
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-021-04026-6

1 3

Regional soft error vulnerability and error propagation
analysis for GPGPU applications

Işıl Öz1  · Ömer Faruk Karadaş2

Accepted: 13 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
The wide use of GPUs for general-purpose computations as well as graphics pro-
grams makes soft errors a critical concern. Evaluating the soft error vulnerability of
GPGPU programs and employing efficient fault tolerance techniques for more reli-
able execution become more important. Protecting only the most error-sensitive pro-
gram regions maintains an acceptable reliability level by eliminating the large per-
formance overheads due to redundant operations. Therefore, fine-grained regional
soft error vulnerability analysis is crucial for the systems targeting both performance
and reliability. In this work, we present a regional fault injection framework and per-
form a detailed error propagation analysis to evaluate the soft error vulnerability of
GPGPU applications. We evaluate both intra-kernel and inter-kernel vulnerabilities
for a set of programs and quantify the severity of the data corruptions by consid-
ering metrics other than SDC rates. Our experimental study demonstrates that the
code regions inside GPGPU programs exhibit different characteristics in terms of
soft error vulnerability and the soft errors corrupting the variables propagate into the
program output in several ways. We present the potential impact of our analysis by
discussing the usage scenarios after we compile our observations acquired from our
empirical work.

Keywords  Soft error reliability · GPGPU programs · Fault injection

 *	 Işıl Öz
	 isiloz@iyte.edu.tr

	 Ömer Faruk Karadaş
	 omerkaradas@std.iyte.edu.tr

1	 Computer Engineering Department, Izmir Institute of Technology, Izmir, Turkey
2	 Electrical Electronics Engineering Department, Izmir Institute of Technology, Izmir, Turkey

http://orcid.org/0000-0002-8310-1143
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-04026-6&domain=pdf

	 I. Öz, Ö. F. Karadaş

1 3

1  Introduction

Due to the reduction in transistor sizes and the larger system frequencies, the soft
error rates in computer systems have been increasing [29, 33, 44]. While the GPUs
have been introduced as an accelerator for graphics applications, their high-scale
performance improvement with many cores has induced their widespread use in
general-purpose computations (GPGPU) [3, 35]. Especially, the applications requir-
ing big data processing utilize a large number of computational resources on GPU
systems. However, with many execution cores and complex memory structures,
GPUs exhibit high vulnerability to soft errors. Since the GPGPU applications do
not tolerate faults as in the graphics applications, which are inherently fault-tolerant,
both hardware and software approaches have been proposed to deal with the impact
of soft errors in GPU architectures [12, 22, 24, 30, 47].

Redundancy, as a fault tolerance technique to deal with hardware errors, is the
replication of hardware and/or software components of a system by targeting to
increase reliability [40, 41]. In the software redundancy scheme, the target program
code is replicated at the instruction level and the results of the duplicate instructions
are compared for error detection.

Since the code redundancy-based fault tolerance techniques require executing
the same code multiple times with additional comparison computations, they cause
serious performance degradation in the target applications. Therefore, instead of full
redundancy, the replication of the most critical and highly vulnerable parts of the
target application maintains more performance as well as acceptable reliability level
[5, 7, 15, 20, 36]. Hence, evaluating regional soft error vulnerability becomes more
critical to quantify fine-grained reliability characteristics.

In this work, we present a fault injection framework for evaluating the regional
soft error vulnerability of GPGPU applications and propose a methodology to ana-
lyze both intra-kernel and inter-kernel vulnerabilities. Our debugger-based fault
injection framework provides source code-level regional analysis of the target appli-
cations. As a fault injection tool for GPGPU soft error vulnerability analysis, GPU-
Qin [13, 14], which has been implemented in cuda-gdb [2], reports systematically
silent data corruption (SDC) and application crash conditions of GPGPU programs.
Our fault injection tool, which is based on cuda-gdb [2], provides a general frame-
work to evaluate the regional vulnerabilities of GPGPU programs by injecting faults
into specified source code lines. Our fault injector focuses on the specific code por-
tions (the code in the specified line or between the specified lines) and targets the
high-level code sections instead of the low-level SASS instructions. To the best of
our knowledge, this is the first work that analyzes intra-kernel and inter-kernel vul-
nerabilities by presenting error propagation through data structures in the program.
Furthermore, we perform rigorous fault injection experiments for a set of applica-
tions and deep dive into the details of the SDC evaluations by considering the error
propagation through the program data. Our main contributions are as follows:

•	 We present a regional fault injection tool for GPGPU applications, which injects
faults into specified code regions in a target program. Our debugger-based tool

1 3

Regional soft error vulnerability and error propagation…

provides a general framework to evaluate the target application for the most vul-
nerable code regions by considering source code lines.

•	 We perform rigorous fault injection experiments for both intra-kernel and inter-
kernel vulnerability evaluation, additionally, we utilize output corruption rate
and error metrics to evaluate the data corruption criticality for the silent data
corruption (SDC) cases.

•	 We extend our analysis by tracking program data consumed in the target applica-
tion and observe the error propagation behavior for high-level data structures.

•	 Our experimental work reveals that the vulnerability of code regions in GPGPU
programs exhibits different characteristics and the soft errors corrupting the pro-
gram variables propagate into the program output in several ways.

•	 We present our observations based on the experimental results and potential
usage scenarios of our regional soft error vulnerability analysis. Our regional
analysis can facilitate proposing selective redundant execution and data protec-
tion techniques for GPGPU applications. Additionally, fault prediction frame-
works can utilize a larger amount of data by considering the code regions as
distinct data points in their machine learning models, and they can achieve poten-
tially more accurate predictions for the target programs’ soft error vulnerability.

The remainder of this paper is organized as follows: Sect. 2 presents some back-
ground on soft error vulnerability evaluation. We explain our regional soft error
vulnerability analysis framework in Sect. 3. Then, the experimental results are out-
lined in Sect. 4. Section 5 presents a detailed discussion on our observations and the
potential usage scenarios of our regional vulnerability analysis. Section 6 presents
the related work on GPU vulnerability evaluation methods. Finally, in Sect. 7, we
summarize the work with some conclusive remarks and future research directions
(Table 1).±

2 � Background

2.1 � Soft errors in GPGPUs

In this work, we consider soft errors which are induced from transient hardware
faults. Soft errors are failures caused by particle strikes including high-energy

Table 1   Table of notations and
definitions

Notation Definition

GPGPU General-purpose computing on
graphics processing units

CUDA Compute unified device architecture
SDC Silent data corruption
MAE Mean absolute error

	 I. Öz, Ö. F. Karadaş

1 3

neutrons, produced by the interaction of cosmic rays within the terrestrial atmos-
phere, and alpha particles that are emitted by the decay of radioactive impurities
used in chip packaging [33]. They might corrupt the program data or crash the pro-
gram execution. GPGPUs with many cores in a single chip are vulnerable to soft
errors and the increasing soft error rate becomes an obstacle to future GPGPU gen-
erations by preventing them from decreasing in size or causing erroneous executions
[8, 34].

Soft errors do not result from a failure in the circuitry, but due to an external
factor causing the data in the memory locations to be modified. In our analysis, we
evaluate single-bit errors in the GPU register file by assuming that other GPU mem-
ory locations are protected. We also do not consider the errors in any storage struc-
ture of the host CPU. We assume that the data is copied into GPU global memory
safely before the kernel execution.

2.2 � Evaluating soft error vulnerability

The most prominent way to quantify soft error resilience of programs is to perform
fault injection experiments [9, 31]. A fault injection experiment starts with specify-
ing fault location and injection time, then introduces the fault at this point during the
execution of the program. Then it examines the program output by comparing the
expected value with the produced value to determine the effect of the injected fault.
In the evaluation of soft error vulnerability of the programs, the outcome of fault
injection experiments can be one of the following cases:

•	 Correct Execution (Masked) The application ends successfully and produces
the expected output.

•	 Silent Data Corruption (SDC) The application completes the execution, but the
output differs from the expected result.

•	 Hang The application continues its execution longer than a predetermined maxi-
mum time and does not produce any output during this time.

•	 Crash The application ends with an error code.

Our fault injection tool tracks the execution of the target application after flipping
the bit in the specified register and reports the fault behavior by comparing the pro-
duced result with the golden output. We focus on the SDC cases due to their impor-
tance in vulnerability analysis. Moreover, we utilize some basic metrics to evaluate
the criticality of data corruptions as given in Sect. 3.4.

3 � Regional soft error vulnerability analysis

3.1 � Motivation

All instructions inside a GPU kernel affect the output either directly or indirectly.
For instance, the example code below presents a simple kernel function in an image

1 3

Regional soft error vulnerability and error propagation…

processing application. While the row and column numbers are decided in the first
two lines of the kernel, the statement in the fourth line updates the target pixel value.
In this simple code snippet, the miscalculation of the row or column value results
in missing the calculation of the target pixel or crash due to the array index out of
bounds error. However, if the computation in the fourth line fails, it causes a more
critical effect in the final result by corrupting the value.

