training data set, the proposed DNN model
learns to mimic the system. So that the prediction of the
number of bits for each feedback link can be achieved for
different total number of bits and also for different hetero-
geneous network scenarios.

• Extensive simulations are performed in order to evaluate the
performance of the proposed method. The obtained results
are compared through three different bit allocation schemes
considering different scenarios.

The rest of the paper is organized as follows. The systemmodel
s explained in Section 2. The proposed DNN-based adaptive
it allocation approach is presented in Section 3 including its
tructure and training phase. The performance evaluations are
iven in Section 4. Finally, the study is concluded in Section 5.
Notations: Sets are represented with Capital Greek letters. The

ranspose conjugate of the matrix X is given as (X)H and the
eterminant of square matrix is shown as X.

. System model

As a system model, a K-pair heterogeneous network is con-
idered in this study. Under the coverage area of a macro BS,
2

K − 1 pico BSs are deployed. There are NTk transmitter antennas
at each BS and NRk receiver antennas at each user. The first pair
is determined as macro BS — macro user pair, and the other pairs
are pico BS — pico user pairs which are kept in set k ∈ Γ =

2, . . . , K }.
The channel matrix between transmitter j and receiver k is

enoted as Hkj with dimension NRk × NTj . Each element of Hkj
s modeled as independent and identically distributed complex
aussian random variable with CN (0, 1). The received signal at
ser k is

yk =

√
PkkHkkT̃kxk +

K∑
j=1,
j̸=k

√
PkjHkjT̃jxj + nk (1)

where nk is a vector with dimension NRk × 1 which represents
additive white Gaussian noise with zero mean and variance of
σ 2. Pk is the transmit power of BS k. Pkk is the received power of
ser k from BS k and the variation of Pkk depends on the path loss
nd shadowing.
T̃k is the precoding matrix of transmitter k with dimension

Tk × qk and it is obtained by the IA algorithms under the
uantized channel, H̃kj, between the jth transmitter and the kth
eceiver with dimension NRk × NTj . Independent streams, qk, are
ransmitted by BS k where qk ≤ min(NRk ,NTk ).

The decoded data symbols are calculated as ŷk = D̃kyk where
˜ k denotes the postcoding vector of dimension qk × NRk .

The actual rate of user k is calculated as follows.

˜ k = log2(1 + γ̃k) (2)

here γ̃k is the signal to interference noise ratio (SINR) of the kth
ser. It can be expressed as

˜k =
Pkkd̃H

k Hkk t̃k t̃Hk H
H
kkd̃k

d̃H
k B̃kd̃k

, k = 1, . . . , K (3)

where B̃k is the interference plus noise covariance matrix of the
kth receiver and it can be calculated as follows.

B̃k =

K∑
j=1,j̸=k

PkjHkj t̃j t̃Hj H
H
kj + σ 2INRk

,

k = 1, . . . , K

(4)

The actual sum rate is expressed as follows.

S̃R =

K∑
k=1

log2(1 + γ̃k) (5)

In the stream selection based IA algorithms, the set of the
selected streams that increases the total sum rate of the network
is constructed from the set of available streams. So that the best
stream selection scheme is aimed to be found while eliminating
the interference by optimizing the precoding and postcoding
vectors which are t̃k and d̃k, respectively.

3. Proposed DNN based adaptive bit allocation scheme

In this section the problem formulation of the fully connected
DNN based bit allocation approach is presented for the limited
feedback scheme to generate efficient precoders and postcoders
for the stream selection based interference alignment (IA) al-
gorithms. The main objective is to achieve the optimal feedback
strategy to maximize the average sum rate by minimizing the rate
loss in the considered heterogeneous network.

