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1. Introduction

Let R be an integral domain with quotient field K, F(R) the set of nonzero R-submodules of K,
F(R) the set of nonzero fractional ideals of R, and f(R) the set of finitely generated fractional
ideals of R. For I € F(R), we call I simply an ideal if I C R. For I,] € F(R), let (I'x]) = {x €
K|x] CI}, then (I:xJ) € F(R). Hence, if I"' = (RixI), then I",I, = (I")) ", I, =U{J,|JC I
and J € f(R)}, and I,, = {x € K|xJ C I for some J € f(R) with J, = R} are well-defined nonzero
fractional ideals of R. Let x = d, w, t or v, where I; = I for all I € F(R). Then the following prop-
erties hold for all nonzero x € K and I,] € F(R):

(1) R.=Rand («I), = xI,.

(2) ICI;1C]J implies I, CJ,.

(3) (I*)* = I*'

(4) (I])* = (I*]*)* = (I*])* and (I +])* = (I* +]*)*'
(5) (I*:K]*) = (LQK]) = (I*:K])*~

6) LiCl,CLCI,.

A fractional ideal I of R is called a %-ideal if I = I,, and a %-ideal I of R is of finite type if I = J,
for some J € f(R). A x-ideal is a maximal x-ideal if it is maximal among all proper integral
*-ideals of R. Let x-Max(R) denote the set of all maximal x-ideals of R; so d-Max(R) := Max(R)
is the set of maximal ideals of R. Each maximal %-ideal is a prime ideal. Two ideals I, ] of R are
said to be x-comaximal if (I +]), = R. For all I € F(R),1,, = Npe;—max(r) IRp, hence I,Rp = IRp
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for each P € t-Max(R). Moreover, (IN]), =1I,N]J, for all I,] € F(R), and a w-ideal I of R is of
finite type if and only if I = J,, for some finitely generated ideal J of R contained in I. A frac-
tional ideal I of R is said to be x-invertible if there is a J € F(R) such that (IJ), = R. Clearly if
(I]), = R for some J € F(R), then J, = I"'. Also, --Max(R) = w-Max(R) [3, Corollary 2.17], and
(II'Y),=R <= (II''),, = R; so the t-invertibility is identical to the w-invertibility. An integral
domain R is said to be a Priifer domain (resp., Prifer v-multiplication domain (for short PvMD))
if every nonzero finitely generated ideal of R is invertible (resp., t-invertible). It is known that R
is a PvMD if and only if R is integrally closed and t=w on R [42, Theorem 3.5]. Also, R is a
Priifer domain if and only if R is a PvMD whose nonzero maximal ideals are t-ideal. We say that
R is of finite t-character if every nonzero nonunit of R is contained in only finitely many maximal
t-ideals of R. Noetherian domains and Krull domains (i.e., integral domains in which each non-
zero ideal is t-invertible) are domains of finite ¢-character. An ideal I of R is said to be t-locally
principal if IRp is principal for all maximal t-ideals P of R. A t-LPI domain is an integral domain
in which every nonzero t-locally principal t-ideal is t-invertible. An integral domain of finite t-
character is #-LPI [5, Lemma 2.2], and a PvMD R is of finite t-character if and only if R is a ¢-
LPI domain [53, Proposition 5].

Sally and Vasconcelos defined a Noetherian ring R to be SV-stable if each nonzero ideal of R
is projective over its endomorphism ring Endg(I) [51]. The notion of stability is studied in [4]
for arbitrary integral domains; an integral domain R with quotient field K is SV-stable if each
nonzero ideal I of R is invertible in the overring Endgr(I) = (I'xI), an overring of R means a
subring of K containing R. For references about stable domains, the reader may consult [49, 50].
In [30], the notion of %-stability with respect to a semistar operation « is introduced. We recall
that a semistar operation on an integral domain R is a map * : F(R) — F(R) such that for each
E,F € F(R) and for each nonzero x € K, (xE), = xE,; ECF implies E, CF,; ECE,, and
(E.), = E«. When R, = R, the restriction of x to F(R) is called a star operation on R. The reader
is referred to [34, Section 32] for more properties of star operations. Consider the overring T :=
(L : L) of R. Since T, = T, the restriction of x to the set of the T-submodules of K is a star
operation on T, denoted by x. As in [30], we say that a nonzero fractional ideal I of R is x-stable
if I, is *-invertible in T, and R is called *-stable if every nonzero (fractional) ideal of R is %-stable.
It is clear that x-invertible ideals are x-stable. In [18], another type of stability, ES-stability, is
introduced for local rings. In an integral domain R, an ideal I is called ES-stable if I* = IJ for
some invertible ideal J of R such that ] C I, and R is called an ES-stable domain if each nonzero
ideal of R is an ES-stable ideal. It is known that if I is a nonzero ES-stable ideal of R, then I is
stable [25, Lemma 7.4.1]. In [47], a weak form of ES-stability for integral domains is defined. An
ideal I of an integral domain R is said to be a weakly ES-stable ideal if there is an invertible frac-
tional ideal J and an idempotent fractional ideal E of R such that I = JE. Recentley, the concepts
of SV-stability, ES-stability and weakly ES-stability are extended to commutative rings with zero-
divisors in [7, 8].

The purpose of this paper is to study w-operation analogue of some facts that have been pro-
ven for ES-stable and weakly ES-stable domains in [8, 47]. A nonzero ideal I of an integral
domain R is called weakly ES-w-stable if I,, = (JE),, for some t-invertible fractional ideal J of R
and w-idempotent fractional ideal E of R. We define R to be a weakly ES-w-stable domain if every
nonzero ideal of R is weakly ES-w-stable. An ideal I of R is called ES-w-stable if (I*),, = (JI),, for
some t-invertible ideal J of R such that ] C I; and R is called an ES-w-stable domain (resp., a
finitely ES-w-stable domain) if every nonzero (resp., finitely generated) ideal of R is ES-w-stable.
We say that an integral domain R has the w-local stability property if each nonzero fractional
ideal I of R that is t-locally stable (i.e., IRp is stable, for each P € t-Max(R)) is indeed w-stable.
More precisely, in Section 2, we prove preliminary results for weakly ES-w-stable and ES-w-stable
domains and investigate when these two concepts coincide. In Section 3, we show that if (a) R is
a completely integrally closed PvMD of finite ¢-character or (b) R is a weakly Matlis PvMD, then
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R is a weakly ES-w-stable domain if and only if R is t-locally weakly ES-stable, that is, Rp is
weakly ES-stable for all P € t-Max(R). In Section 4, we investigate the transfer of the weakly ES-
w-stability to polynomial rings and pullback constructions. In Section 5, we focus on integral
domains in which each finitely generated ideal is weakly ES-w-stable, and we show that any
finitely weakly ES-w-stable domain with w-local stability property is of finite ¢-character.

2, ES-w-stability

Let R be an integral domain. A nonzero ideal I of R is called an ES-w-stable ideal if (I*),, = (I]),,
for some t-invertible ideal J of R contained in I, and R is called an ES-w-stable domain if each
nonzero ideal of R is ES-w-stable. The class of ES-w-stable domains includes ES-stable domains
and Krull domains. However, an ES-w-stable domain need not be ES-stable. Take, for instance,
D = K[X,Y] where K is any field and X, Y are two indeterminates over K. Then D is a non-
Priifer Krull domain and hence D is an ES-w-stable domain that is not ES-stable by Mimouni
[47, Theorem 4.1].

Proposition 2.1. Let R be an integral domain and I a nonzero ideal of R.

(1) IfIis an ES-w-stable, then I is a w-stable ideal.

(2)  Let I be a w-stable ideal. Then I is ES-w-stable if one of the following conditions is satisfied:
(@) R isa PvMD.
(b) R=(I,:L,) (in particular, if R is completely integrally closed).

Proof. (1) Let (I?),, = (I]),, for some t-invertible ideal J of R contained in I. Then (I’J7!), = I,.
Hence, (I™'), € (I, : I) = (I,, : I,). On the other hand, if xI,, C I,,, then xJ,, C I, and so x €
("), Therefore, (Il '), = (I,, : I,) and hence (I,(J"' (I, : I,))),, = (In : Iy).