As an example to demonstrate the effect of the faults on different code regions,
this simple kernel code provides hints about more complicated kernel functions or
programs with many kernels. Especially, in the GPU programs working with many
threads, the errors in different threads, being responsible for either similar or differ-
ent computations, may affect the overall computation in different ways.

The software redundancy schemes for soft error fault tolerance cause serious per-
formance degradation in the application execution. Therefore, partial redundancy
techniques, which are based on the replication of the most critical code region,
decrease the performance cost significantly by eliminating the redundant execution
of the non-critical codes in terms of soft error vulnerability [5, 36]. Specifically,
for GPU programs, instead of replicating all kernel functions in the program or all
instructions in a kernel function, the redundant execution of the most vulnerable
code region (s) becomes more effective for the program performance. Moreover,
the partial redundancy-based fault tolerance becomes more efficient by considering
resource constraints in GPU devices such as the number of registers per thread or
the shared memory space per thread block.

3.2 � Regional fault injection tool

Since the existing fault injection tools targeting GPU programs lack regional fault
analysis [13, 14, 16, 19, 45], we design and implement a regional fault injection tool
for our purpose. While the general-purpose fault injectors target random fault injec-
tion points, our tool introduces faults in a specific code portion (source code lines)
and examines the execution of the program after injection time. In this way, the vul-
nerability of the specified code can be obtained. We build our fault injector based
on CUDA GDB debugging tool, cuda-gdb [2], which tracks and controls the CUDA
applications externally. We implement our methodology via Python scripts by using
gdb module.

	 I. Öz, Ö. F. Karadaş

1 3

Figure 1 presents the flow of our regional fault injection tool which consists of
the following phases:

•	 Phase 0: Configuration Setup
	  We present an interface to the fault injection process by defining a set of

parameters that can be configured before the execution since the correct con-
figuration is the key to the accurate operation of the injection process. Through
this text-based interface, the users can specify the parameter values for their pur-
poses. The main configuration options are as follows:

•	 Application-specific information (executable name, arguments, output file to
check after injection)

•	 Fault injection information (whether during a specific line execution or
between specific lines or by satisfying a condition in the code; specific regis-
ter, specific bit)

•	 The phases (among 3-phases) to be performed

	  We have a text file in a predefined format (parameter-value pairs) for tak-
ing all the possible parameters which are filled with default/example values. The
users of our tool should modify the given values based on their preferences.

•	 Phase 1: Profiling
	  During the profiling phase, the target CUDA program is executed through

the debugger (cuda-gdb) to collect information about the application. The pro-
filing finds the number of blocks and threads that the application is actively

Fig. 1   Flow diagram of our regional fault injection tool

1 3

Regional soft error vulnerability and error propagation…

using. To achieve this, the execution stops at the breakpoint specified as the
fault injection line in the configuration phase. Furthermore, the correspond-
ing ptx instructions being executed for the specified line or between lines are
tracked in the program profile phase and passed into the fault generation phase
to decide the specific instruction. Another information collected by the profil-
ing is the golden output of the application that is stored to be used in SDC
comparison.

•	 Phase 2: Fault map generation
	  After the profiling phase, to determine the fault locations and the fault timing,

a fault distribution map is generated according to the information given as part
of the configuration or obtained at the profiling phase. As mentioned in Sect. 2,
the fault type we consider in this study is the corruption of data stored in the
register file, i.e., the corruption of the value stored in the target register as a bit
flip (the inversion of the target bit either from 0 to 1, or 1 to 0). Specifically, one
bit and one register among the ones specified in the configuration are selected as
the fault location, and one instruction is selected among the instructions obtained
during the profiling phase as the fault injection point. The uniform distribution is
used to ensure an even distribution of faults.

•	 Phase 3: Fault injection
	  In the fault injection phase, faults are injected during the execution of the

specified instruction generated in the fault generation phase, which is one of the
instructions belonging to the line specified in the configurations. The applica-
tion is run through the debugger by setting a breakpoint at the specified line. If
a condition is set, the application is continued step by step until that condition
is reached, as shown in Fig. 2b. If not determined, the execution proceeds as in
Fig. 2a. When stopped at the breakpoint, the execution continues until the target
instruction is reached, and the execution is stopped at the specified instruction
execution. Then the value stored at the target register at that time is accessed, the
target bit of that value is flipped, and stored back into the target register. After
the fault injection, the application is continued in its natural flow and the output
of the application is collected.

•	 Phase 4: Collection of results
	  In the last phase, our tool gives to the user the fault injection results and the

resulting output of the SDC cases to determine the amount of data corruption if
SDC is observed. When checking the error type, first, the execution time of the
injected application is compared with the execution time of the golden run to
check the hang of the application. If the application exceeds the maximum time
multiplier specified in the configurations, the application is killed, and the fault
type is specified as Hang. If the application is finished in the predetermined time,
error codes are checked. If the application ends with an error code, it is marked
as a Crash. Otherwise, the injected output is compared with the golden output,
and if they do not match, it is marked as SDC. If none of these conditions is
observed, it is marked as Masked.

	  Additionally, as part of our framework, we can collect information to observe
error propagation among program variables during the program execution.

	 I. Öz, Ö. F. Karadaş

1 3

Although this feature can be enabled in our fault injection configurations, we do
not explain it here and prefer giving the details in Sect. 3.3.

While the given phases can be executed one after the other as one complete flow,
the profiling, the fault map generation, and the fault injection phases can operate
separately from each other. In this way, the fault injection can start with predefined
information instead of a fresh profiling or fault map generation phase.

3.3 � Error propagation tracking

Our fault injector tool can be configured to collect values of the data structures and
evaluate the error propagation through GPU memory structures. By enabling this
feature, it takes memory dumps of the variables at the lines specified by the user. We
implement this error propagation tracker in the debugger by stopping the application
in the specified line and saving the values of the desired variables without interfer-
ing with the source code. In this way, we obtain the propagation of the error corrupt-
ing a variable in a certain line of the application toward its output. By examining the

Fig. 2   Flow diagram of our fault injector. a Injection at a specific breakpoint. b Injection under a condi-
tion

1 3

Regional soft error vulnerability and error propagation…

error propagation, one can observe the effect of an error on application reliability on
the basis of lines and variables.

We explain our error propagation analysis in a simple example program, 3MM,
which is a linear algebra application performing three matrix multiplications in
three kernel functions given above, where each kernel computes one multiplica-
tion, specifically each thread is responsible for multiply and add operations for
one row and column of the input matrices. The program performs the matrix
multiplications in the order shown in Fig. 3. Since the values computed in the
first two kernels are utilized in the final kernel, we can expect that the number of
incorrect elements in the output matrix will be less when the error occurs toward
the final stages of the application. In other words, an error that occurred during
the calculation of E array (Injection 1 phase) or F array (Injection 2 phase) affects
one or two rows completely in the output, while an error during the computation
of G array (Injection 3 phase) affects only one or two elements in the output. As
part of our error propagation framework, we generate visualizations in order to
understand the impact of the errors among the data variables. Figure 4 presents
the sample images generated for one SDC case for the fault injection performed
during the execution of mm3_kernel1 . While the images on the left represent the
difference between the expected (golden) and the observed (corrupted by SDC)

	 I. Öz, Ö. F. Karadaş

1 3

value for the specified E array element, the images on the right are the same for
the G element. We color each array element depending on the magnitude of the
corruption, where black represents no difference and white represents the larg-
est difference. The figure specifically demonstrates the propagation of an error
corrupted one or two elements of the array E (as shown as small white points in
the figure) into the output array G. In the case that one element is miscalculated
in the array E, this single erroneous value is propagated into the G array by cor-
rupting one of its rows entirely. Similarly, if the elements from two rows are mis-
calculated in the array E (due to the corruption of one index variable), two entire
rows of the array G are corrupted.

While it is straightforward to see the propagation of the errors by looking at the
source code or performing static analysis for simple applications like matrix multi-
plication, we need to perform empirical fault injection experiments for complex pro-
grams. Not only does our fault injector tool work for the GPU programs with simple
kernel executions, but it also maintains error propagation analysis for the programs
with dynamic behavior that is difficult or not possible to analyze. For example, data-
intensive applications processing complex data structures like graphs are increas-
ingly irregular and have input-dependent and unpredictable control flow behavior
[48].

Our tool generates both numeric and visual data providing data corruptions for
the specified high-level variables inside kernel functions. By this feature, it not only
presents the criticality of the errors for each SDC case but also enables the program
developers or the application users to track the error propagation among the vari-
ables during the program execution.

