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ABSTRACT
We introduce and study the notion of ES-w-stability for an integral domain
R. A nonzero ideal I of R is called ES-w-stable if ðI2Þw ¼ ðJIÞw for some t-
invertible ideal J of R contained in I, and I is called weakly ES-w-stable if
Iw ¼ ðJEÞw for some t-invertible fractional ideal J of R and w-idempotent
fractional ideal E of R. We define R to be an ES-w-stable domain (resp., a
weakly ES-w-stable domain) if every nonzero ideal of R is ES-w-stable (resp.,
weakly ES-w-stable). These notions allow us to generalize some well-known
properties of ES-stable and weakly ES-stable domains.

ARTICLE HISTORY
Received 15 September 2020
Revised 30 January 2021
Communicated by Scott
Chapman

KEYWORDS
ES-stable domains; Krull
domains; weakly ES-stable
domains; w-stable domains

2020 MATHEMATICS
SUBJECT
CLASSIFICATION
Primary: 13G05; 13A15;
secondary: 13F05; 13F20

1. Introduction

Let R be an integral domain with quotient field K, �FðRÞ the set of nonzero R-submodules of K,
F(R) the set of nonzero fractional ideals of R, and f(R) the set of finitely generated fractional
ideals of R. For I 2 FðRÞ, we call I simply an ideal if I � R: For I, J 2 FðRÞ, let ðI:KJÞ ¼ fx 2
K j xJ � Ig, then ðI:KJÞ 2 FðRÞ: Hence, if I�1 ¼ ðR:KIÞ, then I�1, Iv ¼ ðI�1Þ�1, It ¼ [fJv j J � I
and J 2 f ðRÞg, and Iw ¼ fx 2 K j xJ � I for some J 2 f ðRÞ with Jv ¼ Rg are well-defined nonzero
fractional ideals of R. Let ? ¼ d,w, t or v, where Id ¼ I for all I 2 FðRÞ: Then the following prop-
erties hold for all nonzero x 2 K and I, J 2 FðRÞ :

(1) R? ¼ R and ðxIÞ? ¼ xI?:
(2) I � I?; I � J implies I? � J?:
(3) ðI?Þ? ¼ I?:
(4) ðIJÞ? ¼ ðI?J?Þ? ¼ ðI?JÞ? and ðI þ JÞ? ¼ ðI? þ J?Þ?:
(5) ðI?:KJ?Þ ¼ ðI?:KJÞ ¼ ðI?:KJÞ?:
(6) Id � Iw � It � Iv:

A fractional ideal I of R is called a ?-ideal if I ¼ I?, and a ?-ideal I of R is of finite type if I ¼ J?
for some J 2 f ðRÞ: A ?-ideal is a maximal ?-ideal if it is maximal among all proper integral
?-ideals of R. Let ?-MaxðRÞ denote the set of all maximal ?-ideals of R; so d-MaxðRÞ :¼ MaxðRÞ
is the set of maximal ideals of R. Each maximal ?-ideal is a prime ideal. Two ideals I, J of R are
said to be ?-comaximal if ðI þ JÞ? ¼ R: For all I 2 FðRÞ, Iw ¼ \P2t�MaxðRÞ IRP, hence IwRP ¼ IRP
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for each P 2 t-MaxðRÞ: Moreover, ðI \ JÞw ¼ Iw \ Jw for all I, J 2 FðRÞ, and a w-ideal I of R is of
finite type if and only if I ¼ Jw for some finitely generated ideal J of R contained in I. A frac-
tional ideal I of R is said to be ?-invertible if there is a J 2 FðRÞ such that ðIJÞ? ¼ R: Clearly if
ðIJÞ? ¼ R for some J 2 FðRÞ, then J? ¼ I�1: Also, t-MaxðRÞ ¼ w-MaxðRÞ [3, Corollary 2.17], and
ðII�1Þt ¼ R () ðII�1Þw ¼ R; so the t-invertibility is identical to the w-invertibility. An integral
domain R is said to be a Pr€ufer domain (resp., Pr€ufer v-multiplication domain (for short PvMD))
if every nonzero finitely generated ideal of R is invertible (resp., t-invertible). It is known that R
is a PvMD if and only if R is integrally closed and t¼w on R [42, Theorem 3.5]. Also, R is a
Pr€ufer domain if and only if R is a PvMD whose nonzero maximal ideals are t-ideal. We say that
R is of finite t-character if every nonzero nonunit of R is contained in only finitely many maximal
t-ideals of R. Noetherian domains and Krull domains (i.e., integral domains in which each non-
zero ideal is t-invertible) are domains of finite t-character. An ideal I of R is said to be t-locally
principal if IRP is principal for all maximal t-ideals P of R. A t-LPI domain is an integral domain
in which every nonzero t-locally principal t-ideal is t-invertible. An integral domain of finite t-
character is t-LPI [5, Lemma 2.2], and a PvMD R is of finite t-character if and only if R is a t-
LPI domain [53, Proposition 5].

Sally and Vasconcelos defined a Noetherian ring R to be SV-stable if each nonzero ideal of R
is projective over its endomorphism ring EndRðIÞ [51]. The notion of stability is studied in [4]
for arbitrary integral domains; an integral domain R with quotient field K is SV-stable if each
nonzero ideal I of R is invertible in the overring EndRðIÞ ¼ ðI:KIÞ, an overring of R means a
subring of K containing R. For references about stable domains, the reader may consult [49, 50].
In [30], the notion of ?-stability with respect to a semistar operation ? is introduced. We recall
that a semistar operation on an integral domain R is a map ? : �FðRÞ ! �FðRÞ such that for each
E, F 2 �FðRÞ and for each nonzero x 2 K, ðxEÞ? ¼ xE?; E � F implies E? � F?; E � E?, and
ðE?Þ? ¼ E?: When R? ¼ R, the restriction of ? to F(R) is called a star operation on R. The reader
is referred to [34, Section 32] for more properties of star operations. Consider the overring T :¼
ðI? : I?Þ of R. Since T? ¼ T, the restriction of ? to the set of the T-submodules of K is a star
operation on T, denoted by ?_ : As in [30], we say that a nonzero fractional ideal I of R is ?-stable
if I? is ?_ -invertible in T, and R is called ?-stable if every nonzero (fractional) ideal of R is ?-stable.
It is clear that ?-invertible ideals are ?-stable. In [18], another type of stability, ES-stability, is
introduced for local rings. In an integral domain R, an ideal I is called ES-stable if I2 ¼ IJ for
some invertible ideal J of R such that J � I, and R is called an ES-stable domain if each nonzero
ideal of R is an ES-stable ideal. It is known that if I is a nonzero ES-stable ideal of R, then I is
stable [25, Lemma 7.4.1]. In [47], a weak form of ES-stability for integral domains is defined. An
ideal I of an integral domain R is said to be a weakly ES-stable ideal if there is an invertible frac-
tional ideal J and an idempotent fractional ideal E of R such that I ¼ JE. Recentley, the concepts
of SV-stability, ES-stability and weakly ES-stability are extended to commutative rings with zero-
divisors in [7, 8].

The purpose of this paper is to study w-operation analogue of some facts that have been pro-
ven for ES-stable and weakly ES-stable domains in [8, 47]. A nonzero ideal I of an integral
domain R is called weakly ES-w-stable if Iw ¼ ðJEÞw for some t-invertible fractional ideal J of R
and w-idempotent fractional ideal E of R. We define R to be a weakly ES-w-stable domain if every
nonzero ideal of R is weakly ES-w-stable. An ideal I of R is called ES-w-stable if ðI2Þw ¼ ðJIÞw for
some t-invertible ideal J of R such that J � I; and R is called an ES-w-stable domain (resp., a
finitely ES-w-stable domain) if every nonzero (resp., finitely generated) ideal of R is ES-w-stable.
We say that an integral domain R has the w-local stability property if each nonzero fractional
ideal I of R that is t-locally stable (i.e., IRP is stable, for each P 2 t-MaxðRÞ) is indeed w-stable.
More precisely, in Section 2, we prove preliminary results for weakly ES-w-stable and ES-w-stable
domains and investigate when these two concepts coincide. In Section 3, we show that if (a) R is
a completely integrally closed PvMD of finite t-character or (b) R is a weakly Matlis PvMD, then
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R is a weakly ES-w-stable domain if and only if R is t-locally weakly ES-stable, that is, RP is
weakly ES-stable for all P 2 t-MaxðRÞ: In Section 4, we investigate the transfer of the weakly ES-
w-stability to polynomial rings and pullback constructions. In Section 5, we focus on integral
domains in which each finitely generated ideal is weakly ES-w-stable, and we show that any
finitely weakly ES-w-stable domain with w-local stability property is of finite t-character.

2. ES-w-stability

Let R be an integral domain. A nonzero ideal I of R is called an ES-w-stable ideal if ðI2Þw ¼ ðIJÞw
for some t-invertible ideal J of R contained in I, and R is called an ES-w-stable domain if each
nonzero ideal of R is ES-w-stable. The class of ES-w-stable domains includes ES-stable domains
and Krull domains. However, an ES-w-stable domain need not be ES-stable. Take, for instance,
D ¼ K½X,Y� where K is any field and X, Y are two indeterminates over K. Then D is a non-
Pr€ufer Krull domain and hence D is an ES-w-stable domain that is not ES-stable by Mimouni
[47, Theorem 4.1].

Proposition 2.1. Let R be an integral domain and I a nonzero ideal of R.