The rate loss can be minimized by maximizing the actual rate
of user k which is calculated by the precoders and postcoders
obtained using the quantized channel direction information (CDI).
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Fig. 1. DNN based bit allocation structure.
.1. Problem statement

In the CBA method, dynamic bit allocation to each UE can
e done by solving the optimization problem for each cell after
haring the total number of bits among the cells. In the proposed
pproach on the other hand, the total number of bits can be dy-
amically and directly allocated to each UE considering the entire
etwork. The considered optimization problem can be formulated
s follows.

max E [R̃k]

s.t.
K∑

k=1

K∑
j=1

Bkj ≤ BT
(6)

where Bkj is the number of bits allocated to the channel between
BS j and user k. The total number of feedback bit is BT =

∑K
k=1 Bk

where Bk is the total number of feedback bits for user k.
To obtain the upper bound for the rate loss for each user, high

SINR region is considered for the bit allocation problem [10]. Fur-
thermore, the interfering and the desired channel terms are mod-
eled as independently distributed random variables [5]. Applying
Jensen’s inequality and using some additional approximations,
the optimization problem of the bit allocation for the stream
selection based IA algorithms can be expressed in terms of the
number of allocated bits, Bkj, and received powers, Pkj. So that the
optimization problem can be rewritten as follows.

max
Bkj;j=1,...,K

[
log2

(
(Pkk/qk)

(
1 − 2

−
Bkk

NTk
NRk

−1

))
−

log2

(
Pkk(qk − 1)

qk
2

−
Bkk

NTk
NRk

−1
+

K∑
j=1
j̸=k

Pkj2
−

Bkj
NTj

NRk
−1

)]

s.t.
K∑

k=1

Bkj = BT , ∀j = 1, . . . , K

(7)

3.2. Structure of the proposed bit allocation scheme

For the sake of decreasing the complexity of the quantization
process as well as skipping the initial bit allocation to each cell,
a DNN for adaptive bit allocation is developed for a limited feed-
back scheme. The difference with the CBA scheme explained in
the above section is that an adaptive bit allocation is achieved for
the entire network by training the developed DNN. The flowchart
of the proposed bit allocation method and the fully connected
DNN architecture can be seen in Fig. 1.
3

The considered DNN consists of one input, one output and
two hidden layers. The output layer is deployed to generate the
expected output number of allocated bits to each user.

The details of the training period is explained in Section 3.3.
After training the considered DNN model and predicting the
number of feedback bits for each user, the desired and the inter-
ference channel information is quantized at each UE. The indices
of the quantized information are sent back to the transmitters
through the feedback channels. Then each transmitter receives
codebook indices and reconstructs CSI by using the codebooks
that are known at both sides. Afterwards, all the interference
CSI are collected at the macro BS and the both the precoders
and postcoders are computed by the stream selection based IA
algorithms. Then, the calculated vectors are sent from the macro
BS to the pico BSs. Each BS forwards the postcoding vectors to the
served UEs from the forward link.

3.3. Training the FC-DNN

As a supervised learning method, the training configurations
for DNNs are very important. A DNN can learn the relationship
between a given set of input data X =

{
x1, x2, . . . , xN

}
and a

given set of labels Y =

{
y1, y2, . . . , yN−1

}
where N = k2 + 1.

Every sample in X is an N-dimensional vector according to the
definition of features. The first feature in the input data is the total
number of feedback bits, BT , and other features are composed of
k2 received powers of each users from each BS which is denoted
by Pkj. Every sample in Y is an N − 1 dimensional vector which
includes the number of allocated bits to each user. The labels
in the training data are obtained by solving the optimization
problem of the CBA method using Matlab optimization software.

The activation function used in the model is a logistic sigmoid
function defined as f (x) =

1
1+e−x . In addition, a batch normaliza-

tion is introduced to each layer. The set of parameters is easily
updated by the ADAM algorithm [25]. The mean squared error
(MSE) function between the labels and the predicted outputs is
employed as the loss function in the training of the considered
DNN model.

4. Performance results

In this section, the performance results of the proposed DNN
based bit allocation scheme are compared with the ones of the
CBA based method utilizing different MIMO heterogeneous net-
work scenarios shown in Fig. 2.