(2) (a) Since I,, is w-invertible in (I,, : I,), L, is w-finite in (I, : I,,) by Kang [42, Proposition 2.6].
Hence, there exists a finitely generated ideal J of R contained in I such that I,, = (J(I,, : I,,)),, -
Thus, (I%),, = (U(1y : L)), = (I]),,» where J is t-invertible.

(b) Trivial since I is t-invertible. O

Corollary 2.2. An integral domain R is ES-w-stable if and only if Rp is ES-stable for each
P € t-Max(R) and R is of finite t-character if one of the following conditions is satisfied:

(a) R is a PvMD.
(b) R is a completely integrally closed domain. In particular, R is a Krull domain if and only if R
is a completely integrally closed ES-w-stable domain.

Proof. (a) follows from Proposition 2.1, [25, Lemma 7.4.1] and [30, Corollary 1.10], and (b) fol-
lows from Proposition 2.1 and [30, Corollaries 1.10 and 2.5]. O

Let R be an integral domain with quotient field K. A nonzero ideal I of R is called a weakly
ES-w-stable ideal if I,, = (JE),, for some t-invertible fractional ideal J of R and w-idempotent frac-
tional ideal E of R, i.e., (E*), = E,, and R is called a weakly ES-w-stable domain if each nonzero
ideal of R is weakly ES-w-stable.

Proposition 2.3 is the w-analogue of Mimouni [47, Proposition 2.2 (ii), Lemma 2.4 (i) and
Proposition 2.2 (iii)], Corollaries 2.4 and 2.5 are the w-analogues for Mimouni [47, Corollaries
2.5 and 2.6].

Proposition 2.3. Let R be an integral domain and I a nonzero ideal of R.
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(1) Iis a weakly ES-w-stable ideal if and only if (I*),, = (JI),, for some t-invertible ideal ] of R.

(2) IfIL, = (JE), for some t-invertible fractional ideal | of R and w-idempotent fractional ideal E
of R, then (I, : I) = (E,, : E) and E,, = (I(1, : I?)),,.

(3) I is ES-w-stable if and only if I, = (JE),, for some t-invertible fractional ideal ] of R and w-
idempotent fractional ideal E of R with ] C 1 C E.

Proof. (1) Let I be a weakly ES-w-stable ideal. Then I, = (JE),, for some t-invertible fractional
ideal J of R and w-idempotent fractional ideal E of R. Hence, (I?), = ((I,)%), = ((UE),)), =
(J’E),, = (I.J),, = (I]),,- For the converse, if (I?), = (JI),, for some t-invertible ideal J of R, then
L, = (L, "),), = JU1), where II"! is w-idempotent.

(2) If xI, C I, then x(JE), C (JE),. Hence, (x/"'(JE),), € J'E),), and so xE, C E,.
Conversely, if xE, CE, then xI, =x(JE), = (xJE),, = (xJE,),, C (JE),, =I,. Thus, x € (I, :
I,) = (I, : I). To show that E, = (I(I,:I%)),, let x€ (I,:I?). Then x(I*), C I, hence
x(UJE),,(JE),),, C (JE),,. Thus, x(J?E),, C (JE),,. Since ] is t-invertible, x(JE),, C E,,. Thus, xI,, C
E,, and so (I,(I, : I?)), C E,. On the other hand, since I is weakly ES-w-stable, (I*), = (JI),,
for some t-invertible ideal J of R by (1). Hence, (J7'I*), =1I,, and so J~' C (I, :I?).
Thus, E, = (J~'1),, C (I, : )I),,.

(3) Let I be ES-w-stable. Then (I?), = (IJ),, for some t-invertible ideal ] of R contained in I.
Set E:=J7'I. Then (E*),, = E, and (JE), =I,. Since ] C LI CII"' C IJ7! = E. The converse
follows from (1). O

Corollary 2.4. Let R be an integral domain and I a nonzero ideal of R. Then I is ES-w-stable if
and only if I is w-stable and weakly ES-w-stable. In particular, if R is a Krull domain, then weakly
ES-w-stability and ES-w-stability coincide.

Proof. Assume that I is w-stable and weakly ES-w-stable. Then I,, = (JE), for some t-invertible
fractional ideal J of R and w-idempotent fractional ideal E of R. Hence, E, = (I(I,, : I?)), =
(I(L, : (I)*)),, = (I, : I,), where the first equality follows from Proposition 2.3, and the last
equality follows because I is w-stable. Thus, I, = (J(I, : I,)),. We note that if J is a fractional
ideal of R, then xJ C R for some nonzero x € K. Since 1(R:J) = (R: x]), ] is t-invertible if and
only if xJ is t-invertible. So we may assume J C R. Hence, ] C (I, : (I, : Iv)) = I, = (JE),, C E,.
By Proposition 2.3, I,, and hence I is ES-w-stable. The converse follows from Propositions 2.1
and 2.3. O

Let F,(R)={I € F(R)|I, =1} and P(R) = {I € F(R)|I is principal}. Note that F,,(R) is a
commutative semigroup with identity R under the usual ideal multiplication and P(R) is a subse-
migroup of F,(R). We say that the factor semigroup Z,(R) = F,,(R)/P(R) is the w-class semi-
group of R. A commutative semigroup S is said to be Clifford if every element s € S is regular (in
the sense of Von Neumann), ie., s’a =s for some a € S. An integral domain R is called a
Clifford w-regular domain if Z,,(R) is a Clifford semigroup. In [31, Proposition 1.5], it has been
proven that a w-stable domain is Clifford w-regular.

Corollary 2.5. Let R be a weakly ES-w-stable domain. Then R is a Clifford w-regular domain. In
particular, R is of finite t-character.

Proof. Let I be a nonzero ideal of R such that I, = (JE),, for some t-invertible fractional ideal J of
R and w-idempotent fractional ideal E of R. By Proposition 2.3, E, = (I(I, : I*)), and hence
(IE), = (I*(1,, : I%)),,. Also, (IE), = (I Ey), = (UE),Ew), = (JE*), = (JE),, = I,. Hence, I is
Clifford w-regular by [31, Lemma 1.2]. Therefore, R is of finite ¢-character by Gabelli and Picozza
[31, Theorem 5.2]. O
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We recall that an integral domain R is called Mori if the ascending chain condition on v-ideals
of R holds; equivalently, each nonzero fractional ideal of R is v-finite. A Mori domain R such
that Rp is Noetherian for each maximal t-ideal P of R is called a strong Mori domain. They are
precisely the domains satisfying the ascending chain condition on w-ideals. Trivially, a
Noetherian domain is strong Mori and a strong Mori domain is Mori. The t-dimension of R
(denoted by t-dimR) is defined by sup{ht P|P € t-Spec(R)}.

Corollary 2.6. Let R be an integral domain.

(1) IfRis a Mori weakly ES-w-stable domain, then R is ES-w-stable of t-dimension one.
(2)  IfRis a strong Mori w-stable domain, then Rp is ES-stable for each P € t-Max(R).

Proof. (1) Since a Mori Clifford w-regular domain is w-stable of ¢-dimension one by Gabelli and
Picozza [32, Theorem 4.3], the result follows from Corollaries 2.4 and 2.5.

(2) For each P € t-Max(R), Rp is a Noetherian stable domain by Fangui and Casland [56,
Theorem 1.9] and [30, Corollary 1.10]. Hence, Rp is ES-stable by Fontana et al. [25, Corollary
7.4.2]. |

We recall that an overring T of R is called t-linked if for each nonzero finitely generated ideal
Iof R, I"' = R implies (IT)"" = T. For a nonzero ideal I of R, the overring T := (I, : I,,) of R is
t-linked because T, = T [16, Proposition 2.13].

Lemma 2.7. Let R be an integral domain and T a t-linked overring of R. If I is a fractional ideal
of R, then (I,,T),, = (IT),, where w' denotes the w-operation on T.