(1) If I is an ES-w-stable, then I is a w-stable ideal.
(2) Let I be a w-stable ideal. Then I is ES-w-stable if one of the following conditions is satisfied:

(a) R is a PvMD.
(b) R ¼ ðIw : IwÞ (in particular, if R is completely integrally closed).

Proof. (1) Let ðI2Þw ¼ ðIJÞw for some t-invertible ideal J of R contained in I. Then ðI2J�1Þw ¼ Iw:
Hence, ðIJ�1Þw � ðIw : IÞ ¼ ðIw : IwÞ: On the other hand, if xIw � Iw, then xJw � Iw, and so x 2
ðIJ�1Þw: Therefore, ðIJ�1Þw ¼ ðIw : IwÞ and hence ðIwðJ�1ðIw : IwÞÞÞw ¼ ðIw : IwÞ:
(2) (a) Since Iw is _w-invertible in ðIw : IwÞ, Iw is _w-finite in ðIw : IwÞ by Kang [42, Proposition 2.6].

Hence, there exists a finitely generated ideal J of R contained in I such that Iw ¼ ðJðIw : IwÞÞw:
Thus, ðI2Þw ¼ ðIJðIw : IwÞÞw ¼ ðIJÞw, where J is t-invertible.
(b) Trivial since I is t-invertible. w

Corollary 2.2. An integral domain R is ES-w-stable if and only if RP is ES-stable for each
P 2 t-MaxðRÞ and R is of finite t-character if one of the following conditions is satisfied:

(a) R is a PvMD.
(b) R is a completely integrally closed domain. In particular, R is a Krull domain if and only if R

is a completely integrally closed ES-w-stable domain.

Proof. (a) follows from Proposition 2.1, [25, Lemma 7.4.1] and [30, Corollary 1.10], and (b) fol-
lows from Proposition 2.1 and [30, Corollaries 1.10 and 2.5]. w

Let R be an integral domain with quotient field K. A nonzero ideal I of R is called a weakly
ES-w-stable ideal if Iw ¼ ðJEÞw for some t-invertible fractional ideal J of R and w-idempotent frac-
tional ideal E of R, i.e., ðE2Þw ¼ Ew, and R is called a weakly ES-w-stable domain if each nonzero
ideal of R is weakly ES-w-stable.

Proposition 2.3 is the w-analogue of Mimouni [47, Proposition 2.2 (ii), Lemma 2.4 (i) and
Proposition 2.2 (iii)], Corollaries 2.4 and 2.5 are the w-analogues for Mimouni [47, Corollaries
2.5 and 2.6].

Proposition 2.3. Let R be an integral domain and I a nonzero ideal of R.
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(1) I is a weakly ES-w-stable ideal if and only if ðI2Þw ¼ ðJIÞw for some t-invertible ideal J of R.
(2) If Iw ¼ ðJEÞw for some t-invertible fractional ideal J of R and w-idempotent fractional ideal E

of R, then ðIw : IÞ ¼ ðEw : EÞ and Ew ¼ ðIðIw : I2ÞÞw:
(3) I is ES-w-stable if and only if Iw ¼ ðJEÞw for some t-invertible fractional ideal J of R and w-

idempotent fractional ideal E of R with J � I � E:

Proof. (1) Let I be a weakly ES-w-stable ideal. Then Iw ¼ ðJEÞw for some t-invertible fractional
ideal J of R and w-idempotent fractional ideal E of R. Hence, ðI2Þw ¼ ððIwÞ2Þw ¼ ðððJEÞwÞ2Þw ¼
ðJ2EÞw ¼ ðIwJÞw ¼ ðIJÞw: For the converse, if ðI2Þw ¼ ðJIÞw for some t-invertible ideal J of R, then
Iw ¼ ðIwðJJ�1ÞwÞw ¼ ðJIJ�1Þw where IJ�1 is w-idempotent.

(2) If xIw � I, then xðJEÞw � ðJEÞw: Hence, ðxJ�1ðJEÞwÞw � ðJ�1ðJEÞwÞw and so xEw � Ew:
Conversely, if xEw � E, then xIw ¼ xðJEÞw ¼ ðxJEÞw ¼ ðxJEwÞw � ðJEÞw ¼ Iw: Thus, x 2 ðIw :
IwÞ ¼ ðIw : IÞ: To show that Ew ¼ ðIðIw : I2ÞÞw, let x 2 ðIw : I2Þ: Then xðI2Þw � Iw, hence
xððJEÞwðJEÞwÞw � ðJEÞw: Thus, xðJ2EÞw � ðJEÞw: Since J is t-invertible, xðJEÞw � Ew: Thus, xIw �
Ew, and so ðIwðIw : I2ÞÞw � Ew: On the other hand, since I is weakly ES-w-stable, ðI2Þw ¼ ðJIÞw
for some t-invertible ideal J of R by (1). Hence, ðJ�1I2Þw ¼ Iw, and so J�1 � ðIw : I2Þ:
Thus, Ew ¼ ðJ�1IÞw � ððIw : IÞIÞw:

(3) Let I be ES-w-stable. Then ðI2Þw ¼ ðIJÞw for some t-invertible ideal J of R contained in I.
Set E :¼ J�1I: Then ðE2Þw ¼ Ew and ðJEÞw ¼ Iw: Since J � I, I � II�1 � IJ�1 ¼ E: The converse
follows from (1). w

Corollary 2.4. Let R be an integral domain and I a nonzero ideal of R. Then I is ES-w-stable if
and only if I is w-stable and weakly ES-w-stable. In particular, if R is a Krull domain, then weakly
ES-w-stability and ES-w-stability coincide.

Proof. Assume that I is w-stable and weakly ES-w-stable. Then Iw ¼ ðJEÞw for some t-invertible
fractional ideal J of R and w-idempotent fractional ideal E of R. Hence, Ew ¼ ðIðIw : I2ÞÞw ¼
ðIðIw : ðIwÞ2ÞÞw ¼ ðIw : IwÞ, where the first equality follows from Proposition 2.3, and the last
equality follows because I is w-stable. Thus, Iw ¼ ðJðIw : IwÞÞw: We note that if J is a fractional
ideal of R, then xJ � R for some nonzero x 2 K: Since 1

x ðR : JÞ ¼ ðR : xJÞ, J is t-invertible if and
only if xJ is t-invertible. So we may assume J � R: Hence, J � ðIw : ðIw : IwÞÞ ¼ Iw ¼ ðJEÞw � Ew:
By Proposition 2.3, Iw and hence I is ES-w-stable. The converse follows from Propositions 2.1
and 2.3. w

Let FwðRÞ ¼ fI 2 FðRÞ j Iw ¼ Ig and PðRÞ ¼ fI 2 FðRÞ j I is principalg: Note that FwðRÞ is a
commutative semigroup with identity R under the usual ideal multiplication and P(R) is a subse-
migroup of FwðRÞ: We say that the factor semigroup IwðRÞ ¼ FwðRÞ=PðRÞ is the w-class semi-
group of R. A commutative semigroup S is said to be Clifford if every element s 2 S is regular (in
the sense of Von Neumann), i.e., s2a ¼ s for some a 2 S: An integral domain R is called a
Clifford w-regular domain if IwðRÞ is a Clifford semigroup. In [31, Proposition 1.5], it has been
proven that a w-stable domain is Clifford w-regular.

Corollary 2.5. Let R be a weakly ES-w-stable domain. Then R is a Clifford w-regular domain. In
particular, R is of finite t-character.

Proof. Let I be a nonzero ideal of R such that Iw ¼ ðJEÞw for some t-invertible fractional ideal J of
R and w-idempotent fractional ideal E of R. By Proposition 2.3, Ew ¼ ðIðIw : I2ÞÞw and hence
ðIEÞw ¼ ðI2ðIw : I2ÞÞw: Also, ðIEÞw ¼ ðIwEwÞw ¼ ððJEÞwEwÞw ¼ ðJE2Þw ¼ ðJEÞw ¼ Iw: Hence, I is
Clifford w-regular by [31, Lemma 1.2]. Therefore, R is of finite t-character by Gabelli and Picozza
[31, Theorem 5.2]. w
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We recall that an integral domain R is called Mori if the ascending chain condition on v-ideals
of R holds; equivalently, each nonzero fractional ideal of R is v-finite. A Mori domain R such
that RP is Noetherian for each maximal t-ideal P of R is called a strong Mori domain. They are
precisely the domains satisfying the ascending chain condition on w-ideals. Trivially, a
Noetherian domain is strong Mori and a strong Mori domain is Mori. The t-dimension of R
(denoted by t-dimR) is defined by supfht P j P 2 t-SpecðRÞg:
Corollary 2.6. Let R be an integral domain.

(1) If R is a Mori weakly ES-w-stable domain, then R is ES-w-stable of t-dimension one.
(2) If R is a strong Mori w-stable domain, then RP is ES-stable for each P 2 t-MaxðRÞ:

Proof. (1) Since a Mori Clifford w-regular domain is w-stable of t-dimension one by Gabelli and
Picozza [32, Theorem 4.3], the result follows from Corollaries 2.4 and 2.5.

(2) For each P 2 t-MaxðRÞ, RP is a Noetherian stable domain by Fangui and Casland [56,
Theorem 1.9] and [30, Corollary 1.10]. Hence, RP is ES-stable by Fontana et al. [25, Corollary
7.4.2]. w

We recall that an overring T of R is called t-linked if for each nonzero finitely generated ideal
I of R, I�1 ¼ R implies ðITÞ�1 ¼ T: For a nonzero ideal I of R, the overring T :¼ ðIw : IwÞ of R is
t-linked because Tw ¼ T [16, Proposition 2.13].

