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A three dimensional dam break flow: Small time behavior 
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A B S T R A C T   

Small time behavior of gravity driven free surface flows resulting from the collapse of a cavity is studied. Initially 
there is a rigid vertical cylinder of circular cross section starting from the free surface of a liquid and ending at 
the rigid bottom. The cylinder disappears suddenly and gravity driven flow of the fluid starts. The flow in early 
stage is described by the potential theory. Attention is paid to the singular behavior of the velocity field at the 
intersection line between the bottom and the free surface of the cavity. The leading order linear problem is solved 
by the Fourier series method. The flow velocity is log-singular at the intersection line. In the limiting case where 
the radius and the center of the cavity approach infinity, the problem is reduced to the classical two dimensional 
dam break problem where the fluid is initially on one side of a vertical wall (dry bed case). The flow resulting 
from cavity collapse is a three dimensional dam break flow. It is concluded that the three dimensional effects are 
important when the radius of the cavity is small compared with its depth and that the local flow near the 
intersection line of the cavity is governed only by the hydrostatic pressure.   

1. Introduction 

An intriguing mathematical and fluid mechanical problem is that of 
the collapsing of a vertical cylindrical cavity under pressure from the 
surrounding fluid which is of constant depth and of infinite extent 
horizontally. The cavity covers a region starting from the free surface of 
the fluid and ending at the rigid bed. Examples of cavity formation are 
provided by the water entry of projectiles (Truscott et al., 2014), the 
water exit of underwater vehicles and the underwater explosions. 

The flow resulting from the cavity collapse, which will be termed as 
“cavity collapse flow” for the rest of the paper, can be thought of as the 
three dimensional dam break flow. When the radius of the cavity is large 
compared with the fluid depth, the cavity collapse flow resembles the 
two dimensional dam break flow. This provides a useful check on the 
validity of the calculations of cavity collapse flow. On the other hand the 
cavity collapse flow will shed a light on the three dimensional effects of 
the dam break flow. 

A related problem, the dispersion of a column of fluid supported on a 
rigid horizontal plane under the influence of gravity, was studied by 
Penney et al. (1952). Short time behavior of the flow is analyzed for a 
column of semicircular cross section by calculating the initial accelera
tions at the boundary of the column. Although it is a different problem to 
the one in this paper, there are mathematical and physical similarities. 

In both cases the flow at initial stages is treated as potential flow and the 
solution is sought by Fourier series expansion. Also the conditions of 
equality of pressure and normal velocity along the interface are the same 
for both problems. 

The small time asymptotic solution can explain the structure of the 
initial flow, which could be singular and difficult to be described by pure 
numerical means which work well for smooth, “well behaved” flows. It 
is mentioned by Lobovský et al. (2014) that in the initial stage of dam 
break flow there are quantitative differences in the vertical free surface 
shapes predicted by various numerical methods, theoretical predictions 
and experimental measurements. Our argument in this paper is that the 
initial transient behavior near the contact points is better described by 
asymptotic analysis rather than pure numerical calculations. 

In this paper, we investigate the small time behaviour of gravity 
driven free surface flows of a fluid resulting from the collapse of a cavity 
which, to the best of our knowledge, has not been studied before. 
Viscous effects are assumed to be not important for small times and 
ignored. A justification for that is given at Section 5. It is shown that in 
the leading order solution the flow velocity is singular at “the intersec
tion line between the bottom and the free surface of the cavity” (which 
will be termed as “the intersection line of the cavity” for the rest of the 
paper) and a jet formation similar to the one in the classical dam break 
problem (Korobkin and Yilmaz, 2009) is expected there. A more difficult 
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two dimensional problem involving two different fluids of different 
depths is studied by Yilmaz et al. (2013) where first order analysis and a 
singularity investigation at the corner points are carried out. In that 
problem, known as the wet bed case dam break flow, there are two 
singular points at the interface: a logarithmic singularity at the bottom 
point and a power singularity at the top of the interface, where the 
interface meets the free surface of one of the fluids. 