Proof. Let x € (1,,T),,. Then xJ] C I,,T for some finitely generated ideal J of T with (T :]) =T.
Pick j € J. Then there exist a; € I,, and t; € T such that xj = >_" | a;t;. For each a; € I,,, there
exists a finitely generated ideal B; of R with B;! = R such that a;B; CI. Set B= B; - --B,. Then
B! =R, and xJBT C IT. Since T is a t-linked overring of R, (T : BT) = T, and so (T : JBT) =
T. Hence, x € (IT),,. The reverse containment is clear. O

Theorem 2.8. Let R be a weakly ES-w-stable domain and T a t-linked overring of R. Then T is a
weakly ES-w'-stable where w' denotes the w-operation on T.

Proof. Assume that I is a nonzero ideal of T. Then I is a fractional ideal of R. Let A := xI for
some nonzero x € R. Then A is weakly ES-w-stable, so is I. Hence, I,, = (JE),, for some t-invert-
ible fractional ideal J of R and w-idempotent fractional ideal E of R. By Lemma 2.7, I, =
(JTET),, where JT is t'-invertible ideal of T by Baghdadi and Fontana [20, Proposition 3.2] and
(ET),, = (E°T),, . O

Corollary 2.9. Let R be an ES-w-stable domain and T a t-linked overring of R. Then T is
ES-w-stable.

Proof. If R is ES-w-stable, then w = w' and T is w-stable by Gabelli and Picozza [30, Corollary
2.2]. Hence, the result follows from Theorem 2.8 and Corollary 2.4. 0

Recall from [14] that the w-integral closure of R is the integrally closed overring of R defined
by R* = U{(I, : I,) | I € f(R)}. We say that R is w-integrally closed if R” = R. Clearly RC R C
RY C R, where R (resp., R) is the integral closure (resp., the complete integral closure) of R. Let
X be an indeterminate over an integral domain R. A nonzero prime ideal Q of R[X] is called an
upper to zero if QN R = 0. A UMt domain is an integral domain R in which every upper to zero

in R[X] is a maximal ¢-ideal (hence t-invertible).
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Corollary 2.10. Let R be a weakly ES-w-stable domain. Then the complete integral closure R (resp.,
the w-integral closure R” of R) is a PY MD where v' denotes the v-operation on R (resp., R”).

Proof. By [14, Lemma 1.2] and Dobbs et al. [16, Corollary 2.3], R” and R are t-linked overrings
of R. Hence, the results follow from Theorem 2.8 and the facts that a weakly ES-w-stable domain
is a UMt domain because Clifford w-regular domains are UMt [32, Proposition 3.9], and an inte-
grally closed UMt domain is a PvMD [38, Proposition 3.2]. O

The next example shows that the concept of w-stability and ES-w-stability do not necessar-
ily coincide.

Example 2.11. Let T be a Krull domain which is not Noetherian and which has a maximal ideal
M such that Ty, is Noetherian. Let K = T/M and k be a proper subfield of K such that [K : k] is
finite. (To see a concrete example of T, let p be a prime number. Then there is a non-finitely gen-
erated abelian group G of rank two such that each rank one subgroup of G is cyclic and such
that G/H is a p-group for some finitely generated subgroup H of G (see [28, Chapter XIII,
Section 88]). Let K be a field of characteristic distinct from p, and let T = K[X; G] be the group
ring of G over K. Then T is a UFD by Gilmer [35, Theorem 1] which is not Noetherian since G
is a non-finitely generated abelian group. Consider a maximal ideal M of T which is generated by
{1 — X8| g € G}. Then MT),, is finitely generated by Gilmer [35, Theorem 3], and it implies that
Ty is Noetherian [39, Proposition 4].)
Let R = ¢ ' (k) be the pullback issued from the following diagram:

R——

)

T ——

Then R is a strong Mori domain [45, Theorem 3.11] which is neither Noetherian nor Krull. Since
M is the largest common ideal of R and T, R and T have the same quotient field and hence the
same complete integral closure by [33, Lemma 5]. Since R, the complete integral closure of R, is
a Krull domain by Fangui and Casland [56, Theorem 3.5], we may assume that T = R.
Furthermore, M is a maximal t-ideal of R such that (R: M) = (M : M) by [36, Corollaries 3 and
5]. Since (R:R)=M,(R:M)=R. Hence, M is a non t-invertible ideal of R and
MM~! = M = MR. Also, any maximal t-ideal of R distinct from M is t-invertible. To see this, let
N #M be a maximal t-ideal of R which is not t-invertible. Then (R:N)= (N:N) and
(N:N) C R = (R:M). It follows that M = M, C N, = N; a contradiction. Now, we claim that
M is a w-stable ideal which is not ES-w-stable. Since R is a Krull domain, M is t-invertible in
R = (M : M). Thus, M is a w-stable ideal of R. Suppose on the contrary that M is a weakly ES-w-
stable ideal. Then M = (JE),, for some t-invertible fractional ideal J of R and w-idempotent frac-
tional ideal E of R. By Proposition 2.3, E,, = (E, : E,) = (M : M). Since R is a t-linked overring
of R (MRJ7!), =R and hence (MJ'), = (MM~'J!), = (MRM~J7!), =R. Therefore,
(-1, = (M~1J71),, which implies that R = R; a contradiction because a completely integrally
closed Mori domain is Krull.

Remark 2.12. By [14, Corollary 1.4], R C R" satisfies (w,w')-INC property (i.e., if whenever Q,
and Q, are nonzero prime ideals of R" such that Q; NR= Q,NR and (Q;NR), TR, then Q,
and Q, are incomparable) and (w,w')-LO property (i.e., for each prime w-ideal P of R, then there
exists a prime w'-ideal Q of R such that P = QN R). Therefore, if P is a maximal t-ideal of R,
then there exists a prime w'-ideal Q of R such that P = QNR. Assume that Q € t'-Max(R")
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such that QC Q. Then P=QNRC Q' NR. Since R" is a t-linked overring of R, (Q NR), # R.
Hence, PC (Q' N R), CR; a contradiction. Thus, Q = Q'.

t =

As in [17], an integral domain R with quotient filed K is said to be conducive if (R: T) # 0
for each overring T of R with T # K. Valuation domains are conducive, and the complete inte-
gral closure of a conducive domain is a valuation domain [9, Theorem 3.3]. Conducive domains
may have infinitely many maximal ideals.

Proposition 2.13. Let R be a conducive domain which is weakly ES-w-stable. Then R is a weakly
ES-stable domain.

Proof. Let R" be the w-integral closure of R and v the v-operation on R". Then R is a P¥/ MD
which is a w-integrally closed conducive domain by Corollary 2.10, [14, Corollary 1.4], and [17,
Lemma 2.0]. By Remark 2.12, it is enough to show that the set of maximal #-ideals of R is
finite. Without loss of generality, we assume that R = R" is a PvMD. Let M be a maximal t-ideal
of R, then R, is a valuation domain by Kang [42, Theorem 3.2]. Hence, (R: Ry) # 0 by [17,
Lemma 2.0]. Thus, there exists a nonzero prime ideal P of R such that P = PRp = PRy by [17,
Lemma 2.10]. Since (Rp)pg,, is @ valuation domain, PRy, is a prime t-ideal of Ry Hence, P, =
(PRy N R), # R since Ry, is a t-linked overring of R [16, Proposition 2.2]. Thus, there is a max-
imal t-ideal Q of R such that P C P, C Q. Let N be an arbitrary maximal t-ideal of R such that
N # Q. Then there is a a € N\ Q. Hence, for each x € P, 2 € PRy = P which implies x € aP C
NP C N. Therefore, P is contained in all maximal t-ideals of R. Since R is of finite ¢-character by
Corollary 2.5, the set of maximal t-ideals of R is finite. Therefore, R is a semi-local domain with
each maximal ideal a t-ideal by Zafrullah [54, Proposition 3.5]. Hence, the d- and w-operations
coincide in R by [13, Corollary 1.3], and R is a weakly ES-stable domain. O

The next theorem is the w-operation analogue of [52, Theorem 2.6] that an integral domain R
is a stable domain if and only if R is Clifford regular and every nonzero idempotent fractional
ideal of R is a ring.

Theorem 2.14. An integral domain R is a w-stable domain if and only if R is Clifford w-regular
and w-closure of each nonzero w-idempotent fractional ideal of R is a ring.