Lemma 2.7. Let R be an integral domain and T a t-linked overring of R. If I is a fractional ideal
of R, then ðIwTÞw0 ¼ ðITÞw0 where w0 denotes the w-operation on T.

Proof. Let x 2 ðIwTÞw0 : Then xJ � IwT for some finitely generated ideal J of T with ðT : JÞ ¼ T:
Pick j 2 J: Then there exist ai 2 Iw and ti 2 T such that xj ¼ Pn

i¼1 aiti: For each ai 2 Iw, there
exists a finitely generated ideal Bi of R with B�1

i ¼ R such that aiBi � I: Set B ¼ B1 � � �Bn: Then
B�1 ¼ R, and xJBT � IT: Since T is a t-linked overring of R, ðT : BTÞ ¼ T, and so ðT : JBTÞ ¼
T: Hence, x 2 ðITÞw0 : The reverse containment is clear. w

Theorem 2.8. Let R be a weakly ES-w-stable domain and T a t-linked overring of R. Then T is a
weakly ES-w0-stable where w0 denotes the w-operation on T.

Proof. Assume that I is a nonzero ideal of T. Then I is a fractional ideal of R. Let A :¼ xI for
some nonzero x 2 R: Then A is weakly ES-w-stable, so is I. Hence, Iw ¼ ðJEÞw for some t-invert-
ible fractional ideal J of R and w-idempotent fractional ideal E of R. By Lemma 2.7, Iw0 ¼
ðJTETÞw0 where JT is t0-invertible ideal of T by Baghdadi and Fontana [20, Proposition 3.2] and
ðETÞw0 ¼ ðE2TÞw0 : w

Corollary 2.9. Let R be an ES-w-stable domain and T a t-linked overring of R. Then T is
ES- _w-stable.

Proof. If R is ES-w-stable, then _w ¼ w0 and T is _w-stable by Gabelli and Picozza [30, Corollary
2.2]. Hence, the result follows from Theorem 2.8 and Corollary 2.4. w

Recall from [14] that the w-integral closure of R is the integrally closed overring of R defined
by Rw ¼ [fðIw : IwÞ j I 2 f ðRÞg: We say that R is w-integrally closed if Rw ¼ R: Clearly R � �R �
Rw � ~R, where �R (resp., ~R) is the integral closure (resp., the complete integral closure) of R. Let
X be an indeterminate over an integral domain R. A nonzero prime ideal Q of R½X� is called an
upper to zero if Q \ R ¼ 0: A UMt domain is an integral domain R in which every upper to zero
in R½X� is a maximal t-ideal (hence t-invertible).
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Corollary 2.10. Let R be a weakly ES-w-stable domain. Then the complete integral closure ~R (resp.,
the w-integral closure Rw of R) is a Pv0MD where v0 denotes the v-operation on ~R (resp., Rw).

Proof. By [14, Lemma 1.2] and Dobbs et al. [16, Corollary 2.3], Rw and ~R are t-linked overrings
of R. Hence, the results follow from Theorem 2.8 and the facts that a weakly ES-w-stable domain
is a UMt domain because Clifford w-regular domains are UMt [32, Proposition 3.9], and an inte-
grally closed UMt domain is a PvMD [38, Proposition 3.2]. w

The next example shows that the concept of w-stability and ES-w-stability do not necessar-
ily coincide.

Example 2.11. Let T be a Krull domain which is not Noetherian and which has a maximal ideal
M such that TM is Noetherian. Let K ¼ T=M and k be a proper subfield of K such that ½K : k� is
finite. (To see a concrete example of T, let p be a prime number. Then there is a non-finitely gen-
erated abelian group G of rank two such that each rank one subgroup of G is cyclic and such
that G/H is a p-group for some finitely generated subgroup H of G (see [28, Chapter XIII,
Section 88]). Let K be a field of characteristic distinct from p, and let T ¼ K½X;G� be the group
ring of G over K. Then T is a UFD by Gilmer [35, Theorem 1] which is not Noetherian since G
is a non-finitely generated abelian group. Consider a maximal ideal M of T which is generated by
f1� Xg j g 2 Gg. Then MTM is finitely generated by Gilmer [35, Theorem 3], and it implies that
TM is Noetherian [39, Proposition 4].)

Let R ¼ /�1ðkÞ be the pullback issued from the following diagram:

Then R is a strong Mori domain [45, Theorem 3.11] which is neither Noetherian nor Krull. Since
M is the largest common ideal of R and T, R and T have the same quotient field and hence the
same complete integral closure by [33, Lemma 5]. Since ~R, the complete integral closure of R, is
a Krull domain by Fangui and Casland [56, Theorem 3.5], we may assume that T ¼ ~R.
Furthermore, M is a maximal t-ideal of R such that ðR : MÞ ¼ ðM : MÞ by [36, Corollaries 3 and
5]. Since ðR : ~RÞ ¼ M, ðR : MÞ ¼ ~R. Hence, M is a non t-invertible ideal of R and
MM�1 ¼ M ¼ M~R. Also, any maximal t-ideal of R distinct from M is t-invertible. To see this, let
N 6¼ M be a maximal t-ideal of R which is not t-invertible. Then ðR : NÞ ¼ ðN : NÞ and
ðN : NÞ � ~R ¼ ðR : MÞ. It follows that M ¼ Mv � Nv ¼ N; a contradiction. Now, we claim that
M is a w-stable ideal which is not ES-w-stable. Since ~R is a Krull domain, M is t-invertible in
~R ¼ ðM : MÞ. Thus, M is a w-stable ideal of R. Suppose on the contrary that M is a weakly ES-w-
stable ideal. Then M ¼ ðJEÞw for some t-invertible fractional ideal J of R and w-idempotent frac-
tional ideal E of R. By Proposition 2.3, Ew ¼ ðEw : EwÞ ¼ ðM : MÞ. Since ~R is a t-linked overring
of R, ðM~RJ�1Þw ¼ ~R and hence ðMJ�1Þw ¼ ðMM�1J�1Þw ¼ ðM~RM�1J�1Þw ¼ ~R. Therefore,
ðJ�1Þw ¼ ðM�1J�1Þw, which implies that R ¼ ~R; a contradiction because a completely integrally
closed Mori domain is Krull.

Remark 2.12. By [14, Corollary 1.4], R � Rw satisfies ðw,w0Þ-INC property (i.e., if whenever Q1

and Q2 are nonzero prime ideals of Rw such that Q1 \ R ¼ Q2 \ R and ðQ1 \ RÞw (R, then Q1

and Q2 are incomparable) and ðw,w0Þ-LO property (i.e., for each prime w-ideal P of R, then there
exists a prime w0-ideal Q of Rw such that P ¼ Q \ R). Therefore, if P is a maximal t-ideal of R,
then there exists a prime w0-ideal Q of Rw such that P ¼ Q \ R: Assume that Q0 2 t0-MaxðRwÞ
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such that Q(Q0: Then P ¼ Q \ R(Q0 \ R: Since Rw is a t-linked overring of R, ðQ0 \ RÞt 6¼ R:
Hence, P( ðQ0 \ RÞt (R; a contradiction. Thus, Q ¼ Q0:

As in [17], an integral domain R with quotient filed K is said to be conducive if ðR : TÞ 6¼ 0
for each overring T of R with T 6¼ K: Valuation domains are conducive, and the complete inte-
gral closure of a conducive domain is a valuation domain [9, Theorem 3.3]. Conducive domains
may have infinitely many maximal ideals.

Proposition 2.13. Let R be a conducive domain which is weakly ES-w-stable. Then R is a weakly
ES-stable domain.

Proof. Let Rw be the w-integral closure of R and v0 the v-operation on Rw. Then Rw is a Pv0 MD
which is a w-integrally closed conducive domain by Corollary 2.10, [14, Corollary 1.4], and [17,
Lemma 2.0]. By Remark 2.12, it is enough to show that the set of maximal t0-ideals of Rw is
finite. Without loss of generality, we assume that R ¼ Rw is a PvMD. Let M be a maximal t-ideal
of R, then RM is a valuation domain by Kang [42, Theorem 3.2]. Hence, ðR : RMÞ 6¼ 0 by [17,
Lemma 2.0]. Thus, there exists a nonzero prime ideal P of R such that P ¼ PRP ¼ PRM by [17,
Lemma 2.10]. Since ðRMÞPRM

is a valuation domain, PRM is a prime t-ideal of RM. Hence, Pt ¼
ðPRM \ RÞt 6¼ R since RM is a t-linked overring of R [16, Proposition 2.2]. Thus, there is a max-
imal t-ideal Q of R such that P � Pt � Q: Let N be an arbitrary maximal t-ideal of R such that
N 6¼ Q: Then there is a a 2 N n Q: Hence, for each x 2 P, x

a 2 PRQ ¼ P which implies x 2 aP �
NP � N: Therefore, P is contained in all maximal t-ideals of R. Since R is of finite t-character by
Corollary 2.5, the set of maximal t-ideals of R is finite. Therefore, R is a semi-local domain with
each maximal ideal a t-ideal by Zafrullah [54, Proposition 3.5]. Hence, the d- and w-operations
coincide in R by [13, Corollary 1.3], and R is a weakly ES-stable domain. w

The next theorem is the w-operation analogue of [52, Theorem 2.6] that an integral domain R
is a stable domain if and only if R is Clifford regular and every nonzero idempotent fractional
ideal of R is a ring.