In order to train the proposed DNN model, four different sce-
narios named as Scenario 1, 2, 3 and 4 are utilized as illustrated in
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Fig. 2. Considered scenarios for training and prediction phases.
Table 1
Bit allocation schemes for Scenario 1.
Total number of
bits, BT

Allocated number of
bits to Macro BS

Allocated number of
bits to pico BS 1

Allocated number of bits to
pico BS 2 and pico BS 3

BT = 48 B1 = 6 B2 = 16 B3 = B4 = 13
BT = 52 B1 = 7 B2 = 17 B3 = B4 = 14
BT = 56 B1 = 8 B2 = 18 B3 = B4 = 15
BT = 60 B1 = 9 B2 = 19 B3 = B4 = 16
BT = 64 B1 = 10 B2 = 20 B3 = B4 = 17
BT = 68 B1 = 11 B2 = 21 B3 = B4 = 18
BT = 76 B1 = 13 B2 = 23 B3 = B4 = 20
BT = 80 B1 = 14 B2 = 24 B3 = B4 = 21
BT = 84 B1 = 15 B2 = 25 B3 = B4 = 22
BT = 88 B1 = 16 B2 = 26 B3 = B4 = 23
BT = 92 B1 = 17 B2 = 27 B3 = B4 = 24
BT = 100 B1 = 19 B2 = 29 B3 = B4 = 26
BT = 104 B1 = 20 B2 = 30 B3 = B4 = 27
BT = 108 B1 = 21 B2 = 31 B3 = B4 = 28
BT = 112 B1 = 22 B2 = 32 B3 = B4 = 29
BT = 116 B1 = 23 B2 = 33 B3 = B4 = 30
BT = 120 B1 = 24 B2 = 34 B3 = B4 = 31
Fig. 2. In the given figure, each scenario is demonstrated with dif-
ferent color and the colored circles show the pico cells. Scenario
5 shown in the figure is utilized as the predicted scenario.

For all the scenarios, the macro BS is located at (0, 0) and the
acro user is uniformly randomly located within the cell. The

atio d/R is calculated to identify the pico cell locations where
is the distance between the macro and pico BSs and R is radius

of the macro cell. Since, pico cells are generally deployed at the
edge areas of the macro cell in practice, the ratio d/R is chosen as
.6, 0.7 and 0.8. In each scenario, there are 3 pico BSs and 1 macro
S. The number of transmit antennas is 2 for each pico BS and 4
or the macro BS. Each BS serves only one user that is randomly
laced inside the coverage area of the related BS. The number of
eceive antennas is 2 at each UE. Simulation parameters can be
ound in the study of Aycan Beyazit et al. [11].

Both the training and test data sets are obtained with the first
our scenarios shown in Fig. 2. In order to evaluate the perfor-
ance of the proposed DNN-based approach comparatively, we
4

define different allocation schemes denoted as CBA BAS-1, CBA
BAS-2 and equal bit allocation (EBA). The details are given as
follows.

• CBA BAS-1: Using the outcome of the study in Aycan Beyazit
et al. [11], BT is first shared among all the cells by allocating
more bits to pico cells than the macro cell. Later, for each
cell, bits are distributed to the channels between each BS
and each user by solving the optimization problem defined
by Eq. (7).

• CBA BAS-2: BT is first equally shared among all the cells.
Then the optimization problem defined in Eq. (7) is solved
and the number of bits are obtained for each channel.

• EBA: BT is shared among all the channels between BSs and
UEs equally. Since there are 16 channels in the considered
scenarios, the performance of EBA is given for BT values
which are multiple of 16. The number of allocated bits to
each user is B = B /16, ∀j = 1, . . . , K .
kj T
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Fig. 3. Sum rate comparison for Scenario 4 with 64 and 120 bits.