The present analysis is a natural extension of the study of the clas
sical two dimensional dam break problem where there is a fluid only on 
one side of the wall. In this paper, we consider the three dimensional 
effects of the dam break flow in the form of a cavity collapse flow. It is 
found that the larger the radius of the cavity compared with its height, 
the smaller the three dimensional effects. There is an interesting limiting 
case of the cylindrical cavity collapse flow: when the radius and the 
center of the cavity approach infinity, the problem is reduced to the 
classical two dimensional dam break flow. The other limiting case in
volves the local flow near the intersection line of the cavity where a 
singularity of the flow within the mathematical model considered is 
expected. 

Another relevant investigation to the present study is the flow 
generated when a wall accelerates into a fluid of finite depth with a free 
surface (King and Needham, 1994). An analytical solution was found for 
the flow field in which the jet emerges. The jet structure studied in that 
paper is expected to be similar to the one studied in this paper and in 
Korobkin and Yilmaz (2009). 

In Section 2 the problem is formulated assuming that the fluid is 
inviscid and incompressible and the leading order solution is derived in 
Section 3 by a Fourier series expansion. The singularity analysis and the 
three dimensional effects are discussed in Section 4. Neglect of viscosity 
is justified a posteriori in Section 5. Finally some conclusions are drawn 
in Section 6. 

2. Formulation of the problem 

The unsteady problem of gravity driven free surface flow generated 
when a vertical cylinder of circular cross section and of depth same as 
the liquid depth is suddenly removed from the fluid which surrounds it is 
considered. Eulerian variables are employed to find out about the 
behaviour of the flow at the initial stages. Initially the liquid is at rest 
and occupies the region r

′

> a, 0 ≤ θ < 2π, − H ≤ z
′

≤ 0, where H is the 
liquid depth, a is the radius of the cylinder and a prime stands for 
dimensional variables. The coordinate axes are placed at the free surface 
with z’ axis pointing upward and (r’, θ, z’) is the cylindrical coordinate 
system (See Fig. 1). The liquid is assumed inviscid and incompressible. 
The resulting flow is potential, three dimensional and axisymmetric. 

The velocity potential ϕ
′

(r
′

, z
′

, t
′

) satisfies the Laplace’s equation in 
the fluid domain 

Δϕ
′

= 0 in Ω
′

(t
′

), (1)  

the dynamic free surface condition, that the fluid pressure p
′

is atmo

spheric at the free surface, 

p
′

= 0 in FS
′

(t
′

) (2)  

and kinematic free surface conditions, which implies that the fluid 
particles initially at the free surface remain there, 

ϕ
′

r
′ − ζ

′

z
′ ϕ

′

z
′ − ζ

′

t
′ = 0atFS

′

v(t
′

), (3)  

ϕ
′

z
′ − η

′

r
′ ϕ

′

r
′ − η

′

t
′ = 0atFS

′

h(t
′

), (4)  

the slip boundary condition at the rigid bottom, 

ϕ
′

z
′ = 0 at z

′

= − H, (5)  

the radiation condition at infinity, 

ϕ
′

→0 as r
′

→∞, (6)  

and the initial conditions, 

ϕ
′

(r
′

, z
′

, 0) = 0, η
′

(r
′

, 0) = 0, ζ
′

(z
′

, 0) = 0, (7)  

p
′

(r
′

, z
′

, 0) = − ρ0gz′

,

where Ω
′

(t
′

) is the flow region described by 

Ω
′

(r
′

, z
′

, t
′

) = {(r
′

, z
′

, t
′

)|r
′

> a + ζ
′

(z
′

, t
′

),

− H ≤ z
′

≤ η
′

(r
′

, t
′

), t
′

> 0},

FS
′

(t
′

) is the free surface of the region which is the union of the hori
zontal free surface FS