Theorem 2.14. An integral domain R is a w-stable domain if and only if R is Clifford w-regular
and w-closure of each nonzero w-idempotent fractional ideal of R is a ring.

Proof. Assume that R is a w-stable domain. Then clearly R is Clifford w-regular. Let I be a non-
zero w-idempotent fractional ideal of R. Consider the overring T :¼ ðIw : IwÞ of R. Then T ¼
ðIðT : IwÞÞw ¼ ðIðIw : IwÞÞw ¼ Iw: Hence, Iw is a ring. For the converse, let I be a nonzero ideal of
R. Then Iw ¼ ðI2ðIw : I2ÞÞw since R is a Clifford w-regular domain. Set L :¼ IðIw : I2Þ: Then L is a
w-idempotent fractional ideal of R. By assumption, Lw is a ring and hence Lw ¼ ðLw : LwÞ: Since
Iw ¼ ðILÞw, clearly ðLw : LwÞ ¼ ðIw : IwÞ: Hence, ðIððIw : IwÞ : IwÞÞw ¼ ðIðIw : I2ÞÞw ¼ Lw ¼ ðIw :
IwÞ: Therefore, I is w-stable. w

Corollary 2.15. Assume that R is an integral domain such that w-closure of each nonzero w-idem-
potent fractional ideal of R is a ring. Then R is a weakly ES-w-stable domain if and only if R is
ES-w-stable.

Proof. Let R be a weakly ES-w-stable domain. Then R is Clifford w-regular by Corollary 2.5.
Hence, R is a w-stable domain by Theorem 2.14. Therefore, R is ES-w-stable by Corollary 2.4.
The converse follows from Proposition 2.3(1). w

Proposition 2.16. Let R be a PvMD of finite t-character and I a nonzero ideal of R. Then I is a weakly
ES-w-stable ideal if and only if there is a t-invertible fractional ideal J of R such that either Iw ¼
ðJðIw : IwÞÞw or Iw ¼ ðJP1 � � � PnðIw : IwÞÞw, where Pi is a nonzero w-idempotent prime t-ideal of R.
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Proof. Assume that I is a weakly ES-w-stable ideal. Then Iw ¼ ðJEÞw for some t-invertible frac-
tional ideal J of R and w-idempotent fractional ideal E of R. Set T :¼ ðIw : IwÞ and let E(T:
Since R is a PvMD of finite t-character, R is a Clifford w-regular domain by Gabelli and Picozza
[31, Corollary 4.5]. Thus, T is a PvMD of finite t-character and w ¼ t ¼ t0 ¼ w0 on T, where w0

and t0 denote respectively the w-operation and the t-operation on T by [22, Proposition 1.5] and
[31, Corollary 2.6 and Theorem 5.2]. Hence, Ew ¼ ðQ1 � � �QnÞw, where Qi is a nonzero w-idem-
potent prime t-ideal of T by [27, Corollary 3.7]. Set Pi :¼ Qi \ R: Then Qi ¼ ðPiTÞt by [43,
Proposition 2.5 and Corollary 2.11]. Therefore, Ew ¼ ðP1 � � � PnTÞw, where Pi is a nonzero w-
idempotent prime t-ideal of R by [41, Lemma 2.3]. w

Following [19], an integral domain R is said to be strongly t-discrete if it has no t-idempotent
prime t-ideals, i.e., for every prime t-ideal P of R, ðP2Þt ( P:

Corollary 2.17. Let R be a strongly t-discrete PvMD. Then R is a weakly ES-w-stable domain if
and only if R is ES-w-stable.

Proof. Let R be a weakly ES-w-stable domain. Then R is of finite t-character by Corollary 2.5.
Since R has no w-idempotent prime t-ideals, Iw ¼ ðJðIw : IwÞÞw for some t-invertible fractional J
of R by Proposition 2.16. Thus, I is ES-w-stable by Proposition 2.3(3). The converse follows from
Proposition 2.3(1). w

3. Some results on t-locally weakly ES-stability

Let R be an integral domain. We say that R is t-locally weakly ES-stable if RP is weakly ES-stable
for each P 2 t-MaxðRÞ: It is clear that if R is a weakly ES-w-stable domain, then R is t-locally
weakly ES-stable. However, Example 2.11 shows that a t-locally weakly ES-stable ideal in a
domain of finite t-character need not be weakly ES-w-stable in general. We introduce a tool. Let
J 6¼ 0 be an ideal of a valuation domain R. We associate a prime ideal J] as follows. First, set
UðJÞ ¼ fr 2 RjrJ ¼ Jg is a submonoid of the group of units of R. We
define J] ¼ R� UðJÞ ¼ fr 2 RjrJ � Jg:
Lemma 3.1. Let I 6¼ 0 be an ideal and P a maximal t-ideal of a PvMD R. For a prime ideal L of
R, the following are equivalent.

(1) LRP ¼ ðIRPÞ]:
(2) RL ¼ EndRðIRPÞ ¼ EndRPðIRPÞ:
(3) L is the smallest prime t-ideal of R contained in P such that IRL ¼ IRP.
(4) ðIRP : IÞ ¼ RL:

Proof. Since RP is a valuation domain, ð1Þ () ð2Þ follows easily (see [29, Chapter II, Section 4]
for details). Clearly, ð2Þ () ð3Þ and ð2Þ () ð4Þ hold. w

Remark 3.2. Let I be an ideal and P a maximal t-ideal of a PvMD R. From now on, we use the
notation ZPðIÞ for the uniquely determined prime t-ideal L of R in the preceding lemma. We
observe the following.

(1) Clearly, ZPðIÞ � P. By Lemma 3.1(3), ZPðIÞ ¼ P if I is not contained in P.
(2) Let Q be a prime ideal of R such that Q � ZPðIÞ. Then there exists q 2 RZPðIÞ such that

PRP � q�1IRP � RP. Hence, ðq�1IRPÞQRP
¼ RP. So, IQRM � IRP and IRQ ¼ qRQ for q 2 RP:

(3) Let ZPðIÞ � Q � P. By Lemma 3.1(2), IRP ¼ IRQ ¼ IRZPðIÞ:
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We will use the symbol P� P0 to denote the largest prime t-ideal contained in the prime t-
ideals P and P0; this makes sense since t-SpecðRÞ, the set of all prime t-ideals of R, is a tree under
inclusion by [48, Proposition 4.4]. We observe that RPRP0 ¼ RP � P0 :

Lemma 3.3. Let I be an ideal of a PvMD R and P, Q are distinct maximal t-ideals of R.
Then P �ZQðIÞ ¼ Q�ZPðIÞ:

Proof. We claim P�ZQðIÞ � ZPðIÞ: Suppose that P�ZQðIÞ ¼ ZQðIÞ: So, ZQðIÞ � P: Since both
ZPðIÞ and ZQðIÞ are contained in the same maximal t-ideal and t-SpecðRÞ is linearly ordered by
inclusion, without loss of generality, assume that ZPðIÞ(ZQðIÞ: By Remark 3.2(2), IRZPðIÞ ¼
qRZPðIÞ, and by Remark 3.2(3), IRZPðIÞ ¼ IRZQðIÞ: Since IRZPðIÞ and IRZQðIÞ are fractional ideals of
RQ, ZPðIÞRQ ¼ ZQðIÞRQ by Lemma 3.1(1) so that ZPðIÞ ¼ ZQðIÞ by Lemma 3.1(3), which is a
contradiction. Now let A ¼ ZQðIÞ� P � ZQðIÞ and ZPðIÞ(A: Since A � P, IRA ¼ qRA ¼ IRZPðIÞ
by Remark 3.2(2,3). Thus, A ¼ ZPðIÞ, a contradiction. Hence, we are done. w

Lemma 3.4. If I is a fractional ideal in a PvMD R, then

EndðIwÞ ¼ ðIw : IwÞ ¼ \
P2t�MaxðRÞ

RZPðIÞ:

Proof. Clearly, we have

ðIw : IwÞ ¼
�

\
P2t�MaxðRÞ

IRP : Iw

�
¼ \

P2t�MaxðRÞ
ðIRP : IwÞ ¼ \

P2t�MaxðRÞ
RZPðIÞ;

the last equality follows from Lemma 3.1. w

Lemma 3.5. Let R be a PvMD of finite t-character and I an ideal of R. Set
T ¼ ðIw : IwÞ ¼ EndðIwÞ. Then the following hold.