Proof. Assume that R is a w-stable domain. Then clearly R is Clifford w-regular. Let I be a non-
zero w-idempotent fractional ideal of R. Consider the overring T := (I, : I,,) of R. Then T =
(I(T: L)), = (I{Iw: L)), = I,. Hence, I, is a ring. For the converse, let I be a nonzero ideal of
R. Then I, = (I*(I,, : I*)),, since R is a Clifford w-regular domain. Set L := I(I, : I*). Then L is a
w-idempotent fractional ideal of R. By assumption, L,, is a ring and hence L,, = (L, : L,). Since
I, =(Il),, cleatly (L,:L,)=(I,:1,). Hence, (I((I,:1,):1,)), =L, : %), =Ly= (I, :
IL,). Therefore, I is w-stable. 0

Corollary 2.15. Assume that R is an integral domain such that w-closure of each nonzero w-idem-
potent fractional ideal of R is a ring. Then R is a weakly ES-w-stable domain if and only if R is
ES-w-stable.

Proof. Let R be a weakly ES-w-stable domain. Then R is Clifford w-regular by Corollary 2.5.
Hence, R is a w-stable domain by Theorem 2.14. Therefore, R is ES-w-stable by Corollary 2.4.
The converse follows from Proposition 2.3(1). O

Proposition 2.16. Let R be a PvMD of finite t-character and I a nonzero ideal of R. Then I is a weakly
ES-w-stable ideal if and only if there is a t-invertible fractional ideal ] of R such that either I, =
(JIw : L)),  or L, = (JPy - - - Py(I, : I,))),,, where P; is a nonzero w-idempotent prime t-ideal of R.
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Proof. Assume that I is a weakly ES-w-stable ideal. Then I,, = (JE),, for some t-invertible frac-
tional ideal J of R and w-idempotent fractional ideal E of R. Set T := (I, :I,) and let EC T.
Since R is a PyMD of finite t-character, R is a Clifford w-regular domain by Gabelli and Picozza
[31, Corollary 4.5]. Thus, T is a PyMD of finite ¢-character and w =t =t = w on T, where w/
and ¢’ denote respectively the w-operation and the t-operation on T by [22, Proposition 1.5] and
[31, Corollary 2.6 and Theorem 5.2]. Hence, E,, = (Q; - -- Qy),, where Q; is a nonzero w-idem-
potent prime f-ideal of T by [27, Corollary 3.7]. Set P;:= Q;NR. Then Q; = (P;,T), by [43,
Proposition 2.5 and Corollary 2.11]. Therefore, E,, = (P;---P,T),, where P; is a nonzero w-
idempotent prime t-ideal of R by [41, Lemma 2.3]. O

Following [19], an integral domain R is said to be strongly t-discrete if it has no t-idempotent
prime t-ideals, i.e., for every prime t-ideal P of R, (P*), C P.

Corollary 2.17. Let R be a strongly t-discrete PvMD. Then R is a weakly ES-w-stable domain if
and only if R is ES-w-stable.

Proof. Let R be a weakly ES-w-stable domain. Then R is of finite t-character by Corollary 2.5.
Since R has no w-idempotent prime t-ideals, I,, = (J(I,, : I,,)),, for some t-invertible fractional J
of R by Proposition 2.16. Thus, I is ES-w-stable by Proposition 2.3(3). The converse follows from
Proposition 2.3(1). O

3. Some results on t-locally weakly ES-stability

Let R be an integral domain. We say that R is t-locally weakly ES-stable if Rp is weakly ES-stable
for each P € t-Max(R). It is clear that if R is a weakly ES-w-stable domain, then R is t-locally
weakly ES-stable. However, Example 2.11 shows that a t-locally weakly ES-stable ideal in a
domain of finite t-character need not be weakly ES-w-stable in general. We introduce a tool. Let
] # 0 be an ideal of a valuation domain R. We associate a prime ideal Jt as follows. First, set
UJ)={reRjrJ=J} is a submonoid of the group of |units of R We
define J = R—U(J) = {r e RjrJ C J}.

Lemma 3.1. Let I # 0 be an ideal and P a maximal t-ideal of a PvMD R. For a prime ideal L of
R, the following are equivalent.

(1) LRp = (IRp)".
(2) RL = El’ldR(IRp) = El’ldRP (IRP)
(3) L is the smallest prime t-ideal of R contained in P such that IRy = IRp.

Proof. Since Rp is a valuation domain, (1) <= (2) follows easily (see [29, Chapter II, Section 4]
for details). Clearly, (2) <= (3) and (2) < (4) hold. O

Remark 3.2. Let I be an ideal and P a maximal t-ideal of a PvMD R. From now on, we use the
notation Zp(I) for the uniquely determined prime t-ideal L of R in the preceding lemma. We
observe the following.

(1)  Clearly, Zp(I) C P. By Lemma 3.1(3), Zp(I) = P if I is not contained in P.

(2) Let Q be a prime ideal of R such that Q C Zp(I). Then there exists q € Ry, such that
PRp C q 'IRp C Rp. Hence, (¢ 'IRp) oz, = Rp. So, IQRy C IRp and IRg = qRq for q € Rp.

(3) Let Zp(I) € Q C P. By Lemma 3.1(2), IRp = IRq = IRz,y).
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We will use the symbol PA P to denote the largest prime t-ideal contained in the prime ¢-
ideals P and P’; this makes sense since t-Spec(R), the set of all prime t-ideals of R, is a tree under
inclusion by [48, Proposition 4.4]. We observe that RpRp = Rp , p.

Lemma 3.3. Let I be an ideal of a PyvMD R and P, Q are distinct maximal t-ideals of R.
Then PAZg(I) = QA Zp(I).

Proof. We claim PAZq(I) C Zp(I). Suppose that PAZq(I) = Zg(I). So, Zg(I) C P. Since both
Zp(I) and Zg(I) are contained in the same maximal t-ideal and #-Spec(R) is linearly ordered by
inclusion, without loss of generality, assume that Zp(I) C Zo(I). By Remark 3.2(2), IRy, =
qRz,1» and by Remark 3.2(3), IRz, ;) = IRz, ). Since IRz, ;) and IRy, are fractional ideals of
Ro, Zp(I)Rq = Zg(I)Rq by Lemma 3.1(1) so that Zp(I) = Zg(I) by Lemma 3.1(3), which is a
contradiction. Now let A = Zo(I) AP C Zo(I) and Zp(I) C A. Since A C P,IRy = qRs = IRy,
by Remark 3.2(2,3). Thus, A = Zp(I), a contradiction. Hence, we are done. O

Lemma 3.4. If I is a fractional ideal in a PvMD R, then

End(I,) = (I, : I,) = pet_anm) Ry,n)-

Proof. Clearly, we have
(I,:I,) = < N IRp: 1W> = N (Rp:L)= () Ryu;
Pct—Max(R) Pet—Max(R) Pet—Max(R)

the last equality follows from Lemma 3.1. O

Lemma 3.5. Let R be a PvMD of finite t-character and I an ideal of R. Set
T = (I, : I,) = End(1,). Then the following hold.

(1) TRp = Ry, for all P € t-Max(R).
(2)  The maximal t-ideals of T are precisely the t-ideals XT where X ranges over the maximal
members of the set Z = {Zp(I)|P € t-Max(R)}.

Proof. (1) If Q(I) = {Py, ..., P,} is the set of all maximal ¢-ideals containing I, then by Lemma 3.4
we have T = Nogar) Ro N Rz, 1 N ... MRz, 1)- So, TRp = Rp for all maximal ¢-ideals such that P ¢
Q(I) and TRp C Ry, () for P € Q(I). Multiply T by IRp and note that (Noga(r) Ro)Rp is an overring
of the valuation domain Rp so that (Noga(r) Rq)Rp = Ry for some prime ideal L C P. So,

TIRp = IRpR; N\ Ry, (nIRp N ... N RyynIRp N ... O Ry, (1
= IRpRy N IRpRz, (1) N ... V IRz, o p N ... N IRpRy, 1)
= IRpRy N IRpRz, (1) N ... N IRz, N ... VIRpRy, (1
= IRpR; N IRpRz, 1y N ... VIRp N ... N IRpRy, 1)
= IRp

Thus, (IRp : IRp) = TRp = Ry, ;) by Lemma 3.1(2).