Table 2
Bit allocation schemes for Scenario 2, 3 and 4.
Total number of
bits, BT

Allocated number
of bits to Macro BS

Allocated number of bits
to pico BSs 1, 2 and 3

BT = 48 B1 = 6 B2 = B3 = B4 = 14
BT = 52 B1 = 7 B2 = B3 = B4 = 15
BT = 56 B1 = 8 B2 = B3 = B4 = 16
BT = 60 B1 = 9 B2 = B3 = B4 = 17
BT = 64 B1 = 10 B2 = B3 = B4 = 18
BT = 68 B1 = 11 B2 = B3 = B4 = 19
BT = 76 B1 = 13 B2 = B3 = B4 = 21
BT = 80 B1 = 14 B2 = B3 = B4 = 22
BT = 84 B1 = 15 B2 = B3 = B4 = 23
BT = 88 B1 = 16 B2 = B3 = B4 = 24
BT = 92 B1 = 17 B2 = B3 = B4 = 25
BT = 100 B1 = 19 B2 = B3 = B4 = 27
BT = 104 B1 = 20 B2 = B3 = B4 = 28
BT = 108 B1 = 21 B2 = B3 = B4 = 29
BT = 112 B1 = 22 B2 = B3 = B4 = 30
BT = 116 B1 = 23 B2 = B3 = B4 = 31
BT = 120 B1 = 24 B2 = B3 = B4 = 32

The BT values in the training data set is listed in Tables 1 and
.
In Scenario 1, Pico BS 1 is closer to Macro BS than the other

wo pico BSs. Since the interference generated from macro BS to
ico BS 1 user is stronger, more bits are required for the channels
f Pico BS 1 user in the limited feedback case. Therefore, the bit
llocation schemes for Scenario 1, the number of bits allocated to
ach user, Bk, k = 1, . . . , 4, are listed in Table 1.
For Scenario 2, 3 and 4, it can be seen that each pico BS has

he same distance to the macro BS. Therefore, equal number of
eedback bits is given to the channels of the pico BS users. The
it allocation schemes for Scenario 2, 3 and 4 the number of bits
llocated to each user, B , k = 1, . . . , 4, are given in Table 2.
k p

5

Fig. 4. Sum rate comparison for Scenario 4 with 72 and 96 bits.

Table 3
Training parameters.
Hyper-parameter Setting

Processing cell 2 Hidden Layer
Hidden nodes per layer 50
Number of test data 3,06,000
Number of training data 9,18,000
Optimizer Adam
Batch size 200
Epochs 103

Initial learning rate 0.0003

Note that B1 is the number of allocated bits for the macro cell,
2 is for pico cell 1, B3 for pico cell 2 and B4 for pico cell 3.
There are training set of 4500 samples and test set of 1500

amples for each of the four training scenarios. In each scenario,
e consider 18 different bit allocation schemes and three d/R
alues. Therefore, the total number of training data is 918,000 and
he number of test data is 306,000.

The predictions are carried out for both Scenario 4 and Sce-
ario 5 for the total number of bits with BT = 64, BT = 72,
T = 96, BT = 120, BT = 128 and BT = 140.
For Scenario 4, BT = 64 and BT = 120 are in the training data

et while BT = 72, BT = 96, BT = 128 and BT = 140 values
re not in the training data set. In addition, the data regarding to
cenario 5 is not included in the DNN training phase.
Throughout all experiments, a relatively reasonable hyper-

arameter setting is chosen as listed in Table 3.
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.1. Performance over fixed locations of UEs with different BT values

In order to evaluate the performance of the DNN based bit
allocation with a different BT , Scenario 4 is utilized where Pkj,
k, j = 1, . . . , 4 values are included in the training data set.
The performance comparisons of the DNN-based bit allocation,

he CBA and EBA schemes are examined for 3 different cases.

.1.1. Case 1: Performance results of BT values that are in the
raining data set

In the first case, the performance comparisons of different bit
llocation schemes for BT = 64 and BT = 120 which are included
n the training data set are shown in Fig. 3 in terms of the sum
ate.