′

h(t
′

) and the vertical free surface of the cavity 

FS
′

v(t
′

),

FS
′

(t
′

) = FS
′

h(t
′

) ∪ FS
′

v(t
′

),

FS
′

h(t
′

) = {(r
′

, z
′

, t
′

)|z
′

= η
′

(r
′

, t
′

), r
′

> a+ ζ
′

(z
′

, t
′

)},

FS
′

v(t
′

) = {(r
′

, z
′

, t
′

)|r
′

= a+ ζ
′

(z
′

, t
′

), − H < z
′

< η
′

(a, t
′

)},

and the fluid pressure p
′

(r
′

, z
′

, t
′

) is related to the velocity potential by 
Bernoulli’s equation for unsteady irrotational flow, 

p
′

ρ0
+

∂ϕ
′

∂t′
+

1
2
|∇ϕ

′

|
2
+ gz

′

= 0,

in the fluid domain, g is gravitational acceleration and ρ0 is the fluid 
density. 

Non dimensional unprimed variables are introduced as follows: 

r
′

= Hr, z
′

= Hz, t
′

= Tt, ϕ
′

= gHTϕ, p
′

= ρ0gHp  

α = a
/

H, ϵ = gT2/H,

where T is a suitable time scale. The boundary value problem (1)–(7) is 
rewritten in the non dimensional variables, 

Δϕ = 0 in Ω(t), (8)  

p = 0, in FS(t) (9)  

ϕr − ϵζzϕz − ζt = 0atFSv(t), (10)  

ϕz − ϵηrϕr − ηt = 0atFSh(t), (11)  

ϕz = 0 at z = − 1, (12) 
Fig. 1. Flow region of the first problem at initial time t

′

= 0.  
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ϕ→0as r→∞, (13)  

ϕ(r, z, 0) = 0, η(r, 0) = 0, ζ(z, 0) = 0, p(r, z, 0) = − z, (14)  

where ϵ is a small number representing the initial stages of the flow, 

Ω(r, z, t) = {(r, z, t)|r > α + ϵζ(z, t),
− 1 ≤ z ≤ ϵη(r, t), t > 0},

FS(t) = FSh(t) ∪ FSv(t),
FSh(t) = {(r, z, t)|z = ϵη(r, t), r > α + ϵζ(z, t), },
FSv(t) = {(r, z, t)|r = α + ϵζ(z, t), − 1 < z < ϵη(α, t), },

and the unsteady Bernoulli equation in the fluid domain becomes, 

p +
∂ϕ
∂t

+
1
2

ϵ|∇ϕ|2 + z = 0.

The solution to the problem (8)–(14) is sought in the form, as ϵ→0,

ϕ(r, z, t, ϵ) = ϕ0(r, z, t) + ϵϕ1(r, z, t) + O
(
ϵ2), (15)  

η(r, t, ϵ) = η0(r, t) + ϵη1(r, t) + O
(
ϵ2),

ζ(z, t, ϵ) = ζ0(z, t) + ϵζ1(z, t) + O
(
ϵ2).

3. The leading order problem 

By substituting the expansions (15) in the boundary value problem 
(8)–(14), as ϵ→0, the leading order problem is obtained, 

Δϕ0 = 0, (r >α, − 1< z< 0), (16)  

ϕ0 = − zt, ϕ0,r = ζ0,t, (r= α, − 1< z< 0, ),

ϕ0 = 0, ϕ0,z = η0,t, (z= 0, r >α),

ϕ0,z = 0, (z= − 1, r> α),

ϕ0→0, (r→∞),

ϕ0(r, z, 0) = 0, η0(r, 0) = 0, ζ0(z, 0) = 0,

Notice that along the vertical wall of cavity the vertical velocity is ∂ϕ0
∂z =

− t (see the second equation of (16)) which is true, in particular, 
approaching the intersection line of the cavity along the lateral free 
surface, as z→ − 1+. However from the fourth equation of (16) we find 
that the vertical velocity is zero at the rigid bottom, z = − 1, especially 
when approaching the intersection line of the cavity: ∂ϕ0 /∂z→0 as 
r→α+. That means that the second and fourth boundary conditions of 
(16) do not match each other at the intersection line of the cavity r = α, z 
= − 1, which may cause singularities in the flow field. 