Fig. 3   Flow diagram of 3MM application. Boxes represent matrices and injection points are the locations
of the faults injected during the test phase on the application

1 3

Regional soft error vulnerability and error propagation…

3.4 � Data corruption criticality evaluation

While the silent data corruption rate has been utilized as a soft error vulnerability
metric, some corruption might be acceptable or much more critical depending on
the application. Therefore, in our analysis, we evaluate the criticality of the data cor-
ruption for SDC cases. As mentioned before, our fault injector saves the produced
output if the fault injection causes an SDC. By using those outputs, we further uti-
lize several metrics to evaluate the criticality of the corruption cases.

•	 Output Corruption Rate
	  For the programs including matrix operations and producing matrices as the

output, the number of incorrect elements for SDC conditions can be used as a
vulnerability assessment metric instead of raw SDC rates. Since some applica-
tions, like image processing programs, can tolerate a number of incorrect matrix
elements in their resulting data, we consider output corruption rate as the criti-
cality of the error, which is defined as follows:

•	 Absolute error For the programs producing one value as the output, the dif-
ference between the expected output and the produced output can be used as a
vulnerability criticality metric:

•	 Mean absolute error
	  For the programs producing several values as the output, the average differ-

ence between the expected output and the produced output can also be used as a
vulnerability criticality metric. We utilize mean absolute error as the criticality
of the error in such applications:

where N is the number of computed values.
Similarly, some soft errors affecting the output of a classification algorithm could
still be acceptable. In fact, output errors could be tolerated as long as the mispredic-
tion is not critical for the purpose of the application. As an example, in an object
detection framework [42], the error criticality can be evaluated by Precision and
Recall metrics by considering Recall more strictly since missing actual pedestrians
(identified with lower Recall) may lead to accidents.

Similar metrics to identify the criticality of the data corruption can be defined and
evaluated in soft error vulnerability analysis of the programs. Since our target appli-
cations produce either matrix data or a single value, we utilize three metrics includ-
ing output corruption rate, absolute error, and mean squared error in our analysis.

Output corruption rate =
number of incorrect matrix elements

matrix size

Absolute error = ∣ expected value − observed value ∣

Mean absolute error (MAE) =
1

N

N
∑

1

∣ expected value − observed value ∣

	 I. Öz, Ö. F. Karadaş

1 3

4 � Experimental study

4.1 � Experimental setup

For inter-kernel and intra-kernel regional vulnerability analysis, we select six
CUDA applications from Polybench [17] benchmark suite including ATAX, BICG,
COVAR, CORR, FDTD-2D, GRAMSCHM, and an open-source graph coloring
application implemented in CUDA [1]. While the details are given in Sect. 4.2,
ATAX, BICG, COVAR, CORR, FDTD-2D, GRAMSCHM programs include matrix
operations in a number of kernel functions. The graph coloring program is the
CUDA implementation of the CJP algorithm given in [39], which is composed of
one kernel function that is responsible for checking the colors of vertex neighbors
and assigning a color for each node in the given graph. We choose the first set of
applications with different simple kernel functions to evaluate inter-kernel analysis,
and the other program with one complex kernel function to examine intra-kernel
behavior.

We compile our target programs with CUDA 9.0 and run fault injection experi-
ments in an Intel-based workstation with an NVIDIA Quadro P4000 GPU. We use
1000 fault injections per each regional fault analysis by using a statistical approach
[27] with the confidence level of 95% and the error margin 3%.

4.2 � Experimental results

In this section, we present the details of the benchmark applications to examine the
regional soft error vulnerability and our experimental results.

As we discuss in Sect. 3.4, depending on the application output, the evaluation of
the errors’ impact on the execution may vary. The program developers or the users,
who want to perform vulnerability analysis, can utilize our output evaluation feature
to understand the criticality of the data corruption. As part of this study, we examine
the output corruption rate and the mean absolute error for the programs including
matrix operations, while we focus on the absolute error values for the graph coloring
program, which calculates one value as its output. Hence, we analyze which code
region has affected the output by how much. Since the programs contain different
computations and demonstrate different data access patterns, we investigate them
one by one by examining the basic functionalities.

ATAX This application computes the multiplication of the matrix transpose and
the matrix-vector multiply ( AT times Ax). While the first kernel performs matrix-
vector multiplication, the second kernel multiplies the matrix transpose with the
result of the first kernel:

1 3

Regional soft error vulnerability and error propagation…

Fig. 4   Visualization of output difference between golden and SDC output

	 I. Öz, Ö. F. Karadaş

1 3

We perform fault injection on two kernel functions (K1 for atax_kernel1 and K2
for atax_kernel2 ) and analyze the results. Figure 5a presents the boxplot for the
number of the incorrect elements in the silent data corruption cases for each code
region. For K2 region, all of the fault injection scenarios ending with SDC result in
exactly one element’s miscalculation. On the other hand, for K1 region, most of the
SDC cases result in the corruption of all elements (i.e., 4096), while the fault affects
the fewer elements for a few cases. We can see that a fault that occurred during the
execution of the first kernel impacts the final output more seriously, while a fault in
the second kernel computation corrupts only one output element in the result array.
When one element of the tmp array is miscalculated during atax_kernel1 execution,
all the elements of the y array are affected by this data corruption. Depending on the
magnitude of the miscalculation, the effect on the output elements may get visible.
Specifically, when we examine the case that results in the corruption of the fewer
output elements (the circle in the boxplot) by using our error propagation tracker, we
see that the difference between the original and the corrupted value (of the tmp array
element) is the smallest among all SDC cases. Therefore, the difference may be hid-
den by the larger values contributing to the computation of the target y element.

BICG This application is the implementation of the BiCGSTAB (BiConjugate
Gradient STABilized method), which is an iterative method for the numerical
solution of linear systems. The two kernel functions given as part of the bench-
mark consist of two independent matrix-vector multiplication operations and
produce two different matrix elements as the output. We evaluate fault injection
experiments for those kernel functions, specifically we define two code regions
per kernel function, the first at array element initialization part, the other at mul-
tiplication operation. As a result, we have four different code regions (K1.1, K1.2,
K2.1, K2.2) for the application. Figure 5b presents the incorrect number of out-
put elements obtained from the fault injection experiments for each code region.
Since all the computations are independent and there is no data reuse in the ker-
nel functions, all SDC cases result in exactly one output element miscalculation.

COVAR This application computes covariance value, which shows statistically
how linearly related two variables are. The covariance is defined as the mean of the
product of the deviations for x and y variables:

As seen in the formula shown above, covariance computation includes three main
operations: (1) the average of the data elements, (2) the deviation of the data ele-
ments from the mean, and (3) the summation of the multiplication of those devia-
tions. Polybench implements those three operations in three kernel functions,
mean_kernel , reduce_kernel , covar_kernel , where the data elements are processed
in parallel CUDA threads.

𝜎x,y =

∑N

i=1
(xi − x̄)(yi − ȳ)

N − 1

1 3

Regional soft error vulnerability and error propagation…

We specify four different regions for fault injections, namely one for the
mean_kernel (KM), one for the reduce_kernel (KR), one for the inner loop of the
covar_kernel (KC.1), and one for the outer loop of the covar_kernel (KC.2). Figure 5c
presents the boxplots for the number of incorrect elements. We can see that the vari-
ance for the values is smaller in the KM region, while the values differ more substan-
tially for the other regions in different SDC cases. Essentially, data computed in the
mean kernel (KM) is utilized in the reduce kernel (KR), which directly results in the
corruption of the output data. The small oscillations in the affected number of elements
result from the magnitude of the data corruption in the mean kernel (similar to the K1
at ATAX). To further investigate the behavior, we look at the details of the SDC cases
we obtain for the fault injection on the mean kernel (KM). When we inject fault during
the execution of the statement at line 3, the computed value of the specific mean array
element is corrupted by some magnitude (difference), and we get unexpected values
in some symmat output array elements (the number of incorrect elements). Figure 6
presents the number of incorrect symmat elements and the difference between the origi-
nal value and the corrupted value in the mean array. We scale the difference value (by
dividing all the values by 16) to be able to demonstrate the relationship in the same
plot, namely, the y-axis in the figure represents the incorrect elements (e.g., 2047) while
the difference value is 16 times that value (e.g., approximately 32752). Since we apply
the same scaling factor for the regions of the same program, we believe that the com-
parison among different regions for one program is feasible. In general, we obtain more

	 I. Öz, Ö. F. Karadaş

1 3

incorrect elements in the output array if we have larger differences in the faulty mean
array. We can see this correlation in the figure with some exceptions, where we have
larger incorrect elements (for the SDC instance 22) or smaller difference values (for
the instances 39, 40, and 48). We further investigate the reason for those instances. For
the first case, where we have a larger number of incorrect elements while the corrupted
value does not differ, we observe that two elements of the mean array are corrupted
instead of one in a single fault injection experiment. The reason is that the index value
(j) in the target core region is corrupted (e.g., it gets the value 1 instead of 0), and two
elements of the mean array indexed by the original and modified values (e.g., 1 and 0)
are being miscalculated due to the swap of the values of those two elements. Therefore,
the impact on the final output gets visible for a larger number of elements. For the lat-
ter case, where we have smaller differences resulting in the same number of elements,
we can see that the differences in the final output values are also very small while there
is the same number of corrupted elements. For the reduce_kernel , we encounter more
double-element corruptions than the mean_kernel due to the index value corruptions,
where more variables contribute to the index value calculation including i, j, and size
(Line 3 in the reduce_kernel ). Instead of having modification on the array element,
most of the cases result in the index value corruption, and swapping two elements’ val-
ues does not cause large modifications in the element values. Therefore, the number of
incorrect elements is less than those in the mean_kernel . On the other hand, depending
on both the number of corrupted data array elements and the magnitude of the differ-
ences, there is a larger range for the possible number of incorrect elements in the output
array. For the regions inside the covar_kernel , the median values for the number of
incorrect elements are similar for both regions. Since the value inside the inner loop is
accumulated by several iterations, the impact gets less visible in the output elements.