(1) TRP ¼ RZPðIÞ for all P 2 t-MaxðRÞ:
(2) The maximal t-ideals of T are precisely the t-ideals XT where X ranges over the maximal

members of the set Z ¼ fZPðIÞjP 2 t-MaxðRÞg:

Proof. (1) If XðIÞ ¼ fP1, :::, Png is the set of all maximal t-ideals containing I, then by Lemma 3.4
we have T ¼ \Q 62XðIÞ RQ \ RZP1 ðIÞ \ ::: \ RZPn ðIÞ: So, TRP ¼ RP for all maximal t-ideals such that P 62
XðIÞ and TRP � RZPðIÞ for P 2 XðIÞ: Multiply T by IRP and note that ð\Q 62XðIÞ RQÞRP is an overring
of the valuation domain RP so that ð\Q 62XðIÞ RQÞRP ¼ RL for some prime ideal L � P: So,

TIRP ¼ IRPRL \ RZP1 ðIÞIRP \ ::: \ RZPðIÞIRP \ ::: \ RZPn ðIÞ
¼ IRPRL \ IRPRZP1 ðIÞ \ ::: \ IRZPðIÞ � P \ ::: \ IRPRZPn ðIÞ
¼ IRPRL \ IRPRZP1 ðIÞ \ ::: \ IRZPðIÞ \ ::: \ IRPRZPn ðIÞ
¼ IRPRL \ IRPRZP1 ðIÞ \ ::: \ IRP \ ::: \ IRPRZPn ðIÞ
¼ IRP

Thus, ðIRP : IRPÞ ¼ TRP ¼ RZPðIÞ by Lemma 3.1(2).
(2) A maximal t-ideal of T is of the form PT, where P is a prime t-ideal of R and T � RP: Let

N 2 t-MaxðRÞ satisfying P � N: Then ZNðIÞ is comparable with P, and ZNðIÞT is a proper prime
ideal of T. Hence, ZNðIÞT � PT 2 t-MaxðTÞ: In R, we have ZNðIÞ � P � N: If N 62 XðIÞ, then
N ¼ ZNðIÞ ¼ P: Otherwise, TRN ¼ RZNðIÞ: Since T � RP and RN � RP,RZNðIÞ � RP implying that
P � ZNðIÞ: Thus, P ¼ ZNðIÞ: Conversely, let P 2 t-MaxðRÞ and ZPðIÞ maximal in Z. By virtue of
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Lemma 3.4 and the fact that the prime t-ideals of T are exactly the ideals PT where P is a prime
t-ideal of R such that T � RP,ZPðIÞ survives as a prime t-ideal in T. If R contains a prime t-ideal
ZPðIÞ � P0, then by the definition of ZPðIÞ there is an r 2 P0 such that rI ¼ I. So, rIw ¼ Iw, and
hence r�1 2 T but r�1 62 RP0 : Thus, P0 does not survive in T. w

Lemma 3.6. Assume that R is a PvMD of finite t-character. If I and J are t-locally isomorphic
ideals of R, then there exists a t-invertible ideal B of T ¼ ðIw : IwÞ such that Iw ¼ ðBJÞw:

Proof. We observe that T ¼ ðIw : IwÞ ¼ ðJw : JwÞ: Without loss of generality, suppose that I � J:
Let XðIÞ ¼ fP1, :::, Png be the set of maximal t-ideals of R which contain I. Hence, XðJÞ � XðIÞ:
By hypothesis, for every i ¼ 1, :::, n, we can write IRPi ¼ aiJRPi for some ai 2 RPi , in deed, we
may assume that ai 2 R: By Lemma 3.1, IRPi ¼ IRZPi ðIÞ ¼ aiJRZPi ðIÞ: Let

B ¼ T \ a1RZP1 ðIÞ \ ::: \ anRZPn ðIÞ:

We observe that aiRZPi ðIÞJPi ¼ RZPi ðIÞIPi ¼ IPi by Lemma 3.1 and, for i 6¼ j, aiRZPiðIÞ JPj ¼ aiTRPi JPj ¼
aiTJPjRPi by Lemma 3.4. Also, for all maximal t-ideals P, TJRP ¼ TJwRP ¼ JwRP ¼ JRP: Thus,
BJPi ¼ JPi \ IPi \ \j6¼i IPiRPj ¼ JPi \ IPi by [29, Lemma VI.9.9]. Furthermore, for all maximal t-
ideals such that P 6¼ Pi, TJRP ¼ RP, implying that BJRP ¼ ðT \ a1RZP1 ðIÞ \ ::: \ anRZPn ðIÞÞJRP ¼
TJRP \ a1RZP1 ðIÞJRP \ ::: \ anRZPn ðIÞJRP since JRP is flat. Thus, BJRP ¼ RP \ a1TRP1 JRP \ ::: \
anTRPnJRP by Lemma 3.5 implying that BJRP ¼ RP. Hence, we have

ðBJÞw ¼ \
P2t�MaxðRÞ

BJRP

¼ BJP1 \ BJP2 \ ::: \ BJPn \ \
P 6¼Pi

BJP

¼ \n
i¼1

ðJPi \ IPiÞ \ \
P 6¼Pi

RP

¼ \n
i¼1

IPi \ \
P 6¼Pi

RP

¼ \n
i¼1

IPi \ \
P 6¼Pi

IP

¼ Iw

From Lemma 3.5, we observe that B is an ideal of the overring T. Next we claim that the localiza-
tions of B at maximal t-ideals of T (see Lemma 3.5) are principal. If the maximal t-ideal does not
contain I, then it is obvious. Let us consider

BRZPi ðIÞ ¼ aiRZPi ðIÞ \ \
j 6¼i

ajRZPi ðIÞ � ZPj ðIÞ:

We observe that ZPiðIÞ �ZPjðIÞ(ZPiðIÞ, so JRZPiðIÞ � ZPjðIÞ
ffi RZPiðIÞ � ZPjðIÞ

by Remark 3.2(2). For j 6¼
i, IRZPi ðIÞ � ZPj ðIÞ ¼ aiJRZPi ðIÞ � ZPj ðIÞ ¼ ajJRZPi ðIÞ � ZPj ðIÞ: Hence, aia�1

j is a unit in the valuation
domain RZPi ðIÞ � ZPj ðIÞ so aiRZPi ðIÞ � ZPj ðIÞ ¼ ajRZPi ðIÞ � ZPj ðIÞ: Also, aiRZPi ðIÞ � ajRZPi ðIÞ: Therefore,
BRZPi ðIÞ ¼ aiRZPi ðIÞ for each i. Since T is of finite t-character, B is a t-invertible ideal of T. w

Theorem 3.7. Let R be a PvMD of finite t-character and I a nonzero ideal of R such that IRP is
weakly ES-stable for each P 2 t-MaxðRÞ. Then there is a t-invertible fractional ideal A of ðIw : IwÞ
such that ðI2Þw ¼ ðAIÞw:

Proof. Let fP1, :::,Png be the set of maximal t-ideals of R which contain I. Then I2RPi ¼ JiRPi IRPi
for some invertible ideal JiRPi of RPi for each i ¼ 1, :::, n by the definition of weakly ES-stability.
We observe that these are the only maximal t-ideals which contain I2, also. For all other maximal
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t-ideals N 6¼ Pi, for each i, I2N ¼ RN ¼ IN : So, for each i, ðI2ÞPi ¼ jiIPi for some ji 2 J: Thus, by
Lemma 3.6, there exists a t-invertible ideal A of ðIw : IwÞ such that ðI2Þw ¼ ðAIÞw: w

Corollary 3.8. Assume that R is a completely integrally closed PvMD of finite t-character. If R is a
t-locally weakly ES-stable domain, then R is weakly ES-w-stable.

Proof. Let RP be weakly ES-stable for each P 2 t-MaxðRÞ and I a nonzero ideal of R. Then
ðI2Þw ¼ ðAIÞw for some t-invertible fractional ideal A of ðIw : IwÞ by Theorem 3.7. Since R is com-
pletely integrally closed, ~R ¼ [I2FðRÞðIv : IvÞ ¼ R: Hence, ðIw : IwÞ ¼ R and so A is a t-invertible
fractional ideal of R. Therefore, I is a weakly ES-w-stable by Proposition 2.3. w

Recall from [6] that an integral domain R is a weakly Matlis domain if R is of finite t-character
and each prime t-ideal of R is contained in a unique maximal t-ideal. Clearly, Krull domains are
weakly Matlis, and an integral domain of t-dimension one is a weakly Matlis domain if and only
if it is of finite t-character.

Theorem 3.9. Assume that R is a weakly Matlis PvMD. If R is a t-locally weakly ES-stable domain,
then R is weakly ES-w-stable.

Proof. Let I be a nonzero ideal of R. Since R is a PvMD, Iw and so I is a w-flat ideal (i.e., IRP is
flat for each P 2 t-MaxðRÞ) by [44, Proposition 2]. Since IRP is weakly ES-stable for each
P 2 t-MaxðRÞ, I2RP ¼ JRPIRP for some invertible ideal JRP of RP by [8, Proposition 2.1]. Let
fP1, :::,Png be the set of maximal t-ideals of R which contain I. Then I2RPi ¼ aiIRPi for some ai 2
R and I2RP ¼ JRPIRP ¼ RP for all maximal t-ideal P 6¼ Pi for i ¼ 1, :::, n: Set Ai :¼ aiRPi \ R for
i ¼ 1, :::, n, and A :¼ A1 \ ::: \ An: Since R is a weakly Matlis domain, Pi is the unique maximal
t-ideal of R which contains Ai and Ai is w-ideal by [6, Corollary 4.4 and Lemma 2.3]. Hence,
ARP ¼ A1RP \ ::: \ AnRP for each P 2 t-MaxðRÞ by [6, Proposition 4.7]. Since IRP is flat for each
P 2 t-MaxðRÞ,AIRP ¼ A1IRP \ ::: \ AnIRP by [29, Chapter VI, Lemma 9.9]. We note that if P is a
maximal t-ideal of R such that P 62 fP1, :::, Png, then AiRP ¼ RP, so ARP ¼ RP. If i, j 2 f1, :::, ng
with j 6¼ i, then AjRPi ¼ RPi , so ARPi ¼ AiRPi ¼ aiRPi : Therefore, ARP is principal for each
P 2 t-MaxðRÞ and

ðAIÞw ¼ \
P2t�MaxðRÞ

AIRP

¼ AIRP1 \ ::: \ AIRPn \ \
P 6¼Pi

RP

¼ I2RP1 \ ::: \ I2RPn \ \
P 6¼Pi

RP

¼ ðI2Þw:
Since R is of finite t-character, R is t-LPI. Therefore, A is t-invertible and hence I is a weakly ES-
w-stable ideal by Proposition 2.3. w

Corollary 3.10. Let R be an integrally closed w-divisorial domain, i.e., the w- and v- operations are
the same on R. Then R is weakly ES-w-stable if and only if R is t-locally weakly ES-stable.