The solution to the problem (16) is found by separation of variables, 

ϕ0(r, z, t) = t
∑∞

n=0
Ansin(σnz)K0(σnr), (17)  

where 

An = − 2
( − 1)n

σ2
n

1
K0(σnα), σn =

π
2
(2n+ 1), n = 0, 1,⋯,

and K0(x) is the modified Bessel function of second kind of order zero. 
There are two interesting limiting cases of the problem. In the first 

one when both the radius and the center of the cavity approach infinity, 
the two dimensional classical dam break problem is expected to be 
recovered. As α→∞ and r→∞ the modified Bessel function of the second 
kind of order zero behaves like (see the equation 9.7.2 in Abramowitz 
and Stegun (1970)), 

K0(σnα) ∼
̅̅̅̅̅̅̅̅̅̅

π
2σnα

√

exp( − σnα)
(

1 −
1

8σnα+
9

128
1

(σnα)2 +O
(
(σnα)− 3)

)

,

K0(σnr) ∼
̅̅̅̅̅̅̅̅̅

π
2σnr

√

exp( − σnr)
(

1 −
1

8σnr
+

9
128

1
(σnr)2 +O

(
(σnr)− 3)

)

,

which implies that the leading order velocity potential has the following 
limiting behavior 

ϕ0 ∼ − 2t
∑∞

n=0

( − 1)n

σ2
n

sin(σnz)exp( − σnx)
(

1 −
1
2

x
α+

1
8σn

x
α2 +O

(
α− 3)

)

,

(18)  

where x = r − α. As α→∞ Eq. (18) is exactly the same as the Eq. (12) of 
Korobkin and Yilmaz (2009) which is the leading order outer solution 
for the classical two dimensional dam break problem. 

The behavior of the fluid flow close to the intersection line of the 
cavity is analyzed in the next section. 

4. Singularity analysis and three dimensional effects 

The leading order fluid velocity in the radial direction at the cavity 
wall, r = α, is calculated using (17), 

∂ϕ0

∂r
(α, z, t) = 2t

∑∞

n=0

( − 1)n

σn

K1(σnα)
K0(σnα) sin(σnz), (19)  

where K1(x) is the modified Bessel function of second kind of order one. 
To utilize the large argument behavior of the modified Bessel functions 
the infinite sum in (19), S, is split into two parts, 

S = S1 + S2 =
∑N− 1

n=0

( − 1)n

σn

K1(σnα)
K0(σnα) sin(σnz) +

∑∞

n=N

( − 1)n

σn

K1(σnα)
K0(σnα) sin(σnz),

(20)  

where N is a large number so that the large argument behavior of 
modified Bessel functions could be used in the second sum in (20), 

K1(σnα)
K0(σnα) ∼

1 + 3
8σnα −

15
128

1
(σnα)2 + O((σnα)− 3

)

1 − 1
8ασn

+ 9
128

1
(σnα)2 + O((σnα)− 3

)

∼ 1 +
1
2

1
σnα −

1
8

1
(σnα)2 + O

(
(σnα)− 3)

.

Hence the second sum in (20), S2, becomes, 

S2 ≈ S3 − S4 +
1

2αS5 −
1

2αS6 −
1

8α2S7 +
1

8α2S8 (21)  

=
∑∞

n=0

( − 1)n

σn
sin(σnz) −

∑N− 1

n=0

( − 1)n

σn
sin(σnz)

+
1

2α
∑∞

n=0

( − 1)n

σ2
n

sin(σnz) −
1

2α
∑N− 1

n=0

( − 1)n

σ2
n

sin(σnz)

−
1

8α2

∑∞

n=0

( − 1)n

σ3
n

sin(σnz) +
1

8α2

∑N− 1

n=0

( − 1)n

σ3
n

sin(σnz),

where the first and the third sums on the right hand side of (21), S3 and 
S5 respectively, are summed exactly, (see the equations 1.442.3 and 
1.444.5 in Gradshteyn and Ryzhik (2007)) 