CORR This application computes the Pearson’s correlation coefficients, which is
normalized covariance. The correlation is computed as follows:

The correlation computation includes four main operations: (1) the average of the
data elements, (2) the standard deviation of the data elements, (3) the division of
deviation of the data elements from the mean by the standard deviation, and (4)
the summation of the multiplication of those deviations. Similar to COVAR, Poly-
bench implements those operations in four separate kernel functions, mean_kernel ,
std_kernel , reduce_kernel , and corr_kernel , where the data elements are processed
in parallel CUDA threads. For this application, we perform a set of fault injec-
tion experiments similar to COVAR, one for the mean_kernel (KM), one for the
std_kernel (KS), one for the reduce_kernel (KR), one for the inner loop of the
corr_kernel (KC.1), and one for the outer loop of the corr_kernel (KC.2). Figure 5d
presents the boxplots for the number of the incorrect elements. While the faults in
the mean_kernel and the std_kernel cause similar impacts on the output elements
for all SDC cases, the reduce_kernel and the corr_kernel demonstrate more diverse
behavior. While the median values are similar to the regions for COVAR, we can

rx,y =

∑N

i=1
(xi − x̄)(yi − ȳ)

�

∑N

i=1
(xi − x̄)2

�

∑N

i=1
(yi − ȳ)2

1 3

Regional soft error vulnerability and error propagation…

observe a few differences. The more incorrect elements in the KR of CORR (than
the KR of COVAR) result from the fact that the corrupted value in the kernel is
modified by consecutive operations, which increases the impact of the corruption.

FDTD-2D This application is the implementation of the simplified finite-dif-
ference time-domain method for 2D data. The implementation consists of the fol-
lowing three kernel functions:

Fig. 5   Boxplot for incorrect elements of inter-kernel functions

	 I. Öz, Ö. F. Karadaş

1 3

Similar to the previous programs, we select regions inside the kernel functions.
While we select two different regions for the first step, Line 5 (K1.1) and Line 8
(K1.2), specifically, we perform fault injection while running Line 4 in the other
kernel functions (namely fdtd_step2_kernel (K2) and fdtd_step3_kernel (K3)).
While the first kernel updates ey variable, the second kernel independently modi-
fies the values of the ex variable, and finally the last kernel utilizes both variables
to obtain the resulting data variable, hz. Figure 5e presents the incorrect elements
observed in the output array (hz), where the faults in three regions (K1.1, K1.2,
K2) result in two-element corruption in the final output, since both ey and ex
array elements are utilized by the computation of two different output (hz) ele-
ments. Depending on the number of modified elements on the target kernels (on
either ey or ex) by the introduced fault or the magnitude of the modification, we
can get one or four incorrect elements as well. On the other hand, any fault in
the last kernel (K3) directly causes the corruption of the final output array with-
out any error propagation among array structures. Therefore, only one output ele-
ment is miscalculated as seen from the figure. We have the outlier value 2, which
results from the double-element corruption case discussed before.

1 3

Regional soft error vulnerability and error propagation…

GRAMSCHM This application represents QR decomposition with modi-
fied Gram Schmidt. The implementation consists of the following three kernel
functions:

We perform fault injections on five different regions, specifically, Line 6 in
the gramschmidt_kernel1 (K1), Line 3 in the gramschmidt_kernel2 (K2), Line 3,
Line 6, and Line 9 in the gramschmidt_kernel3 (K3.1, K3.2, K3.3). Figure 5f pre-
sents the number of incorrect elements in the output array. Since the first ker-
nel is executed by only one thread (with tid = 0 ) and computes the nrm value,
which is utilized by the computation of all output elements, a fault during the
gramschmidt_kernel1 (K1) execution corrupts all output data elements (4192256
in total). On the other hand, a fault in the computation of the q array inside the
gramschmidt_kernel2 (K2) results in a different number of output array elements.
Finally, due to lack of error propagation effect (namely, direct impact on the out-
put array), the faults for the regions inside the gramschmidt_kernel3 (given as
K3.1, K3.2, and K3.3 in Fig. 7, as a closer visualization to observe the details)

	 I. Öz, Ö. F. Karadaş

1 3

cause the fewer incorrect elements. Specifically, the K3.3 region tends to have
fewer incorrect elements due to its final touch in the output array (but still multi-
ple elements due to loop execution).

For the benchmark applications producing multiple values (as the output array
elements), we further analyze the fault outcomes by measuring mean absolute error
values. Since our earlier results present the number of incorrect elements for our
target programs, we still focus on the array elements computed differently than the
expected value. Therefore, we take the average values over those incorrectly com-
puted elements, namely, N in the formula given in Sect. 3.4 is taken as the number
of incorrect elements for the specific SDC cases. We also exclude some outlier val-
ues to represent the data more accurately.

Figures 8, 9, and 10 present the histogram of the mean absolute error values for
SDC cases belonging to each fault injection region in our target programs. While the
x-axis represents the mean absolute value intervals, the y-axis represents the number
of SDC cases resulting in errors between those values. For instance, in Fig. 8a, for
ATAX, we have six fault injection experiments ended with SDC case, where the
mean absolute error value obtained from each case is between 0 and 0.02xE+14.
We can observe different values among the programs having distinct computations
in their kernel functions. For ATAX, where the K2 performs a computation affect-
ing the final result directly and the K1 computes the intermediate values utilized by
the K2, while an error in the K1 propagates to the final result by corrupting mul-
tiple elements (see Figure 5a), it is more probable that an error in the K2 corrupts
the final array elements by a larger magnitude (see Figure 8b). On the other hand,
any error during the execution of the independent kernels in BICG results in similar
error rates, as we see the similar behavior for the incorrect number of elements. For

Fig. 6   SDC cases of fault injection on COVAR mean kernel

1 3

Regional soft error vulnerability and error propagation…

COVAR, since the KR is the kernel just negating the mean values computed by the
KM, its effect is the lowest among the other COVAR kernels (see Figure 9a). The
effect of the other kernels is larger and does not differ significantly among them-
selves. We can see a similar behavior for the error distributions of the CORR ker-
nels. The trend in the magnitude of the error, which demonstrates an increase in the
last kernel of the programs, is not valid for the FDTD-2D (see Figures 10a, 10b, 10c,
and 10b). Since the computation performed in the last kernel, K3, aggregates many
different values (loaded from the memory locations to the separate registers), the
impact of any error hitting one of the registers would not be so high in terms of the
corruption value. Moreover, the error magnitudes (difference between the expected
and the observed value) are not so large due to the individual computations other
than cumulative (summation) operations similar to CORR or COVAR programs.
Therefore, we do not see significant difference among the mean absolute errors for
different kernels. We also see smaller error values for GRAMSCHM, where we have
multiple operations like negation or division as well as addition, which makes the
final values not so large.

CJP This application is the CUDA implementation of the Counting-based Jones-
Plassmann (CJP) graph coloring algorithm [39]. The kernel function performs
coloring of the neighbors of each vertex, where each thread works on a separate
neighbor set of the target vertex. The computation inside the kernel includes bit-
level operations and each thread keeps a 256-bit variable of which each bit may be
utilized during the computation. To evaluate intra-kernel vulnerability, we choose
this program since it represents a heavy-kernel CUDA program with several compu-
tations inside its kernel. In our fault injection experiments, we pick a graph instance
from the University of Florida sparse matrix collection [11].

We select 19 different code regions for our fault injection analysis and conduct
fault injection experiments to get the regional soft error vulnerabilities. While the
first six code regions are responsible for the initialization and the distribution of the
work, the last nine code regions perform global update operations.