Proof. Since an integrally closed w-divisorial domain is a weakly Matlis PvMD [21, Theorem 3.3],
the result follows from Theorem 3.9. w

Let ? be a star operation on an integral domain R. As in [46], we say that R is a ?-RTP
domain if for each nonzero fractional ideal I of R, either ðII�1Þ? ¼ R or a radical ideal of R.

Example 3.11. Let Y, Z be indeterminates over a field K and let D :¼ K½Y ,Z�: Consider a multi-
plicatively closed subset S ¼ f1,Y ,Y2,Y3, :::g of D, and let R :¼ Dþ XDS½X�, i.e., R ¼ ff 2
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DS½X� j f ð0Þ 2 Dg: Then R is a non-Pr€ufer non-Krull weakly Matlis PvMD by [1, Theorem 3.6],
[44, Corollary 3], and [2, Corollary 2.8]. Let P be a maximal t-ideal of R. If P \ S ¼ ;, then RP ¼
DS½X�PDS½X� is a DVR. Thus we may assume P \ S 6¼ ;: Lemma 2.1 of [2] implies P ¼ P \ Dþ
XDS½X� such that P \ D is a maximal t-ideal of D. Hence, P ¼ YK½Y ,Z� þ XK½Y ,Y�1,Z,X�: Since
D is a Krull domain, the maximal t-ideal (Y) of D is not w-idempotent by Gabelli and Picozza
[30, Theorem 2.9]. Hence, ðP2Þw 6¼ P and so P2RP 6¼ PRP: Since R is a weakly Matlis PvMD, R is
t-RTP by [22, Theorem 1.12]. Hence, RP is RTP by [46, Theorem 17] and so PRP is divisorial by
[40, Theorem 6]. Thus, RP is a Noetherian valuation domain, and hence it is weakly ES-stable by
Mimouni [47, Proposition 4.6]. Therefore, R is a weakly ES-w-stable domain by Theorem 3.9.

4. ES-w-stability of polynomial rings

Let R be an integral domain, ? a star operation on R, X an indeterminate over R, and R½X� the
polynomial ring over R. Assume that c(f) is the ideal of R generated by the coefficients of f 2
R½X�: As in [42], let Nð?Þ ¼ ff 2 R½X� j f ðXÞ 6¼ 0 and ðcRðf ÞÞ? ¼ Rg: Then Nð?Þ is a saturated
multiplicative subset of R½X�, and the domain NaðR, ?Þ :¼ R½X�Nð?Þ is called the Nagata ring of R
with respect to ?: For ? ¼ d, NaðR, dÞ ¼: RðXÞ is the usual Nagata ring of R [34, Section 33],
and NaðR, vÞ ¼ NaðR, tÞ ¼ NaðR,wÞ:
Theorem 4.1. Let R be an integrally closed domain. Then R is a weakly ES-w-stable domain if and
only if NaðR, vÞ is a weakly ES-stable domain.

Proof. Assume that R is a weakly ES-w-stable domain and J is a nonzero ideal of NaðR, vÞ: Since
R is an integrally closed weakly ES-w-stable domain, R is a PvMD. Hence, J ¼ INaðR, vÞ for some
ideal I of R by Kang [42, Theorem 3.1]. By assumption, there is a t-invertible ideal A of R such
that ðI2Þw ¼ ðIAÞw: Note that ANaðR, vÞ is invertible and the d- and w- operations are the same
on NaðR, vÞ because each maximal ideal of NaðR, vÞ is a t-ideal (cf. [42, Proposition 2.1,
Corollaries 2.3 and 2.5]). Thus, I2NaðR, vÞ ¼ IANaðR, vÞ since NaðR, vÞ is a PvMD [42, Theorem
3.7]. It follows that J is a weakly ES-stable ideal of NaðR, vÞ:

Conversely, suppose NaðR, vÞ is a weakly ES-stable domain. Then NaðR, vÞ is a quasi-Pr€ufer
domain by Mimouni [47, Corollary 2.4]. It follows that R is a PvMD. Let I be a nonzero ideal of
R. Then I2NaðR, vÞ ¼ INaðR, vÞL for some invertible ideal L of NaðR, vÞ: Note that L ¼ JNaðR, vÞ
for some ideal J of R which is t-invertible by Kang [42, Corollary 2.7]. Therefore, ðI2Þw ¼
ðI2ÞwNaðR, vÞ \ R ¼ ðIJÞwNaðR, vÞ \ R ¼ ðIJÞw by Kang [42, Proposition 2.8]. w

Example 4.2. Let V be a rank one discrete valuation domain with quotient field K 6¼ V, M max-
imal ideal of V, and X an indeterminate over K. Then D :¼ V þ XK½X� is an h-local Pr€ufer
domain by [2, Corollary 2.8]. We first show that each nonzero prime ideal of D is not idempo-
tent. Let Q be a prime ideal of D and S :¼ V n f0g: The case Q \ S ¼ ; is trivial, so assume Q \
S 6¼ ;: Then Q ¼ Q \ V þ XK½X� by [15, Theorem 2.1]. If Q \ V ¼ 0, then Q ¼ XK½X� which is
not idempotent. If Q \ V ¼ M, then Q ¼ M þ XK½X� is a maximal ideal of D [2, Lemma 2.1]
which is not idempotent since M2 6¼ M: Therefore, D is an h-local strongly discrete Pr€ufer
domain and hence D is an ES-stable domain by Gabelli and Picozza [30, Corollary 3.8]. Now, let
Y be an indeterminate over D and R :¼ D½Y�: Then R is a non-Krull non-Pr€ufer weakly Matlis
PvMD by Gabelli and Picozza [32, Proposition 3.8] which is not a weakly ES-stable domain by
Mimouni [47, Corollary 2.7]. We note that Theorem 2.3(e) of [12] implies

t-MaxðRÞ ¼ fQ 2 SpecR jQ \ D ¼ ð0Þg [ fP Y½ � j P 2 MaxðDÞg,
since D is a Pr€ufer domain and hence a UMt domain. Let Q be a maximal t-ideal of R and
P :¼ Q \ D. If P 6¼ 0, then RQ ¼ D½Y�P½Y� ¼ DPðYÞ is weakly ES-stable by Theorem 4.1. If P¼ 0,
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then RQ is a DVR and hence a weakly ES-stable domain by Mimouni [47, Proposition 4.6].
Therefore, R is a weakly ES-w-stable by Theorem 3.9.

Theorem 4.3. Let R be an integrally closed domain and X an indeterminate over R. Then R is a
weakly ES-w-stable domain if and only if R½X� is a weakly ES-w-stable domain.

Proof. Assume that R is a weakly ES-w-stable domain. Then R is a PvMD since R is integrally
closed. Let J be a nonzero ideal of R½X�: We may assume that J is a w-ideal. Set I :¼ J \ R: If I 6¼
0, then J ¼ I½X� by [37, Lemma 4.5]. By assumption, ðI2Þw ¼ ðIAÞw for some t-invertible ideal A
of R. Thus, by Kang [42, Corollary 2.3], ðJ2Þw ¼ ðI2Þw½X� ¼ ðIAÞw½X� ¼ ðJA½X�Þw where A½X� is t-
invertible ideal of R½X�: Now suppose that I¼ 0. Then J ¼ fA½X� for some f 2 R½X� and a frac-
tional t-ideal A of R by [37, Lemma 4.5]. Then ðA2Þw ¼ ðABÞw for some t-invertible ideal B of R.
Thus, ðJ2Þw ¼ ðf 2A2½X�Þw ¼ f 2ðA2Þw½X� ¼ f 2ðABÞw½X� ¼ ðJfB½X�Þw where fB½X� is a t-invertible
ideal of R½X�: Therefore, R½X� is a weakly ES-w-stable domain.

Conversely, suppose R½X� is a weakly ES-w-stable domain. It suffices to show that NaðR, vÞ is
weakly ES-stable domian. Let J be a nonzero ideal of NaðR, vÞ: Then J ¼ ANaðR, vÞ for some ideal
A of R½X�: By assumption, ðA2Þw ¼ ðABÞw for some t-invertible ideal B of R½X�: Note that R is a
PvMD by [26, Theorem 2.4]. Thus, by Kang [42, Lemma 3.4], A2NaðR, vÞ ¼ ABNaðR, vÞ where
BNaðR, vÞ is an invertible ideal of NaðR, vÞ: Therefore, R is a weakly ES-w-stable domain by
Theorem 4.1. w

Now we characterize weakly ES-w-stability in pullback constructions. Let T be an integral
domain, M a maximal ideal of T, K ¼ T=M, D a proper subring of K, / : T ! K the canonical
homomorphism, and R ¼ /�1ðDÞ the pullback of the following diagram:

We assume that R � T, and we refer to the diagram as a pullback diagram of type ðw?Þ if K is
the quotient field of D.

We first give some examples of which D and T are weakly ES-w-stable, but R is not necessarily
a weakly ES-w-stable in a pullback diagram.