It can be seen that the performance of the proposed method
or both BT = 64 and BT = 120 is between the performances
of the CBA BAS-1 and CBA BAS-2 approaches. Thus, the proposed
approach almost achieves the sum-rate values of the optimized
bit allocation schemes. The gray curve represents the perfor-
mance of EBA in which the number of allocated bits is 4 for each
channel. The sum-rate values of EBA is 2.75 bps/Hz lower than
the sum-rate values of the DNN-based approach on average.

4.1.2. Case 2: Performance results of BT values that are not in the
training data set

For the second case, the performance comparisons of different
bit allocation schemes for BT = 72 and BT = 96 which are not in
the training data set are given in Fig. 4 in terms of the sum rate.

It can be observed that the behavior of the DNN based bit
allocation schemes for BT = 72 and BT = 96 are similar with
the one obtained for BT = 64 and 120. Therefore it can be said
that the DNN based method can achieve good performances even
for the data which is not in the training data set. In addition, by
implementing the DNN-based method, there is an improvement
of 5.2 bps/Hz on average in the sum-rate values when compared
to the EBA approach.

4.1.3. Case 3: Performance results for BT that are out of BT values
range in the training data set

The third case evaluates the performance of the DNN based
model for BT values which are out of BT values range in the
training data set. For example, the performances are compared
for BT = 128 and BT = 140 values in Fig. 5.

Once again it can be seen that the DNN based model can
reproduce the behavior of the optimized CBA schemes for even
the bit allocation schemes which are not in the range of BT values
in the training data set. Also, for BT = 128 condition, DNN-based
method has a gain of 6 bps/Hz on average in the sum-rate values
when compared to the EBA approach. As a result, the proposed
approach has a performance closer to the CBA BAS-1 bit allocation
by eliminating the initial bit sharing step which is a cumbersome
task.

4.2. Performance over different locations of UE with different BT
values

Another different prediction is performed with a new scenario
to observe the learning performance of the proposed DNN-based
model with different Pkj, ∀k, j = 1, . . . , 4 values which are not
included in the training data set. The training is performed using
the 4 reference scenarios while the scenario 5 is used for the
prediction. Different bit allocation schemes are performed with
BT = 64, BT = 72, BT = 98, BT = 120, BT = 128 and BT = 140
for this scenario. As in Scenario 4 performance evaluations, the
performance comparisons between the DNN-based and the CBA-
based schemes are given in 3 cases for the predicted scenario,
Scenario 5.
6

Fig. 5. Sum rate comparison for Scenario 4 with 128 and 140 bits.

4.2.1. Case 1: Performance results of BT values that are in the
training data set

In the first case, the BT values included in the training data set
are considered, such as BT = 64 and BT = 120. The performances
are shown in Fig. 6 in terms of the sum rate.

Similar to the results obtained with Scenario 4, the perfor-
mance of the proposed approach is between the CBA BAS-1 and
CBA-BAS-2 methods when BT = 64 and BT = 120.

.2.2. Case 2: Performance results of BT values that are not in the
raining data set

As the second case in which the BT values not in the training
ata set, such as BT = 72 and BT = 96, the performance
omparisons of different bit allocation schemes are illustrated in
ig. 7.
In the given graphic, for BT = 72, the performance of the DNN-

ased approach is very close to the performance of CBA BAS-1
pproach. For BT = 96, it can be observed that the behavior of the
NN-based bit allocation scheme is similar with the one obtained
n BT = 72 case. Additionally, considering the performance results
f the DNN-based method, it can be observed that the sum-rate
alues are approximately 4.45 bps/Hz better than the sum-rate
alues obtained by the EBA method.

.2.3. Case 3: Performance results for BT that are out of BT values
ange in the training data set

In the third case, BT = 128 and BT = 140 values are utilized
or the performance evaluations for BT values ranged outside the
rained BT values. The performance results are given in Fig. 8.