(2) A maximal t-ideal of T is of the form PT, where P is a prime t-ideal of R and T C Rp. Let
N € t-Max(R) satisfying P C N. Then Zy(I) is comparable with P, and Zy(I)T is a proper prime
ideal of T. Hence, Zy(I)T C PT € t-Max(T). In R, we have Zy(I) CP C N. If N € Q(I), then
N = Zy(I) = P. Otherwise, TRy = Ry, ;). Since T C Rp and Ry C Rp, Rz, ;) € Rp implying that
P C Zy(I). Thus, P = Zy(I). Conversely, let P € t-Max(R) and Zp(I) maximal in Z. By virtue of
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Lemma 3.4 and the fact that the prime t-ideals of T are exactly the ideals PT where P is a prime
t-ideal of R such that T C Rp, Zp(I) survives as a prime t-ideal in T. If R contains a prime t-ideal
Zp(I) C P/, then by the definition of Zp(I) there is an r € P’ such that rI = I So, I, = I,,, and
hence r~! € T but r~! & Rp. Thus, P’ does not survive in T. 0

Lemma 3.6. Assume that R is a PvMD of finite t-character. If I and ] are t-locally isomorphic
ideals of R, then there exists a t-invertible ideal B of T = (I,, : 1,,) such that I,, = (BJ),,

Proof. We observe that T = (I, : I,,) = (Ju : J). Without loss of generality, suppose that I C J.
Let Q(I) = {Py,...,P,} be the set of maximal t-ideals of R which contain I. Hence, Q(J) C Q(I).
By hypothesis, for every i =1,...,n, we can write IRp, = a;JRp, for some a; € Rp,, in deed, we
may assume that a; € R. By Lemma 3.1, IRp, = IRz, (1) = a,]RZP . Let

B=TNaRy, )N ... N anRz, 1.

We observe that aiRz, (nJp, = Rz, I, = Ip, by Lemma 3.1 and, for i # j, aiRz, , Jp, = a;TRp,Jp, =
a;TJp,Rp, by Lemma 3.4. Also, for all maximal t-ideals P, TJRp = TJ,Rp = J,,Rp = JRp. Thus,
BJp, = Jp, N Ip, N Njzi Ip,Rp, = Jp, N Ip, by [29, Lemma VI.9.9]. Furthermore, for all maximal -
ideals such that P # P;, TJRp = Rp, implying that BJRp = (TN aiRz, 1 N ... NaRyz, 1)JRp =
TJRp N alRZP1 @JRp N ...NayRz, nJRp since JRp is flat. Thus, BJRp = RpNa;TRpJRp N ...N
a,TRp JRp by Lemma 3.5 implying that BJRp = Rp. Hence, we have

(B]), = (1 BJRp

Pet—Max(R)

= BJp, NBJp,N...OBJp, N () BJp
P+£P;

= é(fp NIp)N ﬂ RP
:ﬁ ﬁﬂRP
i=1 P#£P;
:é mﬂlp
=1

w

From Lemma 3.5, we observe that B is an ideal of the overring T. Next we claim that the localiza-
tions of B at maximal t-ideals of T (see Lemma 3.5) are principal. If the maximal ¢-ideal does not
contain I, then it is obvious. Let us consider

BRz, 1) = aiRz, 1) iji iRz, (1) A 2y, (1)-

We observe that Zp ) AZp1) S Zp,1), 0 Rz, n 2, = Rz, A Zi by Remark 3.2(2). For j #

i, IRz, (1) A 2o (1) = ]RZP 1) A Zp (1) = a]]RZP (1) zy(1)- Hence, aja; ~1"is a unit in the valuation
domain Rzp (1) A Zo (1) SO @i Rzp (1) A Zo(1) = a]RZP (1) A 21, (1)- Also, aiRz, (1 € iRz, (1. Therefore,
BRz, (1) = ai RZ . (1) for each i. Since T is of finite ¢- character, B is a t- invertible ideal of T. O

Theorem 3.7. Let R be a PvMD of finite t-character and I a nonzero ideal of R such that IRp is
weakly ES-stable for each P € t-Max(R). Then there is a t-invertible fractional ideal A of (I, : I,,)
such that (I*),, = (AI),,

Proof. Let {Py,...,P,} be the set of maximal t-ideals of R which contain I. Then I*Rp, = J;Rp IRp,
for some invertible ideal J;Rp, of Rp, for each i =1,...,n by the definition of weakly ES-stability.
We observe that these are the only maximal t-ideals which contain I, also. For all other maximal
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t-ideals N # P;, for each i, I = Ry = Iy. So, for each i, (IZ)Pi = jIp, for some j; € J. Thus, by
Lemma 3.6, there exists a t-invertible ideal A of (I, : I,) such that (I?), = (AI),,. O

Corollary 3.8. Assume that R is a completely integrally closed PvMD of finite t-character. If R is a
t-locally weakly ES-stable domain, then R is weakly ES-w-stable.

Proof. Let Rp be weakly ES-stable for each P € t-Max(R) and I a nonzero ideal of R. Then
(I*),, = (AI),, for some t-invertible fractional ideal A of (I, : I,,) by Theorem 3.7. Since R is com-
pletely integrally closed, R = Ujeg(r)(L, : I,) = R. Hence, (I, :1,) =R and so A is a t-invertible
fractional ideal of R. Therefore, I is a weakly ES-w-stable by Proposition 2.3. O

Recall from [6] that an integral domain R is a weakly Matlis domain if R is of finite t-character
and each prime t-ideal of R is contained in a unique maximal t-ideal. Clearly, Krull domains are
weakly Matlis, and an integral domain of t-dimension one is a weakly Matlis domain if and only
if it is of finite ¢-character.

Theorem 3.9. Assume that R is a weakly Matlis PvMD. If R is a t-locally weakly ES-stable domain,
then R is weakly ES-w-stable.

Proof. Let I be a nonzero ideal of R. Since R is a PvMD, I, and so I is a w-flat ideal (i.e., IRp is
flat for each P € t-Max(R)) by [44, Proposition 2]. Since IRp is weakly ES-stable for each
P € t-Max(R), I’Rp = JRpIRp for some invertible ideal JRp of Rp by [8, Proposition 2.1]. Let
{Py, ..., P,} be the set of maximal t-ideals of R which contain I. Then I’Rp, = a;IRp, for some a; €
R and I’Rp = JRpIRp = Rp for all maximal t-ideal P # P; for i = 1,...,n. Set A; := a;Rp, N R for
i=1,..,n and A:=A; N..NA,. Since R is a weakly Matlis domain, P; is the unique maximal
t-ideal of R which contains A; and A; is w-ideal by [6, Corollary 4.4 and Lemma 2.3]. Hence,
ARp = A1Rp N ... N A,Rp for each P € t-Max(R) by [6, Proposition 4.7]. Since IRp is flat for each
P € t-Max(R), AIRp = A1IRp N ... N A,IRp by [29, Chapter VI, Lemma 9.9]. We note that if P is a
maximal t-ideal of R such that P ¢ {Py,...,P,}, then A;Rp = Rp, so ARp = Rp. If i,j € {1,...,n}
with j#i, then AjRp = Rp, so ARp = A;Rp, = a;Rp,. Therefore, ARp is principal for each
P € t-Max(R) and
(AI), = [ AIRp

Pet—Max(R)

= AIRp, N...NAIRp, N () Rp
P+4P;
=PRp, N...0PRp, N [ Rp
P+#P;

= (Iz)w'

Since R is of finite t-character, R is t-LPI. Therefore, A is t-invertible and hence I is a weakly ES-
w-stable ideal by Proposition 2.3. ]

Corollary 3.10. Let R be an integrally closed w-divisorial domain, i.e., the w- and v- operations are
the same on R. Then R is weakly ES-w-stable if and only if R is t-locally weakly ES-stable.