Figure 11a presents the number of incorrect computations observed among the
fault injection instances. As the CJP program produces one value as the output
(i.e., the minimum number of colors to color the graph), we simply compare the
resulting output with the expected one and mark the individual fault injection case
as an incorrect computation/silent data corruption (SDC) if they do not match. For
instance, out of 1000 fault injections, we get 25 incorrect values (the minimum num-
ber of colors to color the graph) in region 19. When we look at the results in detail,
we can see that the number of incorrect results is higher in the first and the last
regions. Since the initialization and work distribution is performed by one thread in
the first part, namely the regions between 1 and 6, it is more probable that the incor-
rect work assignment affects the whole computation. Moreover, since the regions
between 11 and 19 are responsible for the update of the global result after the com-
pletion of thread-local operations, the fault that occurred during this time can affect
the result directly. In the other regions, namely the regions between 7 and 10, since
the individual threads are working on their local data and the corrupted values com-
puted by bit-level operations can become ineffective by the other threads or the
thread itself, we consider that fault injections on those code regions do not affect the

	 I. Öz, Ö. F. Karadaş

1 3

final result. For instance, assume that one thread stores the colors of its neighbors
in an 8-bit variable (four 64-bit registers in the application). According to the CJP
algorithm, the bit locations corresponding to its neighbors’ colors need to be 1 while
the others are set to 0. As an example, if there are 2 neighbors to be processed by
the thread and their colors are 1 and 3, the 8-bit variable needs to contain 00000101
bit sequence. The thread should select color 2, as the minimum color other than the
neighbors’ colors. With an error flipping the third bit of the 8-bit variable (convert it
to 0 from 1), we may have 00000001 value instead of 00000101. However, this does
not change the decision of the thread, because the minimum unassigned color is still
2, and the erroneous local variable does not impact the result at all. We can see that
CJP, which is working with bit-level operations, is inherently fault-tolerant for some
part of its calculation. On the other hand, if an error hits the second bit and converts
it to 1 from 0, we will have 00000111, the minimum unassigned color becomes 4,
not 2 anymore. Therefore, the decision of the erroneous thread will potentially affect
the outcome. The fault tolerance is not valid for this specific error. Although there
is a possibility of an SDC in the final output, which depends on the bit-wise opera-
tions, it is also possible to tolerate the faults even if the error hits a utilized register.

We perform a sensitivity analysis to understand how the CJP threads utilize the
registers during their execution. Since the multiple threads store the colors in mul-
tiple bits (possibly in multiple registers), we think that injecting the faults among
different registers does not change the SDC values. Due to the heavy utilization of
all registers, we would get similar corrupted results by corrupting the valuable data
in any of the registers. While Fig. 11a presents the SDC numbers for fault injection
experiments that select the injection point among 64 registers, Fig. 11b demonstrates
the results for the experiments with 128 registers. Contrary to our expectations, we
observe fewer SDC cases in the latter case. After analyzing the results in detail and
consider our observations about the results before, we realize that the SDC cases
result from the faults in the code regions executed by a single thread, specifically
during initialization or modification of the global data, where the register utiliza-
tion is not high. Therefore, we encounter fewer SDC cases for the setting with more
register alternatives (128 registers) due to the lower probability of fault impact in a
larger fault space.

We also collect absolute error values, obtained by taking the difference of the
expected value and the observed value, for each SDC case in our target regions.
Since CJP computes one output value as its result, we utilize the absolute error met-
ric to evaluate the criticality of the data corruptions. We observe four different val-
ues in the SDC cases, where we encounter the value 257 for most of the cases. Since
the kernel function needs to continue at the next phase if the first phase cannot set
a color smaller than 256, an error hitting the kernel computations during the first
phase may result in proceeding the next phase erroneously and end with 257 differ-
ent colors to color the vertices of the graph. Figure 12 demonstrates the distribution
of the absolute error values for the SDC cases for each region with fault injection
performed at 64 and 128 registers. Similar to Fig. 11, the x-axis represents the dif-
ferent code regions and the y-axis represents the number of SDC cases, where the
different colors represent the different absolute error values. For instance, as shown
in Fig. 12a, for R1, we have 239 as absolute error value for all 22 SDC cases, while

1 3

Regional soft error vulnerability and error propagation…

we have 47 for 11 SDC cases and 239 for the remaining 26 SDC cases for R15. Spe-
cifically, the value 239 is obtained as the absolute error by subtracting the errone-
ous 257 value (as explained earlier) from the expected 18 value (our golden output
for the CJP execution). We have the value 239 for most of the cases for all regions,
while there are other values for a few cases. Especially, for the regions closer to
the last part of the computation, we can observe other values as the output of the
program since the injected errors corrupt the bit-wise computations in different bit
locations.

5 � Discussion

In this section, we present our observations and potential usage scenarios of our
region-based soft error vulnerability analysis.

5.1 � Observations

We make the following observations in our study.
Observation 1: Both inter-kernel and intra-kernel code regions in GPGPU pro-

grams exhibit different soft error vulnerability.
By performing regional fault injections either on different kernel functions or

different regions inside one kernel function, we evaluate diverse soft error effects
for different code regions. Depending on the operation performed or the data being
utilized by the target code, the output of the program is affected in various ways.
Consequently, we see that black-box, coarse-grained fault injection analysis does not
provide details about the vulnerability of the GPGPU programs and we need to per-
form fine-grained regional analysis including data corruption criticality evaluation
to be able to take cautions (as we discuss in Sect. 5.2) about that level of the vulner-
abilities. Even for the same code region, the effect of a soft error may appear in dif-
ferent ways (e.g., either the corruption of the variable holding the value and having
a single incorrect output element, or the corruption of the index of the array element
and having two incorrect output elements). Hence, we consider that finer-grained
vulnerability analysis maintains further details for fault-tolerant computing.

Observation 2: The code regions affect the other code regions (in the same ker-
nel or in the other kernel functions) or data structures, as well as the final output
in different ways depending on the flow and the data utilization of the GPGPU
application.

Through our empirical error propagation analysis, we observe the spread of an
error among the application code and data. Depending on the characteristics of
the target program and its memory access pattern, a fault might manifest in differ-
ent parts of the application data. The criticality and the speed of this propagation
also depend on the data accessed and the operations performed during the program
execution. For instance, a single error hitting any data element that would be uti-
lized for the computation of several output data elements corrupts the several out-
put elements. Furthermore, multi-bit errors, which are not evaluated as part of this

	 I. Öz, Ö. F. Karadaş

1 3

paper, but targeted as future work, may result in more serious effects on the program
output by corrupting a larger amount of program data. Since the programs, espe-
cially GPGPU programs dealing with a large amount of data, exhibit diverse data
dependency relations; it gains more importance to evaluate the error propagation for
GPGPU program execution [4, 28]. While it is crucial to understand the effects of
the soft errors on the final program outcome, tracking the error propagation through
program execution provides insights into the vulnerability behavior of the target pro-
gram and enables us to consider the ways to reduce the risk of spread among the
application.

Observation 3: The degree of parallelism in GPGPU programs affects the soft
error vulnerability in different ways depending on the work performed or the data
utilized by the CUDA threads.

As we analyze as part of our inter-kernel evaluation, the utilization of the local
memory structures, like registers, directly affects the soft error vulnerability of the
GPGPU programs. From our experimental analysis, we see that it is more probable
to have data corruption if we have fewer threads utilizing the available registers.
Essentially, the total number of registers utilized at any time depends on the num-
ber of threads executing simultaneously. While the number of registers used by one
thread limits the parallelism in a CUDA program, the impact also needs to be exam-
ined for soft error vulnerability. Analyzing the register usage of one thread in the
program may not be adequate without having information about the parallelism in
the program, e.g., the number of threads executing in parallel to that thread. When
one thread heavily uses the registers (but not all the available registers) to hold its
data, but there are not many parallel threads, overall vulnerability may not be high.
On the other hand, in an execution where we have many concurrent threads with a
few register usage, we may have a larger vulnerability due to higher overall register
utilization.

5.2 � Potential usage scenarios

Our regional fault analysis tool can be used to evaluate error resilience characteris-
tics of general-purpose GPU applications in a number of contexts. We provide five
usage scenarios to show how our tool can be utilized.

5.2.1 � Correlating code characteristics and fault behavior

Recently, there have been some works that propose machine-learning techniques to
predict soft errors in GPU programs [23, 37]. The proposed prediction frameworks
utilize the program characteristics as input features in their ML models, similar to
works based on failure prediction for HPC systems [21]. In order to train the model,
they collect both program features like memory address instructions, arithme-
tic instructions, register usage; and fault injection outcomes like SDC, crash rates.
Due to the fact that the more data they collect, the more accurate prediction they
can obtain; dividing the execution into smaller parts (regions) and collecting data
for each part may increase the number of data points for the target ML model. Our

1 3

Regional soft error vulnerability and error propagation…

regional fault injection framework employs fine-grained fault injection experiments
by introducing faults in the target registers for any statement in the target CUDA
program. Instead of performing fault injection for the complete program (or indi-
vidual kernel), the developers can utilize our tool to conduct multiple fault injec-
tion experiments for the target program and obtain multiple data points for their ML
model input. Potentially, the prediction accuracy of their models increases.