In Fig. 8, for BT = 128 case, the DNN-based method has an
mprovement of 6 bps/Hz on average in the sum-rate values com-
aring to the EBA scheme. Also the DNN-based method has a gain
f 0.29 bps/Hz when compared to the CBA BAS-2. Moreover, the
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Fig. 6. Sum rate comparison for Scenario 5 with 64 and 120 bits.

Fig. 7. Sum rate comparison for Scenario 5 with 72 and 96 bits.
7

Fig. 8. Sum rate comparison for Scenario 5 with 128 and 140 bits.

Table 4
The average number of allocated bits for BT = 64 case obtained by CBA based
method in Scenario 5.
B11 = 5.15 B21 = 1.48 B31 = 1.62 B41 = 1.75
B12 = 3.26 B22 = 13.16 B32 = 1.58 B42 = 0
B13 = 3.47 B23 = 1.32 B33 = 13.21 B43 = 0
B14 = 3.56 B24 = 0 B34 = 0 B44 = 14.44

Table 5
The average number of allocated bits for BT = 64 case obtained by DNN based
method in Scenario 5.
B11 = 5.22 B21 = 1.14 B31 = 1.27 B41 = 0.94
B12 = 3.62 B22 = 14.54 B32 = 0.76 B42 = 0.81
B13 = 3.20 B23 = 0.53 B33 = 13.74 B43 = 0.46
B14 = 3.07 B24 = 0.11 B34 = 0.94 B44 = 13.92

difference between the CBA BAS-1 and the DNN-based methods
is 0.31 bps/Hz. For BT = 140, on the other hand, similarly, the
performance of the proposed approach is between the CBA BAS-
1 and CBA BAS-2. Depending on these results, it can be said that
the DNN-based bit allocation approach is an effective approach
even for different scenarios and different BT values which are not
utilized for the training phase of the DNN model.

For BT = 64 case, the average number of allocated bits
obtained by the CBA and the DNN-based methods for pico cell
locations at d/R = 0.6 are given in Tables 4 and 5, respectively.
It can be observed that the average number of allocated feedback
bits to each user both in the CBA-based and DNN-based methods
are very close to each other. These results validate the use of
DNN-based method for adaptive bit allocation. Moreover, the
allocation of a given number of total bits is achieved for each user
without an additional step which is in the CBA-method.

The performance of the DNN model is evaluated with different
metrics such as Root Mean Squared Error (RMSE) and Mean

Absolute Error (MAE) which are defined as follows [24].
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erformance of the DNN training model.
Evaluation metrics
for DNN

For
BT = 64

For
BT = 72

For
BT = 96

For
BT = 128

For
BT = 140

RMSE 0.032 0.031 0.030 0.031 0.031
MAE 0.020 0.019 0.019 0.019 0.019

• RMSE =

√
1/n

∑n
i=1(Oi − Si)2

• MAE = 1/n
∑n

i=1 |(Oi − Si)|

here Oi denotes each of the observed values, Si denotes each of
he predicted values, and n is the number of observations.

The results are given in Table 6 obtained for Scenario 5 with
T = 64, BT = 72, BT = 96, BT = 128 and BT = 140.
For both metrics, the error term is minimized as the score is

lose to 0. Therefore, it can be said that the values predicted by
he proposed DNN model are reliable.

. Conclusion

In this study, a deep learning approach is proposed to achieve
he feedback bit allocation to each user by using the output of the
BA scheme as the training data set. It has been shown that the
NNs can be collaboratively used to obtain an efficient solution
o the bit allocation problem which has higher computational
omplexity for interference alignment with limited feedback in
eterogeneous networks. Directly allocation of the total number
f bits to each user is achieved by the proposed DNN-based bit
llocation solution with a closer performance to the CBA-based
pproach for different heterogeneous network scenarios. As a
esult, a lightweight solution for bit allocation is proposed for
ifferent scenarios with different total number of feedback bits by
raining the DNN model. Improving the training of the proposed
NN-based method is one of the possible future works.
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