S3 =
∑∞

n=0

( − 1)n

σn
sin(σnz) =

1
π logtan

(π
4
(1+ z)

)
, (22)  
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S5 =
∑∞

n=0

( − 1)n

σ2
n

sin(σnz) =
z
2
. (23)  

On the other hand there are four finite sums to be considered: S1, S4, S6 
and S8. The sums S1 and S4 can be put together as 

S1 − S4 =
∑N− 1

n=0

( − 1)n

σn
sin(σnz)

(
K1(σnα)
K0(σnα) − 1

)

. (24)  

The finite sum S6 is a function of z only, 

S6 =
∑N− 1

n=0

( − 1)n

σ2
n

sin(σnz). (25) 

Note that both of the finite sums in (24) and (25) are positive and in 
the sum S they cancel out each other for − 1 ≤ z ≤ 0; S1 − S4 − S6 

/(2α) ∼ 0. This is especially true near the intersection line at z = − 1. 
Finally the sum S7 − S8 is much smaller than the other sums considered 
and therefore ignored. 

Substituting (22) and (23) in (21), then (21) in (20) and then (20) in 
(19) gives the behavior of the radial velocity along the lateral surface of 
the cavity (r = α), 

∂ϕ
∂r

(α, z, t) ∼ 2t
π log

(
tan

π
4
(1+ z)

)
+

zt
2α + O

(
α− 2), (26)  

which implies a logarithmic singularity as z→ − 1. Note that in the 
limiting case as α→∞, the last term on the right hand side of (26) van
ishes and the remaining logarithmic term is the same as the one for the 
horizontal velocity in the classical two dimensional dam break problem, 
∂ϕ0/∂x, near the bottom corner point where the vertical free surface 
meets the rigid bed (see Korobkin and Yilmaz, 2009). Therefore both the 
two and three dimensional problems have the same leading order local 
flow near the bottom corner point and the intersection line of the cavity 
(the contact line) respectively. The form of the radial velocity close to 

the contact line (26) implies that the local flow is governed only by the 
hydrostatic pressure. 

The shape of the vertical free surface is obtained from (19) and the 
second equation in (16), 

ζ0(z, t) = t2
∑∞

n=0

( − 1)n

σn

K1(σnα)
K0(σnα) sin(σnz), − 1 < z < 0. (27)  

The corresponding asymptotic formula for large α is obtained using (26), 

ζ0(z, t) ∼
t2

π log
(

tan
π
4
(1+ z)

)
+

zt2

4α + O
(
α− 2). (28)  

The vertical free surface shapes, (27) and (28), are plotted in Fig. 2 for 
various values of α together with the classical two dimensional result 
(Korobkin and Yilmaz, 2009). Near the intersection line z = − 1,
regardless of the value of α, the free surface shape is governed by the 
logarithmic term in (28) which is the classical dam break result (Kor
obkin and Yilmaz, 2009). However away from the intersection line the 
asymptotic formula (28) models the three dimensional results much 
better than the two dimensional formula. 

The factor α in (27) represents the three dimensional effects of the 
dam break flow. The vertical free surface (27) is plotted for various 
values of α in Fig. 3, together with the classical two dimensional dam 
break flow result. As it was shown in the analysis leading to (18), with 
increasing values of the radius of the cavity, three dimensional effects 
become unimportant. A similar observation is made for the initially 
horizontal free surface (See Fig. 4), 

η0(r, t) = − t2
∑∞

n=0

( − 1)n

σn

K0(σnr)
K0(σnα), r > α. (28) 

It is observed from the free surface shapes in Figs. 3 and 4 that with 
smaller radius of cavity three dimensional effects become more pro
nounced. The logarithmic singularity at z = − 1 is clearly visible in Fig. 3 

Fig. 2. Shape of the initially vertical free surface for various values of α for small times, t = 1, ϵ = 0.01.  
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and the solution derived in this section should be termed as the leading 
order “outer” solution since the mathematical model based on the power 
series in time breaks down near the contact line at the bottom. The outer 
solution should be corrected by an “inner” solution near the contact line. 