5.2.2 � Selective redundant execution

Since the software redundancy techniques [12, 18, 47] introduce performance over-
heads, the selective redundancy schemes based on the replication of the most error-
sensitive parts employ more efficient execution by providing the best coverage in
terms of reliability and performance. Our regional fault injection framework can
be utilized by the redundant execution techniques to determine the most vulnerable
parts of the target program and it can lead to the selective redundancy performed
by those methods. By performing fault injection experiments in different parts of
the target program, one can decide the criticality of the code regions under observa-
tion and prefer to employ redundancy on the most critical parts instead of the full
replication.

5.2.3 � Partial data protection

Similar to the redundant execution, the fault tolerance techniques based on the data
redundancy like ECC or parity induce additional cost and performance overhead.
Although protecting especially highly utilized memory structures like registers or
shared memory is not preferred mostly, some critical systems may need to employ
this level of protection. Instead of all memory structures in a GPU system, protecting

Fig. 7   Boxplot for incorrect elements of gramschmidt_kernel3 kernel

	 I. Öz, Ö. F. Karadaş

1 3

a subset of them and utilizing the protected resources (like registers) for more vul-
nerable operations decrease the performance overhead of the replication.

5.2.4 � Approximation methods

To deal with the large performance overheads for applications not requiring 100%
correct output, the approximation techniques have been applied in different com-
puting levels [32]. Since our data corruption criticality evaluation reports the data
corruptions over different parts of the output data, we can understand that how
much the output is affected by an error (or any miscalculation) in any code region.
Consequently, even non-safety-critical programs can utilize our framework to make
decisions about the program parts to be approximated. As we demonstrate in our

Fig. 8   Histogram of mean absolute error (MAE)

1 3

Regional soft error vulnerability and error propagation…

Fig. 9   Histogram of mean absolute error (MAE)

	 I. Öz, Ö. F. Karadaş

1 3

Fig. 10   Histogram of mean absolute error (MAE)

1 3

Regional soft error vulnerability and error propagation…

experimental study, our error propagation analysis allows tracking the program data
during the program execution. By observing the errors destroying the program data
during the execution of the specific code regions, one can decide to perform approx-
imation on less vulnerable program points. Since less vulnerable corresponds to
less influence on the program output, the computations in those code regions can be
skipped or the data types with less precision can be utilized by considering that the
output will not be affected by the incorrect or imprecise values computed during the
execution of those code regions.

5.2.5 � Guidance to the software developer

While the software developers first aim to write correct code, the performance or
reliability may be seen as a major feature for applications running in high-perfor-
mance computing and safety-critical systems, respectively. Since the programmers
may not know the architectural details of the underlying system, providing high-
level instructions to guide them for writing much faster or more reliable code can
be a good contribution to satisfying the target programs’ requirements. While more
substantial work exists for high-performance and efficient program development
guides [10, 25], there is a lack of reliable execution suggestions in the literature.
Especially, fine-grained code analysis and offering vulnerability-aware suggestions
for more reliable execution are not employed. Our framework, which performs a
debugger-level fault injection and provides a connection between the high-level pro-
gram (e.g., CUDA kernel functions) and the underlying architecture resources (like
register file), allows the programmers to learn more vulnerable parts of their pro-
grams. According to the guidelines deduced from the results of our empirical study,
the programmer can utilize our framework for developing a more reliable program.
For instance, the number of threads and the parallelism incurred in the target code
can be adjusted by considering the reliability as well as performance. As we discuss
in our observations, the higher occupancy might result in higher performance; how-
ever, it also makes the program more vulnerable to the soft errors in the register file.
By taking into account both performance and reliability considerations, the software
developer can conduct a trade-off analysis between a faster or less vulnerable pro-
gram and make decisions based on the guidelines provided by our framework.

6 � Related work

Assembly-level fault injections introduce errors in the assembly instructions of the
target application during its execution. The execution trace is performed by profil-
ing or in the debugging phase. While the assembly-level fault injection yields less
detailed analysis than the microarchitectural-level fault injection, it provides more
information than the higher (source code) level injection methodologies.

Fang et al. [13, 14] present a methodology for the reliability evaluation of
GPGPU applications by using a debugger-based fault injection framework. First,
the proposed fault injection environment (GPU-Qin) groups the similar CUDA
threads to profile only one thread in the same group. Then it profiles the threads

	 I. Öz, Ö. F. Karadaş

1 3

by executing the program in GPGPU-Sim simulator [6] and determines the num-
ber of instructions. In the final fault injection phase, a set of fault injection runs is
conducted to get the fault rates for the program. For each fault injection run, one
instruction is selected from the instructions collected in the profiling phase and
a breakpoint is added at that instruction. When the execution reaches the target
instruction, a fault is injected by flipping a randomly chosen single bit in the reg-
ister used in the instruction. The authors present a detailed experimental study to

Fig. 11   SDC distribution for CJP application (with FI on 64-128 registers)

1 3

Regional soft error vulnerability and error propagation…

demonstrate the use of the proposed methodology to characterize GPGPU appli-
cations’ soft error vulnerability. Our fault injection tool is similar to GPU-Qin,
as it is built on cuda-gdb; on the other hand, it differs in the way that its target
fault injection point is the high-level source code sections instead of the low-level
instructions.

Hari et al. [19] present a fault injection tool (SASSIFI) for NVIDIA GPUs based
on assembly-language instrumentation tool (SASSI), which modifies the registers
and memory. SASSIFI works in three steps including: profiling the program, select-
ing fault injection points, and injecting errors into programs. The authors also dem-
onstrate that how SASSIFI can be utilized for the resilience evaluation of applica-
tions. Similar to GPU-Qin, SASSIFI employs at SASS instruction level, while our
fault injector targets high-level source code sections and performs the fault injection
for the random instructions that are part of the specified code regions. Previlon et al.
[38] employ SASSIFI for the evaluation of the correlation between the performance
phases of GPU programs and the soft error vulnerability. Based on their observa-
tions, the authors propose a fault injection methodology, Spoti-FI, to determine the
most representative fault injection points in the program and reduce the total number
of faults necessary for fault injection experiments. Recently, Tsai et al. [45] present a
fault injection tool (NVBitFI), which offers functionality that is similar to SASSIFI.
NVBitFI is based on NVBit (NVidia Binary Instrumentation Tool) [46], which is
recommended to use for recent GPU architectures. NVBitFI can run on newer GPUs
like Turing and Volta architectures, additionally, it works with pre-compiled librar-
ies and is faster than the SASSIFI. Santos et al. [43] perform a comparison study
between the real beam experiments and NVBitFI-based fault injection simulations.

Santos et al. [16] evaluate the soft error vulnerability of mixed-precision archi-
tectures and utilize a fault injection tool implemented on cuda-gdb debugger for
target GPU devices. In their other work [42], Santos et al. evaluate the soft error
vulnerability of the object detection frameworks by utilizing CAROL-FI and inves-
tigate Histogram of Oriented Gradients (HOG) and You Only Look Once (YOLO)
benchmarks to examine kernel and layer vulnerabilities. The authors focus on the
programs from a specific domain and do not present a generic vulnerability analysis.

Yang et al. [50] present an efficient error resilience evaluation methodology
(SUGAR) based on the estimations by executing fault injections with small input
sizes. Instead of performing long-running experiments with real data, SUGAR pro-
poses a pattern discovery scheme to represent the vulnerability of the GPU programs
as a function of the input size. By utilizing the dynamic instruction counts from the
experiments with small inputs, it accurately predicts the error resilience for large
input files. While SUGAR performs reliability evaluations on GPGPU-Sim simula-
tor [6] by working on instructions, the authors claim that it can also be used with
SASSIFI [19] and NVBitFI [45]. In their other recent work, Yang et al. [49] propose
a progressive fault site pruning mechanism including thread-wise, instruction-wise,
loop-wise, and bit-wise pruning stages. By performing those pruning stages, they
reduce the fault space and decrease the fault injection cost significantly. Since the
main target of our work is not efficient execution, we do not focus on performance
issues. However, we believe that our fault injection tool can be optimized by utiliz-
ing the proposed methodologies.