Proof. Since an integrally closed w-divisorial domain is a weakly Matlis PvMD [21, Theorem 3.3],
the result follows from Theorem 3.9. |

Let % be a star operation on an integral domain R. As in [46], we say that R is a x-RTP
domain if for each nonzero fractional ideal I of R, either (II"!), = R or a radical ideal of R.

Example 3.11. Let Y, Z be indeterminates over a field K and let D := K[Y, Z]. Consider a multi-
plicatively closed subset S={1,Y,Y% Y% ..} of D, and let R:= D+ XDs[X], ie, R={f €
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Dg[X]|f(0) € D}. Then R is a non-Priifer non-Krull weakly Matlis PyMD by [1, Theorem 3.6],
[44, Corollary 3], and [2, Corollary 2.8]. Let P be a maximal t-ideal of R. If PN S = (), then Rp =
Ds[X]pp,jx is @ DVR. Thus we may assume PN S # (. Lemma 2.1 of [2] implies P=PND +
XDs[X] such that PN D is a maximal t-ideal of D. Hence, P = YK|Y, Z] + XK[Y, Y}, Z, X]. Since
D is a Krull domain, the maximal t-ideal (Y) of D is not w-idempotent by Gabelli and Picozza
[30, Theorem 2.9]. Hence, (P?),, # P and so P*Rp # PRp. Since R is a weakly Matlis PyMD, R is
t-RTP by [22, Theorem 1.12]. Hence, Rp is RTP by [46, Theorem 17] and so PRp is divisorial by
[40, Theorem 6]. Thus, Rp is a Noetherian valuation domain, and hence it is weakly ES-stable by
Mimouni [47, Proposition 4.6]. Therefore, R is a weakly ES-w-stable domain by Theorem 3.9.

4. ES-w-stability of polynomial rings

Let R be an integral domain, x a star operation on R, X an indeterminate over R, and R[X] the
polynomial ring over R. Assume that c(f) is the ideal of R generated by the coefficients of f €
R[X]. As in [42], let N(x) = {f € R[X]|f(X) # 0 and (cr(f)), = R}. Then N(%) is a saturated
multiplicative subset of R[X], and the domain Na(R,*) := R[X]y,, is called the Nagata ring of R
with respect to x. For x = d,Na(R,d) =: R(X) is the usual Nagata ring of R [34, Section 33],
and Na(R,v) = Na(R,t) = Na(R, w).

Theorem 4.1. Let R be an integrally closed domain. Then R is a weakly ES-w-stable domain if and
only if Na(R, v) is a weakly ES-stable domain.

Proof. Assume that R is a weakly ES-w-stable domain and J is a nonzero ideal of Na(R,v). Since
R is an integrally closed weakly ES-w-stable domain, R is a PvMD. Hence, ] = INa(R, v) for some
ideal I of R by Kang [42, Theorem 3.1]. By assumption, there is a t-invertible ideal A of R such
that (I?),, = (IA),. Note that ANa(R,v) is invertible and the d- and w- operations are the same
on Na(R,v) because each maximal ideal of Na(R,v) is a t-ideal (cf. [42, Proposition 2.1,
Corollaries 2.3 and 2.5]). Thus, I*’Na(R,v) = IANa(R, v) since Na(R,v) is a PvMD [42, Theorem
3.7]. It follows that J is a weakly ES-stable ideal of Na(R,v).

Conversely, suppose Na(R,v) is a weakly ES-stable domain. Then Na(R,v) is a quasi-Priifer
domain by Mimouni [47, Corollary 2.4]. It follows that R is a PyMD. Let I be a nonzero ideal of
R. Then I’Na(R,v) = INa(R,v)L for some invertible ideal L of Na(R,v). Note that L = JNa(R,v)
for some ideal J of R which is t-invertible by Kang [42, Corollary 2.7]. Therefore, (I?), =

w

(I*),Na(R,v) N R = (I]), Na(R,v) N R = (I]),, by Kang [42, Proposition 2.8]. O

Example 4.2. Let V be a rank one discrete valuation domain with quotient field K # V, M max-
imal ideal of V, and X an indeterminate over K. Then D := V + XK[X] is an h-local Priifer
domain by [2, Corollary 2.8]. We first show that each nonzero prime ideal of D is not idempo-
tent. Let Q be a prime ideal of D and S:= V \ {0}. The case QNS = is trivial, so assume Q N
S# 0. Then Q= QN V + XK[X] by [15, Theorem 2.1]. If QN V =0, then Q = XK[X] which is
not idempotent. If QN V = M, then Q =M + XK[X] is a maximal ideal of D [2, Lemma 2.1]
which is not idempotent since M? # M. Therefore, D is an h-local strongly discrete Priifer
domain and hence D is an ES-stable domain by Gabelli and Picozza [30, Corollary 3.8]. Now, let
Y be an indeterminate over D and R := D[Y]. Then R is a non-Krull non-Priifer weakly Matlis
PvMD by Gabelli and Picozza [32, Proposition 3.8] which is not a weakly ES-stable domain by
Mimouni [47, Corollary 2.7]. We note that Theorem 2.3(e) of [12] implies

t-Max(R) = {Q € SpecR|QN D = (0)} U{P[Y]| P € Max(D)},

since D is a Priifer domain and hence a UM¢ domain. Let Q be a maximal t-ideal of R and
P:=QnND. If P#0, then Rq = D[Y]yy = Dp(Y) is weakly ES-stable by Theorem 4.1. If P=0,
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then R is a DVR and hence a weakly ES-stable domain by Mimouni [47, Proposition 4.6].
Therefore, R is a weakly ES-w-stable by Theorem 3.9.

Theorem 4.3. Let R be an integrally closed domain and X an indeterminate over R. Then R is a
weakly ES-w-stable domain if and only if R[X] is a weakly ES-w-stable domain.

Proof. Assume that R is a weakly ES-w-stable domain. Then R is a PvMD since R is integrally
closed. Let ] be a nonzero ideal of R[X]. We may assume that J is a w-ideal. Set I :=JNR. If [ #
0, then J = I[X] by [37, Lemma 4.5]. By assumption, (I*),, = (IA), for some t-invertible ideal A
of R. Thus, by Kang [42, Corollary 2.3], (J?),, = (I?),[X] = (IA), [X] = (JA[X]), where A[X] is t-
invertible ideal of R[X]. Now suppose that I=0. Then J = fA[X] for some f € R[X] and a frac-
tional t-ideal A of R by [37, Lemma 4.5]. Then (A?),, = (AB),, for some t-invertible ideal B of R.
Thus, (J?), = (fPA%[X]), = f*(A?),[X] =f*(AB),[X] = (J/B[X]), where fB[X] is a t-invertible
ideal of R[X]. Therefore, R[X] is a weakly ES-w-stable domain.

Conversely, suppose R[X] is a weakly ES-w-stable domain. It suffices to show that Na(R,v) is
weakly ES-stable domian. Let ] be a nonzero ideal of Na(R,v). Then ] = ANa(R, v) for some ideal
A of R[X]. By assumption, (A%), = (AB),, for some t-invertible ideal B of R[X]. Note that R is a
PvMD by [26, Theorem 2.4]. Thus, by Kang [42, Lemma 3.4], A*Na(R,v) = ABNa(R,v) where
BNa(R,v) is an invertible ideal of Na(R,v). Therefore, R is a weakly ES-w-stable domain by
Theorem 4.1. |

Now we characterize weakly ES-w-stability in pullback constructions. Let T be an integral
domain, M a maximal ideal of T, K = T/M, D a proper subring of K, ¢ : T — K the canonical
homomorphism, and R = ¢~ (D) the pullback of the following diagram:

R——D

L,

T —K.

We assume that R C T, and we refer to the diagram as a pullback diagram of type ((T*) if K is
the quotient field of D.

We first give some examples of which D and T are weakly ES-w-stable, but R is not necessarily
a weakly ES-w-stable in a pullback diagram.