5. Nonlinear analysis and viscous effects 

First we try to determine the nature of the singularity near the 
intersection line of the cavity. Due to the axisymmetrical nature of the 
problem, the singularity analysis could be carried out at each point P on 

the intersection line of the cavity in a plane passing through the line OP 
and perpendicular to the unit vector ey1 . Using the polar coordinates r1 

and θ1 centered at P (see Fig. 5), 

x1 = r1cosθ1, z1 = r1sinθ1,

the problem becomes similar to the one considered in Korobkin and 
Yilmaz (2009). An inner solution near the bottom point P is derived in 
Korobkin and Yilmaz (2009) and matched with the outer solution using 
the matching principle of Van Dyke (1964). Following (Korobkin and 
Yilmaz, 2009), the size of the inner region near the point P at the 

Fig. 3. Shape of the initially vertical free surface for small times, t = 1, ϵ = 0.01.  

Fig. 4. Shape of the initially horizontal free surface for small times, t = 1, ϵ = 0.01.  
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intersection line of the cavity is given by − ϵlogϵ. We will not pursue 
inner region calculations in this paper since they would be similar to the 
ones in Korobkin and Yilmaz (2009). 

The neglect of the viscous effects from the present analysis could be 
justified by comparing the order of magnitude of the acceleration and 
the viscous terms in the momentum equation. In the main flow region, 
the order of the acceleration term is O(g) and the order of the viscous 
term is O(ν ̅̅̅̅̅ϵg√

/H3/2). The ratio of the two terms for fresh water is 

|ν∇2u|
|ut|

= 3.2⋅10− 7
̅̅̅
ϵ

√

H3/2, (29)  

where for kinematic viscosity ν = 1.0034⋅10− 6m2/s Procedures (2011) 
is used. The ratio of the viscous and acceleration terms is quite small and 
it is safe to ignore the viscous effects in the main flow region. However, 
close to the intersection line of the cavity the effect of viscosity could be 
larger than that in the main flow region. Near the intersection line of the 
cavity (z = − 1, r = a/H), the order of the acceleration term is O(g /a)
and the order of the viscous term is O(ν ̅̅̅̅̅ϵg√

/(H3/2a3) and the ratio of the 
two terms for fresh water is 

|ν∇2u|
|ut|

= 3.2⋅10− 7 ϵ− 3/2
(
log2ϵ

)
H3/2

. (30)  

Notice that, by comparing the terms in (29) and (30), the viscous effects 
for the intersection line of the cavity are considerably larger than those 
in the main flow region. This is especially true when the size of the inner 
region is too small, that is for very small times. For example, when ϵ =
10− 4 then the viscosity is as important as the inertia. Hence, unless we 
are dealing with very small times (that is when ϵ = O(10− 4) or smaller), 
the viscosity is negligible near the intersection line of the cavity. 

6. Conclusions 

The collapse of a cavity under pressure from the surrounding fluid 
with free surface is investigated for small times. The cavity extends all 

the way from the free surface to the water bed. The problem can be 
considered as the three dimensional classical dam break problem. In the 
limiting case when the radius and the center of the cavity approach 
infinity, the two dimensional dam break solution is recovered. 
Comparing the free surface shapes with those of the two dimensional 
classical dam break flow, it is concluded that three dimensional effects 
are important when the ratio of the radius of the cavity and the water 
depth is small. At the intersection line of the cavity (the contact line), the 
flow velocity is log singular which is similar to the corner point singu
larity of the two dimensional classical dam break problem. It is observed 
that the local flow near the contact line is governed only by the hy
drostatic pressure. 

The three dimensional dam break problem considered in this paper is 
a generalization of the corresponding two dimensional dam break 
problem. Three dimensional effects become more important when the 
radius of the cavity becomes smaller compared with the height of the 
cavity. The neglect of viscosity is justified a posteriori. 
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