	 I. Öz, Ö. F. Karadaş

1 3

Leng et al. [26] examine the GPU activities to understand the source of the volt-
age droops during the program execution. Similar to our inter-kernel and intra-
kernel analysis, they monitor inter-kernel and intra-kernel activities, where the
consecutive launch of kernels can cause large voltage droops and intra-kernel micro-
architectural events can affect voltage droops, respectively. By identifying the activi-
ties affecting the voltage levels significantly, the authors propose the elimination of
the specific activity to reduce the droop. Furthermore, Zamani et al. [51, 52] propose
a fault tolerance algorithm for matrix multiplication for the case that they perform
undervolting in the GPU beyond the minimum operating voltage to save energy,
but have possible faults during the execution. Based on the activities introduced by
Leng et al. [26], they observe that at a specific voltage, the different inter-kernel and
intra-kernel activities can lead to different failure rates. While the authors discuss
similar concepts by examining both inter-kernel and intra-kernel activities, our work

Fig. 12   Absolute error values for CJP application (with FI on 64-128 registers)

1 3

Regional soft error vulnerability and error propagation…

focuses directly on the soft error vulnerability of the GPU programs by perform-
ing a high-level fault injection study without dealing with the effect of the specific
activities such as consecutive kernel function calls or microarchitectural events on
the voltage levels and fault rates.

In our work, we propose a debugger-based fault injector tool that can inject faults
in predetermined regions to analyze the regional soft error vulnerability of GPGPU
programs. Our methodology enables us to evaluate both intra-kernel and inter-kernel
vulnerability analysis. It also presents error propagation through data structures in
the program in case of error occurrence in different program regions.

7 � Conclusions and future work

In this work, we present a region-based soft error vulnerability analysis for GPGPU
applications. We build a fault injection framework to evaluate both inter-kernel and
intra-kernel vulnerabilities of the programs running on GPU architectures. We also
design and develop an error propagation tracker to evaluate the spread of an error
through data variables during the execution of multiple kernel functions.

We perform detailed fault injection experiments for a set of GPGPU programs
and observe that GPGPU programs demonstrate different soft error vulnerability
and propagation for their different code regions. Based on our empirical data, we
make prominent observations about the fault behavior of GPGPU programs that
can be utilized in multiple ways. Furthermore, we present the usage scenarios of
our regional fault analysis framework as a guide to the researchers, system users, or
software developers seeking ways to employ high fault tolerance in their systems or
programs.

We believe that fine-grained vulnerability analysis can help both professional and
academic systems targeting reliability. By considering domain-specific metrics for
the vulnerability and performing fault injections at various levels (like inter-ker-
nel and intra-kernel), more efficient fault tolerance techniques can be employed in
safety-critical systems requiring both performance and reliability in their executions.
The performance and reliability trade-off analysis can be performed by selectively
replicating only the most vulnerable parts of the target programs or protecting only
the most vulnerable data. Moreover, approximate computing techniques can be uti-
lized by performing approximation for the less vulnerable/influential code regions.

Acknowledgements  This work was supported by the Scientific and Technological Research Council of
Turkey (TÜBİTAK), Grant No: 119E011.

References

	 1.	 Implementing-graphcoloring-on-gpu (2020). https://​github.​com/​cemsa​kizci/​Imple​menti​ng-​graph​
Color​ing-​on-​GPU

	 2.	 Nvidia, cuda-gdb (2020). https://​devel​oper.​nvidia.​com/​cuda-​gdb
	 3.	 Aamodt TM, Fung WWL, Rogers TG, Martonosi M (2018) General-purpose graphics processor

architecture

https://github.com/cemsakizci/Implementing-graphColoring-on-GPU
https://github.com/cemsakizci/Implementing-graphColoring-on-GPU
https://developer.nvidia.com/cuda-gdb

	 I. Öz, Ö. F. Karadaş

1 3

	 4.	 Anwer AR, Li G, Pattabiraman K, Sullivan M, Tsai T, Hari SKS (2020) Gpu-trident: efficient mode-
ling of error propagation in gpu programs. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’20

	 5.	 Arslan S, Unsal O (2021) Efficient selective replication of critical code regions for sdc mitigation
leveraging redundant multithreading. Journal of Supercomputing pp. 1. https://​doi.​org/​10.​1007/​
s11227-​021-​03804-6

	 6.	 Bakhoda A, Yuan GL, Fung WWL, Wong H, Aamodt TM (2009) Analyzing cuda workloads using
a detailed gpu simulator. In: International Symposium on Performance Analysis of Systems and
Software

	 7.	 Borodin D, Juurlink BH (2010) Protective redundancy overhead reduction using instruction vulner-
ability factor. Proceedings of the 7th ACM International Conference on Computing Frontiers (CF)

	 8.	 Cini N, Yalcin G (2020) A methodology for comparing the reliability of gpu-based and cpu-based
hpcs. ACM Comput Surv 53(1). https://​doi.​org/​10.​1145/​33727​90

	 9.	 Clark JA, Pradhan DK (1995) Fault injection: a method for validating computer-system dependabil-
ity. Computer 28(6):47–56

	10.	 Cook S (2013) Chapter 9 - optimizing your application. In: S. Cook (ed.) CUDA Programming,
Applications of GPU Computing Series, pp. 305 – 440. Morgan Kaufmann, Boston. https://​doi.​org/​
10.​1016/​B978-0-​12-​415933-​4.​00009-0. http://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​B9780​
12415​93340​00090

	11.	 Davis TA, Hu Y (2011) The university of florida sparse matrix collection. ACM Trans Math Softw
38(1)

	12.	 Dimitrov M, Mantor M, Zhou H (2009) Understanding software approaches for gpgpu reliability.
In: Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units,
GPGPU-2, p. 94–104

	13.	 Fang B, Pattabiraman K, Ripeanu M, Gurumurthi S (2014) Gpu-qin: A methodology for evaluating
the error resilience of gpgpu applications. IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS)

	14.	 Fang B, Pattabiraman K, Ripeanu M, Gurumurthi S (2016) A systematic methodology for evaluat-
ing the error resilience of gpgpu applications. IEEE Transac Parallel Distrib Syst 27(12):3397–3411

	15.	 Feng S, Gupta S, Ansari A, Mahlke S (2010) Shoestring: probabilistic soft error reliability on the
cheap. Proceedings of the Fifteenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), p. 385–396

	16.	 Fernandes dos Santos F, Lunardi C, Oliveira D, Libano F, Rech P (2019) Reliability evaluation
of mixed-precision architectures. IEEE International Symposium on High Performance Computer
Architecture (HPCA)

	17.	 Grauer-Gray S, Xu L, Searles R, Ayalasomayajula S, Cavazos J (2012) Auto-tuning a high-level
language targeted to gpu codes. 2012 Innovative Parallel Computing (InPar)

	18.	 Gupta M, Lowell D, Kalamatianos J, Raasch S, Sridharan V, Tullsen D, Gupta R (2017) Compiler
techniques to reduce the synchronization overhead of gpu redundant multithreading. In: 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6 (2017). https://​doi.​org/​10.​1145/​
30616​39.​30622​12

	19.	 Hari SKS, Tsai T, Stephenson M, Keckler SW, Emer J (2017) Sassifi: an architecture-level fault
injection tool for gpu application resilience evaluation. In: International Symposium on Performance
Analysis of Systems and Software (ISPASS), International Symposium on Performance Analysis of
Systems and Software (ISPASS)

	20.	 Hukerikar S, Teranishi K, Diniz PC, Lucas RF (2018) Redthreads: an interface for application-level
fault detection/correction through adaptive redundant multithreading. International Journal of Paral-
lel Programming 46

	21.	 Jauk D, Yang D, Schulz M (2019) Predicting faults in high performance computing systems: an in-
depth survey of the state-of-the-practice. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’19

	22.	 Jeon H, Annavaram M (2012) Warped-dmr: light-weight error detection for gpgpu. In: Interna-
tional Symposium on Microarchitecture (MICRO), International Symposium on Microarchitecture
(MICRO)

	23.	 Kalra C, Previlon F, Li X, Rubin N, Kaeli D (2018) Prism: predicting resilience of gpu applications
using statistical methods. In: SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 866–879 . https://​doi.​org/​10.​1109/​SC.​2018.​00072

https://doi.org/10.1007/s11227-021-03804-6
https://doi.org/10.1007/s11227-021-03804-6
https://doi.org/10.1145/3372790
https://doi.org/10.1016/B978-0-12-415933-4.00009-0
https://doi.org/10.1016/B978-0-12-415933-4.00009-0
http://www.sciencedirect.com/science/article/pii/B9780124159334000090
http://www.sciencedirect.com/science/article/pii/B9780124159334000090
https://doi.org/10.1145/3061639.3062212
https://doi.org/10.1145/3061639.3062212
https://doi.org/10.1109/SC.2018.00072

1 3

Regional soft error vulnerability and error propagation…

	24.	 Kalra C, Previlon F, Rubin N, Kaeli D (2020) Armorall: compiler-based resilience targeting gpu
applications. ACM Trans. Archit. Code Optim. 17(2). https://​doi.​org/​10.​1145/​33821​32