Example 4.4. (1) Let D be a rank one discrete valuation domain with quotient field K (e.g., a
local Dedekind domain that is not a field), X, Y the indeterminates over K. Set T = K[[X, Y]] =
K+ M where M = (X,Y)T. It is well known that the set of maximal t-ideals of a Krull domain
is the set of height one primes. Hence, M is not a t-ideal of T. Therefore, R = D + M the pull-
back of D in the Krull domain T cannot be a weakly ES-w-stable domain because R is not a UM¢
domain by [26, Proposition 3.5].

(2) Assume that F is a field and F' is a proper subfield of F. For any integer n>1, let
X1, ..., X, be indeterminates over F and set T = F[[X),...,X,]] = F+ M where M = (X3, ..., X,)T.
Note that T is a Krull domain and M is not a t-ideal of T. Thus, R=F 4+ M is not a UMt
domain by [26, Proposition 3.6]. It follows that R is not a weakly ES-w-stable.

(3) Let Q be the field of rational numbers, X, Y indeterminates over Q, T = Q[X, Y] with max-
imal ideal M = (X,Y)T, and D = Z, the ring of integers. Then M is not a t-ideal of T. Hence,
R=7Z+ M cannot be a weakly ES-w-stable domain because R is not a UMt domain by [26,
Proposition 3.5].
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Theorem 4.5. In a pullback diagram of type ((T), if R is a weakly ES-w-stable domain, then M is
a maximal t-ideal of T, T is a weakly ES-w-stable domain, and D is a semi-local weakly ES-stable
domain.

Proof. By [26, Propositions 3.1 and 3.5], T is a t-linked overring of R and M is a maximal t-ideal
of T. Hence, M is a prime t-ideal of R and T is weakly ES-w-stable by Theorem 2.8. Furthermore,
the set of maximal ¢-ideals of D is finite because R is of finite t-character by Corollary 2.5, and g
is a maximal t-ideal of D if and only if ¢ '(g) is a maximal t-ideal of R containing M by [24,
Propositions 1.6 and 1.8]. Therefore, D is a semi-local domain with each maximal ideal a t-ideal
by Zafrullah [54, Proposition 3.5]. First, we show that D is a weakly ES-w-stable domain and
hence a UMt domain. Let A be a nonzero ideal of D. Then I = ¢ '(A) is an ideal of R contain-
ing M. By assumption, I,, = (JE), for some t-invertible fractional ideal of R and w-idempotent
fractional ideal E of R. Thus, E,, C (E, : E,) = (I, : I,) = ((¢ ' (A)),, : (¢ (4)),) = (¢ (A,) :
¢ '(Ay) = Ay : A,) € ¢ Y(K) =T, where the third equality follows from [45, Lemma
3.1]. Hence, I, CE, CT. Since MCI, IT = T and hence E,T = T and M C E,,. Therefore,
(1), = (JE,T), = (JE.), T), = (IT),, = T, and hence M < J,. Hence, J,, = ¢ '(B) and E, =
¢~ (F) for some nonzero fractional ideals B and F of D. Clearly, A, = (BF),, such that B is a t-
invertible fractional ideal of D and F is a w-idempotent fractional ideal of D. Therefore, D is a
weakly ES-stable domain by [13, Corollary 1.3]. O

Corollary 4.6. Let D be an integral domain with quotient field K, X an indeterminate over K and
R = D+ XK[X] the subring of the polynomial ring K[X] consisting of those polynomials with con-
stant term in D. If R is a weakly ES-w-stable domain, then D is a semilocal domain which is a
weakly ES-stable domain.

Proof. The result follows from Theorem 4.5. O

In a pullback diagram of type ([J*), since we do not know any example of a weakly ES-w-sta-
ble domain T with a maximal t-ideal M, and a semi-local weakly ES-stable domain D such that R
is not of finite t-character, we end this section by considering the following question:

Question 4.7. In a pullback diagram of type ((T°), assume that T is a weakly ES-w-stable domain,
M is a maximal t-ideal of T, and D is a semi-local weakly ES-stable domain. Is R a weakly ES-w-
stable domain?

5. Finitely ES-w-stable domains

An integral domain R is said to be a finitely ES-w-stable domain (resp., finitely weakly ES-w-
stable) if every finitely generated ideal of R is ES-w-stable (resp., weakly ES-w-stable).

Proposition 5.1. An integral domain R is finitely weakly ES-w-stable if and only if R is finitely ES-
w-stable. In particular, every finitely generated ideal of a weakly ES-w-stable domain is ES-
w-stable.

Proof. Let R be a finitely weakly ES-w-stable domain and I a finitely generated ideal of R. Then
IRp is weakly ES-stable and hence IRp is stable for each P € t-Max(R) by [8, Lemmas 2.4 and
2.6]. Hence, for each P € t-Max(R),

I((IW : I) : I)RP = IRP((IWRP : IRP) : IRP) = (IWRP : IRP) = (IW : I)Rp
Therefore, I is w-stable and hence I is ES-w-stable by Corollary 2.4. O
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Corollary 5.2. Let R be a Noetherian domain. Then R is weakly ES-w-stable if and only if R is ES-
w-stable.

We recall that an integral domain R is called finitely w-stable if each finitely generated ideal of
R is w-stable. We say that an ideal I of R is w-prestable (resp., prestable) if I" is w-stable (resp.,
stable) for some integer n > 1.

Theorem 5.3. Let R be an integral domain. Then the following statements are equivalent.

(1) R is a UMt domain.
(2)  Each nonzero finitely generated ideal I of R is w-prestable.

Proof. (1) = (2) Let R be a UMt and I a nonzero finitely generated ideal of R. Then Rp is a
quasi-Priifer domain for each P € t-Max(R) by [13, Theorem 2.16]. Hence, each nonzero finitely
generated ideal of Rp is prestable for each P € t-Max(R) by Fontana et al. [25, Theorem 7.4.6].
Thus, I"Rp is stable for some n > 1. Set J := I". Hence,

U2 2) Ty =, T T i) Jw)Re

—Max(R)

= ﬂ ]RP((]W : ]w)RP : ]wRP)

Pet—Max(R)

= () JRp((JRp : JRp) : JRp)

Pet—Max(R)
= (1 (JRy:JRp)

Pet—Max(R)

= )V (Juw:JwRp

Pet—Max(R)
= (]w . ]w)

Therefore, I is w-prestable.

(2) = (1) Let P € t-Max(R) and ] a nonzero finitely generated ideal of Rp. Then | = IRp for
some finitely generated ideal I of R. By assumption, I" is w-stable for some integer n > 1. Hence,
J is prestable. Thus, Rp is a quasi-Priifer domain for each P € t-Max(R) by Fontana et al. [25,
Theorem 7.4.6], and hence R is UMt by [13, Theorem 2.16]. O

Corollary 5.4. Let R be an integrally closed domain. Then R is a PvMD if and only if R is a finitely
weakly ES-w-stable domain.

Proof. Assume that R is a finitely weakly ES-w-stable domain. Then R is a finitely ES-w-stable
domain by Proposition 5.1. Hence, R is a UMt domain by Theorem 5.3. Thus, R is a PvMD by
Houston and Zafrullah [38, Proposition 3.2]. The converse is trivial. O

In [11, Example 2.14], the authors provide an example of a PvMD which is not of finite ¢-
character. Hence, a finitely weakly ES-w-stable domain need not be of finite ¢-character.

Corollary 5.5. Let R be an integrally closed domain of finite t-character. If R is a finitely ES-w-
stable domain and Rp is ES-stable for each P € t-Max(R), then R is ES-w-stable.

Proof. By Gabelli and Picozza [30, Corollary 1.10], R is a w-stable domain. Hence, R is ES-w-sta-
ble by Corollary 5.4 and Proposition 2.1. O

Proposition 5.6. Let R be an integral domain and T a t-linked overring of R. If R is a finitely ES-
w-stable domain, then T is finitely ES-w'-stable where w' denotes the w-operation on T.
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Proof. Let I be a nonzero finitely generated ideal of T. Then there is a nonzero ¢ € R and a
finitely generated ideal J of R such that cI = JT. Since R is a finitely ES-w-stable domain, (), =
(JA),, for some t-invertible ideal A of R contained in J. Hence, (J*T),, = (JAT),, by Lemma 2.7.
Thus, (I?),, = (¢ 'IAT),,. Since T is a t-linked overring of R, AT is t'-invertible ideal of T by

Baghdadi and Fontana [20, Proposition 3.2] where ¢ denotes the f-operation on T. Hence,
¢ YAT C I is t-invertible ideal of T. Therefore, I is ES-w'-stable. |

Corollary 5.7. Assume that R is a finitely ES-w-stable domain. Then the complete integral closure
R of R is a PYMD where v denotes the v-operation on R.