Example 4.4. (1) Let D be a rank one discrete valuation domain with quotient field K (e.g., a
local Dedekind domain that is not a field), X, Y the indeterminates over K. Set T ¼ K½½X,Y�� ¼
K þM where M ¼ ðX,YÞT: It is well known that the set of maximal t-ideals of a Krull domain
is the set of height one primes. Hence, M is not a t-ideal of T. Therefore, R ¼ DþM the pull-
back of D in the Krull domain T cannot be a weakly ES-w-stable domain because R is not a UMt
domain by [26, Proposition 3.5].

(2) Assume that F is a field and F0 is a proper subfield of F. For any integer n> 1, let
X1, :::,Xn be indeterminates over F and set T ¼ F½½X1, :::,Xn�� ¼ F þM where M ¼ ðX1, :::,XnÞT:
Note that T is a Krull domain and M is not a t-ideal of T. Thus, R ¼ F0 þM is not a UMt
domain by [26, Proposition 3.6]. It follows that R is not a weakly ES-w-stable.

(3) Let Q be the field of rational numbers, X, Y indeterminates over Q,T ¼ Q½X,Y� with max-
imal ideal M ¼ ðX,YÞT, and D ¼ Z, the ring of integers. Then M is not a t-ideal of T. Hence,
R ¼ ZþM cannot be a weakly ES-w-stable domain because R is not a UMt domain by [26,
Proposition 3.5].
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Theorem 4.5. In a pullback diagram of type ðw?Þ, if R is a weakly ES-w-stable domain, then M is
a maximal t-ideal of T, T is a weakly ES-w-stable domain, and D is a semi-local weakly ES-stable
domain.

Proof. By [26, Propositions 3.1 and 3.5], T is a t-linked overring of R and M is a maximal t-ideal
of T. Hence, M is a prime t-ideal of R and T is weakly ES-w-stable by Theorem 2.8. Furthermore,
the set of maximal t-ideals of D is finite because R is of finite t-character by Corollary 2.5, and q
is a maximal t-ideal of D if and only if /�1ðqÞ is a maximal t-ideal of R containing M by [24,
Propositions 1.6 and 1.8]. Therefore, D is a semi-local domain with each maximal ideal a t-ideal
by Zafrullah [54, Proposition 3.5]. First, we show that D is a weakly ES-w-stable domain and
hence a UMt domain. Let A be a nonzero ideal of D. Then I ¼ /�1ðAÞ is an ideal of R contain-
ing M. By assumption, Iw ¼ ðJEÞw for some t-invertible fractional ideal of R and w-idempotent
fractional ideal E of R. Thus, Ew � ðEw : EwÞ ¼ ðIw : IwÞ ¼ ðð/�1ðAÞÞw : ð/�1ðAÞÞwÞ ¼ ð/�1ðAwÞ :
/�1ðAwÞÞ ¼ /�1ðAw : AwÞ � /�1ðKÞ ¼ T, where the third equality follows from [45, Lemma
3.1]. Hence, Iw � Ew � T: Since M( I, IT ¼ T and hence EwT ¼ T and M( Ew: Therefore,
ðJTÞw ¼ ðJEwTÞw ¼ ððJEwÞwTÞw ¼ ðITÞw ¼ T, and hence M( Jw: Hence, Jw ¼ /�1ðBÞ and Ew ¼
/�1ðFÞ for some nonzero fractional ideals B and F of D. Clearly, Aw ¼ ðBFÞw such that B is a t-
invertible fractional ideal of D and F is a w-idempotent fractional ideal of D. Therefore, D is a
weakly ES-stable domain by [13, Corollary 1.3]. w

Corollary 4.6. Let D be an integral domain with quotient field K, X an indeterminate over K and
R ¼ Dþ XK½X� the subring of the polynomial ring K½X� consisting of those polynomials with con-
stant term in D. If R is a weakly ES-w-stable domain, then D is a semilocal domain which is a
weakly ES-stable domain.

Proof. The result follows from Theorem 4.5. w

In a pullback diagram of type ðw?Þ, since we do not know any example of a weakly ES-w-sta-
ble domain T with a maximal t-ideal M, and a semi-local weakly ES-stable domain D such that R
is not of finite t-character, we end this section by considering the following question:

Question 4.7. In a pullback diagram of type ðw?Þ, assume that T is a weakly ES-w-stable domain,
M is a maximal t-ideal of T, and D is a semi-local weakly ES-stable domain. Is R a weakly ES-w-
stable domain?

5. Finitely ES-w-stable domains

An integral domain R is said to be a finitely ES-w-stable domain (resp., finitely weakly ES-w-
stable) if every finitely generated ideal of R is ES-w-stable (resp., weakly ES-w-stable).

Proposition 5.1. An integral domain R is finitely weakly ES-w-stable if and only if R is finitely ES-
w-stable. In particular, every finitely generated ideal of a weakly ES-w-stable domain is ES-
w-stable.

Proof. Let R be a finitely weakly ES-w-stable domain and I a finitely generated ideal of R. Then
IRP is weakly ES-stable and hence IRP is stable for each P 2 t-MaxðRÞ by [8, Lemmas 2.4 and
2.6]. Hence, for each P 2 t-MaxðRÞ,

IððIw : IÞ : IÞRP ¼ IRPððIwRP : IRPÞ : IRPÞ ¼ ðIwRP : IRPÞ ¼ ðIw : IÞRP:

Therefore, I is w-stable and hence I is ES-w-stable by Corollary 2.4. w
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Corollary 5.2. Let R be a Noetherian domain. Then R is weakly ES-w-stable if and only if R is ES-
w-stable.

We recall that an integral domain R is called finitely w-stable if each finitely generated ideal of
R is w-stable. We say that an ideal I of R is w-prestable (resp., prestable) if In is w-stable (resp.,
stable) for some integer n � 1:

Theorem 5.3. Let R be an integral domain. Then the following statements are equivalent.

(1) R is a UMt domain.
(2) Each nonzero finitely generated ideal I of R is w-prestable.

Proof. ð1Þ ) ð2Þ Let R be a UMt and I a nonzero finitely generated ideal of R. Then RP is a
quasi-Pr€ufer domain for each P 2 t-MaxðRÞ by [13, Theorem 2.16]. Hence, each nonzero finitely
generated ideal of RP is prestable for each P 2 t-MaxðRÞ by Fontana et al. [25, Theorem 7.4.6].
Thus, InRP is stable for some n � 1: Set J :¼ In: Hence,

ðJððJw : JwÞ : JwÞÞw ¼ \
P2t�MaxðRÞ

JððJw : JwÞ : JwÞRP

¼ \
P2t�MaxðRÞ

JRPððJw : JwÞRP : JwRPÞ

¼ \
P2t�MaxðRÞ

JRPððJRP : JRPÞ : JRPÞ

¼ \
P2t�MaxðRÞ

ðJRP : JRPÞ

¼ \
P2t�MaxðRÞ

ðJw : JwÞRP

¼ ðJw : JwÞ:
Therefore, I is w-prestable.

ð2Þ ) ð1Þ Let P 2 t-MaxðRÞ and J a nonzero finitely generated ideal of RP. Then J ¼ IRP for
some finitely generated ideal I of R. By assumption, In is w-stable for some integer n � 1: Hence,
J is prestable. Thus, RP is a quasi-Pr€ufer domain for each P 2 t-MaxðRÞ by Fontana et al. [25,
Theorem 7.4.6], and hence R is UMt by [13, Theorem 2.16]. w

Corollary 5.4. Let R be an integrally closed domain. Then R is a PvMD if and only if R is a finitely
weakly ES-w-stable domain.

Proof. Assume that R is a finitely weakly ES-w-stable domain. Then R is a finitely ES-w-stable
domain by Proposition 5.1. Hence, R is a UMt domain by Theorem 5.3. Thus, R is a PvMD by
Houston and Zafrullah [38, Proposition 3.2]. The converse is trivial. w

In [11, Example 2.14], the authors provide an example of a PvMD which is not of finite t-
character. Hence, a finitely weakly ES-w-stable domain need not be of finite t-character.

Corollary 5.5. Let R be an integrally closed domain of finite t-character. If R is a finitely ES-w-
stable domain and RP is ES-stable for each P 2 t-MaxðRÞ, then R is ES-w-stable.

Proof. By Gabelli and Picozza [30, Corollary 1.10], R is a w-stable domain. Hence, R is ES-w-sta-
ble by Corollary 5.4 and Proposition 2.1. w

Proposition 5.6. Let R be an integral domain and T a t-linked overring of R. If R is a finitely ES-
w-stable domain, then T is finitely ES-w0-stable where w0 denotes the w-operation on T.
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Proof. Let I be a nonzero finitely generated ideal of T. Then there is a nonzero c 2 R and a
finitely generated ideal J of R such that cI ¼ JT. Since R is a finitely ES-w-stable domain, ðJ2Þw ¼
ðJAÞw for some t-invertible ideal A of R contained in J. Hence, ðJ2TÞw0 ¼ ðJATÞw0 by Lemma 2.7.
Thus, ðI2Þw0 ¼ ðc�1IATÞw0 : Since T is a t-linked overring of R, AT is t0-invertible ideal of T by
Baghdadi and Fontana [20, Proposition 3.2] where t0 denotes the t-operation on T. Hence,
c�1AT � I is t-invertible ideal of T. Therefore, I is ES-w0-stable. w

Corollary 5.7. Assume that R is a finitely ES-w-stable domain. Then the complete integral closure
~R of R is a Pv0MD where v0 denotes the v-operation on ~R:

Proof. By Dobbs et al. [16, Corollary 2.3], ~R is a t-linked overring of R. Hence, ~R is finitely ES-
w0-stable by Proposition 5.6. Since ~R is integrally closed, ~R is a Pv0MD by Proposition 5.4. w

We say that an integral domain R has the w-local stability property if each nonzero fractional
ideal I of R that is t-locally stable (i.e., IRP is stable, for each P 2 t-MaxðRÞ) is indeed w-stable.