	25.	 Kirk DB, mei W Hwu W (2017) Chapter 5 - performance considerations. In: D.B. Kirk, W. mei
W. Hwu (eds.) Programming Massively Parallel Processors (Third Edition), third edition edn., pp.
103 – 130. Morgan Kaufmann . https://​doi.​org/​10.​1016/​B978-0-​12-​811986-​0.​00005-4. http://​www.​
scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​B9780​12811​98600​00054

	26.	 Leng J, Buyuktosunoglu A, Bertran R, Bose P, Reddi VJ (2015) Safe limits on voltage reduction
efficiency in gpus: a direct measurement approach. In: Proceedings of the 48th International Sympo-
sium on Microarchitecture, MICRO-48, p. 294–307

	27.	 Leveugle R, Calvez A, Maistri P, Vanhauwaert P (2009) Statistical fault injection: quantified error
and confidence. Proceedings of the Conference on Design, Automation and Test in Europe (DATE)

	28.	 Li G, Pattabiraman K, Cher C, Bose P (2016) Understanding error propagation in gpgpu applica-
tions. In: SC ’16: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 240–251. https://​doi.​org/​10.​1109/​SC.​2016.​20

	29.	 Li T, Ambrose JA, Ragel R, Parameswaran S (2016) Processor design for soft errors: challenges and
state of the art. ACM Comput. Surv. 49(3)

	30.	 Mahmoud A, Hari SKS, Sullivan MB, Tsai T, Keckler SW (2018) Optimizing software-directed
instruction replication for gpu error detection. International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC), pp. 842–854

	31.	 Hsueh Mei-Chen, Tsai TK, Iyer RK (1997) Fault injection techniques and tools. Computer
30(4):75–82

	32.	 Mittal S (2016) A survey of techniques for approximate computing. ACM Comput Surv 48(4)
	33.	 Mukherjee S (2008) Architecture Design for Soft Errors. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA
	34.	 Nie B, Tiwari D, Gupta S, Smirni E, Rogers JH (2016) A large-scale study of soft-errors on gpus

in the field. In: 2016 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pp. 519–530. https://​doi.​org/​10.​1109/​HPCA.​2016.​74460​91

	35.	 Owens JD, Luebke D, Govindaraju N, Harris M, Krüger J, Lefohn AE, Purcell TJ (2007) A survey
of general-purpose computation on graphics hardware. Comput Graphics Forum 26(1):80–113

	36.	 Oz I, Topcuoglu HR, Tosun O (2019) A user-assisted thread-level vulnerability assessment tool.
Concurrency and Computation: Practice and Experience 31(13)

	37.	 Palazzi L, Li G, Fang B, Pattabiraman K (2020) Improving the accuracy of ir-level fault injection.
IEEE Transactions on Dependable and Secure Computing pp. 1–1. https://​doi.​org/​10.​1109/​TDSC.​
2020.​29802​73

	38.	 Previlon FG, Kalra C, d. tiwari, Kaeli DR (2020) Characterizing and exploiting soft error vulner-
ability phase behavior in gpu applications. IEEE Transactions on Dependable and Secure Comput-
ing pp. 1

	39.	 Quang Anh Pham N, Fan R (2018) Efficient algorithms for graph coloring on gpu. 2018 IEEE 24th
International Conference on Parallel and Distributed Systems (ICPADS)

	40.	 Reis GA, Chang J, Vachharajani N, Rangan R, August DI (2005) Swift: software implemented fault
tolerance. International Symposium on Code Generation and Optimization

	41.	 Reis GA, Chang J, Vachharajani N, Rangan R, August DI, Mukherjee SS (2005) Software-con-
trolled fault tolerance. ACM Trans Archit Code Optim 2(4):366–396. https://​doi.​org/​10.​1145/​11138​
41.​11138​43

	42.	 dos Santos FF, Carro L, Rech P (2019) Kernel and layer vulnerability factor to evaluate object
detection reliability in gpus. IET Computers and Digital Techniques 13

	43.	 Santos FFd, Hari SKS, Basso PM, Carro L, Rech P (2021) Demystifying gpu reliability: comparing
and combining beam experiments, fault simulation, and profiling. In: 2021 IEEE International Par-
allel and Distributed Processing Symposium (IPDPS), pp. 289–298. https://​doi.​org/​10.​1109/​IPDPS​
49936.​2021.​00037

	44.	 Shivakumar P, Kistler M, Keckler SW, Burger D, Alvisi L (2002) Modeling the effect of technol-
ogy trends on the soft error rate of combinational logic. In: International Conference on Depend-
able Systems and Networks (DSN), International Conference on Dependable Systems and Networks
(DSN)

	45.	 Tsai T, Hari SKS, Sullivan MB, Villa O, Keckler SW (2021) Nvbitfi: dynamic fault injection for
gpus. In: International Conference on Dependable Systems and Networks, (DSN)

	46.	 Villa O, Stephenson M, Nellans D, Keckler SW (2019) Nvbit: a dynamic binary instrumenta-
tion framework for nvidia gpus. In: Proceedings of the 52nd Annual IEEE/ACM International

https://doi.org/10.1145/3382132
https://doi.org/10.1016/B978-0-12-811986-0.00005-4
http://www.sciencedirect.com/science/article/pii/B9780128119860000054
http://www.sciencedirect.com/science/article/pii/B9780128119860000054
https://doi.org/10.1109/SC.2016.20
https://doi.org/10.1109/HPCA.2016.7446091
https://doi.org/10.1109/TDSC.2020.2980273
https://doi.org/10.1109/TDSC.2020.2980273
https://doi.org/10.1145/1113841.1113843
https://doi.org/10.1145/1113841.1113843
https://doi.org/10.1109/IPDPS49936.2021.00037
https://doi.org/10.1109/IPDPS49936.2021.00037

	 I. Öz, Ö. F. Karadaş

1 3

Symposium on Microarchitecture, MICRO ’52, p. 372–383. Association for Computing Machinery,
New York, NY, USA. https://​doi.​org/​10.​1145/​33524​60.​33583​07

	47.	 Wadden J, Lyashevsky A, Gurumurthi S, Sridharan V, Skadron K (2014) Real-world design and
evaluation of compiler-managed gpu redundant multithreading. In: International Symposium on
Computer Architecture (ISCA), International Symposium on Computer Architecture (ISCA)

	48.	 Wang J (2017) Acceleration and optimization of dynamic parallelism for irregular applications on
gpus. Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA, USA. http://​hdl.​handle.​net/​1853/​
56294

	49.	 Yang L, Nie B, Jog A, Smirni E (2021) Practical resilience analysis of gpgpu applications in the
presence of single- and multi-bit faults. IEEE Transac Comput 70(1):30–44. https://​doi.​org/​10.​1109/​
TC.​2020.​29805​41

	50.	 Yang L, Nie B, Jog A, Smirni E (2021) Sugar: speeding up gpgpu application resilience estimation
with input sizing. Proc. ACM Meas. Anal. Comput. Syst. 5(1). https://​doi.​org/​10.​1145/​34473​75

	51.	 Zamani H, Liu Y, Tripathy D, Bhuyan L, Chen Z (2019) Greenmm: energy efficient gpu matrix
multiplication through undervolting. In: Proceedings of the ACM International Conference on
Supercomputing, ICS ’19, p. 308–318

	52.	 Zamani H, Tripathy D, Bhuyan L, Chen Z (2020) Saou: safe adaptive overclocking and undervolting
for energy-efficient gpu computing. In: Proceedings of the ACM/IEEE International Symposium on
Low Power Electronics and Design, ISLPED ’20, p. 205–210

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1145/3352460.3358307
http://hdl.handle.net/1853/56294
http://hdl.handle.net/1853/56294
https://doi.org/10.1109/TC.2020.2980541
https://doi.org/10.1109/TC.2020.2980541
https://doi.org/10.1145/3447375

	Regional soft error vulnerability and error propagation analysis for GPGPU applications
	Abstract
	1 Introduction
	2 Background
	2.1 Soft errors in GPGPUs
	2.2 Evaluating soft error vulnerability

	3 Regional soft error vulnerability analysis
	3.1 Motivation
	3.2 Regional fault injection tool
	3.3 Error propagation tracking
	3.4 Data corruption criticality evaluation

	4 Experimental study
	4.1 Experimental setup
	4.2 Experimental results

	5 Discussion
	5.1 Observations
	5.2 Potential usage scenarios
	5.2.1 Correlating code characteristics and fault behavior
	5.2.2 Selective redundant execution
	5.2.3 Partial data protection
	5.2.4 Approximation methods
	5.2.5 Guidance to the software developer

	6 Related work
	7 Conclusions and future work
	Acknowledgements
	References