Proof. By Dobbs et al. [16, Corollary 2.3], Risa t-linked overring of R. Hence, R is finitely ES-
w -stable by Proposition 5.6. Since R is integrally closed, R is a PYMD by Proposition 5.4. O

We say that an integral domain R has the w-local stability property if each nonzero fractional
ideal I of R that is t-locally stable (i.e., IRp is stable, for each P € t-Max(R)) is indeed w-stable.

Proposition 5.8. Any integral domain R of finite t-character has the w-local stability property.

Proof. Let I be a nonzero ideal of R such that IRp is stable for each P € t-Max(R). First, we show
that (I, : I,)Rp = (IRp : IRp) for each P € t-Max(R). Let x be a nonzero element of (IRp : IRp).
Since R is of finite t-character, there exist only finitely many maximal t-ideals Py, ..., P, of R such
that xRp, # Rp,. Since IRp, is stable by assumption, IRp, = A;(IRp, : IRp,) for some finitely gener-
ated ideal A; C I. Hence, dixA; C I for some d; € R\ P;. Setting d = d; ---d,, we have dxA; C 1
for each i=1,..,n. Hence, dxIRp, CIRp. If M is a maximal t-ideal of R such that M ¢
{Pi,...,P,}, then dxIRy = dIRy C IRy. Thus, dxI,, C I,, and hence x = xd.d™! € (I, : I,)Rp for
each P € t-Max(R). With a similar method, we observe that ((I,,:1,) : I,)Rp = ((I, : I,)Rp :
IRp) for each P € t-Max(R). Hence, for each P € t-Max(R), I((L, : I,) : I,)Rp = IRp((L, : I,)Rp :
IRp) = IRp((IRp : IRp) : IRp) = (IRp : IRp) = (I, : I,)Rp. Therefore, I is w-stable. O

We recall that a t-LPI domain is an integral domain in which every nonzero t-locally principal
t-ideal is t-invertible. Recently, several properties of t-LPI domains have been surveyed in [23].

Proposition 5.9. Any integral domain R with the w-local stability property is a t-LPI domain.
Proof. Let I be a t-locally principal t-ideal of R. Then (IRp : IRp) = Rp for each P € t-Max(R).

Since I is w-invertible in (I : I) by assumption, I is w-finite in (I :I). Hence, (I : I)Rp = (IRp :
IRp) for each P € t-Max(R) by Gabelli and Picozza [30, Lemma 1.8]. Thus,

R= (1 Rp= (1 (IRp:IRp)= (1 (I:DRp=(I:1I).
Pct—Max(R) Pet—Max(R) Pet—Max(R)

Hence, I is t-invertible. O

Lemma 5.10. Let R be an integral domain and I a nonzero ideal of R. Assume that I is w-stable
and T is a t-linked overring of R containing E = (I, : 1,,). Then

(1) IT is w-invertible in T and (T : IT) = ((E: I)T),,
(2) (TRq: (T :IT)Rq) = (T : (T :IT))Rq for each Q € t-Max(R).

Proof. (1) Since I is w-invertible in E, we have
T=ET=(I(E:I),T<C(I(E:I),T),=UTE:DNT), CIT(T:IT)), CT.
Therefore, ((E: I)T),, = (T : IT).
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(2) Since (T :IT) is w-finite in T by (1), (T : IT) = (1T + ... + xT),, for some xi,...,xx €
(T : IT). So, there exists a nonzero element d € R such that dx; € R for i = 1,...,k. Thus, H :=
dx;R+ ...+ dx,R is a finitely generated ideal of R such that (HT),, = d(T : IT). Hence, for each
Q € t-Max(R),

1

(TRQ : (T : IT)RQ) = (TRQ : d

|

The next theorem is the w-operation analogue of [10, Theorem 4.5] that any finitely stable
domain with the local stability property is of finite character.

Theorem 5.11. Let R be a finitely w-stable domain. Then R has the w-local stability property if
and only if R is of finite t-character.

Proof. If R is of finite t-character, then R has the w-local stability property by Proposition 5.8.
For the converse, assume to the contrary that R is not of finite t-character. By [55, Theorem 2.6],
there exists a w-ideal I of finite type that is contained in infinitely many pairwise w-comaximal
w-ideals of finite type, say, {A,, |m € N}. Any w-ideal of finite type is w-stable by assumption.
Hence, for each m € N, (A, (T : Ap)),, = T where T, := (A, : Ap). Let

A= (Ty:An).
meN

Then A is a fractional ideal of R because I’A C (IPA), = (3 ,en I*(Tw i Am)),, C

(Cmen An(Tm = Am))yy = (e (A0 (T Am))yy )y = (Lery Am),y € R Ao, for  cach
Q € t-Max(R),

ARQ = Z(TMRQ ZAmRQ)
meN

by Gabelli and Picozza [30, Lemma 1.8]. We claim that A is t-locally stable. Let Q be a maximal
t-ideal of R. If AZQ, then ARy = Rq. Suppose that A C Q. If A,,ZQ for all m € N, then ARg =
Rq. Hence, we assume that Ay C Q for some k € N. Then for each m # k,A,,ZQ because A,,
and Ay are w-comaximal. Thus, ARq = (TxRq : AxRq). Since Ay is w-stable, AR, is invertible in
TkRg and hence (ARq: ARqg) = TxRq. Therefore, A is w-stable by assumption. Setting T :=
(> men Tm),,» we observe that T = (A,, : A,). Since A is w-finite in T, there exists a finitely gen-
erated fractional ideal B C A of R such that A,, = (BT),,. Let B=Y.1_,(Ty : A,) for some q €
N. We note that for each m e N, A,T is w-invertible in T by Lemma 5.10(1). Hence,
(T : A)T),, = (T : A, T), and

A, = (Xq:(Tm :A,,,)T)W - (i:(T:AmT>>W.

m=1 m=1

Thus, for every n € N,

SO
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We also note that since (T : (T : A,,)) are pairwise w-comaximal for each m € N,

( A (T (T:AmT)))W - (ﬁ(T: (T : A,,J)))W.

m=1 el

Furthermore, by Lemma 5.10(2), (T : (T : A,,T))Rq = (TRq : (T : AnT)Rq) for each m € N and
for each Q € t-Max(R).

Now, let n>¢q and let Q be a maximal -ideal of R containing A,,. Then for every 1 < m < g,
A,, is not contained in Q and hence

(T:(T:A,T))Rq=(TRq: (T : AnwT)Rq)
= (TRQ . (Tm Am)TRQ)
(T,,RQ : (TmRQ : AmRQ)TnRQ)

Thus,
q q
(mrj (T:(T:AnT)))Rg = [[(T: (T : AuT))Rq = T,Rq.

As a consequence,

TaRq C (T :(T:A,T))Rq
= (TRq: (T : A,T)Rq)
(TRq : (T : Ay)TRq)
= (TyRq : (TyRq : AuRqQ)TuRq)
— AR,

where the last equality follows because A, is a w-stable ideal. Hence, Rq C T,Rq C A,Rq T Rq; a
contradiction. Therefore, R is of finite t-character. O

Corollary 5.12. Let R be an integrally closed conducive domain. If R is a finitely weakly ES-w-sta-
ble domain with w-local stability property, then R is finitely weakly ES-stable.

Proof. By Propositions 5.1 and 2.1, R is finitely w-stable. Hence, R is a PvMD of finite ¢-character
by Corollary 5.4 and Theorem 5.11. Since any t-linked overring of R is finitely weakly ES-
w/-stable by Proposition 5.6, by using the same method as Proposition 2.13, we observe that R is
a semi-local domain whose maximal ideals are t-ideal. Therefore, R is a Priifer domain and hence
R is finitely weakly ES-stable. O
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