Proposition 5.8. Any integral domain R of finite t-character has the w-local stability property.

Proof. Let I be a nonzero ideal of R such that IRP is stable for each P 2 t-MaxðRÞ: First, we show
that ðIw : IwÞRP ¼ ðIRP : IRPÞ for each P 2 t-MaxðRÞ: Let x be a nonzero element of ðIRP : IRPÞ:
Since R is of finite t-character, there exist only finitely many maximal t-ideals P1, :::, Pn of R such
that xRPi 6¼ RPi : Since IRPi is stable by assumption, IRPi ¼ AiðIRPi : IRPiÞ for some finitely gener-
ated ideal Ai � I: Hence, dixAi � I for some di 2 R n Pi: Setting d ¼ d1 � � � dn, we have dxAi � I
for each i ¼ 1, :::, n: Hence, dxIRPi � IRPi : If M is a maximal t-ideal of R such that M 62
fP1, :::,Png, then dxIRM ¼ dIRM � IRM: Thus, dxIw � Iw and hence x ¼ xd:d�1 2 ðIw : IwÞRP for
each P 2 t-MaxðRÞ: With a similar method, we observe that ððIw : IwÞ : IwÞRP ¼ ððIw : IwÞRP :

IRPÞ for each P 2 t-MaxðRÞ: Hence, for each P 2 t-MaxðRÞ, IððIw : IwÞ : IwÞRP ¼ IRPððIw : IwÞRP :
IRPÞ ¼ IRPððIRP : IRPÞ : IRPÞ ¼ ðIRP : IRPÞ ¼ ðIw : IwÞRP: Therefore, I is w-stable. w

We recall that a t-LPI domain is an integral domain in which every nonzero t-locally principal
t-ideal is t-invertible. Recently, several properties of t-LPI domains have been surveyed in [23].

Proposition 5.9. Any integral domain R with the w-local stability property is a t-LPI domain.

Proof. Let I be a t-locally principal t-ideal of R. Then ðIRP : IRPÞ ¼ RP for each P 2 t-MaxðRÞ:
Since I is _w-invertible in ðI : IÞ by assumption, I is _w-finite in ðI : IÞ: Hence, ðI : IÞRP ¼ ðIRP :

IRPÞ for each P 2 t-MaxðRÞ by Gabelli and Picozza [30, Lemma 1.8]. Thus,

R ¼ \
P2t�MaxðRÞ

RP ¼ \
P2t�MaxðRÞ

ðIRP : IRPÞ ¼ \
P2t�MaxðRÞ

ðI : IÞRP ¼ ðI : IÞ:

Hence, I is t-invertible. w

Lemma 5.10. Let R be an integral domain and I a nonzero ideal of R. Assume that I is w-stable
and T is a t-linked overring of R containing E ¼ ðIw : IwÞ. Then

(1) IT is _w-invertible in T and ðT : ITÞ ¼ ððE : IÞTÞw:
(2) ðTRQ : ðT : ITÞRQÞ ¼ ðT : ðT : ITÞÞRQ for each Q 2 t-MaxðRÞ:

Proof. (1) Since I is _w-invertible in E, we have

T ¼ ET ¼ ðIðE : IÞÞwT � ððIðE : IÞÞwTÞw ¼ ðIðE : IÞTÞw � ðITðT : ITÞÞw � T:

Therefore, ððE : IÞTÞw ¼ ðT : ITÞ:
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(2) Since ðT : ITÞ is _w-finite in T by (1), ðT : ITÞ ¼ ðx1T þ :::þ xkTÞw for some x1, :::, xk 2
ðT : ITÞ: So, there exists a nonzero element d 2 R such that dxi 2 R for i ¼ 1, :::, k: Thus, H :¼
dx1Rþ :::þ dxnR is a finitely generated ideal of R such that ðHTÞw ¼ dðT : ITÞ: Hence, for each
Q 2 t-MaxðRÞ,

ðTRQ : ðT : ITÞRQÞ ¼ TRQ :
1
d
HTRQ

� �
¼ ðdT : HTÞRQ ¼ ðT : ðT : ITÞÞRQ:

w

The next theorem is the w-operation analogue of [10, Theorem 4.5] that any finitely stable
domain with the local stability property is of finite character.

Theorem 5.11. Let R be a finitely w-stable domain. Then R has the w-local stability property if
and only if R is of finite t-character.

Proof. If R is of finite t-character, then R has the w-local stability property by Proposition 5.8.
For the converse, assume to the contrary that R is not of finite t-character. By [55, Theorem 2.6],
there exists a w-ideal I of finite type that is contained in infinitely many pairwise w-comaximal
w-ideals of finite type, say, fAm jm 2 Ng: Any w-ideal of finite type is w-stable by assumption.
Hence, for each m 2 N, ðAmðTm : AmÞÞw ¼ Tm where Tm :¼ ðAm : AmÞ: Let

A ¼
X
m2N

ðTm : AmÞ:

Then A is a fractional ideal of R because I2A � ðI2AÞw ¼ ðPm2N I2ðTm : AmÞÞw �
ðPm2N A2

mðTm : AmÞÞw ¼ ðPm2NðA2
mðTm : AmÞÞwÞw ¼ ðPm2N AmÞw � R: Also, for each

Q 2 t-MaxðRÞ,
ARQ ¼

X
m2N

ðTmRQ : AmRQÞ

by Gabelli and Picozza [30, Lemma 1.8]. We claim that A is t-locally stable. Let Q be a maximal
t-ideal of R. If A 6�Q, then ARQ ¼ RQ. Suppose that A � Q: If Am 6�Q for all m 2 N, then ARQ ¼
RQ. Hence, we assume that Ak � Q for some k 2 N: Then for each m 6¼ k,Am 6�Q because Am

and Ak are w-comaximal. Thus, ARQ ¼ ðTkRQ : AkRQÞ: Since Ak is w-stable, ARQ is invertible in
TkRQ and hence ðARQ : ARQÞ ¼ TkRQ: Therefore, A is w-stable by assumption. Setting T :¼
ðPm2N TmÞw, we observe that T ¼ ðAw : AwÞ: Since A is _w-finite in T, there exists a finitely gen-
erated fractional ideal B � A of R such that Aw ¼ ðBTÞw: Let B ¼ Pq

m¼1ðTm : AmÞ for some q 2
N: We note that for each m 2 N, AmT is _w-invertible in T by Lemma 5.10(1). Hence,
ððTm : AmÞTÞw ¼ ðT : AmTÞ, and

Aw ¼
�Xq

m¼1

Tm : Amð ÞT
�

w

¼
�Xq

m¼1

ðT : AmT
��

w

:

Thus, for every n 2 N,

T : AnTð Þ � Aw ¼ ð
Xq
m¼1

T : AmTð ÞÞw;

so

ðT : AÞ ¼ ðT :
Xq
m¼1

ðT : AmTÞÞ ¼ \q
m¼1

ðT : ðT : AmTÞÞ � ðT : ðT : AnTÞÞ:
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We also note that since ðT : ðT : AmÞÞ are pairwise w-comaximal for each m 2 N,

�
\
q

m¼1
ðT : ðT : AmTÞÞ

�
w

¼
�Yq

m¼1

ðT : ðT : AmTÞÞ
�

w

:

Furthermore, by Lemma 5.10(2), ðT : ðT : AmTÞÞRQ ¼ ðTRQ : ðT : AmTÞRQÞ for each m 2 N and
for each Q 2 t-MaxðRÞ:

Now, let n> q and let Q be a maximal t-ideal of R containing An. Then for every 1 	 m 	 q,
Am is not contained in Q and hence

ðT : ðT : AmTÞÞRQ ¼ ðTRQ : ðT : AmTÞRQÞ
¼ ðTRQ : ðTm : AmÞTRQÞ
¼ ðTnRQ : ðTmRQ : AmRQÞTnRQÞ
¼ TnRQ:

Thus,

ð \q
m¼1

ðT : ðT : AmTÞÞÞRQ ¼
Yq
m¼1

ðT : ðT : AmTÞÞRQ ¼ TnRQ:

As a consequence,

TnRQ � ðT : ðT : AnTÞÞRQ

¼ ðTRQ : ðT : AnTÞRQÞ
¼ ðTRQ : ðTn : AnÞTRQÞ
¼ ðTnRQ : ðTnRQ : AnRQÞTnRQÞ
¼ AnRQ,

where the last equality follows because An is a w-stable ideal. Hence, RQ � TnRQ � AnRQ (RQ; a
contradiction. Therefore, R is of finite t-character. w

Corollary 5.12. Let R be an integrally closed conducive domain. If R is a finitely weakly ES-w-sta-
ble domain with w-local stability property, then R is finitely weakly ES-stable.

Proof. By Propositions 5.1 and 2.1, R is finitely w-stable. Hence, R is a PvMD of finite t-character
by Corollary 5.4 and Theorem 5.11. Since any t-linked overring of R is finitely weakly ES-
w0-stable by Proposition 5.6, by using the same method as Proposition 2.13, we observe that R is
a semi-local domain whose maximal ideals are t-ideal. Therefore, R is a Pr€ufer domain and hence
R is finitely weakly ES-stable. w
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